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I. INTRODUCTION

The problem of simultaneous stabilization of a given set of plants

by one compensator arises frequently in practice, due to plant

uncertainty, plant variation (failure modes, etc.) or plants with several

modes of operation. Therefore, it is of interest to know the conditions

under which there exists a solution to this problem.

For the linear case, Saeks and Murray [Sae. 1] obtained a necessary

and sufficient condition which guarantees simultaneous stabilization of

a given set of linear plants by one linear compensator. Vidyasagar

and Viswanadham [Vid. 1] showed that the problem of simultaneously

stabilizing n linear plants by a linear compensator is equivalent to

the problem of simultaneously stabilizing n-1 linear plants by a stable

linear compensator.

In this paper, we study the problem of simultaneous stabilization

of a given set of nonlinear plants by one nonlinear, not necessarily

stable compensator. We obtain a necessary and sufficient condition

under which there is a single (nonlinear) compensator which stabilizes

a given set of n nonlinear plants.

II. DEFINITIONS AND NOTATIONS

Let (JC,!NR) be a normed space of "time functions": T -»• V where T

is the time-set (typically ]R+ or N), V is a normed space (typically

JR »Kn> &"»•••) and H-ll is the chosen norm on «£. Let £Q be the
corresponding extended space [Wil. 1], [Des. 1], [Vid. 2]. A nonlinear

m n. I m.

causal map P: n £j •* H J(L is said to be finite-gain (f.g.) stable
i=i e ic=i e
J ' K ' m n.

iff 3y(p) <~ s.t. vt >o, v(ulfu2,...,ura) e n £eJ ,

OPto, ,u2,.-.,um)ilT.<YCP)(Jlu1iIT+l!u2ilT+*-+llunillT) , •-

We shall use repeatedly the fact that the sum and the composition of f.g.

stable maps are f.g. stable. -2-



P is said to be incrementally (inc.) stable iff

a) P is f.g. stable, b) ]y(P) < °° s.t. VT > 0
m n.

v(Ul,u2,...,um), (u1,u2.—.ii|1) e n te3,

HP(u1,u2,---,um) - P(0 ,D2,.--,0JUT <Y(P)(ilu1-G10T+llu2-G2llT+---+llum-uinllT).
1 m n.

A nonlinear system N with input (u,,'»»,um) e n £J and output
n _ 1 HI • -i cI mv J-I

(z,,z9,«--,z0) € n «£ * is said to be f.g. stable iff ]y(N) < « s.t.
1 c % k=l e m n.

VT > 0, V (u19u9,*-',um) € n £ J, for any corresponding output
1 H m. j=l e

(zrz2,-..,z )€ n £ K,
1 L l k=l e

Bz1IT + Oz20T + ••• + flzABT < y(N)(Bu1Dt+0u2Bt + ••• + HuJ.,.) .

For the purpose of this paper, we say that a feedback system is well-

formed iff the relation between the inputs of interest and the outputs

of interest is a well-defined causal map between suitable extended

spaces. More precisely, the system S(P.,C+F) of Fig. 1, with
n. n n n.

P. :£^ -»-«£e and C+F:£Q +£Q causal maps, is said to be well-formed

iff H:(u-|,u2)^ (e^,e2,y^,y2) is awell-defined.causal map from
n n. n n. n. nn

V x£e *£e x£e x£e xV* The f*9, stability of awell-formed
feedback system is equivalent to the f.g. stability of its input-output

map.

We assume throughout that each system under consideration is well-

formed.

III. MAIN RESULTS

The main result of this paper is a theorem. A simplified version

of the theorem can be described as follows: Consider two nonlinear plants

described by nonlinear causal input-output maps, P-. and P2, where P-. is

inc. stable, the theorem shows that there exists a compensator C which

stabilizes both P1 and P2, (i.e., the systems ^(P-pC) and 1S(P2,C)
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shown in Fig. 2 are f.g. stable) if and only if there exists a f.g.

stable Q such that the system S(P2-P-|,Q) of Fig. 3 is f.g. stable. To

ease the restriction that P, be inc. stable, the theorem is preceded by

a reduction lemma which is used to replace the condition that P, be

inc. stable by the condition that P-, be stabilizable by an inc, stable

compensator.

n. n n n.

Lemma 1: Let P. :JE •* je and C, F :£ + £ be nonlinear causal
i e e e e

maps. Let P. := P.(I-F(-P.))~ . Under these conditions, assuming that

F is inc. stable,

^(P^C+F) is f.g. stable

^(P^C) is f.g. stable.

Comments, a) None of the maps P., P., and C are required to be stable,

b) Contrary to some popular arguments based on block diagram manipulations,

it is a fact that F must be inc. stable. Consider the following example:

Let P. = (s-l)/(s+3) =: n/d, F = 3/(s-l), and C = 3/1 =: nc/dc. By

calculation, C+F =3s/(s-l) =-nc+f/dc+f and P1 =P^l-Ff-P.))"1
=(s-l)/(s+6) =: n/d. The system ^(Pj.C) is stable, since its
characteristic polynomial is nn. + dd = 4s+3. However, the system

S(Pi9C+F) is unstable since its characteristic polynomial is

nnc+f +3dc+f =(i-l)(4s+3)

Proof:

H

Consider the system 1S(Pi,C) shown in Fig. 4, write the equations
defining e\ and e2:
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i1 =U] -?& (1)

e2 = u2 + Ce-j + F(-P1.e2)

= u2 + Ce1 + F(e1-u1) (2)

By adding and subtracting Fe-j to (2) and rearranging terms, we have

e2 = u2 + F(e1-u1) - F(e-,) + (C+F)e-j (3)

Define

u-, := u-, (4)

u2 := u2 + Ffij-Uj) -F^) (5)

By using (4) and (5) in (1) and (3), we obtain

e1 =u1 -P^ (6)

e2 =u2 + (C+F)^ (7)

Note that (6) and (7) describe the system SfP^,C+F) of Fig, 1 with input

(u.|,u2); hence by assumption, the map (u, ,u2)»-*- (e\,e2) is f.g. stable.
n

Since F is inc. stable, ]y(F) <«, s.t. Vt >0, V (u1}u?) G£ °
n. ice

x £ \
e '

HF(i1-u1) - Ft^)^ <y(F)Bu1I1t (8)

Inequality (8), equations (4) and (5) show that the map (u-j,u2)h- (u-|,u2)

is f.g. stable. Since the composition of f.g. stable maps is f.g. stable,

we have that, for ^(P^C), the map (u-j,u2)»h- (e-, ,§2) is f.g. stable.
Now, we see from Fig. 4 that

y2 = u1 - e1 (9a)
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•2 = c2e0 = e„ - F(-y2) (9b)

Since F is f.g. stable, successive examination of equations (9a)-(9c)

shows that, for S(P.,C), the map (u, ,u2)i-»- (y-^,^) is f.g. stable. This

completes the proof that the system S(P.,C) is f.g. stable.

2 * -1
By noting that P. = P-(I+F(-P.)) , we see that the system shown

in Fig. 5 is S(P.,C+F). Refer to Fig. 5, write the equations defining

e-j and eJJ:

e1 = Ul - P^jJ (11)

e^ = u2 + (C+F)ei - F(-P.e^)

= u2 + Fe1 - F(e-|-Uj) + Ce1 (12)

Define

u-j := u^ (13)

u2 := u2 + Fe1 - F(e]-u1) (14)

By using (13) and (14) in (11) and (12), we obtain

e1 = u1 - P.e£ (15)

e2 = u2 + Ce1 (16)

Note that (15) and (16) describe the system S(P^,C) with input

(u-pfio); since by assumption that S(P..,C) is f.g. stable, the map

(u,,u2)«-^ (e-.,e2) is f.g. stable.
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n n.

Since F is inc. stable, ]y(F) <°°, s.t. VT >0, V (u-j,u2) e £Q xjC ',

iFfe,) - F(eru1)0T <y(F)DUiBt (17)

By (17) and equations (13) and (14), the map (u, ,u2) w- (u-piL) is f.g.

stable. By noting that the composition of f.g. stable maps is f.g.

stable, we conclude that, for the system S(P.,C+F) as shown in Fig. 5,

the map (u^,u2)t-»- (e-i,e2) is f.g. stable. Now, from Fig. 5 we see that

y2 = u1 - e-, (18a)

e2 = F(-y2) + e£ (18b)

y-j = e2 - u2 (18c)

The successive examination of equations (18a)-(18c) and the finite

gain of Fshow that, for ^(P^C+F), the map (u^Ug)^ (y-j5y2) is f.g.
stable. This completes the proof.

Theorem (Simultaneous Stabilization): Let P,, P2 :£ 1+ £ be nonlinear
n n.

causal maps. Let F:jCq -• £ be an inc. stable causal map such that

P1 := ^(I-Ft-P^)"1 is inc. stable. Let P2 := P2(I-F(-P2))"1.

Under these conditions »
n n. ,

(a) if there exists a f.g. stable Q:£Q° -> JC1 such that S(P2-Pl9Q) is
f.g. stable, then, with

C:= Qd-P^)"1, (20)

^(P^C+F) is f.g. stable, for i =1, 2;
n n. , .

(b) if there exists a C:£° + £ ^ such that 'sfP-.C+F) is f.g. stable

for i = 1,2 , then, with

Q:= CU+P^r1 , (21)
Qis f.g. stable and ^(P^p^g) is fmQm stable.
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Comments, a) None of the maps P,, P2, P2, and C are required to be stable.

b) Roughly speaking, the conclusion says that S(P^, C+F) is f.g, stable,

for i= 1, 2, if and only if S(P2-P-j,Q) is f.g. stable for some f.g.

stable Q.

c) Suppose that we have n plants P-j, P2, •••, Pn, then we may apply

successively the theorem to the pairs (P.-,P-|), i= 2,3,*-»,n and reach

the conclusion that S(P..,C+F) is f.g. stable for i = l,2,-«-,n if and

only if S(Pi-P1 ,Q) is f.g. stable for i= 2,3,•••,n for some f.g. stable

Q.

d) To the best of the authors' knowledge, there are no known general

conditions under which a general nonlinear plant is stabilizable by an

inc. stable compensator.

Proof of (a):

(i) We show that the system S(P-j,C+F) is f.g. stable.

Since P, is inc. stable, and by assumption Q is f.g. stable, it

follows that, with C:= Q(I-P1Q)""1, ^(PpC) is f.g. stable (see Fig. 2)
[Des. 2]. Thus, by Lemma 1, S(P.j,C+F) is f.g. stable.

(ii) Figure 6 shows the system S(P2-P-j ,C,P-j) with input (upU2,u3)

and output (y-|»y2»y3). When u3 = 0, y-j is given in terms of e] by
-1 3y1 = Qe] = C(I+P-jC) ej. Hence, if we set u3 = 0, and consider only the

output (y-],y2), then the system 2S(P2-P1 ,C,P-|) reduces to ^(Pg-PpQ) of
Fig. 3. Now the system S(P2-PpQ) has (u-j,u2) as input and (y-|,y2) as .

output and, by assumption, is f.g. stable. Hence, for the system

S(P2-P19C,P-j), the partial map (u«j,u2,0) •-»• (y-|»y2) is f.g, stable.
2

(iii) Next consider the system StPg-PpCP-j) with (u-|,u2,u3) as

input and call {y-> ,y2,y3,ep the corresponding output. Define

Ay3 := ^(u^) -P^) (22)
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To S(P2-P1,C,P1), apply (u^Ay^u^O), call (ylsy2,y3,ep the

corresponding output. We claim that y, = y,, and y2 = y2.

To prove this, we obtain from Fig. 6 the equations relating

^1^2^!^ t0 (u1,u2,u3)

51 = ul "H

y} = Cfej-P^iig+y^)

y2 = (P2-Pi)(Li2+yi)

By the well-formedness assumption, these equations have a unique solution,

Writing the equations defining y,, y2 and ej, using (22), and invoking

the uniqueness, we easily conclude that y, =y,, y2 =y2 and

e] =e^ +Ay3. Since P1 is inc. stable, 3^3 <°°5 s.t. VT >0,
V(uru2,u3) e/° x/1 x/\

llAy3(IT =0P1(u3+y1)-P1(y1)liT <y3Bu3IIt <Y3(8uinT+Du2llT+flu3aT) (23)

Thus, for ^(Pg-PpCP^, the map (u-| ,u2,u3) «-*• Ay3 is f.g. stable,
consequently, so is the map (u-j,u2,u3) «->• (u-j-Ay3,u2,0). Finally, using

the f.g. stability of the partial map (u-j ,u2,0)>-»- (y-j,y2) proved earlier,

we see that the composed map (u-j ,u2,u3)-»* (y-|,y2) is f-9- stable; and

hence, for 2S(P2-P] .C.Pj), the map (u-|,u2,u3)w. {y^,^) is f.g. stable.
Since y3 = P-|(u3+y-j) and by assumption P-. is f.g. stable, we conclude

that for S^-P-pCP^, the map (u.j,u2,u3)-* (y-j,y2,y3) is f.g. stable.

Thus, ^(Pg-PpCP-j) is f.g. stable.
(iv) We show that the f.g. stability of 2S(P2-P] .C.Pj) implies that

1 2of S(P2,C). Consider the equations of S(P2-P-| ,C,P-j) written in terms
e-'s:
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51 = ul -(VP1)52 <24>

51 •51 " Pl*3 (25)

e2 = u2 + Ce1 (26)

i3 = u3 + Ce1 (27)

If we set u2 = u3, then (26) and (27) shows that e2 =e3, and the

equations (24)-(26) reduce to

h = ul " pzh

e2 - u2 + Ci1

The last two equations describe ^(Pg.C). Hence, ^(Pg-P^CP-,) is
f.g. stable implies that S(P2,C) is f.g. stable.

(v) From (iii) and (v), we have that ^(P^C) is f.g. stable.
Then by Lemma 1, ^(P^C+F) is f.g. stable. This together with (i)
completes the proof.

Proof of (b): By assumption, ^(P^C+F) is f.g. stable, for i=1,2,
and F is inc. stable. Hence by Lemma 1, ^(P.,C) is f.g. stable for

i=1,2. Since ^(P^C) is f.g. stable, it follows that Q:= Ctl+P-jC)"1
is f.g. stable, since Q: (u-. ,0)»-*- y,.

Consider the system ^(Pg.Q.-P^ shown in Fig. 7, with input
(u.j,u2,u3) and output (y-j,y2,y3), note that when u3 =0, y, is given in

terms of e} by y-, =Ce-, =Q(I-P1Q)"1er Hence if we set u3 =0and
consider only the output (y-j,y2), the system reduces to ^(Pg.C) of
Fig. 2. Now S(P2,C) has input (u«j,u2) and output (y-j,y2) and is f.g.

stable. Consequently, for the system 2S(P2,Q,-P.j), the partial map
(u-|,u2,0) »->• (y-j»y2) is f.g. stable. Since P-j is inc. stable, it follows,
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by similar arguments as those in (iii) and (iv) of the proof of (a),

that ^(Pg.Q.-P^ is f.g. stable and hence 2S(P2-P.j,Q) is f.g. stable
The assertion is established.
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List of footnotes

(I-F(-P.)) is a well-defined map by the well-formedness assumption.

2By definition P.. =P^I-Ff-P..))'1, hence I+Ff-P^ =I+F(-P1)(I-F(-P.))"1
by taking the inverse and operating on the left by P., we obtain

^ -P^I+Ft-P^)"1.

3From (20) we have I+P^ =I+P1Q(I-P1Q)'1 =(I-P^)"1, taking the
inverse, operating on the left by C and using (20) we obtain C(I+P-|C)" =Q<



Figure Captions

Fig. 1. Shows the system S(P.,C+F).

Fig. 2. Shows the system ^(P^C) where P.. =P1(I-F(-P1))"1.
Fig. 3. Shows the system S(P2-P.j,Q) where Q= C(I+P-|C)" .

Fig. 4. Shows the system S(P.,C) in which the structure of P. is

shown in detail.

Fig. 5. Shows the system S(P.,C+F) in which P. is represented as a

feedback connection of P^ and F, and P. = P^(I+F(-P^))."

Fig. 6. Shows the system S(P2-P-j,C,P.|) in which the structure of Q is

shown in detail. If u3 = 0, and if y3, e3 are ignored, the system

reduces to S(P2-P-j,Q) of Fig. 3.
2

Fig. 7. Shows the system S(P2,Q,-P-j).
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