

Copyright © 1982, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

AUTOMATIC LAYOUT OF OPTIMIZED PLA STRUCTURES

by

Howard A. Landman

Memorandum No. UCB/ERL M82/64

3 September 1982

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Automatic Layout of Optimized PLA Structures

by

Howard A. Landman

1andman:Thu Jun 3* 06: i2J i& 1982*
elfplot* Window? -449 86249 -73200 U$ Scale? 1 micron Is 0.007Q7J0Z inches (200x)

mm&^Brai:aacai BCTS *ggg atamararew -wran: igg»t'a«wr;»wiB{ wpw <ct» wm mra -aaW/Baaaw' enac?'***** -&ZS*.

1

TABLE OF CONTENTS

Introduction 1

Implementing Combinational Logic - Four Approaches 2

Gate Arrays .'1 2

Standard Ceils 4

Read-Only Memories 4

Programmed Logic Arrays 5

A Guide to Berkeley PLA Tools 6

Overview 6

Specifying logic equations 7

Converting Logic Equations to Truth Tables B

Eqntott 8

Specifying the Truth Table 8

Manipulating the Truth Table : 10

Presto 10

Plasort 10

Topological Minimization 12

Blam 12

. Plaid 13

Mintopla 13

Generating the Layout 13

Mkpla 13

Manipulating the Layout File 14

Related Programs 18

Howard A. Landman Automatic Layout of Optimized PLA Structures

11

Circuit Extraction 16

Layout and Electrical Rules Checking IV

Simulation 18

A Simple Example of PLA Generation 20

Directions for Further Work 22

Appendices E : Electrical Calculations for mkpla 27

E-l : Extra ground lines in AND and OR planes 27

E-2 : Widening Vdd and GND to avoid metal migration 32

Appendices L: Large examples 34

LRU replacement algorithm 35

Hardware design-rule checker 40

Appendix 0 : Effects of Some of the Options to Mkpla 47

default options 48

-C ("capacitance") option : wider metal lines 49

-G ("ground lines") option 51

-i ("clock inputs") option 52

-1 ("lambda") option 53

54-o ("clock outputs") option

-t ("trans") option :outputs on opposite side 55

-x ("extend") option : extend poly lines 56

-y ("finite state machine") option 57

-z ("hi-Z") option :low power pullups 58

Bibliography 59

Howard A- Landman Automatic Layout of Optimized PLA Structures

1. INTRODUCTION

All digital systems can be viewed as being composed of two basic types

of circuitry: memory and logic. This paper presents a certain style of design

ing logic subsystems for integrated circuits using Programmed Logic Arrays

(PLAs), and the tools used to make it practical and economical (both in

human and computational resources). These programs have been success

fully used at Berkeley in the design of several integrated circuits, some as

large as 44,000 transistors [FitzpatrickBl]. While most of our current tools

were built with one particular technology in mind (silicon-gate NMOS with no

buried contacts), the general approach is applicable in many technologies,

and all the software that is technology-dependent could be adapted to, say,

CMOS or 1*L without difficulty.

The fundamental observation that shapes this approach to VLSI design is

that the time and effort of the designers is the limiting factor in most large

integrated circuits being designed today, and that this limitation will become

more severe as the chips get bigger. Having a way to transform logic equa

tions quickly and reliably into working circuitry, with only limited human

effort, frees up designers to spend more time on other (and probably higher

level) aspects of the design. This can reduce the probability of design errors,

and lead to improved performance of the whole system even if the automati

cally generated circuitry is non-optimal. In addition, since it is often possi

ble for a program to perform simple optimizations that would be tedious to

do by hand, generated circuitry may actually be faster, smaller or lower in

power than what a human designer could produce in reasonable time.

A further difficulty in designing circuits is that large circuit blocks can

have subtle problems with their electrical behavior (e.g. current limits due

Howard A. Landman Automatic Layout of Optimized PLA Structures

to metal migration or I-R voltage drops). A designer of only moderate skill or

experience may not be capable of handling these issues correctly. Thus it is

highly desirable that an automatic layout system solve these problems itself,

so that inexperienced designers can use it with confidence and experienced

designers will usually not be tempted to "improve" the generated layout by

hand.

Finally, since layout is only one part of the design process, it is impor

tant that a layout system have "hooks" that allow the resultant layout to be

easily interfaced to other design tools. This includes automatic labelling of

nodes (for plotting, circuit extraction, electrical rules checking and simula

tion) and naming the subceils in an appropriate format (for use with graphi

cal layout systems like caesar and kic). Also, the layout program can minim

ize the number of geometric primitives generated, which decreases the time

needed to plot, edit, or transmit the circuits which use the layout, or to

make PG or MEBES tapes or photolithography masks from them. As we will

see, the software system described here docs all of the above.

2. IMPlJEIMENTING(^MBmATI0NALIX)GIC-TOURAPPR0Aa^

There are many approaches to implementing combinational logic beside

PLAs. While a detailed discussion of these is outside the scope of this paper,

a brief survey is in order. For further information see the excellent discus

sion in [Beil78], pages 42-46, most of which is applicable here.

2.1. Gate Arrays

Gate arrays are regular arrays of individual logic gates placed on a (usu

ally rectangular) grid with space left for routing interconnect lines between

the gates. Different logical functions can then be produced by "customizing"

Howard A. Landman Automatic Layout of Optimized PLA Structures

the interconnect level. This can allow very fast turnaround for gate array

fabrication; since the interconnect level occurs late in the fabrication pro

cess, an inventory of partially manufactured wafers can be maintained, and

only one photolithography mask and a few processing steps are needed to

complete a new circuit. In some gate array processes, even the exact nature

of the gates themselves (AND, OR, XOR, etc.) can be programmed during this

customization phase.

The problem is that gate arrays are generally of lower density than more

custom approaches, often by a factor of ten. Thus the amount of circuitry

that can be economically included in a single chip is about ten times less.

Speed also suffers because the interconnections are longer than in a denser

custom design, than with full custom design. Also, the advantage of fast tur

naround is lost if one considers using a gate array as part of a larger circuit

that includes some custom circuitry. The problems of interfacing the gate

array portion of such a design to the custom portion could be difficult, and I

know of no actual chips that have been made using a mix of gate array and

full custom circuitry.

Gate arrays do have many advantages, however, and appear to be the

most appropriate technology for some kinds of design. It is relatively

straightforward to take an existing TTL or ECL gate-level design and convert

it to a gate array, even if the design includes memory functions like latches

or registers. Multi-level logic with three or more levels still maps easily. And

if an entire chip is made as a gate array, and you have a captive fabrication

facility, engineering changes can be implemented with rapid turnaround.

Amdahl, DEC. Fujitsu, IBM, and Storage Technology have all used this

approach to build large, complex products with great success.

Howard A. Landman Automatic Layout of Optimized PLA Structures

2.2. Standard Cells

The standard cell approach involves developing a library of cells which

implement a variety of logical functions but have uniform interconnect loca

tions and identical heights. These cells can then be laid out in rows, and

interconnected by a channel router which doesn't need to know the internal

details of each cell. Since arbitrary custom subcells may be added to the

library, this gives some of the advantages of full custom design, while still

allowing arbitrary logical function and easy mapping from gate-level designs.

This approach also has density and speed problems, which stem pri

marily from the large number of interconnections required and the distances

over which signals must travel. It shares most of the advantages of gate

arrays except for fast turnaround. Some fairly large (and working) circuits

have been built using this approach, and it is possible to make a chip that is

part standard cell and part custom. A notable success in this regard was the

Bell Labs echo canceller chip, reported in [Dutweiier80a] and [Dutweiler80b].

The Bellmac 32 reported at 1SSCC 81 also used this approach.

2.3. Read-Only Memories

A simple, regularly structured way to implement combinational logic is

to use a read-only memory or ROM to represent the entire truth cable of the

desired logic function. This has the advantage that it is easily implemented

and modified, but the area grows geometrically in the number of inputs (pro

portional to outputs x 2^^^). Thus this approach is really not suitable for

circuits with large numbers of inputs, even though it has been used commer

cially to a great extent. The recent 450,000 transistor microcomputer

announced by Hewlett-Packard includes a 9,216 word by 38 bit ROM occupy

ing about 40% of the chip surface [Beyers8l]. Also, it is not possible to build

Howard A Landman Automatic Layout of Optimized PLA Structures

writeable memory from a ROM; all memory must be segregated from the ROM

itself.

2.4. Programmed Logic Arrays

A PLA is a regular structure which can implement two level combina

tional logic. Usually this is thought of as consisting of an AND-plane and an

OR-plane, though in practice we implement this as invert-NOR-NOR-invert.

This AND-OR structure can implement any boolean function, since it can

always be written in sum-of-products form. It can be used in place of a ROM

simply by using the AND-plane as a full decoder, but it is also possible to

reduce the number of "words" (product terms) by using terms that are not

fully decoded, usually saving much space. Further, the reduced size may

allow the PLA to be faster or to use less power than an equivalent ROM.

We chose to implement logic as PLAs for several other reasons. First of

all, the necessary design of the basic circuit blocks had already been done in

the desired technology (NMOS with Mead-Conway design rules), and tested in

several working chips. Implementing a standard cell approach, on the other

hand, would have required months of layout work in addition to the neces

sary programming, and user confidence in the correctness of the system

would have had to wait for successful fabrication and testing of sample

designs. Secondly, we saw that it would be possible to first program a simple

PLA layout system which was computationally efficient, and then add optimi

zation to it later. Gate arrays would have required us to solve the routing

problem before the system was at all usable. Finally, we had had some

experience with using PLAs in actual designs1, and were certain that a PLA

1Several o* the Berkeley projects in the MPC79 and MPC580 multi-project chip sets used
PLAs "built out of the library cells described in [HonSOj.

Howard A. Landman Automatic Layout of Optimized PLA Structures

generator could provide significant assistance to our designers without con

straining their design style in any way.

3. A GUIDE TO BERKELEY PLA TOOLS

3.1. Overview

Generating a PLA at Berkeley may involve the use of several different

programs, collectively referred to as PLA Tools. Figure 3.1 shows the princi

pal programs, their input and output formats, and the data flow among them.

There are many advantages to having a set of small programs rather than

one large program. Among them are:

presto

7IT

•qntott

plasort

Figure 3.1: Data flow among the principal PLA tools

Howard A. Landman Automatic Layout of Optimized PLA Structures

The system can be usable with only a few vital portions present.
Programmers need not learn the entire system to enhance or maintain part of it.
Many programmers can work on the system without much need for coordination.
Debugging and maintaining each part of the system is simplified.
Enhancements can be made by adding programs instead of changing old ones.
A different language may be used for each program if desired.
Data structures can be chosen to best suit a single program's algorithms.
Pre-existing programs can be utilized for some tasks (e.g. sorting).
Users can begin using the system without understanding all of it.
Users can choose which capabilities of the system they need.
There is easy access to intermediate results.
Individual programs can be rerun with alternate options before proceeding.

There are programs not shown in Figure 3.1 that could be considered PLA

tools, and while this paper is primarily concerned with the transformation of

a logical description into a circuit layout, we will discuss related programs to

show the relationship of the PLA tools to the rest of the Berkeley design

environment.

3.2. Specifying Logic Equations

Many users will want to begin with a set of logic equations which define

the function that the generated circuit is to perform. These equations can

be written "by hand" using a text editor, or may be generated by a program

from a higher-level description of the function or the circuit that contains it.

For example, an instruction-decoding PLA might have its equations gen

erated from a description of the instruction set to be executed and the con

trol signals required.

The preferred format of these logic equations for input to the PLA Tools

is called .eqn format2. It is mostly very similar to the way logical equations

are written in the C programming language, which is the most widely used

language at Berkeley. Some additional information is required to specify the

8 This should not be confused with the format required by the program eqn, which formats
equations to be printed by the typesetting programs nroff and vtroff. Eqn and vtrojf were used
in the production of this paper.

Howard A. Landman Automatic Layout of Optimized PLA Structures

8

desired order of the inputs and outputs in the final layout. The precise

definition of .eqn format is given in Appendix M, in the manual section for

eqntott.

The important point to realize is that it is much easier to change a set of

logic equations than to alter a circuit layout by hand, even if it means having

to run the PLA Tools again to generate a completely new layout. During the

design of the RISC-1 microprocessor, the largest PLA on the chip was gen

erated from equations which were changed more than 40 times in the last 2

months [Foderaro8l]. Each time, a new layout was produced and integrated

into the chip floor plan. To do this manually would have required at least a

man-month of effort. Doing it automatically required only one or two man-

days and a few hours' of VAX CPU time.

3.3. Converting Logic Equations to Truth Tables

3.3.1. Eqntott (Robert F. CmeUk)

The eqntott program generates a truth table suitable for PLA program

ming (sometimes called a "personality matrix") from a set of Boolean equa

tions in .eqn format that define the PLA outputs in terms of its inputs. If

eqntott is run with the -R flag (as is normally done), it will attempt to reduce

the size of the truth table by merging minterms, and to produce a truth

table with no redundant minterms, but it does not attempt a full minimiza

tion of the logic functions.

3.4. Specifying the Truth Table

The truth table format describes both the logical function to be per

formed and a default method of implementing it as an AND-OR PLA. A truth

table file begins with three lines giving the size of the PLA They must each

Howard A. Landman Automatic Layout of Optimized PLA Structures

begin with the character V (period). The required lines, which may appear

in any order, and their meanings are:

.i i The PLA has i inputs.

.p p The PLA has p product terms.

.o o The PLA has o outputs.

Each of i, p, and o must be an unsigned integer.

Following this is the programming pattern for the PLA, sometimes called

its personality matrix. It is given on a pterm by pterm basis; for each pterm,

first one program character is given for each input from 1 to i, and then one

program character for each output from 1 to o. Tabs and spaces may be

inserted anywhere to improve legibility. Since programs may in general han

dle quite large PLAs, and since there is an upper bound on line length "on

most computer systems, one pterm may be spread over multiple lines; a pro

gram that handles this format should keep reading until all i+o characters

have been read for each of the p pterms. The program characters are:

1 = Term utilizes predecessor.

0 = Term utilizes complement of predecessor.

- = Term does not utilize predecessor. No connection. Don't care what
predecessor's value is.

x = Term does not necessarily utilize predecessor. Don't care whether
there is a connection here or not. (Not used by most programs).

Note that a '0' cannot be used in the OR-plane since the complements of

pterms are not available. Also, most programs currently treat an *x' the

e as a'-'.

Following the personality matrix is a command identifying the end:

.e End of PLA description.

See the examples of truth table files later in this paper (section 5).

Howard A. Landman Automatic Layout of Optimized PLA Structures

10

3.5. Manipulating the Truth Table

While it is possible to feed the truth table produced by eqntott directly

to a layout-generation program, in most cases the user will want to perform

some optimizations first. There are two programs that read in a truth table,

try to improve it, and produce another truth table which, while it specifies

the same logical function, will result in a smaller and/or faster PLA.

3.5.1. Presto (Sheng Fang)

Presto is a combinational logic minimization program. It reads in a

truth table and attempts to reduce the number of product terms, increase

the number of don't care inputs, and also reduce the number of the output

connections. The result is a new truth table in the same format which

represents a (hopefully) smaller PLA than the original truth table did, thus

saving silicon area and probably improving the speed of the PLA as well.

Since the general problem of completely minimizing truth tables is NP-

complete3, presto uses a heuristic algorithm to keep the computation from

becoming prohibitively expensive. This does not produce quite as good

results as some other known algorithms (e.g. MINI, described in [Hong74]),

but requires less than 1% as much CPU time for a typical problem.

Presto is based on an earlier program of the same name by D. Brown of

Tektronix, Inc. and the late A. Svoboda. There is a good description of the

algorithms and data models used in [DeVries75].

3.5.2. Plasort (Jim Kleckner & Howard Landman)

Plasort,with reads a truth table and sorts the product terms to reduce

the maximum delay through the PLA It computes an approximate

^ee [Garey79] for a detailed discussion of the implications of NF-completeness.

Howard A Landman Automatic Layout of Optimized PLA Structures

• 0 c

.a 7
001 10

313 i:
-11 01

no iu

1-1 01

11- 01
111 10

.i 3

.o 2

.P 7
001 1G
010

103
111

x11
1x1

11x

10

10

10

01

01

01

11

Rgure 3.2(a) : An unsorted PIA

Rguxe 3.2(b) : The same PLA, sorted

"transmission line" delay for each product term based on typical NMOS

electrical parameters, assuming that the layout will be generated by mkpla

and that the -x option will not be used. It then reorders the product terms

Howard A. Landman Automatic Layout of Optimized PLA Structures

12

so that the one with the longest horizontal delay is closest to the inputs of

the PLA (and hence receives valid data soonest). Note that, because the pro

duct terms run orthogonally to the inputs and outputs, they may be per

muted without changing the logical function of the PLA. This sorting reduces

the variance of the times until the product terms become valid while leaving

the average about the same. Thus, the worst case delay is reduced and the

maximum operating speed of the PLA should be increased. Figure 3.2 shows

a PLA before and after sorting.

To be fair, while we believe that sorting PLAs (and performing other

optimizations) can speed them up significantly, this belief is based only on

simple simulations at present. We plan to do more detailed simulations using

SPICE, and measurements of actual chips, to better quantify the improve

ments achieved.

3.6. Topological Minimizatiori

3.6.1. Blam (Mark Hofmann)

Blam takes a truth table and looks for ways to make a smaller circuit by

altering the topology of the PLA so that, for example, inputs can enter from

both sides of the AND-plane and utilize area that is not used by inputs on the

opposite side. It can also generate structures with multiple AND-planes or

OR-planes. These structures are output in a modified truth table format

which can no longer be input to presto, plasort, or mkpla; instead, a program

called plaid must be used to generate the layout. For details on the algo

rithms used, see [HofmannSO].

Howard A. Landman Automatic Layout of Optimized PLA Structures

13

3.6.2. Plaid (Mark Hofmann)

Plaid takes a modified truth table produced by blam and generates a

layout of the topologically optimized PLA. Plaid has options for producing a

slower, lower power PLA and for placing extra ground lines in the AND- and

OR-pianes. Like blam, plaid is more fully described in [Hofmann80].

3.6.3. Mintopla (Mark Hofmann)

Plaid can generate layouts from the standard truth table format output

by eqntott, presto, and plasort if they are first run through the format

conversion filter mintopla, which has the same output format as blam. In

this way plaid can be used to produce PLAs that have not been topologically

altered.

3.7. Generating the Layout

There are two ways to get a PLA layout generated. If you have per

formed topological minimization (i.e. run blam), then you must use plaid to

generate your layout as described in the previous section. If you have not,

then either plaid or mkpla may be used, but mkpla is preferred because it

handles electrical problems better, has more options, and is better

integrated with the other design tools.

3.7.1. Mkpla (Howard Landman)

The mkpla program takes a truth table description of a logical function

and produces a CIF file specifying the mask layout geometry for a circuit

which performs that logical function. CIF, the Caltech Intermediate Form for

describing layout, is described in [Mead80] and more extensively discussed

in [Hon80].

Howard A Landman Automatic Layout of Optimized PLA Structures

14

The program checks to make sure that all inputs and product terms are

used (i.e., contribute to the function of the PLA), and that all product terms

and outputs are set (i.e., can be affected by the inputs). If it discovers other

wise it issues a "WARNING:" or "ERROR:" message on standard output.

The PLA structures produced are similar to those designed by Dick Lyon

and described in [Hon80], but mkpla (optionally) optimizes several aspects of

the layout to improve the performance and reliability of the PLA. For details

see Appendices E-l and E-2 and the manual entry in Appendix M.

3.6. Manipulating the Layout file

Sometimes the CIF layout produced needs to be modified slightly in

order to be of more use. Some brief examples follow.

3.8.1. Editor scripts

Any standard text-editing program can be used to modify the CIF output

file, since CIF is just Ascii text. This might be desirable if, for example, the

user wants to give specific names to the inputs and outputs.of the PLA.

While mkpla will only label the inputs with labels of the form "inputl",

"input2", etc., assignment of more meaningful names to these nodes is easily

accomplished by using the editor to replace those strings with other names.

If this replacement will have to be done more than once, a file containing the

necessary editor commands can be saved and used to control the editor each

time. Such a file of editor commands is called an editor script. If a high-

level program is generating the logical equations for eqntott, it may be

worthwhile to have it also generate an editor script for relabelling the input

and output nodes.

Howard A Landman Automatic Layout of Optimized PLA Structures

15

3.8.2. Caesar (John Ousterhout), Cif2ca (Peter Kessler)

Caesar is an interactive color graphics editor which runs on an AED512

color terminal (with optional Summagraphics bitpad) and an additional text

terminal. dfZca is a program to convert CIF files into caesar format. Caesar

was used for the design of the RISC-I microprocessor, which contains four

mJfcpiaPLAs. Figure 2 of [OusterhoutSl] shows three of these in context. The

cells "barpla" (left center), "ccpla" (upper left), and "oppla" (center) were all

generated by mkpla, except that the barpla also contains some hand-drawn

geometry. Several interesting interface problems had to be solved to make

mkpla's output readily usable by caesar. WTe discuss two of them below.

Caesar produces layouts in which all edges are parallel to the coordinate

axes; such 90-degree layouts are called manhattan. Earlier releases of

mkpla had used non-manhattan features to slightly improve the conductivity

at some junctions of metal lines, and to shorten the "random wiring" portions

of the PLA. This turned out to be a false economy, since it made the result

ing PLAs useless to any manhattan design tool. The solution was to rewrite

mkpla to (optionally) produce all-manhattan layouts; in fact, this is now the

default.

Another problem was that caesar keeps a separate file for each cell, with

names of the form ceUnaTne.ca; since filenames in UNIX are restricted to 14

characters, cell names in caesar should not be longer than 11 characters.

This creates a problem for a layout program like mkpla that has parameter

ized cells; it must give each variant a unique cell name to avoid confusion,

and yet can use no more characters than caesar itself can. The solution here

was to use the first three characters of the cell name to indicate that the cell

was generated by mkpla, the fourth to specify which type of cell it is, and the

Howard A. Landman Automatic Layout of Optimized PLA Structures

16

remaining seven to give the parameters that make the cell different from

others of the same type. For example, a cell name of "plal-lw6" is given to an

input buffer ("I") with input clocking ("I") and 6X-wide power and ground

busses ("w6").

For further details about caesar see [0usterhout8l].

3.8.3. KIC. Ciftokic. Kictocif (Ken Keller) KIC is an interactive color graph

ics editor which runs on an AED512 color terminal with Summagraphics bit-

pad. It handles a much wider range of geometries than caesar, including

arbitrary polygons and paths. The conversion programs ciftoHc and kictocif

translate between KIC format and CIF. No special geometrical constraints

had to placed on mkpla to interface it to KIC, but similar namelength limits

had to be observed. A tutorial introduction to KIC is given in [Keller80].

4. RELATED PROGRAMS

4.1. Circuit Extraction

The circuit extractors in use at Berkeley take a CIF description of layout

geometry and produce output files describing the transistors, nodes, and

capacitances of the circuit, suitable for electrical rules checking or simula

tion. They read node labels from user extension "94" commands in the CIF

file. Both mkpla and plaid produce the appropriate "94" commands to iden

tify their input and output nodes to both of our circuit extractors. Mkpla can

also produce any user extension desired for labelling, which would allow its

output to be used with software using conventions other than Berkeley's.

Plaid can't, but a simple text editor could be used for conversion.

Howard A Landman Automatic Layout of Optimized PLA Structures

17

4.1.1. Cifplot -X (Dan Fitzpatrick)

The first circuit extractor at Berkeley was developed as an option to the

plotting program cifplot. It can handle arbitrary geometries, but is too

inefficient to be used easily on very large circuits.

4.1.2. Mextra (Dan Fitzpatrick)

Mextra is a manhattan circuit extractor, i.e., it will only handle boxes

whose edges are at multiples of 90 degrees. This is an unacceptable restric

tion for some applications, but we have found that it makes for a great

simplification of the program, and a significant improvement in perfomance.

Benchmarks show that mextra runs about ten times faster than cifplot -X.

4.2. Layout and Electrical Rules Checking

4.2.1. Layout Rule Checking

Several programs are in use or under development at Berkeley to check

layout rules. To date, most production checking has been performed using

moslrc, a version of the MIT design rule checker described in [Baker80].

Several bugs in early versions of mkpla were found by running moslrc on the

generated layouts.

More recently, a new design rule checking program called lyra

[Arnold8l] has been used.

Except for some "technical" violations in the input and output drivers,

which derive from Dick Lyon's original cells, neither lyra nor moslrc has

found any errors in m&pZa-generated layouts since April 1981. This kind of

empirical evidence for correctness helps build user confidence in the PLA

tools. Such tools, like other programs, could contain subtle or infrequent

bugs which are hard to detect. Even if a procedural layout tool were

Howard A. Landman Automatic Layout of Optimized PLA Structures

18

considered to be verified, any modification or enhancement might introduce

new errors. We do not believe that correct procedural design tools can be

built in the near future without a substantial verification effort.

4.2.2. Electrical Rules Checking

After a circuit has been extracted, a static verification of the electrical

properties of the circuit is usually performed. The moserc program, a des-

cendent of the sta.t program written at Stanford by Forest Baskett, will check

that all nodes have paths to power and ground, and that there are no floating

inputs or unused output values. It also checks the pullup/pulldown ratios of

logic gates. For example, the extra pterm (or output line) generated by

mkpla to make the total number even (if it was odd) is detected as a node

which cannot be pulled low and whose value is never used by another node.

4.3. Simulation

4.3.1. Spice (Larry Nagel. Ellis Cohen, Andrei Yladirnirescu)

The very popular simulation package spice can be used in conjunction

with circuit extraction to do detailed electrical simulation of PLAs or other

circuits. We plan to further study the effects of the electrical optimizations

performed by mkpla in this manner.

4.3.2. Mossim (Chris Terxnan)

To verify the logical correctness of a digital circuit, it is not necessary

(and often computationally infeasible) to run spice on the whole circuit.

Instead, a logic-level simulation may be performed using mossim, a simula

tor which models enhancement MOSFETs as switches. The simplicity of this

model allows very large circuits to be simulated with reasonable efficiency.

One bug in an early version of mkpla (it was switching the true and

Howard A. Landman Automatic Layout of Optimized PLA Structures

19

complemented inputs) was found by comparing the results of this simulation

with evaluation of the logical expressions defining the PLA.

4.3.3. Slang (John Foderaro)

During the design of the RISC chip, a multi-level simulator called slang

was developed in LISP to tie together high-level functional simulations with

the lower-level simulation of mossim. Slang simultaneously ran an

instruction-level simulation of the processor, functional simulations of the

major subsystems of the chip, and a mossim simulation of the circuit net

extracted from the actual layout. At appropriate times, it would then com

pare the results of the different levels of simulation, and report any

discrepancies. Many subtle logical or conceptual errors can be discovered in

this way, and the cost is not much greater than the cost of doing switch-level

simulation only. The error described in the previous section was found in

this manner, and would have been very difficult to find in any other way.

4^3.4. Plasim (Howard Landman)

A recent addition to the PLA Tools is plasim, a fast PLA simulator. It

reads a truth table file for the description of the PLA to be simulated, and

then takes input vectors on standard input and returns output vectors on

standard output. It uses three-state logic (high, unknown, low) so that, for

example, it could be used to analyze initialization problems in a finite state

machine. It also produces a report evaluating how well the set ofinput (test)

vectors "exercised" the PLA, and pointing out possible faults that might have

escaped detection under this test.

Howard A. Landman Automatic Layout of Optimized PLAStructures

20

5. A SIMPLE EXAMPLE OF PLA GENERATION

Let's take a small example and follow it through all the steps necessary

to generate the PLA layout with appropriate labels for circuit extraction.

The example we choose is a full adder with carry-in and carry-out. This is not

the most compact way to build an adder, but it may be the easiest in terms

of designer effort.

The logic equations we need are:

IN0RDER=C0A1B1;
OUTORDER = Si Cl*

SI =(C0&IA1&IB1) j(IC0&A1&1B1) | (!C0&!A1&B1) | (COfcAl&Bl);
Cl = (C0&A1) | (C0&B1) | (A1&B1);

Let's assume we have these in a file called "adder.eqn". Then the com

mand "eqntott -R adder.eqn > adder.tt" will create a truth table in the file

adder, tt:

.i 3

.o 2

.p 7
001 1 0

010 1 0

-11 0 1

100 1 0

1-1 0 1

11- 0 1

111 1 0

..e

Now we can feed the truth table to presto to see if we can optimize it

further by doing "presto <adder.tt >adder2.tt". Note that presto's input and

output formats are identical, so this step is optional if you don't think that

optimization will gain you anything, or if you want to save the CPU time. The

Howard A. Landman Automatic Layout of Optimized PLA Structures

ultis:

.i3

.02

.p7
r

00110

01010

-1101

10010

1-101

11-01

11110

.e

21

Thisisidenticaltotheprevioustruthtable,sothatprestodidn't

succeedinreducingthesizeofthisPLAThenextstep,alsooptional,isto

sorttheproducttermsusingtheplasortprogram.Thiscanspeedupthe

PLAbyputtingptermswithlargerRCdelaysclosertotheinputs(andout

putsifthepiaiscis).Thecommand"plasort-dadder2.tt>adder3.tt"pro

duces:

.i3

.02

•P7
00110

01010

10010

11110

-1101

1-101

11-01

.e

Nowwehaveoptimizedthetruthtableasmuchaspossible,soitistime

togeneratethePLA.Running"mkpla<adder3.tt"causesthelayouttobe

generatedandwrittenintothefile"mkpla.out".Thisfilecontainsallthe

symboldefinitions,calls,andgeometricprimitivesneededtocompletely

HowardA.LandmanAutomaticLayoutofOptimizedPLAStructures

22

specify the layout of the PLA. Note that under UNIX you could have piped all

of these programs together and run them as one command by doing "eqntott

-R adder.eqn | presto | plasort -d | mkpla".

In terms of run time, the minimization routines in eqntott -R and presto

take by far the largest portion. The other programs are all very efficient, as

shown in Table 5.1.

6. DIRECTIONS FOR FURTHER WORK

This paper shows how combinational logic can be automatically imple

mented in Si-gate NMOS technology as Programmed Logic Arrays, using a

simple and modular set of programs. We have also seen that integrating

these tools into a larger design environment is a significant portion of the

programming effort, and how the existence of standard formats like CIF and

the truth table format makes this task much easier than it might otherwise

be. This section outlines some areas in which further work might be produc

tive.

AdderOppia
i (3) ftl)
o (2) (34)

eqntott 0.4 65.8
p (7) (703)

eqntott -R 0.4 365.0

presto 0.5 54.3
P (?) (36)

plasort-d 0.2 0.7
mkpla 1.7 6.8
blam 13.2 -
plaid 0.6 —

Tabic 5.1: Run times of the PLA Tools on two examples

Howard A Landman Automatic Layout of Optimized PLA Structures

23

Other types of PLA-related structures could be automatically generated.

For example, it would be possible to generate complete Arithmetic-Logic

Units using modified PLAs with multi-input decoding and additional logic at

the outputs [Shmookler80]. The necessary cells to do this in NMOS have

already been designed, but have not yet been tested, and no software to sup

port them has been written.

The existence of these multi-input decoding cells raises interesting logi

cal questions. It is easy to show that the number of product terms in a PLA

need never increase, and can usually be decreased, by the use of such input

drivers. But since the decoders themselves are larger than the normal PLA

input buffers, it is not clear that the gain in product terms is always worth

the price. And what is the best pairing of inputs for decoding? This question

is not in general easy to answer.

The PLA Tools could be integrated with existing pad-placing and

channel-routing software to produce a system with the capability of compil

ing logic equations directly into a complete chip. This system could compete

very favorably with ROMs for logic functions with a large number of inputs.

It would be possible to generate multi-level (^3) logic arrays. In some

cases this might allow a reduction of the overall circuit size, especially for

very complex functions. The question of when such a strategy pays off has

not been well investigated.

Large PLAs sometimes appear to to not be very "dense", in the sense

that the ratio of transistors/area is quite low, especially in the OR-plane.

Mark Hofmann's work on folded and split PLAs is a first step toward dealing

with this problem, but there are other things to try as well. It is often possi

ble to break a large PLA into two or more smaller PLAs which occupy less

Howard A. Landman Automatic Layout of Optimized PLA Structures

24

total area. This is rarely done in practice because there are no automatic

tools to perform such "partitioning". Ron Ayres described a hierarchical PLA

generator in his silicon compilation paper [Ayres79], but the program can

only partition when hierarchy is explicitly designed into the logic

specification. Thus it has nothing to say about the partitioning of general

PLAs. Also, a perfect partition is not usually possible; some input buffers

might have to be duplicated in the smaller PLAs, complicating the analysis.

A PLA is an example of a structure which occurs frequently in integrated

circuits: a heterogeneous array, i.e., an array where not all the elements are

the same. Other examples include ROMs, MUXs, decoders, encoders, and

some kinds of gate array. No current layout system supports heterogeneous

arrays. A general and flexible tool to lay them oat would be an excellent base

on which to build many different kinds of module generators.

Howard A. Landman Automatic Layout of Optimized PLA Structures

25

Acknowledgements

Numerous people and organizations have contributed to the work

described here during the past three years. Whether the support was techni

cal, financial, or personal, without them this paper would have less to report.

Gelly Archibald
Michael Arnold
Bob Baldwin
Robert Cmelik

Lynn Conway
Sheng Fang
Dan Fitzpatrick
John Foderaro
Mohammad Hakam
Gordon Hamachi

Mark Hofmann
John Howes
Manolis Katevenis

Ken Keller
Jim Kleckner
Helen Landman
Louis Landman
Dick Lyon
Richard Newton

John Ousterhout
David Patterson
Jim Peek
Zvi Peshkess
Nirmai Ratnakumar
Ted Strollo

Don Scharfetter
Carlo Sequin
Robert Sherburne

Robert Tremain
Korbin Van Dyke
Anne Ver Steeg
Julie Ver Steeg

Comsat General Integrated Systems
SynMos Corporation
Xerox Palo Alto Research Center

Sponsored in part by

Howard A Landman Automatic Layout of Optimized PLA Structures

26

Defense Advance Research Projects Agency (DoD) ARPA Order No. 3803 Moni

tored by Naval Electronic System Command under Contract No. N00039-B1-

K-0251

Howard A. Landman Automatic Layout of Optimized PLA Structures

27

Appendices E : Electrical Calculations for mkpla

Howard A. Landman Automatic Layout of Optimized PLA Structures

28

Appendix E-l : Extra ground lines in AND and OR planes.

Very large PLAs require extra metal ground lines to make sure that the

voltage doesn't get too high on the diffusion ground lines. Unfortunately, this

problem gets worse as X gets smaller if you also assume that Vdd doesn't

scale down; hence, more of these extra ground lines are required. Mkpla

automatically figures out how bad the problem could get in the worst case,

calculates the number of extra ground lines needed in each plane, and

inserts them (unless overriden by the user). It does this independently of

the actual programming of the PLA for computational efficiency; it is prob

able that somewhat fewer lines would be needed if the program took the time

to look at where the gates actually were.

Here is a worst case analysis of the problem, based in part on unpub

lished work done by Bob Baldwin at Xerox PARC. We can model a diffused

ground line with pulldowns attached to it at regular intervals as a series

chain of resistors, and the gates themselves as current sources. Since this is

a DC analysis, we can ignore all capacitances. In the worst case, we must

assume that all the metal lines crossing this diffused line are dumping

current into it. Both ends of the diffused line are held to zero volts by a

"good", i.e. 4X wide metal, ground line. The picture is:

1

(I) • • •

n-1

(I)

n

(I)

V

I
V

I
V

I
V

I

1
1

I I
• • •

I I

I
I

By symmetry, the highest voltage must be in the center, and the

current must flow away from it in both directions. So we only need to look at

Howard A Landman Automatic Layout of Optimized PLA Structures

29

n
one half of the model. Assuming n is even for simplicity, we get —current

sources and —resistors:

1 2

(I) (I)
V v

n/2-1 n/2

(I) (I)
V V

t.vAv»v*y*.*.vAyAv»vA.i.v*vA ### vAyA.*.vAvAvAyA.J

| 31 32 Rn/2

The voltage drop across rt will be proportional to the current flowing

nthrough ri, which is just (•5-—i + 1) times the current from one gate. The

voltage after rn is the sum of all the voltage drops,
Z

2_, . . ^-X
«2 2
71

F+1>l_ . ZL - n8 ^2

£
i=l

n . . -

4 2 2 8 4

2

or -^— + —-times the drop that one gate's worth of current would have going
0 4

through one resistor. Since each current source generates about .1mA, and

the resistance of the diffusion is about 600 (2 "squares" of diffusion at about

sheet resistivity, a fairly conservative number), we get 6.0mV as this
square

fundamental voltage drop.

It remains to ask: how high a voltage can be tolerated on the diffused

line? Certainly it should be less than the enhancement transistor threshold

voltage, which is typically .7V to l.OV. I assume that .5V is acceptable, which

should be enough since everything else in these calculations is pretty conser

vative. That means that we want:

Howard A. Landman Automatic Layout of Optimized PLA Structures

n

8 + T*
0.5V

0.006V

n 2 + 2n < 667

n £ 25

30

Unfortunately, this is not the whole story. The extra ground lines which

are added have a maximum current-carrying capability, and this capability

scales down quadratically with X because the lines are not only getting nar-

1 m A
rower, but thinner as well. At X = 2.5um, this limit is about ; or 10mA

^ fjm

for a normal 4X wide line. This means that we also want

10mA X2 X2
n ^ tt-:—r~x zrzz 5~= 16 =- (with X expressed in microns). Note that

0.1mA 6.25/im2 /am2 *

this imposes a scaling limit on this PLA structure, since n cannot be less

than one; at X=.25/xm the formula says we will need an extra metal ground

line for every real signal line. To go beyond this limit will require widening

the extra ground lines, using a metal with better current capacity than

aluminum, or reducing V^d to less than 5 volts. Even if V^ scales down

linearly with X, there is a limit at X=.025/,tm; however, this is well below the

currently known scaling limits of NMOS transistors, and so doesn't need to be

worried about in the near term.

Once we know how many extra ground lines we need, we could just stick

in a ground line after every n pullups, but that would not distribute them

evenly; the last one might come just before the end of the plane (where there

is already a metal ground line) and be wasted. A better way is to figure out

how many ground lines we need, and then distribute them as evenly as possi

ble.

Howard A. Landman Automatic Layout of Optimized PLA Structures

31

This is the method used by mkpla. A pair of functions called groundsA-

bove and groundsLeftCf determine how many extra ground lines should be

placed above (in the AND-plane) or to the left of (in the OR-plane) a given

pterm or output respectively. They are called both by the code that actually

lays out the extra lines, and by the code that lays out program flashes to

determine how much to offset them by. This approach guarantees that the

flash placing code will never get confused about where the correct intersec

tion is, even if we alter the algorithms used by these functions. The only pos

sible exception to this rule is in the scaling limit, if we require more than one

extra ground line every, two signal lines. Using the present algorithm, this

will certainly not happen with X ^ 0.5/^m.

Howard A Landman Automatic Layout of Optimized PLA Structures

32

Appendix E-2 : Widening Vdd and GND to avoid metal migration.

To calculate the linewidths necessary to eliminate any chance of metal

migration problems and minimize the problem of voltage drops on metal Vdd

and ground lines, mkpla makes the following conservative or worst case

assumptions:

(1) Vdd will remain at 5V even though the dimensions of the circuitry may

scale down. This is unrealistically conservative in the long run, but

seems likely to be true for the next few years.

(2) Any part of the "random wiring" attached to pullups, inputs, outputs, or

connect cells may have to carry the entire current load of the PLA This

is only realistic for about half of the lines widened, and it would be possi

ble to save some space by calculating for each segment separately or by

knowing where Vdd and GND are actually hooked up.

mA
(3) The metal migration current limit at X=2.0/xm is about 1 ; and scales

down linearly with X because the thickness of the metal lines is assumed

to scale down linearly with X. Hence the metal migration limit

mAexpressed in ——scales down quadratically with X.
A

(4) A 2X by 2X pullup (as used in the input &output drivers) sources 0.2mA;

the "pullupPair" pullups source 0.1mA each.

(5) All outputs could be low simultaneously. However, an output is low only

when the corresponding metal line in the OR-plane is high. This means

that either the output or the corresponding pullup can be sourcing

current, but not both at once.

(6) Only one of the two inverters in an input ceil is sinking current at any

instant.

Howard A. Landman Automatic Layout of Optimized PLA Structures

The conclusion is that the metal width required (in X) is:

where (total current) is:

^2
2.0fim (total current)

2mA/X

33

inputs* 0.2mA + pterms* 0.1mA + outputs* 0.2mA

so that (assuming X=2.0/zm for the moment and hence ignoring the scaling

factor which becomes l):

.... __ (2*inputs +pterms +2*outputs)

Now for a recent medium-sized PLA (RISC Gold chip instruction decoder)

which has 11 inputs, 47 pterms, and 34 outputs, we get:

iwuuh =(22+47+68) =|7_= ^
which is considerably niore than the 4X default width. Mkpla rounds up to

the next highest multiple of 2X, so it would use 8X wide lines for power and

ground in this PLA.

Since some of the power and ground lines run through the center of the

PLA and not just around the edges, it is necessary to stretch the cells that

contain Vdd and GND busses to accomodate the wider lines, and to move the

AND- and OR-planes apart so that cells still abut properly.

Howard A Landman Automatic Layout of Optimized PLA Structures

34

Appendices L: Large examples

Howard A. Landman Automatic Layout of Optimized PLA Structures

35

LRU replacement algorithm

(provided by Carlo Sequin)

This example is particulary interesting because it was run through both

presto and mini, and thus shows something about the relative performance

of the two minimizers. The details of the algorithm itself are not of relevance

here and are omitted. The function requires 7 inputs and 3 outputs. The

naive formulation of the algorithm as a truth table has 128=27 pterms as fol

lows:

. i 7

.o 3

.p 128
0000000 000

0000001 101

0000010 011

0000011 001

0000100 101

0000101 000

0000110 001

0000111 001

0001000 011

0001001 001

0001010 000

0001011 000

0001100 010

0001101 000

0001110 000

0001111 000

0010000 111

0010001 101

0010010 011

0010011 001

00.10100 111

0010101 001

0010110 001

0010111 001

0011000 110

0011001 001

0011010 001

oonoii ooo
0011100 100

0011101 000

0011110 000

0011111 001

Howard A. Landman Automatic Layout of Optimized PLA Structures

0100000 010

0100001 101

0100010 Oil

0100011 Oil

0100100 111

0100101 000

0100110 Oil

0100111 Oil

0101000 Oil

0101001 001

0101010 010

0101011 010

0101100 010

0101101 000

0101110 010

0101111 010

0110000 Oil

0110001 ill

0110010 Oil

0110011 Oil

0110100 111

0110101 101

0110110 Oil

0110111 Oil

0111000 Oil

0111001 110

0111010 Oil

0111011 010

0111100 010

0111101 100

0111110 010

0111111 Oil

1000000 100

1000001 101

1000010 Oil

1000011 101

1000100 101

1000101 100

1000110 001

1000111 100

1001000 110

1001001 101

1001010 000
1001011 100

1001100 100

1001101 100

1001110 000

1001111 100

1010000 101

1010001 101

1010010 111

1010011 101

1010100 101

36

Howard A. Landman Automatic Layout of Optimized PLA Structures

X % p> p
-

> 3 S o 3 P
)

r
»

-

o t-
4

o o N p
*

C
0

o c M

(
O

H
k
^
^
H

-
H

*
H

-»
H

»
»

-»
l-

*
K

-»
»

-'
»

-»
H

-»
»

-t
H

»
»

-*
l-

»
»

-*
l-

H
-'

l
-
»

t
-
^
l
-
*

l
-
*

>
-
*

»
-
*

l
-
»

H
-
l
-
*

H
*

>
-
*

t
-
»

0
0

0
0

0
0

0
0

0
0

0
H

k
(_

»
H

»
j>

»
t_

*
H

k
H

»
»

-»
i-

*
H

»
M

»
-*

l-
*

H
»

l-
*

h
-
»

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

H
»

i-
*

H
*

»
-
*

»
-
»

h
^
»

-
»

i-
»

H
*

l-
*

»
-
»

H
»

»
-k

|-
»

H
k
O

O
O

O
t-

*
l-

»
H

»
H

*
0

0
0

0
»

-
*

l-
»

«
-
»

»
-
»

0
0

0
0

»
-
»

H
-
k
H

»
f-

»
O

O
O

O
H

*
H

-
k
H

*
J
-
»

O
O

O
O

H
-
*

»
-
*

H
A

i^
»

^
O

O
K

*
i^

O
O

H
^
H

*
O

O
H

*
»

-
-
»

O
O

i-
»

>
-
*

O
O

i-
*

»
-
*

O
O

K
-
t»

-
*

O
O

i-
»

i-
k
O

O
>

-
*

K
A

O
O

i-
li

-
*

O
O

i-
*

»
-
-
»

0
t-

»
O

H
*

O
H

lO
H

*
O

H
k
O

H
-
»

O
l-

»
O

i-
*

O
H

*
O

H
*

O
i-

*
0

»
-
»

0
»

-
*

O
H

»
O

i-
k
O

H
»

0
>

-
»

O
l-

*
0

»
-
*

O
i-

*
O

i-
*

O
H

»

K
-
't

-
»

»
-
»

t-
*

h
-
k
|-

»
»

-
*

>
-
iO

l-
k
l-

»
»

-
»

O
H

»

f
-
*

O
O

O
O

t
-
i
O

O
O

O
i
-
»

i
-
*

»
-
*

»
-
*

0
»

-
*

H
»

H
»

O
l-

1
l-

*
>

-
*

0
»

-
»

H
»

»
-
*

0
»

-
'

O
l_

»
j_

*
t_

*
O

h
-
»

i-
*

t-
»

O
H

*
(
-
't

-
»

i-
'h

-
k

O
O

O
O

O
O

O
O

h
-
0

0
»

-
»

h
»

h
*

p
h

i
^
O

h
h

h
O

k
p

h
h

h

h
-
*

^
O

H
-
»

O
O

O
l
-
»

O
H

k
O

>
-
*

0

H
*

O
h

-
*

O
O

O
O

h
-
»

h
»

O
O

O
i
-
»

->
3

§p}
.

iK
*

f-i|_
iih

-»
iih

-A
»

-i»
-»

h
-»

i>
-*

h
-*

i-»
i-»

»
-»

«
»

>
-k

O
«

0
»

iO
O

O
O

O
O

O
iO

O
O

O
«

'*
*

^
1

(D
H

^t
i

il-»H
'h-*>

-*»-*l-»l-kH
*00«

iO
O

O
O

O
»

-A
l-»

l-*
>

-»
l-*

il-*
>

-*
«

i-»
iO

O
O

«
0

0
0

*
0

o
»-•

«P
P*

^
ji|_

»
|_

ilO
ll_

»
t_

*
0

«
«

'»
l'«

H
*

«
t-

*
0

»
«

»
-
*

lll»
-
»

«
»

-
»

O
lO

«
*

-
»

t-
*

H
*

I
H

*
»

-
*

CO
>

•
iO

O
O

O
iH

'»
O

O
O

«
O

O
O

O
«

«
»

O
»

O
O

i-k
O

ih
-*

H
*

t-*
H

*
i-4

»
-»

O
O

O
»

-»
v
-»

»
-ti-*

C
0

S.
O

•
•

•-
O

O
O

O
•

•
iO

»
-»

0
0

«
i-»

i-»
»

-4
>

-k
»

-*
0

0
0

0
0

»
-»

«
i

O
i

i
m

h
m

O
O

O
m

C
O

C
O

^
°

O
O

•
O

k-»
•

•
t-

*
H

»
«

0
0

0
«

»
-
l0

»
-
*

«
0

«
0

»
-
*

«
0

0
i»

-
*

«
0

0
H

»
0

i-
A

0
0

t-
*

0
0

»
-
*

^
i

i
i

O
•

O
*

O
!-»

O
•

t
O

H*
O

•
O

»-»
O

O
•

•
i

O
h*

O
»-»

O
»-»

•
•

O
•

i
O

O
i-»

O
h*

p,c

—
0

0
i
-
»

O
O

»
-
*

O
O

O
^
0

»
-
»

t
-
*

H
*

O
i
-
»

O
*

-
»

t
-
»

0
»

-
*

0
O

0
t
-
»

0
0

0
»

-
»

O
0

O
0

0
0

0
0

H
"
»

O
2

S
i-»

0
0

0
»

-'0
»

-*
0

0
»

-»
»

-»
»

-»
0

0
h

-*
0

^
0

0
0

0
^
0

0
0

i-*
0

»
-»

0
0

i-*
»

-*
0

0
»

-*
0

0
h

*
0

(J|
0

H
^
0

i-
»

0
0

0
»

-
»

t-
»

0
0

0
0

l-
»

»
-
»

0
0

0
0

»
-
»

0
H

A
|-

'H
»

l-
»

0
H

*
0

0
l-

k
0

0
H

»
H

»
0

t-
*

H
»

0
i-

*
P

t-

garO3p>r
t
-

Ot*P
>

v
:ocoNP
-

C
/3

OC
/l

C
O

C
O

c
*

(D3(A

C
O

0
0

39

MINI does even better, resulting in 29 pterms, but requires more CPU time:

. i 7

.o 3

.p 29
-1 0 010

01 1- 010
0001 100

0- -0- 1- 001

0-10-00 010
--10-0- 001

01-1000 001
--11111 001

00- 1 001

-0--001 001
--1-010 001
1-10 100

0010 Oil

0-01-00 010
0100 101

0-0100- 001
-000-10 001
11 0 100

11 0- 010
1-1--10 010
-111-1-- 010
-10001- 010
-100-11 001
-11--01 100

- 11-00- 010

1 0- 100
10 1 100

1000 010
-01--00 100
. e

The validity of these minimized truth tables can be easily verified by

running a complete set of 128 possible input vectors through plasim, using

each of the truth tables in turn, and then comparing the output vectors

which result. When this was done they were found to be identical.

Howard A. Landman Automatic Layout of Optimized PLA Structures

40

Hardware design-rule checker

One approach to checking geometric design rules involves rasterizing

the layout and then checking properties of the resulting set of pixels. A 4x4

window is sufficient to check most design rules. (This approach was used in

software at M.I.T.; see [Baker80] for details). Since NMOS uses no more than

7 mask layers, the logical fuction relating the errors to the pixel map

requires no more than 112 (= 7x16) inputs to cover all possible combinations

of layers. It would be nice if we could exploit the inherent parallelism of this

problem by building a single chip that would check all the design rules at

once.

One possible system architecture would have an external CPU writing a

32-bit word into the chip representing a 4x1 set of pixels. The three previous

4x1 sets of pixels would be kept on chip in a shift register arrangement; each

time a new word was written, the oldest of the four would be discarded. The

computation would take place in parallel and the system would then read

back a 32-bit word which would be all zeros if there were no violations. The

system thus consists of 112 bits of static storage (or 128 if we want to use the

full 8 bits per pixel), plus a large block of combinational logic. Wre can imple

ment the logic in a single large PLA if we desire, although in practice it might

be better to have several smaller PLAs.

As a first investigation of the practicality of this approach, we coded all

the design rules corresponding to single-layer width and spacing into .eqn

format. Note that these rules have not been extensively verified and may

still contain bugs.

Howard A. Landman Automatic Layout of Optimized PLA Structures

INORDER =

dOO iOO bOO pOO cOO irOO goo xOO

dOl iOl bOl pOl cOl mOl gOl xOl

d02 i02 b02 p02 c02 m02 g02 x02

d03 i03 b03 p03 c03 m03 g03 x03

dlO ilO blO plO clO mlO gio xlO

dll ill bll pll ell mil g" xll

dl2 il2 bl2 pl2 cl2 ml2 gl2 xl2

dl3 il3 bl3 pl3 cl3 ml3 gl3 xl3

d20 i20 b20 p20 c20 m20 g20 x20

d21 i21 b21 p21 c21 m21 g21 x21

d22 i22 b-22 p22 c22 m22 g22 x22

d23 i23 b23 p23 c23 m23 g23 x23

d30 i30 b30 p30 c30 m30 g30 x30

d31 i31 b31 p31 c31 m31 g31 x31

d32 i32 b32 p32 c32 m32 g32 x32

d33 i33 b-33 p33 c33 m33 g33 x33;

OUTORDER =
wd2 wi2 wb2 wp2 wc2 wn3 wg3 wx
sd3 si2 sb2 sp2 sc2 sm3 sg3 sx
sdp sie sbd sbp sbc sgd sgp sgc
xi xb xmc xcrg;

wd2 = dll &

((!dl0&!dl2)
!d21&!d01)

41

!d00&!d22&((dl0&d0l) |(dl0&dl2) I(d01&d2l) I(dl2&d2l))) I
!d20&!d02&((dl2&d01) |(dlO&dl2) |(d01&d21) |(dlO&d21)5));

wi2 = ill &:

(ilO&i il2

i21&!i01

iOO&! i22&((il0&i0l) j(il0&il2) |(i01&i2l)
i20&!i02&((il2&i01)|(il0&il2)|(i01&i2l)

(il2&i2l))) |
(il0&i2l))));

wb2 = bll &

((!bl0&:!bl2) |
!b21&!b01) j
!b00&!b22&((bl0&b01)l(bl0&bl2)i(b01&b2l)|(bl2&:b21)))
!b20&!b02&((bl2&b0l) |(bl0&bl2) |(b01&b21) |(bl0&b21)))

Howard A. Landman Automatic Layout of Optimized PLA Structures

):

wp2 = pll &
((!pl0&!pl2)

!p21&!p01)
!P00&!p22<fc((plO&p01)| (pl0&pl2) |(P01&p21) |(pl2&p2l)))
!p20&!p02&((pl2&p0l)| (plO&pl2) |(p01&p21) |(pl0&p21)))

wc2 = ell &

(Ocl0&:!cl2)
1!c21&ic0l)
!c00&!c22&(
!c20&!c02&(

cl0&c0l)|(cl0&cl2)
cl2&c01)|(cl0&cl2)

(c01&c21)|
(c01&c21)|

42

cl2&c2l)))
cl0&c21)))

wrS = (mil &:
((!ml0&!ml2) |

!m21&!mDl) |
!m00&!m22&((ml0&rf)l) i (ml0&nl2) I(mDltaei) I(ml25m21)
!m20&!m02&((ml2&r0l) | (ml0&nl2) | (m01&m2l) | (mlO&iEl)

((mll&ml2cSm21«&m22) &
((!m01&!m3l) |
!m02&:!m32)
!m01&!m32)
!m02&!m31)
!mlO&!ml3)
!m20&!m23)
!ml0«5c!m23)
!m20&!ml3)
!mOO&(mlO |m20)&(nn01 |m02)&:! (n^3&ml3«5m23&n333m32Sm31&ri30))
!rrf)0&(mlO|m20)&:(ml3!En23)&! (m33&n32&n31&n30))
!m00&(m31 |m32)&(m01 \nDZ)k\ (m03&ml3&r23&m33))
im03&(ml3im23)&(m01im02)&! (rnOO&mO&nT20«Sm305m3iam32&n33)))

Howard A. Landman Automatic Layout of Optimized PLA Structures

);

);

) I

);

43

wg3 = (gll &c
((!g10fc!gl2) I

!g21&!g0l) I
!gOO&!g22&((glO&g01)|(gl0&gl2)|(g01&g2l)|(g12&g2l))) |
!g20&!g02&((gl2&g01)|(gl0«&gl2)|(g01&g2l)|(gl0&g21))))) |

((gll&gl2dcg21&g22) &
((!g01&!g3l)
g02&!g32)
g01&!g32)
g02&!g3l)
gl0&!gl3)
g20&!g23)
glO&!g23)
g20&!gl3)
gOO&(glO
gOO&fglO
g00&(g31 &—,~.&~- &~,~v& a o o—// .
g03&(gl3 g23)&:(g01 g02)&!(g00&gl0&g20&g30&g31&g32&g33))));

wx = ZERO;

g20)&(g01
g20)&(gl3
g32)&:(g01
g23)&(g01

g02)&!
g23)&!
g02)&!
g02)&!

(g03&gl3&g23&g33&g32&g31&g30))
(g33&g32&g31&g30)) |
(g03&gl3&g23&g33)) |
(g00&gl0&g20&g30&g31&g32&g33))

sd3 = (!dll &
((dl0&dl2) |
(d21&d01) j
(d00&d22&

((!dlO&! dOl) |(IdlO&! dl2) |(! d01&! d21) |(I dl2&! d21))) |
(d20&d02&

((!dl2&!d.0l)|(!dl0&:!dl2)|(!d01&!d2l)|(!dl0&!d2l)))))
((!dll&!dl2&M21&!d22) &
((d01&d3l) |
'd02&d32)
'd01&d32)
'd02&:d31)
al0&dl3)
'd20&d23)
*dl0&d23)
'd20&dl3)
dOO&(!dlO d20)&(
(!d03&!dl3&!d23&

(dOO&(!dlO !d20)&(
!(!d33«5dd32&!d31&:

(d00&(!d31| !d32)&(
!(!d03&!dl3&!d23&

(d03&(!dl3|!d23)&(
!(!dOO&!dlO&!d20&

d01|!d02)&
d33&!d32&td31&!d30))
dl3| !d23)&
d30)) |
d01| !d02)&:
d33)) |
d01|!d02)&
d30fc!d31&!d32&!d33)))):

Howard A. Landman Automatic Layout of Optimized PLA Structures

si2 = !ill &

((il0&il2;il0&il2)
i21&i01)

44

(i00&:i22&
((!il0&!i0l)|(!il0&!il2)|(!i01&:!i2l)|(!il2&!i2l))) |
(i20&i02&

((!il2&! iOl) |(!ilO&! i12) |(! i01&! i2l) |(! ilO&! i2l))));

sb2 = !bll &

((bl0&bl2) |
(b21&b01) |
(b00&b22&

((!bl0&!b01)|(!bl0&!bl2)|(!b01&!b2l)|(!bl2&!b2l))) |
(b20&b02&(

(!bl2&!b0l)|(!bl0&!bl2)|(!b01&!b2l)| (!bl0&:!b21))));

sp2 = !pll &
((pl0&pl2) |
(p21&p01) j
(p00&p22&

((!pl0&!p01)|(!pl0&:!pl2)|(!p01&!p2l)|(!pl2fc!p2l))) |
(p20&p02&

((!pl2&!p01)|(!pl0&:!pl2)|(!p01&!p21)|(!pl0&!p21))));

sc2 = !cll &

((cl0&cl2) |
(c21&c01) I
(c00&c22&

((!cl0&!c0l)!(!cl0&!cl2)|(ic01&!c2l)|(!cl2&!c21))) |
(c20&c02&

((!cl2&!c01)|(!cl0fc!cl2)|(!c01&:!c21)|(!cl0&!c2l))));

Howard A. Landman Automatic Layout of Optimized PLA Structures

sm3 = (!mll <k
((ml0&ml2)

(m21&rrf)l)
(rrO0&m22&

((!mlO&!mOl)
(m20&m02&

((!ml2&!m0l)
((!mll&!ml2&!m21&:!m22) &

((m01&m31) |
(m02&n32)
(m01Sm32)
{m02&n31)
fml0&nl3)
{m20tSm23j
(ml0&m23)
(m20<Sml3)
(mOO&:(ImlO !m20)&(ImOl | !m02)&
!(!ni33&!ml3&:!m23«5c!m33&!m32ac!m31&!rn30))
(mOO&(!mlO !m20)&(!ml3'| !m23)&
!(!m33&!m32&!m31&lm30)) |

(rrO0&:(!m31| !m32)&(!m0l| !m02)&
!(!m03&!ml3&!m23&!m33)) |

(m03&(!ml3| !m23)&(!rn0l| !m02)&
!(!nC0&!ml0&:!ni20&:!m30&!m31&!m32&:!m33))));

sg3 = (!gll &c
(7glO&gl2)
(g21&g01)
(g00&g22&:

((!gl0&!g01)|(!gl0&!gl2)|(!g01&!g2l)|(!gl2&!g21))) |
(g20&g02&: '

((!gl2&!g0l)|(!gl0&!gl2)|(!g01&!g2l)|(!gl0&!g21)))))
((!gll&!gl2&!g21&!g22) &
((g01&g3l) i

[g02&:g32)
g01&g32)
g02&g31)
g10&gl3)
g20&g23)
g10&g23)
'g20&gl3)
(gOO&(!glO !g20)&(
!(!g03&!gl3&!g23&

(g00&(!gl0|!g20)&(
!(!g33«5dg32&!g31&

(g00&(!g3l!!g32)&(
!(!g03&!gl3&!g23&

(g03&(!gl3| !g23)&(.0__, .„— ,_
!(!g00&!gl0&!g20&:!g30&:!g31&!g32&!g33))));

45

(!ml0&!ml2) | (!m01&!m21) | (!ml2&!m21))) |

(!ml0&!ml2)|(!m01&!m21)|(!ml0&!m21)))))

g01|!g02)&
g33&!g32&!g31&!g30))
g13|!g23)&
g30)) |
g0l|!g02)&
g33)) |
g01|!g02)&
g30&!g31&!g32&!g33))

Howard A. Landman Automatic Layout of Optimized PLA Structures

sx = ZERO

sdp = ZERO
sie = ZERO

sbd = ZERO
sbp = ZERO
sbc = ZERO

sgd = ZERO
sgp = ZERO
sgc = ZERO
xi = ZERO

xb = ZERO
xoT2 = ZERO
xng = ZERO

46

The resulting truth table has 128 inputs, 620 pterms, and 28 outputs,

and is too large to be usefully reproduced here: Optimizing this proves to be

difficult due to the vast amount of computation required; even presto was

unable to finish in 11 hours of CPU time. Partitioning the PLA into smaller

modules would have helped, especially since some of them could have been

identical (for example, a PLA to check 3-lambda spacing rules on a single

layer could be used for diffusion, metal and overglass.) but it is also quite

possible to go ahead and generate a PLA without optimization. Mkpla only

requires 43.1 seconds of VAX CPU time to lay out this PLA, including issuing

numerous error messages about unused inputs and unset outputs. The

power and ground busses have to be made 46 lambda wide, providing a

severe test of the cell-stretching mechanism, and extra metal ground lines

are inserted into the AND and OR planes as needed.

Howard A. Landman Automatic Layout of Optimized PLA Structures

47

Appendix 0 : Effects of Some of the Options to Mkpla

Howard A Landman Automatic Layout of Optimized PLA Structures

48

mkpla

This is the adder PLA generated with the default options. They include

X = 200 (2.0/im), truncated poly lines, and 3X-wide metal lines in the planes.

No extra ground lines are needed and the power and ground busses are not

widened.

^^.^:SNS!^J^J^T&^^<^

3S=?>SS5^S5SSKS««!^.^*5^^«^S^^

Ri^KSSi^SSSS^^S^^S^^S^^a^:^!^

iiL mm^^^^fe^?^imi«p«i m
inputs _————_——-—i^^XJSS^w^a^^s^JKS^.^v^;^^^

Output 1SCT SBfiBT "'? TSCJg

^ifp^

wri •- . "M -". e

rfei

Howard A. Landman Automatic Layout of Optimized PLA Structures

49

mkpla -C4

The adder PLA with 4X-wide metal lines, as were found in the MPC79 PLA

cells. This results in higher capacitance and hence slower operation but may

be marginally more reliable.

L.!Iw«..mint.K,»...i..i.l.l.,.1iiMi.~..*,.V.m

j*?*?* Vdd!

MB •>.-»?I

Howard A Landman Automatic Layout of Optimized PLA Structures

50

mkpla -C5

The adder PLA with 5X-wide metal lines. There is no reason to use this

option in an actual circuit, but this is as wide as the metal lines can get

without violating the metal spacing design rule.

'i&Msjt^&^tt&^liW®

Howard A Landman Automatic Layout of Optimized PLA Structures

51

mkpla -G4

The adder PLA with extra ground lines forced every 4 terms. One extra

ground line appears in the AND-plane.

Howard A Landman Automatic Layout of Optimized PLA Structures

mkpla -i

The adder PLA with dynamically clocked inputs.

52

* s;I " '" >""M3aiiirtiiiy»MMuMi[,»i]i,innn>i»)rtiiiiuf,uiJ'i»iiiiiHi<r-''"'»--t»«>''ivvii>i»>^iii " ' i•.-::JS

flfl ^--arc

Howard A Landman Automatic Layout of Optimized PLA Structures

53

mkpla-1150

The adder PLA at a different (smaller) value of X (150 CIF units = 1.5um).

^agv^yy W-VeWt

Howard A Landman Automatic Layout of Optimized PLA Structures

54

mkpla -o

The adder PLA with dynamically clocked outputs. Note that this doesn't

change the size or shape of the PLA because sufficient space for the output

clock lines is always reserved even if they are not used.

\iM.^.-' ^v>"-" »?*• '•'•JfizTmMRRri »?Tr"T7?]> " I'V l,7Tj Ti"'""J"mi ' &w
: ^u:::::;::M:::::::^:Ea::::::::::ta:::::;s::ga::r::::fea::::::^feg

\-S

Howard A. Landman Automatic Layout of Optimized PLA Structures

55

mkpla-t

The adder PLA with the outputs coming out on the opposite ("trans")

side. The terminology "cis" and "trans" is derived from organic chemistry,

where it is used to distinguish geometric isomers, e.g.:

tSSk

H M

\ /

/ \

Cl Cl

CiS-ciicnlopcath/lin*

Howard A Landman

H Cl

\ /

c»c

/ \

Cl H

trans -clichlaroothylen«

Automatic Layout of Optimized PLA Structures

BUtpUtl

56

mkpla -x

The adder PLA with the poly lines extended. This option is useful if you

need to use pterm or decoded input signals outside of the PLA or if you want

the PLA to look more like an MPC79-styie PLA.

"^/

Howard A. Landman Automatic Layout of Optimized PLA Structures

57

mkpla -i -o -y2

The adder PLA with two outputs fed back to the inputs to make a finite

state machine. Note that clocking of the inputs and outputs should also be

specified whenever the -y option is used, and that the -t option cannot be

used if the -y option is.

Howard A Landman Automatic Layout of Optimized PLA Structures

58

mkpla -z

The adder PLA with the pullups lengthened to reduce power consump

tion. Only the AND- and OR-plane pullup pairs are affected; this option

doesn't yet alter the input and output buffers.

• %LL*rH'irvt,i' viv.iit'itTrrriT

?^mm&^m$mm

Howard A. Landman Automatic Layout of Optimized PLA Structures

59

Bibliography

[Arnold8l]

Arnold & Ousterhout "Lyra: A New Approach to Geometric Layout Rule

Checking", paper to appear at 1982 Design Automation Conference.

[Ayres79]

Ayres, Ron, "Silicon Compilation - A Hierarchical Use of PLAs", Caltech

Conference on VLSI, January 1979

[BakerSO]

Baker k Terman, "Tools for Verifying Integrated Circuit Designs",

Lambda 1:3, 4th quarter 1980, pp. 22-30.

[Bell78]

Bell, Mudge, & McNamara, Cbmputer Engineering, a DEC view of

hardware systems design, Digital Press 1978

[Beyers8l]

Beyers, Dohse, Fucetoia. Kochis, Lob. Taylor, & Zeiler, "A 32-Bit VLSI

Chip", IEEE Journal of Solid State Circuits SC-16:5, October 1981, pp.

537-542.

[DeVries75]

DeVries & Svoboda "Multiple Output Optimization with Mosaics of Boolean

Functions", IEEE Transactions on Computers C-24:8, August 1975, pp.

777-784.

[Duttweiler80a]

Duttweiler & Chen, "A single-chip VLSI echo canceler", Bell System

Technical Journal, February 1980

Howard A. Landman Automatic Layout of Optimized PLA Structures

60

[Duttweiler80b]

Duttweiler, Donald L., "Bell's echo-killer chip", IEEE Spectrum 17:10,

October 1980, pp. 34-37.

[Fitzpatrick8l]

Fitzpatrick, Foderaro, Katevenis, Landman, Patterson, Peek, Peshkess,

SSquin, Sherburne, & Van Dyke, "VLSI Implementations of a Reduced

Instruction Set Computer", CMU Conference on VLSI Systems and Com

putations, October 1981. Another version of this article, with better pic

tures and artwork, appeared as "A RISCy Approach to VLSI", VLSI

Design, 4th qtr 1981, pp. 14-20.

[Foderaro8l]

Foderaro, John K, personal communication, July 1981

[Garey79]

Garey & Johnson, Computers and Intractability, a Guide to the Theory of

NP-completeness, W. H. Freeman & Co., San Francisco, 1979

[Hofmann80]

Hoffman, Mark, A Method for Topological Compaction of Programmed

Logic Arrays, master's thesis and ERL memo, U.C. Berkeley, 1980

[Hon80]

Hon & Sequin, A Guide to LSI Implementation, 2nd Ed., Xerox Palo Alto

Research Center, 1980

[Hong74]

Hong. Cain, & Ostapko, "MINI: A Heuristic Approach for Logic Minimiza

tion", IBM Journal of Research and Development, 18:5, September,

1974, pp. 443-457.

Howard A. Landman Automatic Layout of Optimized PLA Structures

61

[Keller80]

Keller, Ken Tutorial for KIC 2-A Graphics Editor for Integrated Circuits,

master's report, U.C. Berkeley, 1980

[Mead80]

Mead & Conway, Introduction to VZS/ Systems, 1981

[OusterhoutBl]

Ousterhout, John K. "Caesar: An Interactive Editor for VLSI Layouts",

VLSI Design, 4th qtr 1981. pp. 34-38. Note that figures lb) and Id) were

switched in printing.

[Schmookler80]

Schmookler, Martin. "Design of Large ALUs Using Multiple PLA Macros",

IBM Journal of Research and Development, 24:1, January 1980, pp. 2-14.

Howard A. Landman Automatic Layout of Optimized PLA Structures

	Copyright notice 1982
	ERL-82-64

