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ABSTRACT

Programmable logic arrays are important building blocks of VLSI circuits and
systems. We address the problem of optimizing the silicon area and the perfor-
ménces of large logic arrays. In particular we describe a general method for
compacting a logic array defined as ﬁultiple row and column folding and we
address the problem of interconnecting a PLA to the outside circuitry. We
define a constrained optimization problem to achieve minimal sllicox; area
occupation with constrained positions of electrical inputs and outputs. We
present a new cémputgr program, PLEASURE, which implements several algo-
rithms for multiple and/or constrained PLA folding. '

! This research has been sponsored by Harris and IBM corporations and NSF
under subcontract # 392741C-1.




1. INTRODUCTION

Very large Scale Integrated Circuits and Systems are so complex that
structured design techniques are often used to ensure electrical correctness
while maintaining a reasonable design time. Array logic has been used exten-
sively in VLSI design and Programmable Logic Arrays have proved to be an

effective means to implement multiple output switching functions [1] [2].

The PLA implementation of a switching function can be partitioned into
three tasks : functional design, topological design, and physical design. Func-
tional design consists of translating a set of Boolean equations into a set of two-
level sum-of-products logical implicants. In general, this step is followed by a
logic minimization , in order to reduce the number of implicants and literals.
Logic minimizers are effective tools for this task [3][4]. Topological design
involves the transformation of the set of implicants into a topological represen-
tation of the PLA structure, such as a symbolic table or a stick diagram. The
physical design is the translation of the topological representation into the mask
layout according to an implementation technology.

In this_ paper we address the problem of optimizing the area used by a PLA,
by means of row and column folding [5]. Wood presented for the first time a
folded PLA implementation in [8], and Hachtel et al. an algorithm for PLA folding
in [7]. The technique reported in [6] and [7] is referred here to as simple fold-
ing. Simple folding aims at determining a permutation of the rows (and/or
columns) of the array which permits a maximal set of column pairs (and/or row
pairs ) to be implemented in the same column (row) of the physical array. Fold-
ing comes in two flavors : column folding and row folding . Since large arrays
are usually very sparse , a considerable area reduction can be achieved by fold-

ing rows and columns.




A generalization of simple folding is multiple folding . The objective of
multiple column (and/or row) folding is to determine a permutation of the rows
(and/or columns) of the PLA which allows to implement in each column (and/or
row) of the physical array a set of logic columns (rows). From the description
given above , it is clear that multiple folding contains simple folding as a special
case. Thus, the area saving achieved by this technique can always be made
better than ( or, in the worst case, equal to ) the one achieved by simple folding.
Note that if simple folding is used , the area of the PLA can be reduced at most
to 25% , no matter what the sparsity of the personality of the PLA is. If multiple
folding is used, we are limited only by the sparsity structure of the PLA.

Greer proposed for the first time a multiple row folded PLA implementation
in [B] and called it segmented array. Paillotin and Chuquillanqui et al. presented
multiple column folded arrays in [9] and in [10]. A taxonomy of the folding tech-
niques for PLA is reported in [11].

All existing folding techniques have a major drawback. The connection of a
folded PLA to the outside circuitry may involve complex and area-consuming
routing , because the positions of the iﬂputs and the outputs of a folded array
are permuted by the folding algorithm. In order to use effectively PLA folding
for VLSI design , it is crucial to allow the positions of inputs and outputs to be

constrained.

In this paper we present : i) a new algorithm for constrained multiple fold-
ing , that allows to compact PLA area while ensuring easy routing of the folded
array ; ii) two PLA architectures to implement effectively muitiply-folded PLAs ;
iii) a general folding computer program , PLEASURE , which implements the new
folding algorithms to accomplish simple and mulitiple , cpnstrained and uncon-

strained row and column folding.




2. MULTIPLE FOLDED PLA IMPLEMENTATION

An unfolded PLA has the general structure shown in Fig. 2.1, and can be
implemented both in bipolar and MOS technology. We refer in this paper to the
NOR-NOR nMOS implementation presented in [12] as the standard PLA architec-

ture.

The implementation of simple column (and/or) folded PLA is straightfor-
ward. since at most two columns (rows) are folded together and connection to
the outside circuitry can be done from the top or the bottom of the array. (Fig
R.2) [5] [6]. The implementation of a multiply folded PLA is more complex. We
deal first with the implementation of muitiply column-folded logic arrays.

The implementation of several logic columns in the same physical location
requires the physical (metal,poly or diffusion ) columns be split mto segments
(fig 2 3). Therefore a path must be provided to route input and out.put. sxgnals
to/from the split physical columns inside the array. Thus standard PLA architec-
tures cannot be used to implement multiply column-folded PLAs. Several
authors [8] [10] [13] have proposed different architectures for multiply folded
arrays. We consider the following two structures , which can be implemented in

nMOS or c¢MOS technology.

The first architecture is shown in fig. 2.4. It requires two levels of metal
(polysilicon), in addition to the usual levels of poly (metal) and diffusion. The PLA
is implemented using two arrays (the AND plane and the OR plane) personalized
by MOS transistors. Input signals run vertically in the input columns of the AND
plane , product terms run horizontally in the rows of both planes and output
columns run vertically in the OR plane. Two levels of interconnect are used for
these rows and columns , in addition to ground diffusion rows and columns. The
third level of interconnect (second metal or second poly leve_l) is used to run

horizontal connection-rows above the product term rows to route the input and
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output signals to/from the input and output columns segments to the outside

circuitry.

An alternative architecture supports multiple.folding‘ with only one level of
metal , poly and diffusion. Input and output signals are routed inside/outside
the array by connection-rows parallel and alternated to the product term rows
and implemented on the same level. This structure is simpler than the previous

one but the area used by a multiply folded PLA is larger (fig. 2.5).

It is important to note that PLAs implemented with either structure are
essentially circuit blocks through which input and output busses run straight in
the connection-rows. They are therefore excellent building blocks of a regular

and structured VLSI design methodology.

Moreover it is important to point out that column folding induces a permu-
tation of product terms and connection-rows. While product term rows provide
connection internal to the PLA only ., connection-rows join the array to the out-
side circuitry and their ordering is essential to an optimal routing of the PLA to
the other functional blocks of the circuit.

We therefore define a multiple constrained column folding problem. The
goal of multiple constrained folding is to compact the PLA area subject to an
ordering of the connection-rows. Constrained multiple folding is necessary , for
example , for an area-eflective compaction of PLAs implementing switching func-

tions whose inputs and outputs are signal data busses inside a VLSI processor.

We address two constrained column foldiné problems : column folding with
ordered connectionrow assignment and column folding with bounded
connection-row assignment. In the former problem, each PLA input (and/or
output) column is given a position index. Folding is constrained so that
connection-rows can be positioned according to the sequence of indexes of the

connected columns. as shown in fig. 2.6. In the latter, each input (and/or out-



put) is given an upper and a lower bound on the position of the contacted
connection-row. Folding is constrained so that each connection-row can be

assigned to a position with an index satisfying the given bounds (fig.2.7).

Unconstrained multiple row folded PLAs can be implemnented with a single-
poly , single-metal technology [12]. Row folding induces a permutation of input
and output columns, which leads to a segmented array , consisting of a sequence
of AND and OR planes. This may be a technological drawback,because product
terms require aréa-consuming connections between adjacent planes, in addition

to an increased complexity of input and output routing.

Simple row folding may be constrained so that the folded array shows an
AND-OR-AND or an OR-AND-OR structure [11]. In this case input or output signals

can be routed to both external planes by connection-rows.

On the other hand multiple row folding leads to a segmentation of the array
into more than three planes [B8] [14]. Since routing of the columns of the inter-
nal planes may be difficult , we _introduce a new multiple constrained row folding
problem : row folding with bounded column assignment . Each column is
given a left and right bound and row folding is constrained so that each column

can be assigned to a position within the bounds.

Multiply row and column-folded arrays can be implemented with the
described architectures , provided that only columns in the external planes are
muitiply folded. To connect a multiple row and column folded array effectively,it
is important to be able to determine which signals are routed to the external
planes through c;)nnection-rows and which are routed from the top and the bot-

tom of the array.

The related constrained multiple row and column folding problem consists
of constraining the fold so that input and output signal can be routed from the

desired ( left,right, top,bottom) direction.



3. GRAPH THEORETIC INTERPRETATION OF THE MULTIPLE FOLDING PROBLEM

We concentrate our attention on a topological representation of a PLA. The
following definitions are a generalization of those given in [7]. A logic array is
described by a personality matrix. For the sake of generality, we assume that
the (i, j }* entry of the personality matrix is zero if the (i, j * location of the
physical array is occupied by interconnect only. Fig. 3.1 shows the personality
of the PLA sketched in TFig. 21. Let ¢, i=1,2 -, nec}
(fn, 1=1,2, -- -, nec}) be the set of columns (rows) of the personality matrix.
Each column is labeled input (output), if it carries an input (output) signal in
the physical array. A maximal set of adjacent input (output) columns is called
input array or AND plane (output array or OR plane). Let R (c; )(C(7;)) be the
set of rows (columns) with a nonzero entry in the i** column (row) of the per-
sonality matrix. Two columns c;, c; (rows r;, ;) are disjoint it R (¢; )N\ R(c;) =
$ (C(ri)NC(r;)= ¢ ). A column-olding list (row-folding list) is a set of
either input or output disjoint colﬁmns Ji=lcincia - cial (rows
Ji=tronria 7y a)). An ordered column-folding list
0y = (4,1, €2, * * * Cy,n ) ( ordered rowfolding list o; = (7; ,, 7,2, - 7Tyn))is
a column (row) folding list whose elements are ordered. A column /row-folding
set is a set of disjoint column/row-folding lists F = §{f,, fa. * - -, f&} and
ordered column/row-folding set is a set of disjoint column/row ordered folding
lists O =f{o, 0p -, 0.}. Let U be the set of unfolded columns (rows), i.e.
U=icl|Bk s.t.c €o;) (U={r|Bk st.re 0¢}). The column (row) cardinality
ofafolded PLAis C(0)= |0 |+ |U| ( R(0O)=|0|+|U]| ). An
ordered folding list of columns (rows) induces a set QR(0) (QC(0)) of order-

ing relations among the rows (columns):

QR(0) = lrp<ry|r; € Rfcyj) i Ty € R(Cijuy) i€y ju €y j4y € 04i0; € O}



(QC(0) = feo<eyle, € Cfry;) & cy € C(ryj0y) iy ;. Ti.j+1 €050, € O0})
let @QR*(0) (QC*(0)) be the transitive closure of QR(0) (QCc(0)) [15].A
column (row) ordered folding set is implementable if QRY(O)QC*(0)) is a
partial order of the set Z*.

The optimal unconstrained column (row) folding problem can be stated as fol-

lows;

Find an implementable ordered Jolding set that minimizes the column (row)
cardinality of the PLA. |

Remark 3.1 : In the simple folding case |U| = (initial column/row set
cardinality) -2|0|. Hence the optimal unconstrained simple folding
problem is to find an implementable ordered folding set with maximum
cardinality. =
We introduce a graph theoretic interpretation of the multiple folding problem in
order to gain a better insight into the problem and to study heuristics for the
related algorithm. We consider column folding first. According to [7]. we define
column-intersection graph G(V, E) a graph whose nodes v € V are in one-to-
one correspondence with the columns of the logic array and the set E is defined
as £ = fu, v;|R(c; )NR(c; )# ¢ }. Given an ordered column-folding set O, we
introduce an associated mixed graph G(0)=(V, £, A(0)). A mixed graph
G(V. E, A) is a graph with two sets of edges, a set of undirected edges E and a
set of directed edges A. V and £ are defined as in the column-intersection

graph. A(0 ) is defined as:

A(O)=tw b v eerllcin ez - Cup Copar " Cn)E0k =1,2 - -n-1)
We define x—path in G(V, E, A(D)) , a directed path x = [v,, vs. ep ]
such that:

i) the first edge in x is directed and the last undirected; ie.
(v,,vz)eA(O)and{up-,,vpgeE



il) every undirected edge in x is followed by a directed edge; i.e.
W €E » (Vs v42)€A(0) Wi=1,2 - -, p-2

Ezample 3.1 : For the PLA sketched in fig. 2.1 and the ordered folding set
0 =1t0,] : 0, = (cy0 cy cg) the associated mixed graph is shown in fig
3.2 and the partially folded array in fig.3.3. Ax—path is [vig, Vs, vg, ¥;]. =

We define " x—cycle in G(V, E, A(0)) a closed x—path having at least two
undirected edges.

Theorem 3.1: An ordered column-folding set O is implementable if and
only if the induced mixed graph G(V, £, A(0)) has no y—cycles.

The proof is reported in the appendix. |

Remark 3.1: Theorem 3.1 allows to verify the existence of a row ordering
compatible with a column ordered folding set by checking relations
among columns only. This procedure is much simpler (and therefore
much faster to be executed on a digital computer) than Lo verify directly
cyclic relations in QR*(0). | -

Remark 3.2: The graph interpretation and Theorem 3.1 applies "mutatis
mutandis” to the multiple unconstrained row folding problem. In this
case G(V, E) is the row-intersection graph and G(V, E, A(0)) is the
mixed graph obtained by adding to G(V, E ) the set of directed edges:

A(O) =t e Y eaal(Ti T o Tk Tiker - Tn JEOKk = 1,2, ..., n-1)
=

A graph interpretation of unconstrained row end column folding is more
complex, because it involves bookkeeping of the ordering relations among rows
and among columns. For this problem the information contained in the column

and row intersection graphs is not sufficient.

Ezample 3.2 : Consider the partially column folded array shown in fig.
3.3. We question the implementability of the array after folding row 75
with column 7rg. The folded array is clearly not implementable, even
though it does not introduce any cycle in both intersection graphs. )

We introduce therefore the row constraint graph Gp and the column constraint



graph G which are the directed graphs corresponding to the transitive closure
relations QR* (O¢ ) and @R* (O ) induced by the column and row folding sets Op
and Op [11]. By definition, the ordered folding sets Op and O¢ are implement-
able if graphs Gy and G, are acyeclic.

4. AN ALGORITHM FOR MULTIPLE PLA FOLDING

The optimal multiple PLA folding problem was shown to be NP-complete in
[16). We therefore propose a heuristic algorithm that can be considered an
extension of the simple folding algorithm presented in [5].

We consider first the multiple column folding problem. The ordered column
folding set and the mixed graph G(V, E, A(0)) are constructed by the algo-
rithm. At each step the algorithm tries to increase the cardinality of the folded
column set and verifies the implementability of the folding by checking that the
mixed graph has no y—cycle. '

A conceptual description of the algorithm is the following:
MASTER ALGORITHM
Step 0: Initialize the folding procedure
Step 1: If the set of columns which have not been processed is empty , stop.
Else select a pair of unfolded disjoint columnns or an unfolded column
and a column folding list as folding candidates.

Step 2: If the fold induces x—cycle in graph 'G(V, E, A(0)) . reject it and
go to Step 1.

Step 3: If folding has secondary constraints and constraints are not satisfied,
reject the fold and goto Step 1.
(This step is performed by the algorithms described in Section 5.)

Step 4: Fold the candidates, modify the PLA accordingly. Go to Step 1.

A detailed description of the algorithm for simple column folding is given in
[5}). In this section we will concentrate on the generalization to multiple folding,



and on the the procedure for multiple folding candidate selection.

The selection of the candidate columns for multiple folding can be done
according to one of the following folding patterns:

1) anew folding list can be formed by folding two unfolded c-olumns.

2) an unfolded column can be folded on top (bottém) of an existing folding
list.

8) a folding list can be "opened” and an unfolded column can be folded "by

insertion” into an existing folding list.

A selection of the folding pattern and candidate column is done at each step

according to a heuristic strategy.

Let us define first the set of descendants D(v ) (ancestors A(v ) ) of a vertex V

as follows:
a vertex d is descendant of v if there is a y—path from v to d.
a vertex a is ancestor of v, if v is descendant of a.

We define a adjacency set ADJ (v ) of a vertex v, the set of vertices connected to
v by an undirected edge. By definition, we consider every vertex adjacept to
itself.
We define pseudo-descendants D (v ) of avertex v the union of the adjacency set
of v and the descendant sets of each vertex adjacent to v.

D(w)=_ y D(v)v ADI(v)

v E€EAD/(v)
Remark 4.1 : 1t follows from Theorem 8.1 that for each pair of consecu-

tive columns in an implementable ordered folding list, the corresponding
vertices v, and v; are such that:

ADJ (v2)NA(v,) = ¢



Let us consider now the selection strategy for folding pattern 1. -

Ezrample 4.1 : When two columns, say ¢, and c,, are folded, a directed
edge (v, vz) is added to A(0). Hence a y—path joins v, to each vertex
in D(vz). Therefore all pseudo-descendants D(vz) of v, are descen-
dants of v,.

D(vy)« D (v, )uD(v;)

Moreover, since a y—path joins each ancestor of v, to v,, the descen-
dants of v, are descendants of each ancestor of v,

D(W)«D(v)uD(v,) V7 €A(v,)

It follows that an upper bound on the number of ancestor-descendant re-
lations induced by the colurnn folding is :

P = |A(v,)||D(vz))
[ ]

It is reasonable to conjecture that the fewer relations are induced, the lower is
the probability of finding x—cycles at further steps of the algorithm. Hence a
good choice for a candidate folding pair v,, vz is the one for which P is minimal.

Unfortunately ’—‘-(na—'l-Lcandidate pairs have to be tried to find the minimum P

for an array with n unfolded columns. This procedure is too time consuming for
large arrays. Therefore, an alternative selection strategy is used: select the

candidate folding pair (v,, v;) such that:
v, =arg T | A()|

= min_ | {
ve=arg 5| Dw)]
where VCV is the vertex subset corresponding to the unfolded columns.

Similar consideraﬁons apply to the candidate selection according to folding
pattern 2. When a column ¢, is folded on top of an ordered folding list
(c2,1. "', capn ) adirected edge (v, Vg, ;) is added to A(O). Hence a y—path
jolns v, to each vertex v, such that v, € D (vz, ). Therefore an upper bound on

the number of ancestor-descendant relations induced by the column fold is:



Pz = |A(Ul)|15(”2.1)|-

Conversely when a column c; is folded on the bottom of an ordered folding
list (c15, €12, - - -, €y, n) an oriented edge (v, ».v2)is added to A(O). Hence
a x—path joins every vertex A(v, ) to every verlex in D (ve). Therefore, an
upper bound on the number of ancestor-descendant relations induced by the

column fold is:

Pz = |A(vy 2 )| D(vg)|
The strategy for candidate selection according to folding pattern 2 is based on

the same considerations used for folding pattern 1.

A slightly different strategy is used for candidate selection according to
folding pattern 3.

Ezample 4.2 : Consider the PLA shown in fig. 2.1. Let us suppose that’
column c; is folded into the folding list o, = (c,0 cg) to give
(c10. €9, Cp). as shown by fig. 3.3. The ancestors of ¢, become ancestors
of cg and the ancestors of ¢ o become ancestors of c. -

In the general case suppose that column & is folded into a folding list
(ci.1. 62 * " Cin) to give (Cyy1 €2 *° ) Ci k1. B Ciky ", Cip) An
oriented edge joins vertex v; ., to ¥ and ¥ to v;,,. Hence the ancestors A(7 )
become ancestors of the vertices in 5(-0,-, &) and the ancestors A(v; ;.,)
become ancestors of the vertices in J (7 ). Therefore, an upper bound on the

number of ancestor-descendant relationsis:

ps = |A(v k- )1 D(9)] +14(T )1 D (v )|
Unfortunately the computation of the minimum p3; may be too time con-

suming for large arrays. Hence we find first the candidate for insertion as:

o = ﬂ;yamfi,n( |D(v )| +14(v )| )

and then the folding list and the insertion position such that :



Ps = 1A (v, - )| 1D(D)] + 4@ )15 (v )|
is minimal.

When the "best” folding candidates have been selected according to the
three folding patterns, the selection of the folding pattern is based on a
weighted comparison of the upper bounds p; , i =1, 2 3. Weighting factors
allow to privilege a folding pattern with regard to the others, as, for example,

‘multiple folding versus simple folding.

Remark 4.2: The Master Algorithm and the candidate selection strategy
applies “mutatis mutandis” to the multiple unconstrained row folding
problem. n

The Master Algorithm is used for multiple row and column folding also.
Order relations induced by the folds are described by the row constraint and
column constraint graphs. A candidate fold is rejected at Step 2 of the algo-
rithm if it induces a direct cycle in any of the two graphs. The folding candidate
selection strategy is similar to the one used for column folding, provided that
some definitions are changed to be compatible with the different graph

representation.

For this problem, a vertex d is descendant of v if there is a direct path
from v to d; the adjacency set of a vertex is not defined and the pseudo-
descendant set is equivalent to the descendant set. Hence U;e "best" column
and the "best” row folding candidates and patterns can be found by a procedure
simila& to the one described above. Let p° ( o™ ) be the related upper bounds on
the number of relations induced in Gg ( G¢ ) by a column (row) fold. A column

(row) fold is attempted if :
a *pf<prp

(a *p°=p8*p )

and 8 = R(O)-1 are dynamic weighting factors

where a = ﬂ%& R(0)

c(o)



which take into account the relative area saving achieved by a column ( row )
fold at that step of the algorithm and C(0 ) (R( O ) )is the column (row) car- -
dinality.

It is important to remark that this strategy allows to achieve more folds in
comparison with other algorithms performing column {row) folding after row
(column) folding. Nevertheless it is straight-forward to constrain the selection

so that all column (row) folds are tried first, if desired.

5. MULTIPLE CONSTRAINED FOLDING

As stated in Sections 1 and 2 the PLA constrained folding problems are
related to the interconnection of the array to the outside circuitry. We classify

the constraints on folding into two major categories:

1) Architectural or primary constraints

) Secondary constraints.

Architectural constraints are related to the structure of the array and to the
positions of input/output busses relative to the array. Secondary constraints
are related to the positions of input and output lines inside the busses. Exam-

ples of architecture constrained folding problems are:

1A) Simple column folding with a subset of inputs and/or outputs con-
nected to the top (bottom) of the array. |

1B) Simple row folding with AND-OR-AND or OR-AND-OR architecture.

1C) Seg;nent.ed arrays: the column set is partitioned into subsets, each
forming a segment of the array. Columns are folded with columns in the

same segment only and the sequence of segments is preserved.
The following folding problems involve secondary constraints:

2A) Column folding with bounded product-row assignment.

2B) Row folding with bounded column assignment.



2C) Column folding with bounded connection-row assignment.

2D) Column folding with ordered connection-row assignment.

The Master Algorithm presented in Section 4 can handle boih architectural and
secondary constraints. Different strategies are used in the two cases. To satisfy
architectural constraints it is sufficient that folding candidates satisfy the fol-

lowing requirements for the related problems:

1A) Columns connected to I/0 busses on the top (bottom,) of the array are
Jolded either on top (bottbm) of an unfolded column or Jolding list or not
Jolded at all.

1B) AND-OR-AND (OR-AND-OR) architecture. Rows connected to input (out-
put) columns that are connected to rows folded on the left or on the right
are selected as candidates to be split on the left or on the Tight of the array
respectively.

1C) Selected candidates for column folding are constraired to be in the
same segment. In the case of no more than three segments and simple row
folding, the selection of candidates for row folding is as follows: rows con-
nected to columns in the leftmost (rightmost) segment are folded on the
left (right) only or not folded at all.

Unfortunately we cannot be sure that secondary constraints are satisfied only
on the basis of an appropriate selection of folding candidates. The reason is that |
secor.;dary constraints are related to the row (column) positions induced by a
column (row) folding. Therefore, we present in this section two assignment algo-
rithms that assign positions to rows and/or columns and checks if the secon-
dary constraints are satisfied. We will present first the assignment aigorithm for .
problem 2A . From this, an algorithm for problem 2B can be easily derived by
interchanging rows with columns. Problems 2C and 2D are solved by a double
assignment algorithm, based on the assignment algorithm of problem 2A.



5.1 Column folding with bounded product-row assignment

We consider in this section the problem of constraining product-term row
positions only. We therefore refer to product-term rows as rows throughout this

section.

We define lower (upper) row bound map: a map
Lpifrys i=1,2 -+ ,nr}~>{1,2 -, nr}

(Upidrg; i=1,2, - - ,nr} 1,2 -, nr])
relating each row to a lower (upper) position bound.

We define row assignment P:fr;; i=1,2 - -, nr}-{1,2 - ,nr} a
permutation of the rows and implementable row assignment a permutation
compatible with an ordered column-folding set 0; i.e. P(r; )<P( ry)

Vr.<r, € QR*(0)
An implementable bounded row lassignment. is an implementable row

assignment such that

Lp(rj) = P(r;) = Up(r;) Vv j=12 - ., nr

Ezample 5.1.1 : For the logic array shown in fig. 2.1, the following lower
and upper bounds are given:

Lp

'

1.1,1,4,4,6

Up=1323,6,866

This means that 7, is constrained to the first position, 72 and g are con-
strained between position 1 and 3 , and so on. The implementable row
assignment ( 7y, T4, 72, 75, Ts. 76 ) induced by the column folding shown

in fig. 2.2 does not satisfy the given bound maps. On the contrary, the
folded PLA shown in fig. 5.1 has the following implementable row assign-
ment: ( 7y, 72, 73, 75 T4, Tg ). Note that rows are numbered from the top

to the bottom of the array. =

The optimal bounded row column folding problem can be stated as follows:



Find an implementable ordered column-folding set and a related imple-
mentable bounded row assignment that minimizes the column cardinality
of the folded PLA

Let us consider a graph interpretation of the following subproblem:

Given an ordered column-folding set and a lower and upper row bound

maps, find an implementable bounded row assignment, if it exists.

The graph interprei.ation is useful to understand the underlying structure and to
develop an algorithm and related heuristics. We associate to this subproblem a
directed graph G(R, N, A ), with two node sets N and R, and a set of directed
edges A.

The node sets R and N are in one to one correspondence with the row set
and the set of the first nr natural numbers representing the possible row posi-
tions. Our problem consists in finding a matc.ping between K and N, i.e. coupling
each r&w-node to a position-node, so tﬁat all the required bounds are satisfied.

We represent position bounds by a set of directed edges :

A=A VA VA3V A VA4S

vhere : A;={(nj,nj,,); §=1,2 ---,n-1] represents the order on the
sequence of the first nr natural numbers;
Apst(ny, 15 )|L(r5)=i+1, j=1,2, - nri and
As={(ry.m )|U(rj)=i=1, j=1,2 - -, ar} take into account the lower and

upper bound maps ; 4,={(7i, 7; )|7i<7r; € @R (0 )} represents the order relations
among the rows induced by the column folding.
Ezample 5.1.2 : Fig. 5.2a shows graph G(K, N, A’ ) A' = AjUAUA3UA, for

~ the PLA of fig. 2.1, the row bounds of exarmple 5.1.1 and the ordered fold-
ing set 0 = {(cy, ¢9), (€3, €4). (c2. 05 ). =



Note that an edge from a node in N (R) to a node in R (N) represents now a
strict lower (upper) bound. If a lower (upper) bound on arow posif.ion is 1 (nr) ,

it can be represented by appending nodes n, (nnr4)) to set N and by adding
appropriate directed edges to 4. ‘

Moreover note that if a row, say r , has the position w as strict upper bound
(i.e. (7. ) € As ) and must follow another row, say 7 (i.e. (7,7 )€ 4, ) , then

row 7 has as strict upper bound a position lower or equal to w-1

Ezample 5.1.3 : Row 7, must be above r; which in turn must be above T4
Since 7, is required to be assigned to a position lower or equal to 6, 7,

. must be assigned to a position lower or equal to 4. ( In this case r, has al-
ready the more stringent constraint to be in position 1). -

Ve therefore define: Ap={(7, 7. )| 37; such thal (15, 15 ) €. Ay and3 1 +1 dis-
tinct nodes in R along the directed paths in 4, from 7, to #;]. Similar con-
siderations apply to lower bounds, but the assignment algorithm does not

require that the set of directed edges is further increased.

Ezample 5.1.4 : The edges in subset 45 are represented by dashed lines
in fig. 5.2b. a

Our problem is to find an additional set of undirected edges £ matching every
node in R to one and only one node in N so that the resulting mixed graph
G(R, N, E, A )is acyclic.

Remark 5.1 : Column folding with bounded row assignment is equivalent

to the sequencing problem with release times and deadlines where all
task length are equal to one [17][18] and where a parlial order on the
tasks is given. ™

The following algorithm will either construct a set of undirected edges such that
graph G(R, N, E, A ) is acyclic or will return a flag if no possible edge set exists.

We recall that the in-degree of a node is the number of directed edges incident



to that node and the deletion of a node from a graph corresponds to remove the
node from the node set and all edges incident to/from it from the edge set.

The algorithm is described in Pidgin C.

ASSIGNMENT ALGORITHM
E=¢;
delete n, from graph G;
for(i=1;isnr;i=i+1)}
if ( in-degree (n; )#0 ) return ( FAISE ) ;
Q=7 € R ;indegree (v )=0];
if(@=¢ )return( FASE );
T; =7 € @ such that (7;, n, ) € A and k is minimal;
E=Euin, 7},

delete n; from graph G;
delete 7; from graph G;

3
return ( TRUE ) ;

The algorithm runs 'm‘ linear time since it cycles at most nr times through the
main loop. The algorithm uses a greedy strategy: at each iteration it matches
the available position with lowest index to the most constrained node in R (ie.
selects the product-row with lowest upper bound). The algorithm finds an imple-

mentable bounded row assignment, if one exists, as proven by the following

theorem.

Theorem 5.1 : The Assignment Algorithm returns " true " if and only if
there exists a matching E such that graph G(R, N, E, 4 ) is acyclic.

The proof is reported in the appendix.

Ezample 5.1.5 : Consider the column folded logic array shown in fig. 5.1,
and the related graph G(R, N, A) shown in fig. 5.2. The implementable
bounded-row assignments given by the alsorithm is
(rl- T2, 73, Ts Ta, 7'3)-



The Assignment Algorithm replaces Step 3 of ihe Master Algorithm for column
folding with bounded row assignment.

A different strategy for folding candidate selection is used. Since folding is lim-
ited by row positions, we tfy to fold columns incident to rows constrained to be
in the top part of the array with columns incident to rows constrained to be in

the bottom part of the array. We therefore can compute two "induced bound"

maps for each column:

z(cj)zrer??u(lcj) Lp(T) j=12 -+, ne
Ules)=p TBey) Ur(r)  G=12 - . nc

The column with the lowest (highest) entry in 0 (L ) is the most con-
strained to be folded on the top (bottom).

Ezample 5.1.6 : For the logic array of fig. 2.1 and the row bound maps of
example 5.1, the induced bound maps are the following:

~

L=1111:/411141

U=631386861686,86, 6

Hence columns c3 and ¢, are the most coﬁstrained to be folded on the

top part of the array and cg and cg on the bottom. -

Hence a “good" selection is the candidate pair (c;, ¢; ) such that
c; = Wj:f%f?.,nc Ufc;)

Cp = ﬂ.rgj=1l?%'ai{.'m L(C])
A more considerate choice takes also care of the number of ancestor-
descendant relations induced in the mixed graph, as shown in Section 4. There-

fore we use weighted selection criterion:



o =arg; B Ll D(v;) +80(v;))

ok = Wi=1fg.if..ng[a|fi(vj)l -BL (v; )]

f&'zarnp)le 5.1.7 : The first folding pair selected by Lhe algorithm is
€7 Cg). ]

Similar considerations apply, “mutatis mutandis”, to the multiple folding candi-

date selection.

Kemark 5.2 : The graph interpretation and an algorithm for the row fold-
ing with bounded column assignment problem can be derived "“mutatis
mutandis” from this problem. ' -

5.2 Column folding with bounded connection-row assignment

We refer in this section to a .logic array implemented with connection—réws
for routing input and output signals as described in Section 2. According to
these architectures, t.he_re are two sets of connections rows contacting the
columns of the left and right array respectively. For the sake of simplicity, we

will consider constrained folding of one array only.

Both proposed architectures support at most as many conneclion-rows as
product-rows. Since each column is contacted to a connection row, we require
‘throughout the section that the number of columns in the considered array is at

most equal to the number of rows. Most PLA satisfy this assumption.

We define connectionrow assignment a one-to-one map:
Tife;, i=1,2, - - ,nc}-»Mc{l,2 -, nr)suchthat j = T(c; ) if column c;
is contacted to the connection row in the j position.

Ezample 5.2.1 : Consider the OR plane of the PLA shown in fig. 2.1. Fig.

5.3 shows the unfolded array with the connection row assignment: ’
T(eq)=1 T(cg)=2 T(cg)=5 T(c,0)=86. ]



We define physical connection-row set M the image of 7. Its clements are the
position of the connection-rows which are physically implemented. Note that
there are A =nr-nc slack connection-rows which are not implemented and

whose positions are irrelevant to the problem.

We define lower (upper) connection-row bound map a map:
LC:icia i=1.2, --.'m;-al’z....'n.r

(Upifeg, i=1,2, -+ ,nc)=12,- -, nr)
relating each column to a lower (upper) position bound on the position of the

contacted connection-row.

Ezample 5.2.2 : For thé OR plane of the PLA shown in fig. 2.1 , the follow-
ing bounds are given: )

Ip=1,1,46

Us=1,8866
This means that the first column of the OR plane { c; ) must be connect-

ed to a connection-row in position 1 ; the second one ( cg ) to a
connection-row whose position is bounded between 1 and 3 ; and so on. s

An imhlementable connectionrow assignment is an assignment compat.ible'

with a column ordered folding set, i.e. is an assignment such that :

max(P(R(ci 3.1))) < T(c;,;) < min(P(R(¢;;4,))) =12 - ,n

V' column ¢4 ; in folding list o; with cardinality n, where by definition:

max(P(R(c0)))=0 and max(P(R(c;ns1))) ==

Ezample 5.2.3 : Consider the folded OR plane shown in fig. 2.2 with the

ordered folding set O ={(c, cg) (ca c1p)}. An implementable
connection-row assignment is:

T(ee)=1 T(cg)=R2 T(cg)=8 T(cyo)=6
The connection-row contacted to cg is in position g, and therefore is

above ( has lower index than ) the product rows connected to ¢ ( in po-
sitions ¢ and 6 ). The connection row contacted to ¢, is in position 6 and



is below ( follows ) the product rows connected to cg ( in positions 3 and
2). =

An implementable bounded connection-row assignment is an implementable

connection-row assignment such that :

Lc(Cj) £ T(CJ-) £ Uc(C,’) Jj=12 -, nc
Ezample 5.2.4 : The implementable connection row-assignment of exam-
ple 5.2.3 does not satisfy the bounds given in example 5.2.2. An imple-
mentable bounded connection row-assignment is:
T(ez)=1 T(cg)=R T(cg)=4 T(c,0)=6

Fig. 5.4 shows a folded implementation of the OR plane compatible with
the bounded connection-row assignment. ™

We can now state the column folding with bounded connectlion-row assignment

- problem as follows:

Find an implementable ordered column-folding set and u related imple-
mentable bounded connection-row assignment which minimizes the

column cardinality of the folded PLA.

As we did for the previous problem, we consider a graph interpretation of the

following subproblem:

Given an ordered column-folding set and a lower and upper connection-row
bound maps, find an implementable bounded connectionrow assignment,

if it ezists.

Note that an implementable bounded connection row assignment requires, by
definition, a product row assignment, because the positions of rows in both sets
influence each other. Hence the problem consists in finding the two row assign-

ments compatible with the ordered column-folding set, if Lhey exist.



" We associate to this subf;roblem a directed graph G(R, N, C, 4 ), with three
node sets K, N and C and a directed set of edges A. The node sets R, C and N
are in one to one correspondence with the row set, the column set and the set of

the first nr natural numbers respectively.

We represent the bounds on the row positions by a set of directed edges:

A =AU A3 VA3 U Ay UA; U4y VA, UAg
where A and A, * are defined as in section 6.1,
Ag={(n. ¢ )| Le(cs) =i+l j=1,2 - mnc) and
CAs=1{(cy.m )| Ug(ecy)=i~1; j=1,2, --- ., nc} lake into account the lower

and upper bound maps.

Erample 525 : Fig. 65.5a shows graph G(R,N,,C, A') ,
A = AjUAUAUA, in the case that the OR plane of the PLA of fig. 2.1 is
folded and the ordered column-folding set is: O = {(c,. cg), (ca. €10}
and is compatible with the bounds given in Example 5.2.2. :

We consider the mutual relations among products and connection-rows by the
~edge subsets: 4g={(7,C)|T € R(c) and ¢ is split on top of ¢} and
A ={(c, ;)I; ER('E)and ¢ is split on top of 3;. In words , if column c is
folded on top of ¢ , then all the rows ( product and connection ) connected to c
must be a;ssigned to positions with index lower than the positions of all the rows

connected to c.

Ezample 5.2.6 : Fig. 5.5b shows the edges in subsets 4 and A, for the

problem of example 5.2.5. =

Moreover note that if a column , say ¢, has as strict upper bound the position w
(ie. (2, m, )€ As, (;". c)e€dgand (7.7) € A, , then 7 has as upper bound the
position w=2 . We therefore define: As={(7., n;.;)| 3r;. 3¢ such that
(rj. ¢ )€ Ag, (. m;) € Ag and TI>0 distinct nodes in R along the directed paths



from 7, to 7;]. The edges in this set represent the upper bounds on the position
of each product-row iﬁduced by folding. Note that all nodes in R must be
assigned to a position lower than nr +1. Hence we append to As the edges
(Tx. Tnr +1) 97 € R having no explicit upper bound . |

Ezample 5.2.7 : Fig. 5.5¢ shows the edges in subset Ag for the problem of
example 5.2.5. [ ]

Similarly , upper bounds induced on the column positions are represented by:
Ag={(c,. iy )|3(ck. 75 ) € Ay and (15, 0y ) € 45).

Ezemple 5.2.8 : Fig. 5.5d shows the edges in subset'Ad for Lthe problem of
example 5.2.5. -

In graph terms, this problem is to find a set of undirected edges £ match-
ing every node in R and in C to one and only one node in N so that the resulting
mixed graph G(R, N, C, E, A) is acyclic. Note that in gencral the number of
columns and hence of physical connection-rows required is smaller than the
number of rows by A and we take advantage of this ir; the double assignment

algorithm.



DOUBLE ASSIGNMENT ALGORITHM

E= ¢,
A=nr-nc;
delete n, from graph G;

for(i=1;isnr;i=i+1)}

}

if ( in-degree (n; )= 0 ) return ( FALSE );

@ = {r € R in~degree () = 0};

if(Q@=¢ )return( FASE) ;

Ty =7 € @suchthat (r;, n, )€ A andlc is minimal;
E=Eu(ﬂ;.r,);

H ={c € C;in—degree (c ) = 0};

if (H=1¢ )I
A=A-1;
if (A< O )return ( FAISE );
!
else §
¢, =c € H suchthat(c;, n, )€ A and k is minimal ;
E=Eu(n, c),
delete ¢; from graph G;
!

delete r; from graph G;
delete n; from graph G;

return ( TRUE ) ;

The double assignment algorithm runs in linear time and uses a greedy strategy.

At each iteration, it tries to match the available position with lowest index with

the most constrained product and connection-rows. Note that a connection-row

need not be assigned at each iteration, but the total number of slack positions

must be lower or at least equal to A.

Theorem 5.2: The assignment algorithm returns “true” if and only if
there exists a set of undirected edges £ matching each node in R and in
C to one and only one node in N such that G(R, N, C, E, A) is acyclic.



The proof is reported in the éppendix

The double assignment algorithm replaces Step 3 of the Master Algorithm for

column folding with bounded connection-row assignment

The selection of folding candidates is based on the following strategy. Try
to fold columns incident to connection-rows constrained to be in the top part of
the array with columns connected to connection-rows constraiued to be in the
bottom part of the array. Therefore the candidate selection follows the outlines
presented in section 5.1, where Z(c,-) = L(c; ) and E(CJ-) = U(cj ). Also in this
case, a considerate choice of folding candidates uses a selection criterion
weighting the number of ancestor-descendant relations induced by the fold and

the required row positions in the array.

5.3 Column folding with ordered connection-row assignment

We extend to this section the considerations on multiple column folded PLA

implementation and the basic definitions presented in Section 5.2.

We define order map S:{c;; i =1, 2, '-'-,ncf -{1,2 - ,nc} a one to
one map relating each column to the required relative positien of the contacted
connection-row. We define implementable ordered connection-row assignment

an implementable connection-row assignment such that :

T(cy) < T(c;) if S(e;) < S(c;) i, j=1,2 - ne

Ezample 5.3.1 : Consider the OR plane of the PLA shown in fig. 2.1 and
the following order map:

S(c7)=2 S(cg)=1 S(cs)=3 S(cp)=4

This means that column folding is constrained so that the connection-row
to cg is in the topmost position, followed by those connecting ¢4, cg and
o in the order. Fig. 5.6 shows a folded implementation with the imple-
mentable ordered connection-row assignment.:
T(ce)=2 T(cp)=1 T(co)=3 T(cyo) =4 =



Ve state the column folding with ordered connection-row assignment prob-

lem as follows:

Find an implementable ordered column-folding set and a related imple-
mentable ordered connectionrow assignment, which minimizes the

column cardinality of the folded PLA.

This problem is equivalent to column folding with the following bounds on

connection-row positions:
Le(e)=S(e;) Yvi=12 - -, nc

Ue(e;)=S(ci)+4 wi=1,2 -, ne
with the additional constraint on the order of the connection-rows.

As we did in the previous section, we give a graph representation for a sub-

problem:

Given an ordered column-folding set and an order map, find an implement-
oble ordered connection-row assignment, if it ezists.

The graph representation of this subproblem is given by graph
G(R. N, C, A) introduced in Section 5.2 where an additional subset of directed
edges is added to take care of the order map:

Av=l(ci cj)li =S (e ) j = S(cksr) k=12, -, ne -1)
The Double Assignment Algorithm can be used to replace Step 3 of the Master
Algorithm for the column folding with ordered connection-row assignment prob-

lem.

Ezample 5.3.2: Fig. 5.7 shows graph G(R, N, C, A ) for the order map of
example 5:3.1 and the ordered folding set O = {(cg, cg )} =



Remark 5.3 : In the case that there are no slack positions or in the case
that we are not interested in taking advantage of the slack positions, the
column-folding with ordered connection-row assignment problem can be
solved more easily by the following equivalent formulaticn: column fold-
ing with bounded product-row assignment, where bounds on row posi-
tions are dynamically induced by column-folding. In particular:

Up(ci,j)=S(ei js1)+0-1
Lp(ci j41)=S{c;j)+6+1

VeCi,j €0; , Yo, €0 andany fired 6s.t. 0s6<A
An implementable product-row assignment satisfying the above bounds is

& necessary and sufficient condition for the existence of the implement-
able ordered connection-row assignment T( c;)=S(c;)+6. a

The selection of folding candidates is based on the following strategy.' Try to fold
columns incident to connection-rows constrained to be in the top part of the
array with columns connected to connection-rows constrained to be in the bot-
tom part of the array. Therefore the candidate selection follows the outlines
presented in section 5.1, where now: z(c,- )=S(c;)and ﬁ(c,-) =S(c; ) Alsoin
this case, a considerate choice of folding candidates.usés a selecﬁon criterion
weighting the riumber of ancestor-descendant relations induced by the fold and

the required row positions in the array.

6. PLEASURE

PLEASURE is an interactive program for simple/multiple -
constrained/unconstrained row and/or column folding of Programmable Logic

Arrays.

The PLA description is given as input to the program in the form of two-level

sum-of-products logical implicants.

The output of the program is a symbolic table representing the folded array

with the positions of the active devices corresponding Lo the cares of the logic



function, the locations of the cuts and the contacts between columns ad connec-
tion rows. The symbolic table is suitable to be processed by a silicon assembler
program which generates the mask layout of the array according to a given
technology. Note that the symbolic table generated by PLEASURE is technology
independent. ’

The program is a command interpreter: input files can be read and edited;
logic arrays can be folded in a single run or one fold at a time. vThis allows t.he
user to monitor PLA folding step by step, by displaying the partially folded
array. The user can enter column and/or row folding candidates of his choice
and verify the implementability of his selection. When PLAs are folded in a sin-
gle run a soft interrupt capability allows the user to halt the compaction at any
point to see the partially compacted array before resuming félding execution.
The program can be run in a silent mode (i.e. with no interaction with the uséi').
so that it can be interfaced with other programs in a system for automated syn-

thesis of PLA's.

Folding instructions are entered to the program along with the PLA descrip-
tion in the input file. PLEASURE allows column (row) folding only and row and
column folding.

Column fplding can be simple or multiple, constrained or unconstrained in
either or in both planes. Architectural constraints can be set on colurnn posi-
tions. Columns can be required to be folded on the top (bottom) of the array or
not folded at all. Column folded arrays can be segmented into three adjacent
planes, so that columns in the external planes, can be multiple folded and con-
tacted by connection rows. Secondary constraints can be pul on product ad
connection row positions. In particular column folding with bounded or order

connection row assignment can be achieved.



Row folding can be simple or multiple. Simple row folded arrays can be con-
strained to have an AND-OR-AND or OR-AND-OR architecture. Seconda.ry con-

st.ramed can be put on the column positions.

Row (column) folding can follow column (row) folding. Row folds can be
alternated with column folds, by allowing the program to choose the local "best”
fold at each step. This procedure achieves the best results as far as compaction
is concerned. Multiple row and column folded PLA can be constrained by
input/output position. An input (output) can be required to be connected to the

top, bottom, left or right of the array.

Program PLEASURE is coded in ratfor and consists of about 5000 lines.
Intermediate code in fortran 77 is available. PLEASURE runs in a VAX-UNIX®

environment, but is easily transportable to other machines.

Some PLEASURE output files are reported in fig. 6.1a and 6.1b for the PLA of
Fig. 2.1 and different folding requiréments. PLEASURE has been tested on a
large set of industrial arrays. To compare results obtained with arrays of

different sizes, the following foldings have been tried: i) unconstrained folding;

ii) column folding - with constrained row positions:
Lir)= max(i—a, 0 )U(7 )=min(it+ta, nr )a = % ; iii) column folding
with constrained connection-row positions:
Le(ce; ) = maz(z—a 0 )Uc(c; )=min(i+a, nr )a= TO_ : iv) column fold-
ing with ordered connection-row assignment: S(¢c; )=1i,4=1,2, ---,nc. The

folding results and execution time on a VAX 11/780 computer are reported in

table 1.



‘7. CONCLUSIONS

In this paper we addressed the multiple constrained folding problem of Pro-
grammable Logic Arrays. A heuristic algorithm for multiple folding has been
presented as well as two assignment algorithms for PLA row/column constrained
positioning. A computer program, PLEASURE, has beeﬁ described and shown to

be an effective tool for interactive topological design of logic arrays.

The PLEASURE output file contains all the topological informations for the
implementation of multiple folded arrays. The layout of the masks of the folded
array. can be obtained from the PLEASURE output file by méans of a
silicon assembler program, once an implementation technology is chosen. We.
bave presented two PLA structures which support multiple folded arrays in MOS
technology : the former uses two levels of metal ( poly ) and the latter one level

of metal and poly.

Future work include the development of a silicon assembler program, that

can generate the multiple folded PLA mask layout according fo different archi-

tectures and design rules.

~PLEASURE is a part of the integrated system for Programmable Logic
Arrays and Finite State Machines automated design developed at the Universify
of California,Berkeley.
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APPENDIX

Proof of Theorem 3.1:
(if)

Assume that the folding set is implementable. For the sake of contradiction,
suppose that 3 a y—cycle in G(V, £, A(0)). Without loss of generality, we can
label the vertices of the cycle so that :

tvp-1, v} € E.
fu vl e B

(Ve Ve )€EA Vkefl,2 -, 1-1} U ll+1,1+2, ce,m=13

It is always possible to achieve such a labeling,because a x—cycle has at least
two undirected edges ( {v,.,, v, and {v,, v, :]5 and two paths of directed edges
(joining v, to v; and v, to vy, .;). Moreover a path of directed and undirected
edges (possibly of zero length) joins v, tov,.,. -

Since paths of directed edges are related fo column ordered folding lists, and
the column ordered folding lists induce a row order relation, we have :

R(c,)<R(c; )
and :
R(c,,,)d?(c,,,).
Take any rowr € R(c; )N\R(c;+,):
R(c, )<r<R{cp, )

and from the definition of transitive closure :

{R(e1)<R(cm )} € QR*(0)

Since there is a finite number of vertices along the y—cycle from vertex v; 4, to
vertex v,.,, by repeating the same argument and by the transitivity of

QrR*(0)
tR(civ1)<R(cp )} € QR*(0).
letrowr € R( cp-1)JNR(cp ). From the transitive closure relation:
R(cisy) < 7
and in particular:

r <r

But since ¢, = ¢, and R(c,) < 7, then:



T<rT
Hence; we have a contradiction because @R* (0 ) is not a partial order on the
setZ".
(only if)

Assume that G(V, E, A(0)) has no x-cycles. For the sake of contradiction sup-
pose that QR* (0 ) is not a partial order. Therefore there exist two rows, r, and
7, , such that: :

<t
and:

i<t
Hence there exists a sequence:

P72 - 7, T4
such that:
i € R(c,5)NR(czj) j=12 -, n

where: ¢,,=c3,, €5 =Cay ., (c2j-1.C15)€EA j=2.8, - .n and ei-

3

there; =cgyor fc,j.co;] €E,5=23, - n-1. Hence there is a direct-
ed path from c, ; {o c2, having no more than one consecutive undirected edge.
Moreoverr, € R(c, )and(cz,, c,;) € A.

Furthermore there exist a sequence:

[Fr.7e - T 7]
such that:
T; 53(01.1)03(32.1) J=1L2 -, n
ghere g"‘ = ;‘3.,_,, gl.n = S‘g.n . (3‘2.1'-1- gl.)' ) €4 j=2,3 ---.n and either
C13=C2j F {€15.C25] €E,7=2,8, - +,n-1. Hence there is a directed
paih from ¢,, to ¢z, haying no more than one consecutive undjrected edge.

Moreover 7, € R(c, Jand(cy,,. c,) € A, and either ¢,, and ¢, ( ¢,, and ¢, )
coincide or icm. cl; E'\E' (\)Cl'], C)g g'E ). ’

Thus [c,,, * - . Cen. €1 €11 ***, Cap, €y, €1,] is & x-cycle. Hence we have a
contradiction.

Proof of Theorem 5.1:

(if)

Suppose that the algorithm returns " false * at step i : i.e. after having matched
1-1 row nodes to position nodes. For the sake of contradiction, suppose that
there exists a matching E'={ {r;,n;] , j=1,2 ---,nr}, such that
G(R, N, E', A)is acyclic. :

The algorithm returns "false" in one of the following two cases:



Case1: @ = ¢ atstepti.

There are nr -i + 1 row nodes that must be matched to position nodes n;, j>i.
Since |{n; € N, j>i}| =nr-i , no row assignment can be found satisfying the
iven bounds. In fact, since 3j >% such that ( =»;, 7y ) €4, then
n, .My, T, M) is acycle in G(R, N, E, A). Therefore we have a contrad-
iction. .

Case 2: in-degree(n;) #0 at step i.

Let EP be the partial assignment constructed by the algorithm, i.e.
EP ={n;, 7Pl j=1,2 - -, i=1].

We show first that the matching E' can be transformed into another matching
E", such that G(R, N, E", A) is acyclic and the row nodes matched to
n;,j =12 --+,1-1 in EP and E" are identical. For this reason let:

a = arg min {j|r'; #77}

Nodes 7'; and 7§ have no incoming directed edges from {n;, j=a}.
Moreover 3n,, n, € N, k=h>a, such that (v',,n, )€ 4 and (78, n,) € A. Let
ny €N, s.t.{n,, 78] € E'. Then a<b<hsk. Let us consider the matching:

E" = B'Vir'y, nyJUITE, nyl-frs. n, -7, np}

We claim that G(R, N, E", A ) is acyclic. If not, there would be at least a direct-"
ed path joining one of the following node pairs: '

i)ny, 7'g
ii ) ng, vP
iit) 7', ny
iv) 78, n,
and G(R, N, £', A ) would have a cycle. In fact:

i ) Since b>a and there is a directed path from n, to n,, there would be the
cycle [n,, 7's, 1y, -+ . M.

ii ) Since r'; has no incoming directed edges from n;, j=a there would be a
Elirecbed path from ng ]to a node n;, j<a and therefore there would be the cycle
nc.-.-.n,'-.o‘na‘

iii) Since r‘: has no directed edges into n;, j<h, there would be a directed path
from a node mn;,j=h to m, , and therefore there would be the cycle

C o my, s, M),
iv ) Since b">a and there is a directed path from n, to n,, there would be the
cycle [78, ng, - - -, ny, TE].

Let now E" = {{n;, r";} € £", j =1,2 ---,4i~1}). If E" = LP , then n; has no
incoming directed edges from {r"; € R|j>i}. Suppose Lhat {(7"¢, n; ) € 4 and
k>i. Then [r"y.my, -+, my, 7" ] would be a cycle in G(R, N, E", 4). We
therefore have a contradiction. If £“#EP , then we can construct a finite se-
quence of matchings E", E™, .-, E’ using the procedure shown above , so
that G(R,N.E’A) is acyclic and E°=EP . where
E'={{n;, 7Y€ Ej =1,2 ---,i~1]. Also in this case we have a contradic-
tion. »

{only if)

The algorithm terminates in a finite number of steps, because it attempts at
most nr assignment. Let £ =} {n;,7;},7=1,2 - -, nr] be the assignment



constructed by the algorithm. Since n; and 7; have no incoming directed edges |
from  {ing |k>jjulr |k>j) j=1,2 .-, ar] by construction, then
G(R,N.E,A)is acyclic. '

Proof of Theorem 5.2
(if)

Suppose that the algorithm returns * false " at step i . For the sake of contrad-
iction, suppose that there exists a matching £' such that G(R. N, C, E', A )is
acyclic. In particular: E'=§ fr';,n;] . § =12, -, nr} uf e, i,
VjeM'cil, 2 -, nr]}, where M' is the physical connection row set
corresponding to the matching E".

The algorithm returns "false” in one of the following three cases:

Case1: @ = ¢ atstepi.

There are nr-i +1 row nodes that must be matchead to position nodes n;, j>i.

Since |{n; € N, j>i}| =nr-i , no row assignment can be found satisfying the
iven bounds. In fact, since 3j>i such that ( =»;, 7y ) €A, then

n, -, My, Ty, M) is a cycle in G(R, N, C, E. A). We therefore have a con-
tradiction.

Case2: H = ¢ and A<O at stepi.

There are nr-i +1 connection row nodes thal must be matched to position

nodes my, j>i. Since |in; € N, j>i}| =nr-i , no connection_row assicnment

can be found satisfying the given bounds. In fact, since 35 >i such that { n,, c';
€4, then [ny, - -, ny, c';, 7] is a cycle in G(R, N, C, E! A). We therefore

have a contradiction.

Case 3 : in-degree(n;) #0 at step i.

Let EP be the partial assignment constructed by the algorithm.

We show first that the matching £' can be transforined into another matching

E", such that G(R, N, C, E", 4) is acyclic and row and connection_row nodes

matched ton;,j = 1,2, ---,i-1 in £P and E" are identical. For this reason

let:

a = arg min {j |r';#rp)

d =arg min {j|c'y#c] or [c';, n;]€E" and {cf. n;} € EP}
If (a<d) let:
E" = E'Vir'y, npJUlr], gl -tr's. nigl- {78, my
If(d<a),c'y#ck and jc’y, ng} € E" let:
E" = E'vic'y, mgufcd, ngl-fc',, ngl-{cd. ng)

where n, € N s.t. {n,, cB} € E".



If(d<a).{c'y,n;] £E and § c}. ny } € EP let:
E" = E'Ufcg, ng}-{ch. e}

We can show with an argument similar to the one used in the proof of theorem
5.1, that graph G(R, N, C,E" A) is acyclic, because otherwise graph
G(R, N, C, E', A) would have a cycle and violate our assumption. :

Let now E"CE" be the subget of the undirected edges having an end_point in
n;,j=1,2 ---,i~1. If "= EP , then m; has no incoming directed edges
from {r"; € R|j>ijufe"”; € C|j>i}). Suppose that {(7",.m;)€A and k>i.

Then [r"¢, 7y, - -, my, 7";] would be a cycle in G(R, N, C, E", A). Suppose
that {(c"s, n; )€ A and k>i . Then [c";, g, - - -, my, "] Would be a eycle in
G(R, N, C. E", A ). We therefore have a contradiction.

If E"#EP , then we can construct a finite sequence of matchings
E", E™, .- -, E_ using the procedyre shown above , so that G(R, N, C, E* A)
is acyclic and £'°= EP , where : E°CE’ is the subset of the undirected edges
having an end_point in n;, 5 =1, 8 - ,4i-1. Also in this case we have a con-
tradiction.

(only if)

The algorithm terminates in a finite number of steps, because it attempts at
most 2 *nr assignment. Let £ be the assignment constructed by the algo-
rithm. Since m;, 7; and c¢; have no incoming directed edges from
tine |k >5uir, |Ic>,1'§u{c,= |k>j} 5=1,2 - -,nr | by construction, then
G(R.N.C, E, A)is acyclic.



TABLE 1

Comparison of PLAs folded by PLEASURE with different constraints.
PLA size Constraints Folding | Folded Area
nr*(ni+no) lists ! Unfolded
| Area = 100
BF —

PLA 1 30*(8+31) none 7 29
30+(B+31) row positions 14 51
30*(8+31) conn.row positions 15 53
30*(B8+31) ordered conn_rows 15 - 53

PLA2 | 52+(23+20) none 7 37
52%(23+20) row positions 12 60
52*(23+20) | conn_row positions 13 48
52%(23+20) ordered conn_rows 13 58

PLA3 86*(8+63) none 9 58
B6*(8+63) row positions 15 87
86*(8+63) conn_row positions 12 63
86*(8+63) ordered conn.rows 15 73

PLA 4| 62*%(24+14) none 11 58
62*(24+14) row positions 10 73
62*(24+14) | conn.row positions 9 68
B82*(24+14) ordered conn_rows 8 76

PLAS | 85*(27+10) none 14 54
85*(27+10) row positions 10 67
85*(27+10) conn_row positions 9 72
85*(27+10) | ordered conn rows 6 70

PLAB | 75%(35+29) . hone 17 53
75*(35+R9) row positions 19 62
75*(35+429) | conn.row positions 18 84
75*(35+29) ordered conn rows , 10 73

PLA7| 53%(35+29) none 10 49
53%(35+29) row positions 13 87
53*(35+29) conn_row positions 17 58
53*(35+29) ordered conn.rows 10 80

PLA B | 223+(47+62) none 15 38

223*(47+62) row positions 39 55
223*(47+62) | conn.row positions 39 57
223*(47+62) | ordered conn.rows 33 €0

Time
(sec)

14
18
15
62

112
257

328
3

(6]

30
58
87
59

50
118
199
202

28
65
110
147

1262
3933
4722
4769




| FIGURE CAPTIONS

(2.1] Symbolic representation of a Programmable Logic Array.

[2.2] Simple Folded Array.

[2.3] Multiple Folded Array.

12.4] Multiple Folded Array Mixed Diagram ( Architecture # 1 ).

[2.5] Multiple Folded Array Mixed Diagram ( Architecture # 2 ).

[2.6] Multiple Folded Array with Ordered Connection-row Assignment.
[2.7] Multiple Folded Array with Bounded Connection-row Assignment.
[8.1] Personality Matrix.

[3.2] Mixed Graph G(V, E, A(0)).

{3.3] Partially folded array.

[6.1] | Folded PLA with Bounded Row Assignment.

[5.2a] Graph G(R, N, A'). -

[5.2b] Edge set 4s.

[6.3] Unfolded OR array.

[6.4] Folded OR array with Bounded Comecﬁon-row Assignrhent.
[5.5a] Graph G(R, N, C, A'). |

[5.5b] Edge set AguA4,.

[5.5¢] Edge set 4s.

[56.5d] Edge set A,

[5.6] Folded OR Array Implementation with Ordered Connection-row

Assignment.

(6.7a] Graph G(R, N, C, A').



[5.7b]
[5.7¢c]

[8.1a]

[6.1b] '

Edge set AguA4,.
Edge set 45VA4;.

Example of PLEASURE output file for the PLA of fig. 2.1 folded with
different constraints: i) no constraints

ii) constrained row : positions:
L(r)=1U(r)=LiL(ry) = U(rs) =8, L(rs)= 1;U(rs)=5;
L(ry) = 4U(rs)=6,L(rs)=4U(r5)=6; L(rg)=86,U(rg)=8.
Example of PLEASURE output file for the PLA of fig. 2.1 folded with
different cor'xstraints: i) constrained connection-row positions:
Le(c1) = LiUc(e1) = 8iLe(cg) = 6:Up(ce) = 6;

Lg(cy) = 1;Uc(cq) = 1;Le(cg) = 1;Ug(cp) = 3

Le(eg) = 4:Uc(cg) = 8, Le(cy0) = 6:Ug(€10)=8:

it) ordered connection-row positions: S ( c; )=3



r, ¥ X —¥ '

Juns |

rs ¥ X X

Vs ¥ ¥ » *

s % l

e % X
t ¢ttt ¢t 3 N N T
C, C C3 G Cg Cg Cz Cg Cg Co

Symbolic representation of a

Progroymmable Logic Array

Fig. 2.1
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Simple Folded Array-

Fig. 2.2
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Multiple Folded Array

Fig. 2.3
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Folded PLA mixed diagram.

LEGEND :
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active device
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contact

( Diffusion gl;ound lines not shown)
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Fig. 2.5 Folded PLA mixed diagram
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(Diffusion ground lines not shown)
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Multiple Folded Array with
ordered connection-row assignment

Fig. 2.6



Multiple folded array with bounded
connection row assignment.

Connection Row Lower Bound - Upper Bound
I l 3
2 l 3
5 4 6
6 4 6
7 I I
] 4 6

Fig.2.7



Fig. 3.1-Personality matrix



Fig. 3.2 Mixed graph G (V, E, A (0))
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Fig.3.3 Partially folded array



Fig.5.1-Folded logic array
with bounded row
assignment
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Fig. 5.5¢c
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PLEABURE : PLA"TOPOLOGTICAL COMPACTION ENVIRONMENT
UNIVERBITY OF CALIFORNIA . BERKELEY

sessd

FOLDING REQUEBTED:

MA'.T!PLE COLUMN FOLDINO IN THE AND PLANE
MULTIPLE COLUMN FOLDINO IN THE OR PLANE
COLUMN FOLDING WITH CONSTRAINED CONTACT POSITIONS -

COLUMN FOLDINGS:

ORDERED COLUMN FOLDING LIST @
ORDERED COLUMN FOLDING LIST
ORDERED COLUMN FOLDINO LIST

ORDERED COLUMN FOLDINO LIST @

COLUMNS FROM THE TOP

CONTACTS ON THE LEFT PLANE

PERBONALITY MATRIX
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