

Copyright © 1982, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

PLEASURE: A COMPUTER PROGRAM FOR SIMPLE/MULTIPLE

CONSTRAINED/UNCONSTRAINED FOLDING OF PROGRAWIABLE LOGIC ARRAYS

by

G. De Micheli and A. Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M82/57

9 August 1982

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

PLEASURE: AComputer Program for Simple/Multiple

Constrained/Unconstrained Folding of Programmable Logic Arrays l

Giovanni De Micheli

Alberto Sangiovanni-Vincentelli

Department of EECS-Universityof California at Berkeley

ABSTRACT

Programmable logic arrays are important building blocks of VLSI circuits and

systems. We address the problem of optimizing the silicon area and the perfor

mances of large logic arrays. In particular we describe a general method for

compacting a logic array denned as multiple row and column folding and we

address the problem of interconnecting a PLA to the outside circuitry. We

define a constrained optimization problem to achieve minimal silicon area

occupation with constrained positions of electrical inputs and outputs. We

present a new computer program. PI£ASUKE. which implements several algo

rithms for multiple and/or constrained PLA folding.

1This research has beensponsored by Harris and IBM corporations and NSF
under subcontract # 392741C-1.

•~^ara«gJMf.re¥.CT^<MW^!^^^^ •»rV'r.J«-CTgWT^g«B««MW«a«HBg^^^^

1. INTRODUCTION

Very Large Scale Integrated Circuits and Systems are so complex that

structured design techniques are often used to ensure electrical correctness

while maintaining a reasonable design time. Array logic has been used exten

sively in VLSI design and Programmable Logic Arrays have proved to be an

effective means to implement multiple outputswitching functions [1] [2].

The PLA implementation of a switching function can be partitioned into

three tasks : functional design, topological design, and physical design. Func

tional design consists of translating a set of Boolean equations into a set of two-

level sum-of-products logical implicants. In general, this step is followed by a

logic minimization , in order to reduce the number of implicants and literals,

logic minimizers are eflecUve tools for this task [3][4], Topological design

involves the transformation of the set of implicants into a topological represen

tation of the PLA structure, such as a symbolic table or a stick diagram. The

physical design is the translation of the topological representation into the mask

layout according to an implementation technology.

In this paper we address the problem of optimizing the area used by a PLA,

by means of row and column folding [5]. Wood presented for the first time a

folded PLA implementation in [6], and Hachtel et al. an algorithm for PLA folding

in [7]. The technique reported in [6] and [7] is referred here to as simple foldr

ing. Simple folding aims at determining a permutation of the rows (and/or

columns) of the array which permits a maximal set of column pairs (and/or row

pairs) to be implemented in the same column (row) ofthe physical array. Fold

ing comes in two flavors : column folding and row folding . Since large arrays

are usually very sparse , a considerable area reduction can be achieved by fold

ing rows and columns.

V^.'y-';yvf£?^^ ,ih^^,TH^• '̂"^* '̂-^?,'Cr"•^w•r^,'/'"'i••J '•''""r""!'.TV"^--':^

A generalization of simple folding is multiple folding . The objective of

multiple column (and/or row) folding is to determine a permutation of the rows

(and/or columns) of the PLA which allows to implement in each column (and/or

row) of the physical array a set of logic columns (rows). From the description

given above , it is clear that multiple folding contains simple folding as a special

case. Thus, the area saving achieved by this technique can always be made

better than (or, in the worst case, equal to) the one achieved by simple folding.

Note that if simple folding is used , the area of the PLA can be reduced at most

to 25% , no matter what the sparsity of the personality of the PLA is. If multiple

folding is used, we are limited only by the sparsity structure of the PLA

Greer proposed for the first time a multiple row folded PLA implementation

in [8] and called it segmentedarray. Paiilotin and Chuquillanqui et al. presented

multiple columnfolded arrays in [9] and in [10]. Ataxonomy of the folding tech

niques for PLA is reported in [11].

All existing folding techniques have a major drawback. The connection of a

folded PLA to the outside circuitry may involve complex and area-consuming

routing . because the positions of the inputs and the outputs of a folded array

are permuted by the folding algorithm. In order to use effectively PLA folding

for VLSI design , it is crucial to allow the positions of inputs and outputs to be

constrained.

In this paper we present: i) a new algorithm for constrained multiple fold

ing , that allows to compact PLA area while ensuring easy routing of the folded

array ; ii) two PLA architectures to implement effectively multiply-folded PLAs ;

iii) a general folding computer program. PLEASURE. which implements the new

folding algorithms to accomplish simple and multiple , constrained and uncon

strained row and column folding.

•rnpv^T*fcfi«W"*\ ttTyTtrryr^igtyFr^r^gyrv?cy«v»wne?nz)?**r.ti.tvwff

2. MULTIPLE FOLDED PLA IMPLEMENTATION

An unfolded PLA has the general structure shown in Fig. 2.1, and can be

implemented both in bipolar and MOS technology. We refer in this paper to the

NOR-NOR nMOS implementation presented in [12] as the standard PLA architec

ture.

The implementation of simple column (and/or) folded PLA is straightfor

ward, since at most two columns (rows) are folded together and connection to

the outside circuitry can be done from the top or the bottom of the array. (Fig

2.2) [5] [6]. The implementation of a multiply folded PLA is more complex. We

deal firstwith the implementation of multiply column-folded logic arrays.

The implementation of several logic columns in the same physical location

requires the physical (metal.poly or diffusion) columns be split into segments

(fig 2.3). Therefore a path must be provided to route input and output signals

to/from the split physicalcolumns inside the array. Thus standard PLA architec

tures cannot be used to implement multiply column-folded PLAs. Several

authors [B] [10] [13] have proposed different architectures for multiply folded

arrays. We consider the following two structures , which can be implemented in

nMOS or cMOS technology.

The first architecture is shown in fig. 2.4. It requires two levels of metal

(polysilicon), in addition to the usual levels of poly (metal) anddiffusion. The PLA

is implemented using two arrays (the AND plane and the OR plane) personalized

by MOS transistors. Input signals run vertically in the input columns of the AND

plane , product terms run horizontally in the rows of both planes and output

columns run vertically in the OR plane. Two levels of interconnect are used for

these rows and columns , in addition to ground diffusion rows and columns. The

third level of interconnect (second metal or second poly level) is used to run

horizontal connection-rows above the product term rows to route the input and

output signals to /from the input and output columns segments to the outside

circuitry.

An alternative architecture supports multiple folding with only one level of

metal , poly and diffusion. Input and output signals are routed inside/outside

the array by connection-rows parallel and alternated to the product term rows

and implemented on the same level. This structure is simpler than the previous

one but the area used by a multiply folded PLA is larger (fig. 2.5).

It is important to note that PLAs implemented with either structure are

essentially circuit blocks through which input and output busses run straight in

the connection-rows. They are therefore excellent building blocks of a regular

and structured VLSI design methodology.

Moreover it is important to point out that column folding induces a permu

tation of product terms and connection-rows. While product term rows provide

connection internal to the PLA only , connection-rows join the array to the out

side circuitry and their ordering is essential to an optimal routing of the PLA to

the other functional blocks of the circuit.

We therefore define a multiple constrained column folding problem. The

goal of multiple constrained folding is to compact the PLA area subject to an

ordering of the connection-rows. Constrained multiple folding is necessary , for

example , for an area-effective compaction of PLAs implementing switching func

tions whose inputs and outputs are signaldata busses inside a VLSI processor.

We address two constrained columnfolding problems : column foldingwith

ordered connection-row assignment and column folding with, bounded

connection-row assignment. In the former problem, each PLA input (and/or

output) column is given a position index. Folding is constrained so that

connection-rows can be positioned according to the sequence of indexes of the

connected columns, as shown in fig. 2.6. In the latter, each input (and/or out-

put) is given an upper and a lower bound on the position of the contacted

connection-row. Folding is constrained so that each connection-row can be

assigned to a position with an index satisfying the given bounds (fig.2.7).

Unconstrained multiple row folded PLAs can be implemented with a single-

poly , single-metal technology [12]. Row folding induces a permutation of input

and output columns, which leads to a segmented array , consisting of a sequence

of AND and OR planes. This may be a technological drawback,because product

terms require area-consuming connections between adjacent planes , in addition

to an increased complexity of input and output routing.

Simple row folding may be constrained so that the folded array shows an

AND-OR-AND or an OR-AND-OR structure [11]. In this case input or output signals

can be routed to both external planes by connection-rows.

On the other hand multiple row folding leads to a segmentationof the array

into more than three planes [B] [14]. Since routing of the columns of the inter

nal planes maybe difficult, we introduce a new multiple constrained row folding

problem : row folding with bounded column assignment . Each column is

given a left and right bound and row folding is constrained so that each column

can be assigned to a position within the bounds.

Multiply row and column-folded arrays can be implemented with the

described architectures , provided that only columns in the external planes are

multiply folded. To connect a multiple row and column folded array effectively.it

is important to be able to determine which signals are routed to the external

planes through connection-rows and which are routed from the top and the bot

tom of the array.

The related constrained multiple row and column folding problem consists

of constraining the fold so that input and output signal can be routed from the

desired (left.right. top.bottorn) direction.

a GRAPH THEORETIC INTERPRETATION OF THE MULTIPLE FOLDING PROBLEM

We concentrate our attention on a topological representation of a PLA The

following definitions are a generalization of those given in [7]. A logic array is

described by a personality matrix. For the sake of generality, we assume that

the (i, j JP* entry of the personality matrix is zero if the (i.jJP1 location of the

physical array is occupied by interconnect only. Fig. 3.1 shows the personality

of the PLA sketched in Fig. 2.1. Let \cit i = 1, 2, • •• ,ncj

(fa. i = 1, 2, • • • , noJ) be the set of columns (rows) of the personality matrix.

Each column is labeled input (output), if it carries an input (output) signal in

the physical array. A maximal set of adjacent input (output) columns is called

input array or AND plane (output array or OR plane). Let R (ct)(C(rt)) be the

set of rows (columns) with a nonzero entry in the ith column (row) of the per

sonality matrix. Two columns cit c, (rows rit Tj) are disjoint if R(ci)f>\R(ci) =

0 (Cfa^CfTj)** 0) . A column-folding list (row-folding list) is a set of

either input or output disjoint columns fi=\cillci2. •• • ci nj (rows

fi = \ri.i. ri,2. ' 'Ti,nD- An ordered column-folding list

°i = fc4,i, ^ 2. • • •citn)(ordered row-folding list ot = (rilt ri#2, •• •ritn))is

a column (row) folding list whose elements are ordered. Acolumn/row-folding

set is a set of disjoint column/row-folding lists F = \f Xt /2, • • • , fk\ and

ordered column/row-folding set is a set of disjoint column/row ordered folding

lists 0 = \olt o2, - • , 0*]. Let U be the set of unfolded columns (rows), Le.

U = (c \Bk s.t. c € ok j (U = \r |2A: s.t. r e ok J). The column (row) cardinality

of a folded PLA is C(0) = | 0 | + | tf| (R (*>) = \ 0 \ + \ U \). An

ordered folding list of columns (rows) induces a set QR(O) (QC(O)) of order

ing relations among the rows (columns):

QR(0)= \rs<rv\rx eR(citj) ; ry ei?fcij+J ;citi, ciJ +l e 0i;0i e 0\

(QC(O) = \cx<cy |c, e Cfcj) ; cy e CfaJ+l; ;r4.it r«.itl e 0i;0i e 0j;
Let QR +(0) (QC+(0)) be the transitive closure of $/?(0; (QC(O)) [15].A

column (row) ordered folding set is implementable if QR +(0)(QC+ (0)) is a
partial order of the set Z*.

The optimal unconstrained column (row) folding problem can be stated as fol

lows:

Fmd an implementable ordered folding set that minimizes the column (row)
cardinality of the PLA.

Remark 3.1 : In the simple folding case \U\ = (initial column/row set
cardinality) -2|0|. Hence the optimal unconstrained simple folding
problem is to find an implementable ordered folding set with maximum
cardinality.

We introduce a graph theoretic interpretation of the multiple folding problem in

order to gain a better insight into the problem and to study heuristics for the

related algorithm. We consider column folding first. According to [7], we define

column-intersection graph G(V, E) a graph whose nodes v e V are in one-to-

one correspondence with the columns of the logic array and the set E is defined

as E = fvit vi\R(ci)c\R(ci)^ 0 J. Given an ordered column-folding set 0, we

introduce an associated mixed graph G(0) = (V, E. A(O)). A mixed graph

G(Vt E, A) is a graph with two sets of edges, a set of undirected edges E and a

set of directed edges A. V and E are defined as in the column-intersection

graph. A(0)is defined as:

A(0)= \vitkt wj.* +i|fct,lt c<>2, • ••ciik, citk +lt • ••cipfJe 0* = 1, 2, • • •n-lj

We define x-patfi in G(V, E,A(0)) , a directed path x = [«i. vz vp]
such that:

0 the first edge in \ is directed and the last undirected; i.e.

(Vi. vz)eA(0)aiid\vp.ltvp\ e E

ii) every undirected edge in x is followed by a directed edge; i.e.

bH**H +i*E -* (Vi +i.Vi+z)eA(0) Vi =i, 2. • ,p-2

Example 3.1: For the PLA sketched in fig. 2.1 and the ordered folding set
0 = fail i °i = fc10, c7, cflj, the associated mixed graph is shown in fig
3.2 and the partially folded array in fig.3.3. k\-path is [vlQ, v7, i>9, vx]. m

We define " x~cycle in G(V, EtA(0)) a closed x-poi/i having at least two

undirected edges.

Theorem 3.1: An ordered column-folding set 0 is implementable if and
only if the induced mixed graph G(V, E, A(O)) has no x-cycles.

The proof is reported in the appendix.

Remark 3.1:Theorem 3.1 allows to verify the existence of a row ordering
compatible with a column ordered folding set by checking relations
among columns only. This procedure is much simpler (and therefore
much faster to be executed on a digital computer) than to verify directly
cyclic relations in QR *(0). m

Remark 3.2: The graph interpretation and Theorem 3.1 applies "mutatis
mutandis" to the multiple unconstrained row folding problem. In this
case G(V, E) is the row-intersection graph and G(V, E, A(0)) is the
mixed graph obtained by adding to G(V, E) the set of directed edges:

A(0)=\vitktvik+l\(ril,riz ritk, rik +l rn)eO;k =1,2, ...,n-l)

A graph interpretation of unconstrained row and column folding is more

complex, because it involves bookkeeping of the ordering relations among rows

and among columns. For this problem the information contained in the column

and row intersection graphs is not sufficient.

Example 3.2 : Consider the partially column folded array shown in fig.
3.3. -We question the implementability of the array after folding row r6
with column r6. The folded array is clearly not implementable, even
though it does not introduce any cycle in both intersection graphs. •

We introduce therefore the row constraint graph GR and the column constraint

graph Gc which are the directed graphs corresponding to the transitive closure

relations QR+ (0C) and QR+(Or) induced by the column and row folding sets Oc

and 0/? [11]. By definition, the ordered folding sets 0R and Oc are implement-

able if graphs G^ and Gc are acyclic.

4. AN ALGORITHM FOR MULTIPLE PLA FOLDING

The optimal multiple PLA folding problem was shown to be NP-complete in

[16]. We therefore propose a heuristic algorithm that can be considered an

extension of the simple folding algorithm presented in [5]. •

We consider first the multiple column folding problem. The ordered column

folding set and the mixed graph G(V, E, A(0)) are constructed by the algo

rithm. At each step the algorithm tries to increase the cardinality of the folded

column set and verifies the implementability of the folding by checking that the

mixed graph has no x-cycte.

Aconceptual description of the algorithm is the following:

MASTER ALGORITHM

Step 0: Initialize the folding procedure

Step l: If the set of columns which have not been processed is empty , stop.
Else select a pair of unfolded disjoint columns or an unfolded column
and a column folding list as folding candidates.

Step 2: If the fold inducesx~cycle in graph XG(V, E. A(O)) , reject it and
go to Step 1.

Step 3; If folding has secondary constraints and constraints are not satisfied,
reject the fold and goto Step 1.
(This step is performed bythe algorithms described in Section 5.)

Step 4: Fold the candidates, modify the PLA accordingly. Go to Step 1.

Adetailed description of the algorithm for simple column folding is given in

[5]. In this section we will concentrate on the generalization to multiple folding.

and on the the procedure for multiple folding candidate selection.

The selection of the candidate columns for multiple folding can be done

according to one of the following folding patterns:

1) a newfolding list can be formed by folding two unfolded columns.

2) an unfolded column can be folded on top (bottom) of an existing folding
list.

3) a folding list can be "opened" and an unfolded column canbe folded "by

insertion" into an existing folding list.

Aselection of the folding pattern and candidate column is done at each step

according to a heuristic strategy.

Let us define first the set of descendants D(v) (ancestors A(v)) of a vertex V

as follows:

a vertex d is descendant of v if there is a x-pai/t from v tod.

a.vertex a is ancestor of v, if v is descendant of a.

We define a adjacency set ADJ(v) of a vertex v, the set of vertices connected to

v by an undirected edge. By definition, we consider every vertex adjacent to

itself.

We define pseudo-descendants D(v) of a vertex v the union of the adjacency set

of v and the descendant sets of each vertex adjacent to v.

B(v)= \j D(v) u ADJ(v)
veADJ(v)

Remark 4.1 : It follows from Theorem 3.1 that for each pair of consecu
tive columns in an implementable ordered folding list, the corresponding
vertices vx and v2 are such that:

ADJ(vz)r\A(vl)= <p

Let us consider now the selection strategy for folding pattern 1.

Example 4.1 : When two columns, say cx and c2, are folded, a directed
edgg (vx, vz) is added to A{0). Hence a x-p^h joins vx to each vertex
In D(vz). Therefore all pseudo-descendants D(vz) of vz are descen
dants of V|.

D'(vx) + D(vx)\jD(vz)

Moreover, since a x-pnto joins each ancestor of i^ to vx, the descen
dants of vx are descendants of each ancestor of vx

D(v)<- D(v)uD(vx) V? eA(vx)

It follows that an upper bound on the number of ancestor-descendant re
lations induced by the column folding is :

Pi=\A(vx)\\D(vz)\

It is reasonable to conjecture that the fewer relations are induced, the lower is

the probability of finding x~cycles at further steps of the algorithm. Hence a

good choice for a candidate folding pair vx, vz is the one for whichpx is mining!

Unfortunately n'^" ' candidate pairs have to be tried to find the minimum px

for anarray with n unfolded columns. This procedure is too time consuming for

large arrays. Therefore, an alternative selection strategy is used: select the

candidate folding pair (vx,vz) such that:

Vi =*rg™™?\A{v)\

where Vz Vis the vertex subset corresponding to the unfolded columns.

Similar considerations apply to the candidate selection according to folding

pattern 2. When a column cx is folded on top of an ordered folding list

(cz. i> ' *' . c2#n^, adirected edge (vx,vzx)is added to A(0). Hence ax-patfi

joins v xto each vertex vk, such that vk e D(vZt x). Therefore an upper bound on

the number of ancestor-descendant relations induced by the column fold is:

Pz = \A(vx)\\D(vz.x)\.

Conversely when a column c2 is folded on the bottom of an ordered folding

list (cXtX, clt2, • • , cXn) an oriented edge (vXn,vz) is added to A(0). Hence

a x-patfi joins every vertex A(vhn) to every vertex in D(vz). Therefore, an

upper bound on the number of ancestor-descendant relations induced by the

column fold is:

pz= \A(vx.n)\\fi(vz)\
The strategy for candidate, selection according to folding pattern 2 is based on

the same considerations used for folding pattern 1.

A slightly different strategy is used for candidate selection according to

folding pattern 3.

Example 4.2 : Consider the PLA shown in fig. 2.1. Let us suppose that
column c7 is folded into the folding list ox = (cx0, c9) to give
(cXQ, c7, c9), as shown by fig. 3.3. The ancestors of c7 become ancestors
of cfi and the ancestors of c 10 become ancestors of c7. m

In the general case suppose that column c is folded into a folding list

(ci. i. Ci,2, • • • , cin) to give (cit i, ci#2, • • • , citk.x, c, citk, • • • , cin). An

oriented edge joins vertex Vi,k.x bov and v to vik. Hence the ancestors A(v)

become ancestors of the vertices in D(vik) and the ancestors A(vik.x)

become ancestors of the vertices in D(v). Therefore, an upper bound on the

number of ancestor-descendant relationsis:

Pa = \A(vi.k.x)\ \S(v)\ +\A(v)\ \B(viik)\

Unfortunately the computation of the minimum p3 may be too time con

suming for large arrays. Hence we find first the candidate for insertion as:

5= °^^f(^(v)\ +\A(v)\)
and then the folding list and the insertion position such that :

P3 = \A(vitk.x)\ \D(v)\ + \A(v)\ \D(vi>k)\

is minimal.

When the "best" folding candidates have been selected according to the

three folding patterns, the selection of the folding pattern is based on a

weighted comparison of the upper bounds pi , i = 1, 2. 3. Weighting factors

allow to privilege a folding pattern with regard to the others, as, for example,

multiple folding versus simple folding.

Remark 4.2: The Master Algorithm and the candidate selection strategy
applies "mutatis mutandis" to the multiple unconstrained row folding
problem. m

The Master Algorithm is used for multiple row and column folding also.

Order relations induced by the folds are described by the row constraint and

column constraint graphs. A candidate fold is rejected at Step 2 of the algo

rithm if it induces a direct cycle in any of the twographs. The folding candidate

selection strategy is similar to the one used for column folding, provided that

some definitions are changed to be compatible with the different graph

representation.

For this problem, a vertex d is descendant of v if there is a direct path

from w tod; the adjacency set of a vertex is not defined and the pseudo-

descendant set is equivalent to the descendant set. Hence the "best" column

andthe "best" row folding candidates and patterns can be found by a procedure

similar to the one described above. Letpc (pr) be the related upper bounds on

the number of relations induced in Gg (Gc) by a column (row) fold. A column

(row) fold is attempted if :

a * pc < 0 * pT

(a • p° Sr fi * pr)

where a = L Z" and 0 = \ £~l are dynamic weighting factors

which take into account the relative area saving achieved by a column (row)

fold at that step of the algorithm and C(0) (R(O)) is the column (row) car

dinality.

It is important to remark that this strategy allows to achieve more folds in

comparison with other algorithms performing column (row) folding after row

(column) folding. Nevertheless it is straight-forward to constrain the selection

so that all column (row) folds are tried first, if desired.

5. MULTIPLE CONSTRAINED FOLDING

As stated in Sections 1 and 2 the PLA constrained folding problems are

related to the interconnection of the array to the outside circuitry. We classify

the constraints on folding into two major categories:

1) Architectural or primary constraints

2) Secondary constraints.

Architectural constraints are related to the structure of the array and to the

posiUons of input/output busses relative to the array. Secondary constraints

are related to the positions of input and output lines inside the busses. Exam

ples of architecture constrained folding problems are:

1A) Simple column folding with a subset of inputs and/or outputs con

nected to the top (bottom) of the array.

IB) Simple row folding with AND-OR-AND or OR-AND-OR architecture.

1C) Segmented arrays: the column set is partitioned into subsets, each

forming a segment of the array. Columns are folded with columns in the

same segment only and the sequence of segments is preserved.

The following folding problems involve secondary constraints:

2A) Column folding with bounded product-row assignment.

2B) Row folding with bounded column assignment.

2C) Column folding with bounded connection-row assignment.

2D) Column folding with ordered connection-row assignment.

The Master Algorithm presented in Section 4 can handle boLh aichitectural and

secondary constraints. Different strategies are used in the two cases. To satisfy

architectural constraints it is sufficient that folding candidates satisfy the fol

lowing requirements for the related problems:

1A) Columns connected to I/O busses on the top (bottom.) of the array are

folded either on top (bottom) of an unfolded column or folding list or not

folded at all.

IB) AND-OR-AND (OR-AND-OR) architecture. Rows connected to input (out

put) columns that are connected to rows folded on the left or on the right

are selected as candidates to be split on the left or an thdright of the array

respectively.

1C) Selected candidates for column folding are constrained to be in the

same segment. In the case of no more than three segments and simple row

folding, the selection of candidates for row folding is as follows: rows con

nected to columns in the leftmost (rightmost) segment are folded on the

left (right) only or not folded at all.

Unfortunately we cannot be sure that secondary constraints are satisfied only

on the basis of an appropriate selection of folding candidates. The reason is that

secondary constraints are related to the row (column) positions induced by a

column (row) folding. Therefore, we present in this section two assignment algo

rithms that assign positions to rows and/or columns and checks if the secon

dary constraints are satisfied. We will present first the assignment algorithm for.

problem 2A . From this, an algorithm for problem 2B can be easily derived by

interchanging rows with columns. Problems 2C and 2D are solved by a double

assignment algorithm, based on the assignment algorithm of problem 2A.

5.1 Column folding with bounded product-row assignment

We consider in this section the problem of constraining product-term row

positions only. We therefore refer to product-term rows as rows throughout this

section

We define lower (upper) row bound map: a map

LR:\ri\ i = 1, 2, • • • , nr\ -* jl, 2, • • • ,nr]

(UR:\ri. i = 1,2, • • • ,nr] -* \1, 2, • • ,nr])

relating each row to a lower (upper) position bound.

We define row assignment P : fa; £ = 1, 2, • • . nr] -> \l, 2, • • • , nr] a

permutation of the rows and implementable row assignment a permutation

compatible with an orderedcolumn-folding set 0; i.e. P(rz)<P(ry)

Vr9<ry € QR*(0)

An implementable bounded row assignment is an implementable row

assignment such that

Utfa) < P(rj) ss UR(rj) V j = l, 2, • • . nr

Example 5.1.1 : For the logic array shownin fig. 2.1. the following lower
and upper bounds are given:

LR = 1. 1, 1, 4, 4. 6

UR = 1, 3. 3. 6, 6, 6.

This means that rx is constrained to the first position, r2 and r3 are con
strained between position 1 and 3 , and so on. The implementable row
assignment (rx, r4, rz,r$, r5. r6) induced by the column folding shown
in fig. 2.2 does not satisfy the given bound maps. On the contrary, the
folded PLA shown in fig. 5.1 has the following implementable row assign
ment: (rx, r2. r3, r5. r4, re). Note that rows are numbered from the top
to the bottom of the array. m

The optimal bounded row column folding problem can be stated as follows:

Find an implementable ordered column-folding set and a related imple

mentable bounded row assignment that minimizes the column cardinality

of the folded PLA.

Let us consider a graph interpretation of the following subproblem:

Given an ordered column-folding set and a lower and upper row bound

maps, find an implementable bounded row assignment, if it exists.

The graph interpretation is useful to understand the underlying structure and to

develop an algorithm and related heuristics. We associate to this subproblem a

directed graph G(R, N, A), with two node sets N and R, and a set of directed

edges A.

The node sets R and N are in one to one correspondence with the row set

and the. set of the first nr natural numbers representing the possible row posi

tions. Our problem consists in finding a matching between R and N, i.e. coupling

each row-node to a position-node, so that all the required bounds are satisfied.

We represent position bounds by a set of directed edges :

A = Ax u Az u As u A* u As

where : Ax=\(nj, nj +x); j = 1, 2, •••.n-lj represents the order on the

sequence of the first nr natural numbers;

Az=\('Ki>Ti)\L(ri) = i+l. j = 1,2, • • • ,nr\ and

Aa=i(rj. ni)\ U(rj) =£-1, j = l, 2. • • . nr] take into account the lower and

upper bound maps ; A^\(rit rs)\ri<rs e QR(0)\ represents the order relations

among the rows induced by the column folding.

Example 5.1.2 : Fig. 5.2a shows graph G(R, TV, A') A = AxuA2uA3uA4 for
the PLA of fig. 2.1, the row bounds of example 5.1.1 and the ordered fold
ing set 0 = [fc7, c9;, (c3, cj, (cz, c5;(.

Note that an edge from a node in N (R) to a node in R {N) represents now a

strict lower (upper) bound. If a lower (upper) bound on a row position is 1 {nr) ,

it can be represented by appending nodes n,, (t^h) to set // and by adding

appropriate directed edges to A.

Moreover note that if a row, say r , has the positionw as strict upper bound

(i.e. (r,nw)eAi) and must follow another row, say r (i.e. (r, r) e A*) , then

rowr has as strict upper bound a position lower or equal to w -1 .

Example 5.1.3: Row r xmust be abover2 which in turn must be above r4.
Since r4 is required to be assigned to a position lower or equal to 6, rx
must be assigned to a position lower or equal to 4. (In this case rx has al
ready the more stringent constraint to be in position 1).

We therefore define: A^\(rkt n^ia^ such that (rjt njc. Aa and3 I+1 dis

tinct nodes in R along the directed paths in A4 from rk to r} j. Similar con

siderations apply to lower bounds, but the assignment algorithm does not

require that the set of directed edges is further increased.

Example 5.1.4 : The edges in subset A5 are represented by dashed lines
in fig. 5.2b. a

Our problem is to find an additional set of undirected edges E matching every

node in R to one and only one node in N so that the resulting mixed graph

G(R, N, E, A)is acyclic.

Remark 5.1 : Column folding with bounded row assignment is equivalent
to the sequencing problem with release times and deadlines where all
task length are equal to one [17][18] and where a partial order on the
tasks is given. B

The following algorithm will either construct a set of undirected edges such that

graph G(R, N, E, A) is acyclic or will return a flag if no possible edge set exists.

We recall that the in-degree of a node is the number of directed edges incident

to that node and the deletion of a node from a graph corresponds to remove the

node from the node set and all edges incident to/from it from the edge set.

The algorithm is described in Pidgin C.

ASSIGNMENT ALGORITHM

E= $;
delete n^ from graph G;
for ({ = l;isnr;i=i + l){

if (in-degree (7^)*0) return (FALSE) ;

Q = \ r € R ; in-degree (r)= 0\;

if (Q = 0) return (FALSE) ;

Tj = r e Qsuch that (ri ,nk)eA and k is minimal;

E = E\J \ ni, rj) ;

delete 7^ from graph G\
delete r,- from graph G\

\

return (TRUE) ;

The algorithm runs in linear time since it cycles at most nr times through the

main loop. The algorithm uses a greedy strategy: at each iteration it matches

the available position with lowest index to the most constrained node in R (i.e.

selects the product-row with lowest upper bound). The algorithm finds an imple

mentable bounded row assignment, if one exists, as proven by the following

theorem.

Theorem 5.1 : The Assignment Algorithm returns " true " if and only if
there exists a matching E such that graph G(R, N. E, A) is acyclic.

The proof is reported in the appendix.

Example 5.1.5 : Consider the column folded logic arrav shown in fig. 5.1,
and the related graph G(R, N, A) shown in fig. 5.2. The implementable
bounded-row assignments given by the algorithm is
(ti. rz, r3, r5, r4, r6).

The Assignment Algorithm replaces Step 3 of the Master Algorithm for column

folding with bounded row assignment.

A different strategy for folding candidate selection is used. Since folding is lim

ited by row positions, we try to fold columns incident to rows constrained to be

in the top part of the array with columns incident to rows constrained to be in

the bottom part of the array. We therefore can compute two "induced bound"

maps for each column:

L<Var€*7c,;^^ '̂ =1-2. •••.«*•

U(ci) =r<rR(cs) U*(r) 3=1. 2. •••. nc.

The column with the lowest (highest) entry in U (L) is the most con

strained to be folded on the top (bottom).

Example 5.1.6: For the logic array of fig. 2.1 and the row bound maps of
example 5.1, the induced bound maps are the following:

L = 1, 1, 1, 1,4, 1, 1, 1,4. 1

U = 6,3, 1, 3. 6. 6, 1, 6, 6. 6

Hence columns c3 and c7 are the most constrained to be folded on the
top part of the array and c8 and c9 on the bottom. m

Hence a "good" selection is the candidate pair (cit ck) such that

A more considerate choice takes also care of the number of ancestor-

descendant relations induced in the mixed graph, as shown in Section 4. There

fore we use weighted selection criterion:

mm

ci =Wj=iTr...ncMD(v>)\+eu(v>n

Example 5.1.7 : The first folding pair selected by the algorithm is
(c?. c9).

Similar considerations apply, "mutatis mutandis", to the multiple folding candi

date selection.

Remark 5.2: The graph interpretation and an algorithmJor the rowfold
ing with bounded column assignment problem can be derived "mutatis
mutandis" from this problem. B

5.2 Column folding with bounded connection-row assignment

We refer in this section to a logic array implemented with connection-rows

for routing input and output signals as described in Section 2. According to

these architectures, there are two sets of connections rows contacting the

columns of the left and right array respectively. For the sake of simplicity, we

will consider constrained folding of one array only.

Both proposed architectures support at most as many connection-rows as

product-rows. Since each column is contacted to a connection row, we require

throughout the section that the number of columns in the considered array is at

most equal to the number of rows. Most PLA satisfy this assumption.

We define connection-row assignment a one-to-one map:

T:\Ci, i = 1, 2. • • ,nc]-* Mq\1, 2, • • • . nr] such that; = T(ci) if column c<

is contacted to the connection row in the 3th position.

Example 5.2.1 : Consider the OR plane of the PLA shown in fig. 2.1. Fig.
5.3 shows the unfolded array with the connection row assignment:
T{c7)=l T(ca)=2 r(c9; = 5 T(ci0) = 6. .

We define physical connection-row set U the image of T. Its elements are the

position of the connection-rows which are physically implemented. Note that

there are L = nr-nc slack connection-rows which are not implemented and

whose positions are irrelevant to the problem.

We define lower (upper) connection-row bound map a map:

Lc:[Ci, i = 1, 2, • • • . nc] -» 1.2. • • • , nr

(UR:[cit i = 1, 2. • • • , nc] -» 1,2, • • • , nr)

relating each column to a lower (upper) position bound on the position of the

contacted connection-row.

Example 5.2.2: For the OR plane of the PLA shown in fig. 2.1 , the follow
ing bounds are given:

Lc = 1, 1. 4. 6

Uc = 1. 3, 6, 6

This means that the first column of the OR plane (c7) must be connect
ed to a connection-row in position 1 ; the second one (cfl) to a
connection-row whose position is bounded between 1 and 3 ; and so on. •

An implementable connection-row assignment is an assignment compatible

with a column ordered folding set, i.e. is an assignment such that:

mox(P(R(citj.x))) < T(citj) < mmfPfRfCij^))) j = 1. 2, • • • , n

V column Cij in folding list o^ with cardinality n, where by definition:

tnax(P(R(citQ))) = 0 and max(P(R(citn +x))) = -

Example 5.2.3 : Consider the folded OR plane shown in fig. 2.2 with the
ordered folding set 0 = \(c7, cQ), (c6, cx0)\. An implementable
connection-row assignment is:

T(c7)=l r(cfl; = 2 T(c9) = 3 !T(c10;=6

The connection-row contacted to ca is in position a, and therefore is .
above (has lower index than) the product rows connected to c 10 (in po
sitions 4 and 6). The connection row contacted to cl0 is in position 6 and

is below (follows) the product rows connected to cfl (in positions 3and
2).

An implementable bounded connection-row assignment is an implementable

connection-row assignment such that:

Lc(Cj) $ T(Cj) $ Uc(Cj) j = 1,2, • •• , nc

Example 5.2.4 : The implementable connection row-assignment of exam
ple 5.2.3 does not satisfy the bounds given in example 5.2.2. An imple
mentable bounded connection row-assignment is:

T(c7)=l T(c6) = Z T(c9)=± T(cx0) = 6

Fig. 5.4 shows a folded implementation of the OR plane compatible with
the bounded connection-row assignment. m

We can now state the column folding with bounded connection-row assignment

problem as follows:

Find an implementable ordered column-folding set and a related imple

mentable bounded connection-row assignment which minimizes the

column cardinality of the folded PLA.

As we did for the previous problem, we consider a graph interpretation of the

following subproblem:

Given an ordered column-folding set and a lower and upper connection'row

bound maps, find an implementable bounded connection-row assignment,

if it exists.

Note that an implementable bounded connection row assignment requires, by

definition, a product row assignment, because the positions of rows in both sets

influence each other. Hence the problem consists in finding the two row assign

ments compatible with the ordered column-folding set, if they exist.

We associate to this subproblem a directed graph G(R, N, C, A), with three

node sets R, N and C and a directed set of edges A. The node sets R, C and N

are in one to one correspondence with the row set, the column set and the set of

the first nr natural numbers respectively.

We represent the bounds on the rowpositions by a set of diiected edges:

A = Ax u Az u As u A* uA& uA6 uA7 uAB

where Ax and A4 * are defined as in section 5.1,

A2 = \(ni.cj)\Lc(cj) = i+l; j = l,2, ••-.ncj and

^3 = \(cj< ttiJI Uc(cj) = i-1 ; j = 1, 2, • •• , nc J take into account the lower

and upper bound maps.

Example 5.2.5 : Fig. 5.5a shows graph G(R, N, , C, A') ,
A = AxuAzuA3uAA in the case that the OR plane of the PLA of fig. 2.1 is
folded and the ordered column-folding set is: 0 = \(c7, cQ), (cB, cx0)\
and is compatible with the bounds given in Example 5.2.2.

We consider the mutual relations among products and connection-rows by the

edge subsets: Ae = [(r, c)\r e R(c) and c is split on top of cj and

A7 = \(c, r)\r eR(c)and c is split on top of c]. In words , if column c is

folded on top of c , then all the rows (product and connection) connected to c

must be assigned to positions with index lower than the positions of all the rows

connected to c.

Example 5.2.6 : Fig. 5.5b shows the edges in subsets AQ and A7 for the
problem of example 5.2.5.

Moreover note that if a column , say c. has as strict upper bound the position w

(i.e. (c, ny,,) e A3, (r, c) e A6 and (r, r) e A4 , then r has as upper bound the

position iu-2 . We therefore define: A&=\(rk, n^)\3rjt 3c such that

(rj> c) € Abt (c,ni) € A3 and 3£>0 distinct nodes in R along the directed paths

from rk to r^J. The edges in this set represent the upper bounds on the position

of each product-row induced by folding. Note that all nodes in R must be

assigned to a position lower than nr +1. Hence we append to As the edges

(r*. nnr +1) Vrk GR having no explicitupper bound .

Example 5.2.7: Fig. 5.5c shows the edges in subset A$ for the problem of
example 5.2.5.

Similarly . upper bounds induced on the column positions are represented by:

A&=\(ck, ni.x)\3(ck, rj)e A7 and (ri% nj € A5].

Example 5.2.8: Fig. 5.5d shows the edges in subset .4d for the problem of
example 5.2.5.

In graph terms, this problem is to find a set of undirected edges E match

ing every node in R and in 0 to one and only one node in N so that the resulting

mixed graph G(R, N, C,E,A) is acyclic. Note that in general the number of

columns and hence of physical connection-rows required is smaller than the

number of rows by A and we take advantage of this in the double assignment

algorithm.

DOUBLE ASSIGNMENT ALGORITHM

E= 4>\
A = nr-nc;
delete rig from graph G;

for (i = l;i^nr;i=i + l)(

if (in-degree (ni) = Q) return (FALSE);

Q = \r e R ,in—degree (r) = Q];

if (Q = 4>) return (FALSE) ;

rj =r e Qsuch that (rilnk)s.A and A: is minimal;

E = Eu(ni,rj)',

H = \c £C; in-degree (c) = 0];

if {H= 0)(

A = A-1;
if (A< 0) return (FALSE) ;

I
else}

ct = c e H such thatfct,nk)eA and A: is minimal ;

I

E = Eu(nt, ct);

delete c4 from graph G;

delete rj from graph 0;
delete nj from graph G\

\

return (TRUE) ;

The double assignment algorithm runs in linear time and uses a greedy strategy.

At each iteration, it tries to match the available position with lowest index with

the most constrained product and connection-rows. Note that a connection-row

need not be assigned at each iteration, but the total number of slack positions

must be lower or at least equal to A.

Theorem 5.2: The assignment algorithm returns "true" if and only if
there exists a set of undirected edges E matching each node in R and in
C to one and only one node in N such that G(R, N, C, E, A) is acyclic.

The proof is reported in the appendix

The double assignment algorithm replaces Step 3 of the Master Algorithm for

column folding with bounded connection-row assignment

The selection of folding candidates is based on the following strategy. Try

to fold columns incident to connection-rows constrained to be in the top part of

the array with columns connected to connection-rows constrained to be in the

bottom part of the array. Therefore the candidate selection follows the outlines

presented in section 5.1. where L(cj) = L(cj) and U(cj) = U(cj). Also in this

case, a considerate choice of folding candidates uses a selection criterion

weighting the number of ancestor-descendant relations induced by the fold and

the required row positions in the array.

5.3 Column folding with ordered connection-row assignment

We extend to this section the considerations on multiple column folded PLA

implementation and the basic definitions presented in Section 5.2.

We define order map S\ci, i = 1. 2, • • • . nc] -* \i, 2, • . nc] a one to

one map relating each column to the required relative position of the contacted

connection-row. We define implementable ordered connection-row assignment

an implementable connection-row assignment such that:

T(ct) < T(cj) if S(ci) < S(cj) Vi, ; = i, 2, • ,nc

Example 5.3.1 : Consider the OR plane of the PLA shown in fig. 2.1 and
the following order map:

5(c7; = 2 5(ce;=l 5(c9;=3 5(c10; = 4

This means that column folding is constrained so that the connection-row
to eg is in the topmost position, followed by those connecting c7, c0 and
c10 in the order. Fig. 5.6 shows a folded implementation with the imple
mentable ordered connection-row assignment:
T(c7) = 2 T(cB)=l T(c9) = 3 T(c1Q)=4. .

We state the column folding with ordered connection-row assignment prob

lem as follows:

Find an implementable ordered column-folding set and a related imple

mentable ordered connection-row assignment, which minimizes the

column cardinality of the folded PLA.

This problem is equivalent to column folding with the following bounds on

connection-row positions:

Lc(ci)=S(ci) Vi = l, 2, • • • ,nc

Uc(ci)=S(ci)+a Vi = i,2. --,nc

with the additional constraint on the order of the connection-rows.

As we did in the previous section, we give a graph representation for a sub-

problem:

Given an ordered column-folding set and an order map, find an implement-

able ordered connection-row assignment, if it exists.

The graph representation of this subproblem is given by graph

G(R. N, C, A) introduced in Section 5.2 where an additional subset of directed

edges is added to take care of the order map:

A9=\(ci,cj)\i=S(ck),j =S(ck +x),k =l,2, • , nc-lj

The Double Assignment Algorithm can be used to replace Step 3 of the Master

Algorithm for the column folding with ordered connection-row assignment prob

lem.

Example 5.3.2: Fig. 5.7 shows graph G(R, N, C, A) for the order map of
example 5:3.1 and the ordered folding set 0 = \(ce, cQ)] m

Remark 5.3: In the case that there are no slack positions or in the case
that we are not interested in taking advantage of the slack positions, the
column-folding with ordered connection-row assignment problem can be
solved more easily by the following equivalent formulation: column fold
ing with bounded product-row assignment, where bounds on row posi
tions are dynamically induced by column-folding. In particular:

Vx(Ci.j) = S(Ci,iiX)-rS-l

I*fa.j +i) = S(ci.J) +6+l

Vci, j e ot , Vot e 0 and any fixed 6 s.t. 0 ^ 6 £ A

Animplementable product-row assignment satisfying the above bounds is
a necessary and sufficient condition for the existence of the implement-
able ordered connection-row assignment T(cj) =S(cj)+6 .

The selection of folding candidates is based onthe following strategy. Try to fold

columns incident to connection-rows constrained to be in the top part of the

array with columns connected to connection-rows constrained to be in the bot

tom part of the array. Therefore the candidate selection follows the outlines

presented in section 5.1, where now: L(cs) = S(cs) and V(cj) = S(cj). Also in

this case, a considerate choice of folding candidates.uses a selection criterion

weighting the number of ancestor-descendant relations induced by the fold and

the required row positions in the array.

6. PLEASURE

PLEASURE is an interactive program for simple/multiple

constrained/unconstrained row and/or column folding of Programmable Logic

Arrays.

The PLA description is given as input to the program in the form of two-level

sum-of-products logical implicants.

The output of the program is a symbolic table representing the folded array

with the positions of the active devices corresponding to the cares of the logic

function, the locations of the cuts and the contacts between columns ad connec

tion rows. The symbolic table is suitable to be processed by a silicon assembler

program which generates the mask layout of the array according to a given

technology. Note that the symbolic table generated by PLEASURE is technology

independent.

The program is a command interpreter: input files can be read and edited;

logic arrays can be folded in a single run or one fold at a time. This allows the

user to monitor PLA folding step by step, by displaying the partially folded

array. The user can enter column and/or row folding candidates of his choice

and verify the implementability of his selection. When PLAs are folded in a sin

gle run a soft interrupt capability allows the user to halt the compaction at any

point to see the partially compacted array before resuming folding execution.

The program canbe run in a silent mode (i.e. with no interaction withthe user),

so that it can be interfaced withother programs in a system for automated syn

thesis of PLA's.

Folding instructions are entered to the program along with the PLA descrip

tion in the input file. PLEASURE allows column (row) folding only and row and

column folding.

Column folding can be simple or multiple, constrained or unconstrained in

either or in both planes. Architectural constraints can be set on column posi

tions. Columns can be required to be folded on the top (bottom) of the array or

not folded at all. Column folded arrays can be segmented into three adjacent

planes, so that columns in the external planes, can be multiple folded and con

tacted by connection rows. Secondary constraints can be put on product ad

connection row positions. In particular column folding with bounded or order

connection row assignment can be achieved.

Row folding can be simple or multiple. Simple row folded arrays can be con

strained to have an AND-OR-AND or OR-AND-OR architecture. Secondary con

strained can be put on the column positions.

Row (column) folding can follow column (row) folding. Row folds can be

alternated with column folds, by allowing the program to choose the local "best"

fold at eachstep. This procedure achieves the best results as far as compaction

is concerned. Multiple row and column folded PLA can be constrained by

input/output position. An input (output) can be required to be connected to the

top. bottom, left or right of the array.

Program PLEASURE is coded in ratfor and consists of about 5000 lines.

Intermediate code in fortranll is available. PLEASURE runs in a VAX-UNIX*

environment, but is easily transportable to other machines.

Some PLEASURE output files are reported in fig. 6.1a and 6.lb for the PLA of

Fig. £.1 and different folding requirements. PLEASURE has been tested on a

large set of industrial arrays. To compare results obtained with arrays of

different sizes, the following foldings have been tried: i) unconstrained folding;

ii) column folding with constrained row positions:

L(rt) =max(i-a , 0 },U(r< ;=min{ i+a , nr);a =y£- .^ column folding

with constrained connection-row positions:

I>c(ci) =rnax(i-a , 0 },Uc(ct) =min(i+a , nr);a = ~- ; iv) column fold

ing with ordered connection-row assignment: S(Ci) = i, i = 1, 2, • • • ,nc. The

folding results and execution time on a VAX 11/780 computer are reported in

table 1.

7. CONCLUSIONS

In this paper we addressed the multiple constrained folding problem of Pro

grammable Logic Arrays. A heuristic algorithm for multiple folding has been

presented as well as two assignment algorithms for PLA row/column constrained

positioning. A computer program, PLEASURE, has been described and shown to

be an effective tool for interactive topological design of logic arrays.

The PLEASURE output file contains all the topological informations for the

implementation of multiple folded arrays. The layout of the masks of the folded

array can be obtained from the PLEASURE output file by means of a

silicon assembler program, once an implementation technology is chosen. We

have presented two PLA structures which support multiple folded arrays in MOS

technology : the former uses two levels of metal (poly) and the latter one level

of metal and poly.

Future work include the development of a silicon assembler program, that

can generate the multiple folded PLA mask layout according to different archi

tectures and design rules.

PLEASURE is a part of the integrated system for Programmable Logic

Arrays and Finite State Machines automated design developed at the University

of California,Berkeiey.

B. REFERENCES

[1] H.Fleisher and L.I.Maissel "An Introduction to Array Logic" IBM Jour, on

Res. and Bevel., vol 19, pp.9B-109, Mar 1975

[2] M.S.Schmookler "Design of Large ALUs Using Multiple PLA Macros" IBM

Jour, on Res. and Bevel., vol.24 pp.2-14 Jan 1980

[3] S.J.Hong.R.G.Cain and D.LOstapko "MINI:a Heuristic Approach for Logic

Minimization" IBM Jour, onRes. and Bevel., vol IB, pp 443-458, Sep 1974

[4] R.Brayton.G.D.Hachtel,L.Hemachanandra.A.R.Newton and A.L.Sangiovanni

Vincentelli "A Comparison of Logic Minimization Strategies Using Espresso.

An APL Program Package for Partitioned Logic Minimaiization" Proc. Int.

$ymp. on Ore. and Syst. pp. 42-4B. Rome 19B2

[5] G.D.Hachtel,A.R.Newton and A.L.Sangiovanni Vincentelli "An Algorithm for

Optimal PLA Folding" IEEE Trans on CAB of Int. Ore. and Syst, vol 1, No 2.

Apr 1982

[6] R.A.Wood "A High Density Programmable Logic Array Chip", IEEE Trans.

Comput., vol C-2B, pp. 602-608, Sep 1979

[7] G.D.Hachtel.A-R.Newton and AL.Sangiovanni Vincentelli "An Algorithm for

Optimal PLA Folding" Proc. Int. CLrc. and Comp. Conf, New York,N.Y. Oct

19B0

[8] D.L.Greer " An Associative Logic Matrix " IEEE jour, of Solid State drc, vol

SC-11, No 5, pp 679-691 Oct 1976

[9] J.F.Paillotin " Optimization of the PLA Area" Proc. 18th Bes. Autom. Conf. ,

pp 406-410, Nashville Jun 1981

[10] S.Chuquillanqui and T. Perez Segovia " PAOLA: ATool for Topological Optimi

zation of Large PLAs" Proc. 19th Bes. Autom. Conf, pp 300-306. Las Vegas

Jun 1982

[11] G.D.Hachtel,A.R.Newton andA.LSangiovanni Vincentelli "Techniques for Pro

grammable Logic Arrays Folding" Proc. 19th Bes. Autom. Conf, pp 147-152,

Las Vegas, Jun 1982

[12] C.Mead and L.Conway "Introduction to VLSI Systems" Addison Wesley 1980

[13] G. De Micheli " Pleasure: A Program for constrained PLA Folding" Internal

Report, Harris Corporation. 1980

[14] l.Suwa and W.J.Kubitz " A Computer Aided Design System for Sement-Folded

PLA Macro cells" Proc. 18th Bes. Autom. Conf. pp 398-405, Nashville, Jun

1981

[15] A.V.Aho J.E.Hopcroft and J.D.Uilman "The Design and Analysis of Computer

Algorithms" Addison Wesley 1974

[16] M.Luby U.Vazirani V. Vazirani and A; Sangiovanni-Vincentelli "Some Theoret

ical Results on the Optimal PLA Folding Problem" Proc. Int. CLrc. and Comp.

Conf, pp 165-170. NewYork.N.Y.. Oct 1982

[17] M.R.Garey and D.S.Johnson "Computers and Intractability" W.H.Freeman

and Company San Francisco

[IB] E.LXawler "Optimal Seqencing of a Single Machine Subject to Precedence

Constraints" Management Science vol 19 No 5, pp. 544-546, Jan 1973

APPENDIX

Proof of Theorem 3.1:

(to

Assume that the folding set is implementable. For the sake of contradiction,
suppose that 3 ax-cycZe in G(V, E, A(0)). Without loss of generality, we can
label the vertices of the cycle so that:

(Vk.Vk +\)zA V* e(i, 2, ••• ,l-\] u \ItI,L+2, • • • . m-lj

It is always possible to achieve such a labeling.because a x-cycte has at least
two undirected edges (\vp.x, vp] and \vt, vt +x\) and two paths of directed edges
(joining vx to vt and vt +, to vm.x). Moreover a path of directed and undirected
edges (possibly of zero length) joins vmtovp.x.
Since paths of directed edges are related to column ordered folding lists, »n^
the column ordered folding lists induce a row order relation, we have :

R(cx)<R(ct);

and:

R(ci +i)<R(cm).

Take any row r e R(cx)C\R(cl +x):

R(cx)<r<R(cm)

and from the definition of transitive closure :

\R(cx)<R(cm)] c QR +(0)

Since there is a finite number ofvertices along the x^cycle from vertex v* +1to
vertex vp.x, by repeating the same argument and by the transitivity of
QR+(0):

\R(cl +x)<R(cp.x)] c QR +(0).

tet row r e R(cp.x)piR(cp) . From the transitive closure relation:

K(cnri) < r

and in particular:

r < r

But since cx = cp and R(cx) < r, then :

r < r

Hence we have a contradiction because QR+ (0) is not a partial order on the
setZ+.

(only if)

Assume that G(V, E, A(O)) has no x-cycles. For the sake of contradiction sup
pose that QR+(0) is not a partial order. Therefore there exist two rows, r, and
r x, such that:

and:

rx<+rx

Hence there exists a sequence:

[n. r2. ••• • ,rn,rx]

such that:

rseR{cij)r\R(czj) ;=1,2. --..n

where: cM = c2>, ci.n = c2.n . (cZj.x. cXij) e A j = 2. 3, • -,n and ei
ther Cij- = c2<i or \cxj, cZJ]eE,j=2,3, • • , n-1 . Hence there is a direct
ed path fro,m cltl £p c2#n havingjio more than one consecutive undirectededge.
Moreover rx e R(c x)and(cz>n, cx)eA.
Furthermore there exist a sequence:

.rwi o*

[^i.^2. • ' • .rn,rx]

such that:

£;• c i?(cij;n^(cBJ; ; = i. 2, •••. n
ghere £ u = c2x. c 1<0 = c2n , (cZj.x, cxj)£A j = 2. 3. • • , n and either
cu - cz.j PJ" {cj^cjjjj e£\ jf = 2. 3. • • • , n-1. Hence there is a directed
path from cu to c2n haying no more than one consecutive undirected ejge.
Moreover rx e R(cx)ana(cZM, c^eA, and either cxx and c, (cxx and C!)
coincide or JcM, c^ ej: tjci.i, C\l %E).
Thus [c1#1, • • • , c2n, Cl cu, • • • , cZn, cx, cM] is a x-cycle. Hence we have a
contradiction.

Proof of Theorem 5.1:

(if)

Suppose that the algorithm returns " false " at step i ; i.e. after having matched
i-1 row nodes to position nodes. For the sake of contradiction, suppose that
there exists a matching E' = \ [r*-, nA , j = 1, 2, • • • , nr], such that
G(R, N, E'.A) is acyclic.
The algorithm returns "false" in one of the following two cases:

Case 1 : Q = 0 at step i.

There are nr-i + 1 row nodes that must be matched to position nodes n,-, j>i.
Since \\nj € N,j>i]\ = nr-i , no row assignment can be found satisfying the
given bounds. In fact, since Bj >i such that (nitr\) eA, then
[nt, ••-. nj, r'i, fit] is a cycle in G(R, N, E',A). Therefore we have a contrad
iction.

Case 2 : in-degree(nj *Q at step i.

Let Ep be the partial assignment constructed by the algorithm, i.e.
E^-Wn^rflj = 1.2, • • • , i-1).
We show first that the matching E' can be transformed into another matching
E", such that G(R, N, E", A) is acyclic and the row nodes matched to
t*j, j = 1. 2, • • • , i-1 in EP and E" are identical. For this reason let:

a = org min \j |r'; *rf]

Nodes r'a andr£ have no incoming directed edges from \nj, j^a] .
Moreover 3^, n* eN, kz*h>a, such that (r'a, nk)<E.A and (V£, n,J € X. Let
nt, € N, s.t. (71^, r£j e E. Then a<6 <h<zk. Let us consider the matching:

E" = E'u\r'a. ntMrg, n*]-^*. na]-\r£, ^J

We claim that G(R, N, E", A) is acyclic. If not, there would be at least a direct
ed path joining one of the following node pairs:
i)nto,r'a
iijn,,, r£
iit) r'a, n*
iv)^,^
and G(R, N, E\ A) would have a cycle. In fact:
i) Since b>a and there is a directed path from ^ to n6, there would be the
cycle [n^rV «u. • • • . nj.
ii) Since r'B has no incoming directed edges from n;. jiza there would be a
directed path from n„ to a node n,-, j <a and therefore there would be the cycle
[na, • • • , n;, • • • ,na].
iii) Since r'0 has no directed edges inton,-, j <h, there would be a directed path
from a node nj.jffe/i to n* , and therefore there would be the cycle
[n*. • • • ,nJ# • • • , nb].
iv) Since b>a and there is a directed path from n0 to n6, there would be the
cycle [rf, n^. • • • .n*. rfl.

Let now i?" =Jjn,. r'^j e E", jf = 1. 2, • , i-1 j. If £" =A" , then n< has no
incoming directed edges from \r"j e R\j>i]. Suppose that \(r"k, ni)eA and
k>i . Then [r"k, n^, • • . n*. r'V] .would be a cycle in G(R, N, E", A). We
therefore have a contradiction. If E"*!!? , then we can construct a finite se
quence of matchings E", E"\ • • • . E* using the procedure shown above , so
ttiat G(R^, N,E ,A) is acyclic and E0= E? , where
E = ({n,-, rf] e E*, j = 1, 2, • • • , i-lj. Also in this case we have a contradic
tion.

(only if)

The algorithm terminates in a finite number of steps, because it attempts at
most nr assignment. Let E = \ \njt -r,), ; = l, 2, • • • ,nr] be the assignment

constructed by the algorithm. Since n,- and ri have no incoming directed edges
from {fa* \k>jlu\rk \k>j] j = 1. 2, • • • , nr] by construction. then
G(R,N.E,A) is acyclic.

Proof of Theorem 5.2:

(if)

Suppose that the algorithm returns " false " at step i . For the sake of contrad
iction, suppose that there exists a matching E' such that G(R. N, C, E',A)is
acyclic. Inparticular: E'= [[r'^nj] . ; = 1. 2. • • , nr] u\ (c j*"*!'
VjeM'c\l,2, • • • . nr]], where M' is the physical connection row set
corresponding to the matching E\
The algorithm returns "false" in one of the following three cases:

Case 1 : Q = $ at step i.

There are nr-i +1 row nodes that must be matched to position nodes n,-, j>i.
Since Ifa,- e N,j>i]\ =nr-i , no row assignment can be found satisfying the
given bounds. In fact, since 3j>i such that (nj,r\) eA, then
fai, • • • , nj, r\, rti] is a cycle in G(R, N, C, E\ A). We therefore have a con
tradiction.

Case 2 : H = 0 and A<0 at step i.

There are nr-i +l connection-row nodes that must be matched to position
nodes nj,j>i. Since ||n,- eN,j>i]\ =nr-i .no connection-row assignment
can be found satisfying the givenbounds. In fact, since 3,7*>i such that (n.-. c'A

e A, then [n*. • • • , nj, c\, n*] is a cycle in G(R, N, C, E', A). We therefore
have a contradiction.

Case 3 : in-degreefa) *0 at step i.

Let Ep be the partial assignment constructed by the algorithm.
We show first that the matching E' can be transformed into another matching
E", such that G(R, N, C, E", A) is acyclic and row and connection-row nodes
matched to n.-, j = 1, 2, •••,i-1 in HP and E" are identical. For this reason
let:

a = org min \j \r'j*rf]

d = arg min \j\c'^cf or \c'jt n^/LE' and \cf, n;j e £*J

U(a<Ld) let:

E" = £"u|r'0, n^ufaP r^]-^, na]-\rP, nb]

If (d<a) . c'd*c§ and [c'd, nd] e E' let:

E" = Pule'*, T^Mcl nd]-\c'at nd]-\cl ne]

where n,eJV s.t. \n9, c§] e E'.

If (d<a) , \ c'd, n;) £E' and {c§, n, J € E? let:

.5,,s^,uJefln-j-Jc|In,J

We can show with an argument similar to the one used in the proof of theorem
5.1, that graph G(R, N, C, E", A) is acyclic, because otherwise graph
G(R, N, C, E', A) would have a cycle and violate our assumption.

Let now E"zE" be the sublet of the undirected edges having an end_point in
i/. j = 1. 2, • • • , i-1. If E" = E? , then n has no incoming directed edges
from \r",- e R\j>i]u\c"j <=: C\j>i]. Suppose that \(r"k,ni)eA and k>i .
Then [r"k, n^, • • • , n*. r"k] would be a cycle in G(R, N, C, E", A). Suppose
that \(c"k, rn) e A and k>i . Then [c"k, n*. • • , nk, c"k] would be a cycle in
G(7£, N, C, E", A). We therefore have a contradiction.
If E"*E? , then we can construct a finite sequence of matchings
E", E"\ • • •, EH using the procedure shown above , so that G(R, N, C, E\ A)
is acyclic and E*'= E* , where : E'qE* is the subset of' the undirected edges
having an end-point in n,-, j = l. 2. • • • , i-1. Also in this case we have a con
tradiction.

(only if)

The algorithm terminates in a finite number of steps, because it attempts at
most 2 *nr assignment. Let E be the assignment constructed by the algo
rithm. Since nj, r«- and c;- have no incoming directed edges from
\\nk\k>j]u\rk\k>j]u\ck\k>j] j< = 1. 2. • •• , nr] by construction, then
G(R,N,C,E,A)is acyclic.

TABLE 1

Comparison of PLAs folded by PLEASURE with different constraints.

PLA size Constraints Folding Folded. Area Time
nr»(ni+no) lists

I
i

Unfolded
Area = 100

(sec)

PLA1 30"(8+31) none 7 29 B

30*(8+31) row positions 14 51 14

30»(8+3l) conn_row positions 15 53 23

30*(B+31) ordered conn_rows 15 53 16

PLA 2 52*(23+20) none 7 37 15

52*(23+20) row positions 12 60 34

52*(23+20) conn_row positions 13 46 62

52*(23+20) ordered conn_rows 13 58 53

PLA 3 86»(8+63) hone 9 56 112

86*(B+63) row positions 15 67 257

86"(8+63) conn_row positions 12 63 305

86*(8+63) ordered conn-rows 15 73 328

PLA 4 62*(24+14) none 11 5B 23

62*(24+14) row positions 10 73 36

62»(24+14) conn-row positions 9 68 45

62*(24+14) ordered conn_rows B 76 75

PLA 5 85*(27+10) none 14 54 30

85*(27+10) row positions 10 67 5B

85*(27+10) conn_row positions 9 72 87

85*(27+10) ordered conn_rows 6 70 59

PLA 6 75*(35+29) . none 17 53 50

75»(35+29) row positions 19 62 119

75*(35+29) coniL»row positions 18 64 199

75'(35+29) ordered conn_rows , 10 73 202

PLA 7 53»(35+29) none 10 49 26

53*(35+29) row positions 13 67 65

53»(35+29) conn_row positions 17 58 110

53*(35+29) ordered conn-rows 10 B0 147

PLA 8 223*(47+62) none 15 38 1262

223*(47+62) row positions 39 55 3933

223*(47+62) conn_row positions 39 57 4722

223*(47+62) ordered conn_rows 33 60 4769

FIGURE CAPTIONS

[2.1] Symbolic representation of a Programmable Logic Array.

[2.2] Simple Folded Array.

[2.3] Multiple Folded Array.

[2.4] Multiple Folded Array Mixed Diagram (Architecture # 1).

[2.5] Multiple Folded Array Mixed Diagram (Architecture # 2).

[2.6] Multiple Folded Array with Ordered Connection-row Assignment.

[2.7] Multiple Folded Array with Bounded Connection-row Assignment.

[3.1] Personality Matrix.

[3.2] Mixed Graph G(V, E, A(0)).

[3.3] Partially folded array.

[5.1] Folded PLA with Bounded Row Assignment.

[5.2a] Graph G(R, N,A').

[5.2b] Edge set As.

[5.3] Unfolded OR array.

[5.4] Folded OR array with Bounded Connection-row Assignment.

[5.5a] Graph G(R, N, C, A').

[5.5b] Edge set AQuA7.

[5.5c] Edge set A5.

[5.5d] Edge set AB.

[5.6] Folded OR Array Implementation with Ordered Connection-row

Assignment.

[5.7a] Graph G(R; N. C, A').

[5.7b] Edge set AQuA7.

[5.7c] Edge set AsuAB.

[6.1a] Example of PLEASURE output file for the PLA of fig. 2.1 folded with

different constraints: i) no constraints

ii) constrained row positions:

L(rx) = l,U(rx) = V,L(rz) = V,U(rz) = 3: L(r3) = l;f/<Va; = 3;

L(rJ = 4;£/(r4; = 6;L(rs) = 4:U(r5) = 6; L(r9) = 6,U(re) = 6.

[6.1b] Example of PLEASURE output file for the PLA of fig. 2.1 folded with

different constraints: i) constrained connection-row positions:

Lc(ci)= UUc(cx) = 6;Lc(ci>) = 6;Uc(cQ)= G;

Lc(o7)=l\Uc(c7)=\;Lc(cB)=l\Uc(cb)=3\

Lc(c*) = 4; Uc(ct) = 6; Lc(c 10; = 6; Uc(c XQ)=6\

ii) ordered connection-row positions: S(cj) = j

rl

r3 :

r5 :

r6

3

r

»

k

5r

) ; i k

!*

%t

%

\

) c

3fc

•

i

—*

t t t t t t
^1 ^2 ^3 ^4 ^5 ^6

I i i I

C7 C8 C9 CI0

Symbolic representation of a

Programmable Logic Array

Fig. 2

Cl C3 C5 C6
4 4 4 1

r4 *

r2

r3)i

re

ru H5

-31—it-

t t
C2 C4

c7 c8
t t

i i
Cg C)0

Simple Folded Array-

Fig. 2.2

'5

»4

r2

•8*—ft

C5
!t Jr

c,*—*,

•*C7

Cjo

c8

Multiple Folded Array

Fig. 2.3

Ci

c3

c6

r2l 1
'4X-

r« fe '

~T

~'r~

r3*-
I

7!—T
rl| L

I

I I

-X-

*- X

-• -5;

1

Fig. 2.4

Folded PLA mixed diagram.

LEGEND: metal I

poly

metal 2

active device

cut

contact

(Diffusion ground lines not shown)

c8

c9

C|0

c2

CI

C4

C5

C3

C6

^4 %

r5 *

re

•¥—*•

+

Jt—

J L -L
Fig. 2.5 Folded PLA mixed diagram

LEGEND^ metal

poly

active device

cut

contact

(Diffusion ground lines not shown)

c8

C7

C9

cio

^1

c2

C4

c6

%
>

k * I
i . ^

r4) 1 f

>

>
i <

<

t

*r5:
e

\

1

\r6

SJ

»
i

1

\

s

r

r3) 1

:i .

1 'ri < *

'i A r \

Multiple Folded Array with
ordered connection-row assignment

Fig. 2.6

c7

c8

c9

C|Q

c2

c3

c5

c6

r*\
\

f
y v

U

»4 y

>
J

>

^

r

\r5 k

> i

•e) " ? >

©*
\

)
e

i

r3i <

o>

Vr, t > f
Is. i\ —

Multiple folded array with bounded
connection row assignment.

c7

ce

Cio

c9

Connection Row Lower Bound Upper Bound

1 1 3

2 1 3

5 4 6

6 4 6

7 1 1

9 4 6

Fig. 2.7

• I • • 1 1 •

1 «» 1 • • 4» 1

• 4» • • 1 <> •

• 4» • 1 • 4» 1

• i » • • 1 4» •

Fig.3.l-Personality matrix

Fig. 3.2 Mixed graph G (V, E, A (0))

C| C2 C3 C4 C5 C6 C8 C|0

Mill! ft

'3 *

""5 I

•i'. C7

I

C9

Fig.3.3 Partially folded array

C| c2 c3 c6 c7 c8 c,0

I 1 1 I t t t
I—I—¥—¥ ¥—I—I

2 ii]\ V;—-

3 Vi Vi 3;

5 V: K

4 ;t—u k—

6 I 1 1 * 1 1 \[
t t

C5 C4
1

Fig.5.1-Folded logic array
with bounded row
assignment

n6 O

n

A,

A2UA3

A4

G (R N A')

Fig. 5.2a

no O

n. O

n2 O

n3 CT

"7 O

A5

Fig. 5.2b

/P r'
//

// /
// / o *

///
n< O / / / O r4

/ / /

"5 O //. O f5

"6 Cf O r6

I *
n

X

n

; u

h

Vz

o

i:

1 1 ,•

8

10

Fig.5.3-Unfolded OR array

r4 1 3
/

r2

>

»

>

rl 5>

• 4

e * ** tf

ffi »

k

r.

>

»

^ r

5 < t

'8

C9

10

Fig. 5.4- Folded OR array
with bounded connection

row assigment

a2ua3

A4

Fig.5.5a

\

♦ Or"/
i / /• * f

* •

C7(X

c*Or:
:x:

C9QT"

c\oQr-—

AfiUA7

Fig.5.5b

>0 r'

,.X)r2

——O Tz

.—.— O r4

n0 O

n, O

/
/

P

n2 O
/

/

/ y
yO *Z

"* O /y' O r3
/ ' /

n« O /y /S-^° r4

/
/

/
/

n7 C^'

A5

Fig. 5.5c

c7p

cs a \

9 0

ioO

•. *•

*x\

X.
•••.
••^
^

\

/\q -_....—..._

Fig.5.5d

0"2

0"3

O"4

V

O"6

0"7

4 *•

2 Vr

I

6

5

3

C8

c9

CI0

Fig. 5.6-Folded OR plane
implementation.

A, UA9

A2 UA3

A4

Fig. 5.7a

Or»

! O r3

\ Or4

Or5

Qr6

?0

80<..

9Q<:

10O

\v«

A6 U A 7

Fig.5.7b

or-

..-O r2

O^

X)r5

Of6

Q

08 p \
. •.

X \

c*(\ Xv
v

cioCL n \
•v. X.

XvX\ "O "// /
\
W.

Ono

On'

0"2

Qn3

O"4 / /

Pr
/

/

^ Pr3
/

Qr2

4

cfn /

//
,-Ore

'•- . •

xw
A5

Fig.5.7c

P
L
E
A
S
U
R
E
:
P
L
A
T
O
P
O
L
O
O
I
C
A
L
C
O
M
P
A
C
T
I
O
N
E
N
V
I
R
O
N
M
E
N
T

U
N
I
V
E
R
S
I
T
Y

O
F

C
A
L
I
F
O
R
N
I
A

.
B
E
R
K
E
L
E
Y

R
E
L
E
A
S
E
F
O
R

:
U
n
i
v
a
r
t
i
t
a

o
f
C
a
l
i
f
o
r
n
i
a
*

B
a
r
l
a
l
a
u

U
P
D
A
T
E

•
2
7

R
E
L
E
A
S
E
D
A
T
E
:
M
o
n
N
o
v
3
2

1
9
:
4
3
:
0
1

1
9
8
2

F
O
L
O
I
N
O

R
E
Q
U
E
S
T
E
D
:

M
U
L
T
I
P
L
E
C
O
L
U
M
N
F
O
L
D
I
N
O

I
N
T
H
E
A
N
D
P
L
A
N
E

M
U
L
T
I
P
L
E
C
O
L
U
M
N
F
O
L
D
I
N
O
I
N
T
H
E
O
R
P
L
A
N
E

C
O
L
U
M
N

F
O
L
D
I
N
O
S
:

O
R
D
E
R
E
D
C
O
L
U
M
N
F
O
L
O
I
N
O
L
I
S
T

•
1

7

1
0 9 0

O
R
D
E
R
E
D
C
O
L
U
M
N
F
O
L
O
I
N
O

L
I
S
T
•

2

O
R
D
E
R
E
D

C
O
L
U
M
N
F
O
L
O
I
N
O

L
I
S
T
•

3

C
O
L
U
M
N
S

F
R
O
M
T
H
E

T
O
P

3 6 7

P
E
R
S
O
N
A
L
I
T
Y

M
A
T
R
I
X

!
0

1

1
0

1

-
!

i
0
-

1

M
I

1
0

I

R
O
W
S
F
R
O
M

T
H
E

L
E
F
T

1 3 6 9 4 2

F
o
l
d
.
*
P
L
A
t
a
l
o
t
3
0
X
o
f
t
h
»
o
r
l
a
i
n
a
l

a
r
o
a

§

Fi
g.

6
.
1
a

P
L
E
A
S
U
R
E

:
P
L
A

T
O
P
O
L
O
O
I
C
A
L
C
O
M
P
A
C
T
I
O
N
E
N
V
I
R
O
N
M
E
N
T

U
N
I
V
E
R
S
I
T
Y
O
F

C
A
L
I
F
O
R
N
I
A

»
B
E
R
K
E
L
E
Y

I
t
t
t
M
I
H
H

R
E
L
E
A
S
E
F
O
R

:
U
n
i
v
a
r
a
i
t
y

o
f
C
a
l
i
f
o
r
n
i
a
.

Ba
rf
ta
la
a

U
P
D
A
T
E

•
:

2
7

R
E
L
B
A
8
S
D
A
T
E

:
H
o
n

N
o
v

2
2

1
9
:
4
2
:
0
1

1
9
8
2

F
O
L
O
I
N
O

R
E
Q
U
E
S
T
E
D
:

M
U
L
T
I
P
L
E

C
O
L
U
M
N
.
F
O
L
O
I
N
O

I
N

T
H
E

A
N
D
P
L
A
N
E

M
U
L
T
I
P
L
E

C
O
L
U
M
N

F
O
L
O
I
N
O

I
N
T
H
E

O
R
P
L
A
N
E

C
O
L
U
M
N
F
O
L
O
I
N
O
U
I
T
H
C
O
N
S
T
R
A
I
N
E
D
R
O
W
P
O
S
I
T
I
O
N
S

C
O
L
U
M
N

F
O
L
D
I
N
O
S
:

O
R
D
E
R
E
D

C
O
L
U
M
N
F
O
L
O
I
N
O
L
I
S
T
•

1

O
R
D
E
R
E
D

C
O
L
U
M
N

F
O
L
O
I
N
O
L
I
S
T

•
2

O
R
D
E
R
E
D
C
O
L
U
M
N

F
O
L
O
I
N
O
L
I
S
T

•
3

C
O
L
U
M
N
S
F
R
O
M
T
H
E
T
O
P

3 4 6 7
1
0

P
E
R
S
O
N
A
L
I
T
Y

M
A
T
R
I
X

!
-
0

1
*

!
o
-

I
*

-
1
0

*
I

1
1
-

1
*

-
O
-

I
*

—
1

*
I

P
o
l
i
o
*
P
L
A

t
a
l
a
o

S
O
X

R
O
U
S
F
R
O
M
T
H
E

L
E
F
T

1 2 3 4 9 6

PLEASURE : PLA TOPOLOGICAL COMPACTION ENVIRONMENT

UNIVERSITY OF CALIFORNIA . BERKELEY

FOLOINO REQUESTED:

MULTIPLE COLUMN FOLDING IN THE AND PLANE

MULTIPLE COLUMN FOLOINO IN THE OR PLANE

COLUMN FOLDINO UITH CONSTRAINED CONTACT POSITIONS

COLUMN FOLDINOS:

ORDERED COLUMN FOLOINO LIST • 1

ORDERED COLUMN FOLOINO LIST • 2

7

10

ORDERED COLUMN FOLOINO LI8T • 3

ORDERED COLUMN FOLDINO LI8T • 4

COLUMNS FROM THE TOP

2

4

6

7

8

ROWS FROM THE LEFT

2

1

6

4 •

9

3

CONTACTS ON THE LEFT PLANE CONTACTS ON THE RIOHT PLANE

PERSONALITY MATRIX

!o- •*!

-!0 i*

—1 I*
11- -i

-0- *I

-10 I*

9

10

Fig. 6.1b

PLEASURE : PLA TOPOLOOICAL COMPACTION ENVIRONMENT

UNIVERSITY OF CALIFORNIA # BERKELEY

FOLOINO REQUESTED:

MULTIPLE COLUMN FOLDINO IN THE AND PLANE

MULTIPLE COLUMN FOLDINO IN THE OR PLANE

ORDERED FOLDINO IN THE LEFT ARRAY

ORDERED FOLDINO IN THE RIOHT ARRAY

COLUMN FOLDINOS:

ORDERED COLUMN FOLDINO LIST t 1

ORDERED COLUMN FOLDINO LI8T • 3

COLUMNS FROM THE TOP

1

2

3

6

7

8

10

ROWS FROM THE LEFT

1

6

9

2

4

3

t

t

CONTACTS ON THE LEFT PLANE CONTACTS ON THE RIOHT PLANE

7
8

9

10

PERSONALITY MATRIX

—!0 i**

1 **I

0-— I**
-to- *I*

1-1- *l*
1—O **I

FoUo* PLA talaa 70X of tka orlainal araa

	Copyright notice 1982
	ERL-82-57

