

Copyright © 1982, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

EXPERIMENTAL DESIGN OF A GENERATIVE MODEL BASED ON

WORKING SET SIZE CHARACTERIZATIONS

by

T-Y. P. Lee

Memorandum No. UCB/ERL M82/56

19 July 1982

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Experimental Design of a Generative Model Based on
Working Set Size Characterizations*

Tzong-yu Paid Lee

Comuter Science Divison
Department of Electrical Engineering and Computer Sciences

University of California, Berkeley

•Hie research reported here has been supported by the National Science Foundation under
grant HCS8O-1290O.

ACKNOWLEDGMENT

The author wishes to express his gratitude for the encouragement and

support of his research advisor, Professor Domenico Ferrari, who introduced

him to the topic discussed in this report. The author also benefited very

much from discussions with members of the PROGRES research group, in

particular, Juan Porcar.

CHAPTER 1

Introduction

In the study of program behavior, memory referencing patterns have
long been a subject of interest. Various memory management policies were
proposed and implemented to optimize the utilization of system resources
and increase system throughput. On the other hand, techniques were
employed to enable compilers to generate better-behaved code in order to
achieve the same purpose. Various methods for restructuring programs so
as to improve their referencing behavior have also been investigated
[Ferr76a].

Very often, in these studies, program reference strings were used to
compare the performances of various memory management policies or to
validate models of program behavior. These strings were often collected
from real programs running on existing systems. The process of gathering
reference strings is rather tedious and generally very expensive. To be pre
cise, most strings are gathered by interpretive execution. There are clear
advantages in using artificial strings if they reflect the behavior of the real
strings. This leads to the study of generative models. The goal of these
models is to use relatively few parameters and relatively fast algorithms to
generate artificial reference strings which can be employed in various trace-
driven simulation experiments.

It is usually not necessary to reproduce a program's behavior exactly;
consequently, the generative model will try to reproduce those properties of
a string which are deemed to be important in the context in which the
artificial string is to be used. In this study, memory consumption and page
fault rate are chosen as the important aspects to be reproduced. Our pri
mary context is that of the working set policy [Denn68a], but we shall also be
comparing a real and several artificial strings under the page fault frequency
policy [Chu76a] and the least recently used policy [Matt70a]. For conveni
ence, these policies shall be referred to as WS, PFF, and LRU respectively.

Artificial strings will be evaluated in three steps. First, a comparison of
first moment results with those from the real string. If this is satisfactory,
the distributions of some of the indices will be compared. The last step
would be to investigate the dynamic behavior of the reference string, which
is essentially a finite time series, with statistical techniques [Bril75a]. Most
of these techniques are independent of the memory management policies
chosen.

The generative model evaluated here, which is based on a working set
characterization, was proposed by Ferrari [Ferr81a] and first implemented
by Dutt [Dutt81a]. The theoretical aspects and the design of the experi
ments is detailed in the next two chapters. The results and their analysis are
presented in Chapter 4. Finally, in the last chapter, conclusions are drawn
from the outcome of the experiment and directions for further research are
provided.

CHAPTER 2

Theoretical Aspects

2.1. Background
The goal of a generative model is to provide a sequence of page refer

ences whose characteristics of interest are similar to those of the modeled
program. The generative model evaluated here is based on the sequence of
working set size(s) and possibly on other parameters. While it is desirable to
reproduce the dynamic behavior of the modeled program as accurately as
possible, it is also important to minimize the number of parameters needed
for the generative model. Asequence ofworking set sizes is generally redun
dant in its information content. It can be completely specified as a sequence
of the pairs (^,1*0. where £t is the time at which the working set size (wss)
curve changes its slope, and ii* is the wss at that time. This sequence is the
input to the generative model used in the experiment.

When a sequence of wss's is given, a window size T must always be
specified. It is clear that the string generated by the model is by no means
the same as the one of the modeled program. However, it is hoped that, with
appropriate generation algorithms, the generated string will possess the
essential characteristics of the modeled one. An example is given here to
illustrate some fundamental notions. Assuming that the length of a string of
page references is 5, the window size is 3, and the page set is ia,bj. Table 2.1
contains all possible sequences, their wss sequences, and the relationships
among them.

There are 25 possible strings; however, there are only 16 distinct wss
sequences. Strings with the same wss sequence have the same wss charac
terization, and are members of the same class. As far as the wss characteri
zation is concerned, any of the strings in that class would represent well the
others. There exist even stronger equivalence classes, i.e., those of strings
equivalent under renaming. Two sequences are equivalent under renaming if
there exists a one-to-one mapping of the pages used in one sequence to those
used in the other sequence. Two strings which are equivalent under renam
ing are also wss equivalent. i.e., have the same wss characterization; the con
verse, however, is not necessarily true. One simple example is as follows.

String 1: abcabcabc...
String 2 : b c a b c a b c a ...

The mapping fbetween two page sets is f(a) = b, f(b) = c, and f(c) = a.
In practice, the assignment of page numbers to program pages is

sequential. Also, the way in which programs are laid out in their virtual
address space usually reflects some degree of sequential referencing pat
tern. These facts have no impact on working set characterizations. Note
that, however, any page prefetching strategy could very well use the
knowledge of sequentiality implied by page numbers.

Table 2.1

Examples of Reference Strings

string wss string under renaming

a a a a a 1 1 1 1 1 bbbbb

a a a ab 11112- bbbba

a a ab a 11122 bbbab

a a ab b 11121 b b b a a

a a b a a 11221 bbabb

a a b a b 1 1222 b b a b a

a a b b a 112 12 b b a a b

a a b b b 112 11 b b a aa

ab a a a 122 11 babbb

ab a a b 122 12 b a b b a

a b a b a 12222 b a b a b

ab ab b 1222 1 b a b a a

ab b a a 12 12 1 b a ab b

a b b a b 12122 b a a b a

ab b b a 12 112 b a a a b

abbb b 12 111 b a a a a

b a a a a 12 111 abbbb

b a a a b 12 112 ab b b a

b aab a 12122 a b b a b

b a ab b 12 12 1 a b b a a

b ab a a 12221 ab ab b

b a b a b 12222 a b a b a

b a b b a 122 12 a b a a b

babbb 122 11 a b a a a

b b a a a 112 11 a a b b b

b b a a b 112 12 a a b b a

b b ab a 11222 a a b a b

bbabb 11221 I aabaa

b b b a a 11121 aaabb

bbbab 11122 1 aaaba

bbbba 11112 a a a a b

bbbb b 11111 a a a a a

2.2. Feasibility of single T generation

By 'single T generation' we refer to the generation of an artificial string
based on one wss sequence, corresponding to one value of T. It is important
to characterize the properties of the so-called wss sequences. In principle,
all possible reference strings form a vector space 5n where S is the page set
and n is the length of the string. By specifying a particular sequence of
wss's, we have focused on a subset of this vector space in which every ele
ment has the same wss characterization. Essentially, the input to the gen
erative model is the given wss sequence, which is associated with some

window size T. It should be clear that the string generated by the model is
generally not unique; therefore, the wss sequence associated to the artificial
string with a different window size will be different from that of the modeled
program under the same conditions. Performance indices of other kinds are
usually different also. The motivation for introducing appropriate strategies
into the generation algorithm is to obtain that the artificial string represent
the real string closely not only for the wss dynamics but also for other
indices of interest.

The next issue to be investigated is clearly that of the properties of a
wss sequence [Ferr81a] [Ferr81bJ. Before we introduce the necessary and
sufficient conditions for a sequence of integer numbers to be usable to gen
erate an artificial string, some definitions are needed.

Definition 2.1
Given an integer bound T, a string S = s j • • • Sj • • • sB is called a
bounded positive continuous string if the following three conditions hold:

(i) s1=l
(ii) 0<Si^T for l^i^n
(iii) \Si—Si-]\ £ 1 for 2^i^n

Definition 2.2
A string S is a wss (working set size) string with integer bound parame
ter T if there exists a page reference string R = rx • • • rn such that, with
window size T, the wss string of R coincides with S.

Definition 2.3
Given a wss string S = st • • • Si • • • sn, the decrement count at time t,
dt, is the number of decrements in substring stst+x • • • St+r-i-
With the above definitions, we state the following theorem which gives

the condition for the existence of at least one artificial string corresponding
to a given string of integers.

Theorem 2.1
A bounded positive continuous string is a wss string with parameter T if
and only if dt <st for all t's.
The proof of the theorem is constructive, and is not given here. It can

be found in [FerrSla].

2.3. Feasibility of double T generation
By 'double T generation' we refer to the generation of an artificial string

based on two wss sequences. By specifying two wss sequences with two
different window sizes, the subset of legitimate strings is further constrained.
With the use of appropriate strategies, it is expected that the artificial string
generated will more closely resemble the modeled program's behavior than
that generated by a single T wss characterization. Again, it is essential to
investigate the feasibility of such generation. The main result is proved in
[Ferr82a] and is stated here without proof.

The following definitions are needed to introduce the theorem.

Definition 2.4
Aworking set size (wss) string Si with parameter Ti is said to be greater
than or equal to a working set size string S2 with parameter 72 if T{>Tz
and Sj ^s^ for all t. We indicate this by the notation S^Sz-
The properties described below are based on two wss strings with

parameters 7*i and T2 where 7\>72. Strings Si and S2 are represented as sl%
... sx ... ands2 ... S& ... respectively. These two strings are assumed to have
the same lengths. Care should be taken to ensure that edge problems will
not arise.

Definition 2.5
1. Property (i) holds ifSi =sl|-t+l implies sZt=szt_l+l for all t
2. Property (ii) holds if5^=5^-1 implies s2t_T +r =s2t_T +7 _t-l for all t
3. Property (iii) holds if s^sz^-l and s1<+r _r^sit+r_r _x implies the
existence of a unique ke(ttt +Ti~T2], such that s2jb=s2ib-1+l and
si^i^forallt

Theorem 2.2
A reference string R that has the wss characterizations represented by
Si and 52 with window sizes T\ and Tz exists if and only if S^S2 and
properties (i)-(iii) hold.

2.4. The problems of flat-faults

An obvious way to get a wss characterization for the generative model is
to get it from a real trace. Caution needs to be taken, however, in this pro
cess. A definition will be introduced to illustrate the problem.

Definition 2.6
A fiat-fault occurs at time t if the working set size at t is the same as
working set size at t-1 and there is a page fault at time t.

Basically, a flat-fault occurs when there is a new page coming into the
working set and an old page dropping out of working set at the same time.
This phenomenon is very unlikely to occur with any practical value of T, and
is discussed in [Lee82aJ. The proof of Theorem 2.1 does not depend on the
assumption that the given wss characterization has no flat-faults. This is
confirmed in a different way by Theorem 2.3 below. However, the proof of
Theorem 2.2 depends on the assumption that there are no flat-faults in the
two given wss characterizations. A natural question is whether similar
theorems for the existence of an artificial string hold when St and/or 52 con
tain flat-faults. If no such general results exist, it is necessary for the gen
eration program to detect such situations, or the wss characterization(s)
should be checked for flat-faults before they are used in the generation pro
gram. These issues are discussed in [Lee82a], and the results are summar
ized here without proof.

2.4.1. single T generation

An example of flat-fault is given in Table 2.2. With window size equal to 4,
a flat-fault occurs at time 5, when page 'a' drops out of the working set and

page 'd' enters the working set. In the same vein, a flat-fault occurs at time
7 with window size equal to 3. If the given wss characterization of the real
trace contains flat-faults with respect to window size T, the existence of an
artificial string is guaranteed by the following theorem. The proof of this
theorem can be found in [Lee82a].

Theorem 2.3
There exists a reference string R corresponding to a given wss sequence
S extracted from a real trace which contains flat-faults.

2.4.2. double T generation

It is unfortunate that no existence theorem similar to Theorem 2.3 can
be proved for double T generation if either of the two wss characterizations
contains flat-faults. Examples are given in [Lee82a] to show that, without
knowing when flat-faults occur, no artificial string can be generated from wss
characterizations containing flat-faults. More information is needed for the
model to generate en artificial string in this case.

2.5. The deadline of a page reference
The proofs of Theorems 2.1 and 2.2 are constructive. In the generation

algorithms on which the proofs are based, those pages that need to be refer
enced again in order to stay in the working set are referenced in a FIFO
manner. The time frame in which a page has to be re-referenced in order to
remain in the working set is referred to as the page's 'deadline' here.
Referencing in a FIFO manner is the most conservative way to satisfy the
requirement and facilitates the proofs. However, pages are generally not
referenced in a cyclic manner by real programs. It will be desirable to re-
reference pages in other ways, but this cannot be comfortably done unless
we know that all the deadlines can still be met each time a decision is made
to re-reference an old page in a non-FIFO manner.

The deadlines of pages in the working set are difficult to describe in a
simple and compact form. Examples are given instead in Tables 2.3, 2.4 and
2.5 to illustrate the notion of deadlines and interdependencies among the
deadlines of different pages.

In the first example, a page 'x' is referenced at time 10 and there is an
increase in the wss from time 14 to time 15. In order to allow such an
increase, page 'x' has to be re-referenced before (but not at) time 15. This is
the deadline for page 'x' at time 10. The asterisk at time 16 corresponds to
the first forbidden location for page 'x\

Table 2.2

Plat-fault Example

time

page

1

a

2 3 4
b c b

5

d

6

d

7

c

wss (T=4)
flat-fault

1 2 3 3 3 3 3

wss (T=3)
flat-fault

1 2 3 2 3 2 2
*

Table 2.3

Deadline Example 1 (T = 5)
time

wss

page

10 11 12 13 14
4 4 4 4 4

x

15

5
*

16

•

Table 2.4

Deadline Example 2 (T = 5)

time

wss

page

10 11 12 13 14
4 4 4 4 4

X

15
4

16

*

A similar example is given in Table 2.4 to illustrate a different situation.
The difference is that here the string has the same wss at times 14 and 15.
Under the assumption that there are no flat-faults, page 'x' has to be re-
referenced before or at time 15.

In general, when page references are generated by the model, the dead
lines have to be continuously updated depending on the page reference just
generated and on the knowledge ofwss variations in a forward window of size
T.

In the third example (Table 2.5). page 'a' is referenced at time 1 and an
increase in wss is to take place from time 8 to time 9. A simple deadline for
page 'a' is before (but not at) time 9. However, this deadline is unrealistic,
since at time 8 we will have to select a new page for the working set. The
actual deadline should be moved to time 8 (before but not at). The page
referenced at time 2 is 'b', and there is an increase in wss also from time 9 to
time 10. Thus, the deadline for 'b' is time 10. However, it is clear that time
slots 8 and 9 are both reserved for new pages. A better deadline will be time
8. But there is one more factor that affects the actual deadlines for both
pages 'a' and 'b' now. It is the interaction between the two requirements.
There is only one page that can be referenced at time 7. If both pages *a'
and 'b' wait until this time, these two deadlines cannot be met simultane
ously. Therefore, realistic sets of deadlines at time 2 are as follows :

(1) page 'a' at 8 and page 'b' at 7
or

(2) page 'a' at 7 and page 'b' at 8
If either of the above requirements is satisfied, the deadlines are met.

Table 2.5

Deadline example 3 (T = 8)
time

wss

page

1

1

a

2

2

b

3456789 10 11
3333345 6 7
c . . . d e f g

12 . .

It is now easy to extend this observation to time 3. A realistic set of
deadlines for pages 'a', 'b', and 'c' would be any of the permutations of 6, 7,
and 8. Furthermore, after a page for time 4 is selected from {a,b,cj, the
deadlines have to be updated. A realistic deadline policy would be to keep
enough page slots free in the forward window of size T for the pages in the
working set. However, there seems to be no simple way to maintain this
information in a compact form. Choosing an efficient data structure and an
efficient algorithm appears quite difficult.

We shall not try to determine a general method for dealing with the
deadlines for the pages in the working set. The problem is only of theoretical
interest, since practically the window size T is much greater than the total
number of pages in use. In summary, it is sufficient to approximate the
deadlines for the pages in the working set. The problem is certainly even
more complex when two sets of wss characterizations are given, but it can be
dealt with by a similar approach. In particular, we need to concentrate on
the wss characterization corresponding to the smaller T since this character
ization has a more stringent set of constraints.

CHAPTER 3

Design of the Experiments

3.1. Implementation Issues
There are several implementation-related issues needing resolution,

which are discussed in this section.

3.1.1. Boundary conditions
Since the artificial strings generated are of finite length, care should be

taken in the algorithms to ensure that the generation process will work
correctly also at the string boundary.

3.1.1.1. starting conditions
The string generation algorithm (and the program we implemented)

always assumes that the initial working set of the program is empty. The
only concern that could arise is the effect of this assumption on the perfor
mance indices. If the string is long enough in comparison with the time to
reach the mean working set size, the contribution of the starting conditions
to the long-term averages can be neglected. Indeed, this is the case for the
experiments carried out in this study.

3.1.1.2. ending conditions

The string generation algorithm looks ahead T (or Ti) units of time.
Depending on the future changes of the working set size, the currently refer
enced page will be put into the appropriate set. If our input wss string has
the same length as the reference string to be generated from it, the algo
rithm will stop T time units before the end, i.e., before its task is completed.
Something must be done to resolve this difficulty.

For single T generation, the algorithm could assume that the future
unspecified working set sizes are the same as the last size known to the pro
gram [DuttSla]. This extension is feasible because of the following theorem.
The proof of this theorem is in Appendix A.

Theorem 3.1
If S = sx • *• sn is a wss string obeying the conditions of Theorem 2.1 for
window size T, then the extended string st • • • snsn • • • sn of length n + T
satisfies the conditions of Theorem 2.1.

The wss characterizations for double T generation can also be extended.
The proof of Theorem 3.2 is somewhat more complicated than that of
Theorem 3.1 and can also be found in Appendix A1. Note that both wss char
acterizations are assumed to have the same length.

^ere is a limit on the length of the extension. Theorem 3.2 should be interpreted carerully.
See Appendix A.

10

Theorem 3.2
Given two wss strings Si=sil • • •s^ and S2=s2l • • • s2jl obeying the con
ditions of Theorem 2.2 with window sizes Tv and T2 respectively, then
there exists a a reference string R of length n having wss characteriza
tions Si and S2 with window sizes 7^ and T2 respectively which is gen
erated by the extended wss strings slt • • • slnsln • • •sln of lengthn +7*x
and $2 ' ' ' s2 SZ- ' ' ' s2n of length n +7*i.
However, the approach taken in our experiments is to extract longer wss

characterizations from a real trace, so that reference strings of the desired
length can be generated without extensions.

3.1.2. Meeting the deadlines
While there are usually many choices for the next reference, the re-

referencing deadlines for all pages in the working set should be met in order
for the wss characterization(s) to be faithfully reproduced. It has been
shown in the previous section how the deadlines for those pages can be
defined; however, it would be complicated to update all deadlines after each
new reference is generated. Even though in real traces the expected number
of consecutive references to the same page is small, it is not safe to use the
original deadline for each individual page. Better alternatives to this
approach are implemented in the generation algorithms, which will now be
described.

3.1.2.1. single T generation
An approximation to the exact solution of the deadline problem is to use

the original deadline for each page, which is obtained when that page is
referenced and put into the candidate queue, i.e., the queue of the pages to
be re-referenced before their deadlines. Before a page is selected from the
candidate queue in a non-FIFO manner, the deadline of the first page is
checked against the current time plus the maximum possible working set
size. If the deadline falls short of the value of this sum, the first page is
referenced immediately to prevent potential problems in the future. Since
there are enough reserved page slots for every possible page in the current
working set and for the possible new pages which will join the working set at
the times of future wss increases, the deadlines will be all met A simpler
approximation is used in the current implementation. Instead of using the
maximum possible working set size, the current working set size is used in
deadline checking. The generation program has built-in checks for deadline
violations.

3.1.2.2. double T generation
A similar argument can be made for an approximation for the double T

case. Instead of using the maximum possible working set size with the larger
T. the current working set size with the larger T is used for deadline check
ing. The program has also in this case built-in checks for deadline violations.

3.1.3. Parameters of the model

The parameters of the model are estimated from a real trace. This
trace was obtained from the interpretive execution of an APL program on an
IBM 360/91 machine. Except for the wss characterizations, which were
obtained from the first 550.000 references, all parameters were derived for

11

the first 500,000 references. Various performance indices of the real trace,
later used for comparisons, were also computed by trace-driven simulations
from these 500,000 references.

Three wss characterizations were obtained with window sizes of 5000,
10000, and 20000 references. For single T generation, the wss characteriza
tion with window size 10000 was used. For double T generation, the other two
were used. A characterization is given in the form of a sequence of (t,w)
pairs, where t is the time at which the wss changes and w is the value of the
wss at that time. The numbers of pairs are 1157, 619, and 525 for window
sizes of 5000, 10000, and 20000, respectively. The nominal window size of
10000 was chosen for two reasons. First, this window is not so short as to
obliterate the program's phase transition behavior [DuttSla] and not so long
as to require too much memory space. Secondly, in the neighborhood of win
dow size 10000, the space time product shows rather stable values.

The coefficient of resilience is defined here as the probability that the
page referenced next is the same as the currently referenced page. In
essence, this is the probability of referencing the top of the stack in an LRU
environment (it is often called dx in the context of the stack distance distri
bution [Spir77a]). The estimate of this parameter from the real trace
yielded the value 0.544. When this number is large enough, a reference
string can be stored as a sequence of (page.count) pairs in order to minim
ize storage requirements. This has been done in this experiment.

The number of distinct pages in the first 500,000 references in the real
trace was found to be 110. Tne relative referencing frequencies of the 110
referenced pages were measured, sorted and plotted. This frequency distri
bution can be found in Appendix B. It is interesting to observe that the most
popular page accounts for 25 percent of the references. Also, 20 percent of
the pages account for 86 percent of the references.

3.1.4. Performance indices

Various performance indices were chosen for comparison between real
and artificial strings. To compute the space time product, the page wait
time has been assumed to be constant and equal to 10000 references. The
primary performance indices considered in the various contexts are listed
below.

3.1.4.1. ITS environment

Mean working set size, page fault rate, space time product, working set
size distribution, and interfault time distribution are the primary indices we
are interested in when the WS policy is used.

3.1.4.2. PFF environment

Mean working set size, page fault rate, space time product, working set
size distribution, and interfault time distribution are the primary indices of
concern in the PFF case. The parameter of the PFF algorithm, i.e., the thres
hold of interfault times, was chosen to equal 1543 time units. This is the
value of the mean interfault time obtained under the WS policy with window
size 10000.

12

3.1.4.3. LRU environment

Page fault rate, space time product, interfault time distribution, and
stack distance distribution are the primary indices of concern in the LRU
case. For the stack distance distribution, the probability dr of referencing
the top of the stack is particularly important. The parameter of the LRU
algorithm, i.e., the fixed partition size, was chosen to be 21 page frames.
This is the mean working set size with a window size of 10000. According to
[Denn72a], this choice for LRU should produce the same page fault rate as
the WS policy with window size 10000.

3.2. Overview of the Experiments

3.2.1. Artificial Strings

Twelve artificial strings of length 500,000 each were generated. Each
string was evaluated and compared with the real string. These twelve strings
are named TOO. T01, T02, T10, Til, T12, TT00. TT01. TT02, TTIO. TT11 and
TT12. These names reflect the three control variables of the experiment :
the number of wss characterizations, the ways to select new pages when
needed, and the ways to reuse pages already in the working set.

In the case of single T generation, the string's name begins with T. In
the case of double T generation, the string's name begins with IT. The
corresponding artificial strings are called T** and TT** respectively. The first
digit following T or TT corresponds to ths way old pages are reused. It is 0 if
the old pages are reused in a FIFO manner; this means that pages are
selected from the candidate queue in the order in which they were put in. It
is 1 if the previously referenced page is reused with a given probability (
coefficient of resilience) , and otherwise in a FIFO manner; it is not too
difficult to verify that the number of consecutive references to the same
page is distributed geometrically. The second digit following T or TT
corresponds to the way a new page is selected. It is 0 if the new page is
selected from the external (new page) queue in a UFO manner; essentially,
this scheme recycles the pages put back to the external queue whenever
possible. It is 1 if the new page is selected from the external queue in a cir
cular manner; the length of the external page queue is initially set to the
total number of distinct pages. The digit is 2 if a new page is selected from
the external queue according to a pre-specified program profile. The usage
record of each page is continuously updated so that the appropriate page
can be chosen to match the intended program profile.

3.2.2. Data structure

3.2.2.1. single T generation

There are basically three singly-linked lists (queues) : the candidate
queue (C). the forbidden queue (F), and the external queue (E). These
queues correspond the those used in the proof ofTheorem 2.1 [FerrSla]. A
page exists in one and only one queue at any given time. Intuitively, the
pages in the candidate queue are those which can be referenced without
increasing the size of the working set, and which are to be re-referenced by a
deadline in order to remain in the working set. The pages in the forbidden
queue are those pages which cannot be re-referenced until they drop out of
the working set. When a forbidden page drops out of the working set, it is put

13

back into the external queue. All pages are initially in the external queue.
When the working set size increases, a new page is selected from this queue
according to one of the specified strategies. Pages are sent back to this
queue only from the forbidden queue.

3.2.2.2. double T generation
In principle, we can operate with two sets of queues, each corresponding

to one wss characterization : that is, one set will consist of C\t F* and E\,
and another set of C2, Fz, and £,2. Each page is at any given time in one (and
only one) of the three queues in each set. However, if these six queues are
implemented as described, it will be necessary to calculate a large number
of intersections of two queues, one from each set. This is undesirable from
the viewpoint of the speed of the generation algorithm. Therefore, a data
structure consisting of five doubly-linked lists (queues) was implemented.
Each queue in the structure corresponds to a particular intersection of the
two queues mentioned above. Notice that, fortunately, not all possible inter
sections of queues are needed in the generation of reference strings. The
five queues required are CiC2, FiF2, EXE2, CiE2, and CiF2.

All pages are initially in the EiE2 queue. When both wss characteriza
tions contain a wss increase, a new page is selected from the EiE2 queue
according to one of the specified algorithms. When both wss characteriza
tions contain a non-increasing transition, a page is selected from the CiC2
queue. When the wss with the larger T does not require to be increased and
the other needs to be increased, a page is selected from the CxEz queue.

When a page is chosen, the queue to which this p&ge should be added is
to be selected. This page is in two working sets of different sizes. When both
working sets require this page be re-referenced by a deadline in order to
remain in both working sets, the page is put into the CiC2 queue. When this
page has to drop out of both working sets later on, the page is put into the
FiF2 queue. When this page has to remain in the working set with the larger
T, but has to drop out of the working set with the smaller T, the page is put
into the CXF2 queue. Notice that, by Theorem 2.2, all other combinations of
transitions cannot occur, either due to Properties (i)-(iii) or due to the no
flat-faults assumption.

Apage stays in the FiF2 queue until it drops out of both working sets, at
which time the page is released and moved to the EXE2 queue. Similarly, a
page stays in the CXF2 queue until it drops out of the working set with the
smaller T, at which time the page is released and sent to the CXE2 queue. No
other transitions of pages between queues are possible. It should be noted
that such arrangement of the data structure also maintains the chronologi
cal ordering of the pages in each queue. Therefore, no search is needed to
select and delete a page at each generation of a page reference when the
FIFO strategy is used.

CHAPTER 4

Experimental Results and Their Analysis

As mentioned in Chapter 3, twelve artificial strings were generated and
named TOO, T01, T02. T10, Til, T12, TTOO, TT01, TT02, TT10, TT11, and TT12.
The generation of 500,000 references with a single window size (hence, a sin
gle wss characterization) takes from 275 seconds to 421 seconds of VAX-
11/780 CPU time depending on the options chosen. The generation of
500,000 references with two window sizes takes from 306 seconds to 466
seconds of VAX-11/780 CPU time depending on the options chosen. The
surprisingly efficient double T generation comes from the carefully planned
structure of the queues, which eliminates the need to do linear searches on
them in most cases.

The strings were run in a trace-driven simulation context under various
memory management policies, and their performance indices were com
pared with those produced under the same policies by the real string. These
comparisons are discussed in the following sections. Notice that string TOO is
essentially the same as the string generated in an earlier experiment
[Dutt81a].

4.1. Characterization of Artificial Strings

The program profiles of all twelve artificial strings were obtained. The
program profile for the real string is shown in Appendix B. Two statistics are
listed in Table 4.1 for comparisons : the total number of distinct pages used
in each string, and the coefficient of resilience. The number of distinct pages
used in T02, T12, TT02, and TT12 would reach 110 if the string generated were
infinitely long. However, due to the very small probability densities at the
tail of the distribution , only a fraction of all pages are actually used in gen
erating 500,000 references.

4.2. WS policy

Artificial strings were executed under the WS policy with window size
10000 if they were generated with one T, and with window sizes 20000 and
5000 if they were generated with two T's. Their performance indices were
found to be exactly the same as those of the real string executed under the
same window size(s). This was expected, but strengthened our confidence in
the correctness of the generation programs. The results under the WS policy
with a few different window sizes for the real string are given in Table 4.2.
The working set size distribution for a window size of 10000 is reported in
Appendix C.

When generating artificial strings with two window sizes, it is of interest
to investigate the accuracy of the characterization between the two Ts used
in the generation phase. For a few intermediate window sizes, the results are
summarized in Tables 4.3, and 4.4, and 4.5. To compare the distributions of
the working set size and the interfault time with window size 10000, refer to
Appendices Cand G. Not only the first moment results are very close (within

14

15

Table 4.1

program profile

number of coefficient of
string distinct pages i resilience

TOO ' 56 0.000

T01 110 0.000

T02 80 0.000

T10 56 0.544

Til 110 0.544

T12 80 0.544

Real 110 0.544

TTOO 78 0.000

TT01 110 0.000

TT02 80 0.000

TT10 78 0.544

TT11 110 0.544

TT12 80 0.544

window

size

20000
15000

10000

7500

5000

mean

wss

26.17
23.67

20.90

19.29

16.90

max

wss

78

67

56

51

45

Table 4.2

WS results for the real string.
page fault

rate
changes of

slope

525

554

619

742

1157

space time
product

1.10ES
1.07E8
1.06E8
1.14E8
1.29E8

0.000562
0.000592

0.000648

0.000770
0.00118

max

interfault time

111695
111695

111695

65292
32092

5 percent) to those of the real string, but also the distributions.

Table 4.3

string

TT**
Real

string

TT**
Real

mean

wss

19.38
19.29

mean

wss

21.05

20.90

max

wss

51

51

max

wss

56

56

WS characterization (T=7500)
changes of

slope

772

742

space time
product

1.18E8
1.14E8

Table 4.4

page fault
rate

0.000800
0.000770

WS characterization (T= 10000)
changes of

slope

613

619

space time
product

1.05E8
1.06E8

page fault
rate

0.000642

0.000648

max

interfault time

80577

65292

max

interfault time

111695

111695

string

TT**
Real

mean

wss

23.71
23.67

max

wss

67

67

Table 4.5

WS characterization (T=15000T
changes of

slope

532
554

space time
product

1.05E8
1.07E8

page fault
rate

j 0.000570
I 0.000592

16

max

interfault time

111695
111695

An intriguing result obtained in the double T case is summarized in the
following theorem. The theorem is proved in Appendix A together with the
three lemmas its proof rests upon. The basic idea is that, under wss-
preserving transformations, the six strings TT00, TT01, TT02, TT10, TTll, and
TT12 can be shown to be equivalent under the WS policy for all window sizes T
between the two window sizes used in the generation phase.

Theorem 4.1
Strings TT00, TT01, TT02, TT10, TTll, IT12 generated from two wss char
acterizations with window sizes Ts and 7^, with Ta<Tt, have the same wss
characterizations for any T such that Ts <T<Ti.

4.3. PFF policy
It is not too surprising to find that the accuracy of string TOO is quite low

under the PFF policy. The difficulty arises since, after the artificial string
manages to bring all its pages into memory, no further page faults can
occur. However, if we increase the size of the page population at the time of
selecting a new page in the string generation algorithm, we can quite ade
quately reproduce the performance of the real string under the PFF policy.
Using double T generation produces a very good accuracy also. This
encouraging result is due in part to the similarity between the WS and PFF
policies in their dynamic and adaptive allocation of memory to processes.
The results are summarized in Table 4.6. More detailed results can be found
in Appendices E and I.

4.4. LRU policy
The performance of all artificial strings under LRU differs significantly

from that of the real string. Even making various modifications to the origi
nal simple generation algorithm, the comparison still fails to come close. In
the simulation, also the LRU stack distance distribution is obtained. This dis
tribution for the real string is given in Appendix D. The probability dt of
referencing the top of the stack is reported in Table 4.7. One reason for the
inaccuracy is that the value of the parameter m, the number of page frames
allocated, used in the LRU environment is not appropriate. The page fault
rate produced with a memory allocation of 21 page frames was more than
twice that produced by the WS policy with window size 10000. It is clear that
some of the assumptions in Denning*s paper [Denn72a] are violated. The sta-
tionarity of the reference string is probably a most unrealistic assumption in
this experiment Similar findings were also reported in the literature
[Smit76a].

A new value of parameter m was obtained by trying to match the meas
ured page fault rate of the real string under the WS policy with window size

17

Table 4.6

PFF characterization (1= 1543} •

string
mean max changes of space time page fault max

wss wss slope product rate interfault time

TOO 1 55.50 56 56 4.30E7 0.000112 490024

TOl 1 20.97 67 318 1.02E8 0.000648 111695

T02 1 26.16 64 260 8.83E7 0.000528 111695

TIO 55.5 56 56 4.32E7 0.000112 490024

Til 20.97 67 318 1.02E8 0.000648 111695

T12 1 27.68 64 255 8.89E7 0.000516 111695

Real I 20.71 67 417 1.17E8 0.000842 80339

TTOO 21.91 67 381 1.14E8 0.000776 101010

TTOl 20.63 67 413 1.18E8 0.000848 80399

TT02 20.93 67 409 1.18E8 0.000836 80399

TTIO 21.91 67 381 1.14E8 0.000776 101010

TTll 20.63 67 413 1.18E8 0.000848 80399

TT12 20.63 67 412 1.18E8 0.000846 80399 1

Table 4.7

LRU Characterization m=21)

string
page fault

rate

max

interfault time

space time
product

di
(percent)

TOO 0.217 111834 &28E10 0.0

TOl 0.217 111695 2.28E10 0.0

T02 0.217 111695 2.28E10 0.0

T10 0.100 111834 1.05E10 54.4

Til 0.100 111695 1.05E10 54.4

T12 0.099 111695 1.04E10 54.5

Real 0.00146 111416 1.63E08 54.4

TTOO 0.130 111702 1.36E10 0.0

TTOl 0.130 111563 1.36E10 0.0

TT02 0.130 111563 1.36E10 0.0

TT10 0.0605 111702 6.36E09 54.4

TTll 0.0606 111563 6.37E09 54.4

TT12 0.0601 111563 6.32E09 54.4

10,000 references. This new value turned out to be 31. The performance
indices obtained from the LRU policy with the new m are given in Table 4.8.
There is almost a one order of magnitude improvement in the accuracy of
the artificial string with parameter m equal to 31 as shown in Table 4.9. How
ever, the accuracy is still unsatisfactory. These artificial strings cannot be
used in LRU-related experiments reliably.

18

Table 4.8

LRU characterization fm=31^

string
page fault

rate

max

interfault time

space time
product (percent)

TOO

TOl
T02
no
Til
T12

0.00990

0.0102
0.0101

0.00476

0.00502

0.00504

175482

111695
111698

175482

111695
111765

1.55E9
1.59E9
1.58E9
7.54E8

7.94E8
7.96E8

0.0

0.0

0.0

54.4

54.4

54.5

Real 0.000670 175392 1.19E8 54.4

TTOO
TTOl
TT02
TTIO
TTll
TT12

0.00896
0.00913

0.00908

0.00439
0.00456

0.00454

175392

111695

111695
175392
111695

111695

1.40E9
1.43E9
1.42E9
6.96E8
7.23E8

7.20E8

0.0

0.0

0.0

54.4
54.4

54.4

string

TOO

TOl
T02
TIO

Til
T12

TTOO
TTOl

TT02
TTIO
TTll
TT12

Table 4.9

Ratio of LRU performance indices
space time product

(artificial/real)
page fault rate
(artificial/real)

m=21

148.63

148.63
148.63

68.49

68.49

67.81

89.04

89.04

89.04

41.44

41.51

41.16

m=31

14.78
15.22
15.07

7.10

7.49
7.52

13.37

13.63

13.55
6.55

6.81

6.78

m=21

139.88

139.88

139.88
64.42

64.42

63.80

83.44

83.44

83.44

39.02

39.08

38.77

m=31

13.03
13.36

13.28
6.34

6.67

6.69

11.76

12.02
11.93
5.85

6.08

6.05

CHAPTER 5

Conclusions

5.1. Choices Among Available Options
Based on the outcome of the experiment, one of the available strategies

to generate an artificial string can be chosen. An optimized version of the
generation program, without statistics gathering, is expected to run twice as
fast as the version we have used to gather statistics such as program
profiles. The tradeoff among the possible choices has two aspects : accuracy
and complexity. Amore sophisticated strategy than the simplest one should
definitely be selected if performance indices are unacceptabiy inaccurate
without it. Such a strategy should also be incorporated into the generation
algorithm if it adds very little complexity to the implementation and to the
cost of the generation phase, but gives reasonable returns in the increased
accuracies of some performance indices.

5.1.1. WS policy
Since the accuracy of the double T based generative model is practically

Independent of which strategies are chosen, it is clear that simplicity is the
primaryconcern. TTOO could be a reasonable candidate; however, TTIO has a
much smaller storage requirement due to its much higher coefficient of resi
lience. Single T generation is not considered here because of the clear
advantage of double Tgeneration in terms ofstability and reliability.

5.1.2. PFF policy
Double T generation provided acceptable results even in the PFF policy

case. It is clear that taking into account the number of distinct pages and
using them in a FIFO order when a new page is needed is very cost-effective.

5.1.3. LRU policy
The results from LRU experiments were not very satisfactory, but we

should not expect that a WS-based approach for string generation will
automatically provide a good accuracy under LRU without requiring some
guidance for generating LRU-oriented strings. Even in this case, double T
generation with the minimum number of pages is the most cost-effective
solution among those studied in this report.

5.1.4. Summary considerations

All things considered, a double T generation algorithm is undoubtedly a
better choice than any single T generation algorithm. The coefficient of resi
lience can be incorporated to minimize storage requirements and improve
the accuracy in a non-WS environment. At the same time, having the
artificial string reference the same number of distinct pages as the real one
is also very beneficial.

19

20

In summary, the TTll strategy should be used. Various results for the
artificial string TTll can be found in Appendices F through I. Making a spe
cial effort to fit the string profile to that of the real string is not worthwhile
with respect to the performance indices we are interested in.

5.2. Future Research

In order to improve the accuracy of the model in an LRU environment,
incorporating into the algorithm the first order properties of LRU behavior
may prove to be useful. For instance, including more than one stack dis
tance probability, e.g., dg and dg, in the generation phase of the algorithm
may shape the artificial string to be more LRU-like.

With single T or double T generation of artificial strings, we could define
an acceptable interval for a WS characterization as the interval of window
sizes in which the indices measured under the WS policy are within 5 percent
of the real string values. A major difficulty of an approach of this kind is that
we do not know whether the deviation or error of the model as a function of
the window size is concave or convex. The exhaustive exploration of the
error curve is not a very attractive approach.

Along with the notion of the acceptable interval for a WS characteriza
tion, we could introduce a similar notion for the distributions of performance
indices. For example, the Chi-square test at some level of significance could
be used to compare the working set size distributions or the interfault time
distributions.

The obvious extension of the double T generation approach is a triple T
generation algorithm. With three reasonably spaced window sizes, it is plau
sible that not only the length of the acceptable interval will increase, but also
the model's accuracy in terms of first moment results as well as of distribu
tions. However, it is not known whether the further gains in model accuracy
will justify the increase in the complexity of the generation algorithm.

BIBLIOGRAPHY

[Bril75a]
D. R Brillinger, "Time Series : Data Analysis and Theory," Holt, Rinehart,
and Winston, Inc., 1975.

[Chu 76a]
W. W. Chu and H. Opderbeck, "Program Behavior and the Page Fault Fre
quency Replacement Algorithm," Computer 9, November 1976, pp. 29-38.

[Denn68a]
P. J. Denning, "The Working Set Model of Program Behavior," CACM Vol.
11 No. 5, May 1968. pp. 323-333.

[Denn72a]
P. J. Denning and S. C. Schwartz, "Properties of the Working Set Model"
CACM Vol. 15 No. 3, March 1972, pp. 191-198.

[Dutt81a]
C. R. Dutt, "Dynamic Characterization and Reproduction of Program
Memory Consumption with Working-Set-Based Generative Model,"
Master's Report, University of California at Berkeley, August 1981.

[Ferr76a]
D. Ferrari, "The Improvement of Program Behavior," Computer 9,
November 1976, pp. 39-47.

[Ferr81a]
D. Ferrari, "Characterization and Reproduction of the Referencing
Dynamics of Programs," Performance '81, F. Kylstra, Ed., North-Holland,
Amsterdam, November 1981, pp. 363-372.

[Ferr81b]
D. Ferrari, "A Generative Model of Working Set Dynamics," Proc. of the
Sigmetrics Conference on Measurement and Modeling on Computer Sys
tems, 1981, pp. 52-57.

[Ferr82a]
D. Ferrari, "Existence Theorem for 2-T Generation," private communica
tion, January 1982.

[Lee 82a]
T. P. Lee, "Properties of Flat-faults in Working Set Model," PROGRES
Report, Computer Science Division, University of California at Berkeley,
to appear.

[Matt70a]
R L. Mattson, J. Gescei, D. R., Slutz, and I. L Traiger, "Evaluation Tech
niques for Storage Hierarchies," IBM Syst. J., 9, 2, 1970, pp. 79-117.

[Smit76a]
A. J. Smith, "A Modified Working Set Paging Algorithm." IEEE TC. C-25,
September 1976, pp. 94-101.

21

22

[Spir77a]
J. R Spirn, "Program Behavior : Models and Measurements," Elsevier,
New York, 1977.

APPENDIX A

Theorem Proofs

Theorem 3.1

If S = Si • • • sn is a wss string obeying the conditions of Theorem 2.1 for
window size T, then the extended string Sj • • • snsn • • • sn of length n + T
satisfies the conditions of Theorem 2.1.

proof:

If we extend the wss sequence by adding T values all equal to that of the
working set size at time n, the sequence we obtain is still a bounded
positive continuous string with parameter T. This is trivial, since all
three conditions in Definition 2.1 are satisfied. Specifically,

(0 *!=!
(ii) 0<Si^T for l-si^n +7*
(ii * '(iii) ta-Si-jl <, 1 for Z^i^n +T

Furthermore, for n +T^t>n, d\ is 0 and therefore o\<st in this range
also. By Theorem 2.1, this theorem is thus proved.

Theorem 3.2

Given two wss strings Si=six •• •sln and S2=s2l • ••s^ obeying the con
ditions of Theorem 2.2 with window sizes Ti and T2 respectively, then
there exists a a reference string R of length n having wss characteriza
tions Sj and Sg with window sizes Tx and T2 respectively which is gen
erated by the extended wss strings six' ' • SinS\n' • •sx of length n+7*!
ands2l • • • s2ns2n • • • s2n of lengthn +TY

proof:

Each extended wss sequence individually satisfies the properties
referred to in the proof of Theorem 3.1. The S^S2 relationship holds no
matter how much longer both are extended. Now, let us verify the three
properties in Definition 2.5.
Properties (i) and (ii) hold (furthermore, they need not be satisfied for
t>n).
Property (iii) holds if for all t s^s^-1 and sw _r SMlt+r ^ ^ implies
the existence of a unique ke(t,t +Ti-T2]. such that s2b=s2u +1 and

h *-*l

Property (iii) is not satisfied in general. In particular, it may not be
satisfied when the wss characterization with the smaller window size has
a decrease at some t>n-T1+T2 while the extended wss characterization
with the larger window size remains unchanged at t +7*1—T2>n.
However, by examining the generation process more carefully, we could

23

24

imagine that the condition implied in property (iii) is satisfied at time
k=t +TX-T2 if there is no such unique ke(t,t +Ti~T2], that is, if there is
no increase in wss for S2 at time k. In essence, we imagine that there is
a wss increase for S2 at time k. Notice that this could only occur at
times greater than n because Jc=t+Ti-T2>n. This slightly 'modified*
extension rule has the same effect as the original extension rule to the
page deadline requirement update process and the selection process for
pages before time n +1. Only at times greater than n, there may exist
problem in generating reference string with the original extension rule.
For the purpose of generating n references by extending both wss char
acterizations by 7*1 references with values all equal to those of the work
ing set sizes at time n respectively, this extended scheme would suffice.

Before Theorem 4.1 is proved, it is necessary to introduce one definition
and three lemmas.

Definition A. 1
String S is said to be wss-equivalent to string R in interval I if it has the
same working set size as R for any T€l and for all t.

Lemma A. 1
The relation of wss-equivalence forms an equivalence class.

proof :

The reflexive and symmetric properties hold for obvious reasons. The
transitive property holds since the equality relationship between work
ing set sizes is transitive. Specifically,

Wi(T,t)=Wz(T,t) andwz(T,t)=wz(T,t) implies tu^T,t)=wz(T,t)

Lemma A.2
Let strings S and R be generated each from two wss characterizations
with window sizes Ta and Tt, with Ts<Ti. Furthermore, let the algo
rithms by which S and R are generated differ only in their treatment of
the references at the times when both wss characterizations contain wss
increases. Then, strings S and R are wss-equivalent in [l, T{).

proof:

Without loss of generality, R is the string to which the Si's are converg
ing. We shall construct an arbitrary large number of wss-equivalent
strings Sj' for i^O in interval [l,7\), where each string Si has the same
prefix of length i as R Define 50 = S. Furthermore, assume that
re[l.7i). that is, T<Tt. The following proof is by induction.

50 has the same prefix of length 0 (null prefix) as R and since S and 50
are the same, they are obviously wss-equivalent. Assume that S* and is
wss-equivalent to St-ii hence, by Lemma A.1, it will be wss-equivalent to
all S^s with i<Jct including S.

If both the given wss characterizations are not increasing at time fc+1.

25

then the same page is selected for both Sk and R by assumption and
because of the fact that they have the same prefix of length k. In this
case, we set Sk+i = Sk, and Sj.+i is obviously wss-equivalent to Sk.

If both the given wss characterizations are increasing, different new
pages may be selected from the joint external queue. Assume that
string R has a reference 'y' and string Sk has a reference *x' at time
fc +1. If they happen to be the same, we can set Sk+i=Sk as in the previ
ous case. If 'x* is different from 'y', the new string S^+i is constructed
as follows : Sjg^ is the same as Sk except that, for t>k the page names
'x* and 'y' are interchanged. We have to show that Sk¥X is wss-equivalent
toSj..

For t^k, wk+i(T.t)=wk(T,t) since the strings have the same prefix.

For t&k + T, Wk+iiT,t)=wk(T,t) since the working set with window size T
does not contain any page which was referenced only before or at k.
Interchanging the names of 'x' and *y' does not change the working set
size.

For the k + T>t>k case, we know that 'x' cannot appear anywhere
between k- Tt +1 and k. Since f<7,i, 'x* cannot appear anywhere between
fc-T+1 and k. Now, before time fc +1, no *x' contributes to the working
set with window size T at time t such that k + T>t >k. Therefore, inter
changing the names 'x' and Whether 'x* appears after time Ar +1 is not
important, because all 'x's will be changed to a new name.

Thus, we have completed the induction step. Sj.M is wss-equivalent all
the way back to S and at the same time has the same prefix of length
A: +l as R For any given n, we can construct such Sn, and, by Definition
A.1, R and S are wss-equivalent in [1,7^).

Lemma A. 3

Let strings S and R be generated each from two wss characterizations
with window sizes 7^ and Tlt with Ts<Tt. Furthermore, let the algo
rithms by which S and R are generated differ only in their treatment of
the references at the times when both wss characterizations do not
increase. Then, strings S and R are wss-equivalent in (Ts,-).

proof :

Without loss of generality, R is the string to which the Si's are converg
ing. We shall construct an arbitrary large number of wss-equivalent
strings Si' for i^O in interval (Ts «), where each string Si has the same
prefix of length i as R Define' S0 = S. Furthermore, assume that
Tz(Tat<*>), that is, T>TS. The following proof is by induction.

S0 has the same prefix of length 0 (null prefix) as R and since S and S0
are the same, they are obviously wss-equivalent. Assume that Sk and is
wss-equivalent to Sk-i', hence, by Lemma A.1, it will be wss-equivalent to
all Si's with i<kt including S.

If either the given wss characterizations increases at time k +1, then the

26

same page is selected for both Sk and R by assumption and because of
the fact that they have the same prefix of length k. In this case, we set
Sfc+i = Sk, and Sj.+1 is obviously wss-equivalent to Sk.

If both the given wss characterizations do not increase, different pages
may be selected from the joint candidate queue. Assume that string R
has a reference 'y' and string Sk has a reference 'x' at time k +1. If they
happen to be the same, we can set Sk+i=Sk as in the previous case. If
'x' is different from 'y'. the new string Sjb+i is constructed as follows :
Sfc+1 is the same as Sk except that, for t>k the page names 'x' and 'y'
are interchanged. We have to show that Sk+i is wss-equivalent to Sk.

For t^k, wki.i(T,t)=wk(T,t) since the strings have the same prefix.

For fszk +T, wk+i(T,t)=wk(T,t) since the working set with window size T
does not contain any page which was referenced only before or at k.
Interchanging the names of 'x* and 'y' does not change the working set
size.

For the k +T>t>k case, let us first show that y€Wk(Ts,t) for k + Ta^t>k.
This is true because 'y' is a candidate page selected by T, but not by Sk
at time Jb+1. Therefore, 'y' has to appear in any window of size Ts that
covers time Jfe +1. In other words, the page Y cannot be separated by
more than Ts time. By assumption. T>TS, we have containment rela
tionship :

Wk{T9,t) C Wk(T,t)
Therefore, for k +Ta?zt>k, yzWk(T,t). For k + T>t>k + Ta case, we know
that the window would cover from time A: +2 to time k +rs-l in which *y'
has to show up because 'y' is a candidate page that is not referenced at
time Jfe+1 by Sk. Hence, we know for A: +r>*>A:, yzWk(T,t). If 'y' is
guaranteed to exist, and we know also that 'x' exists, interchanging
these two names will not affect the working set size.

Thus, we have completed the induction step. Sk+i is wss-equivalent all
the way back to S and at the same time has the same prefix of length
jfe +1 as R For any given n, we can construct such Sn, and, by Definition
A.1, R and S are wss-equivalent in (Ta.«>).

Theorem 4.1
Strings TTOO, TTOl. TT02, TTIO, TTll, TT12 generated from two wss char
acterizations with window sizes Ta and Tt, with Ts<Tt, have the same wss
characterizations for any T such that Ts <T<Ti.

proof:

Algorithms that generate strings TTOO and TTIO satisfy the assumptions
of Lemma A.3. Hence, strings TTOO and TTIO are wss-equivalent in
(rs.«). in particular, in (Ta,Ti). Algorithms that generate strings TTOO,
TTOl. and TT02 satisfy the assumptions of Lemma A.2. Hence, strings
TTOO, TTOl. TT02 are, by Lemmas A.2 and A.1, wss-equivalent in [l.fi), in
particular, in (Ts,Ti). A similar argument can be repeated to strings
TTIO, TTll, and TT12. Then, by Lemma A.1, the six strings are all wss-

ytt'W%'.:%!TV

27

equivalent in (Ts, Tt).

APPENDIX B

Program Profile of the Real String

Total number of page references : 500000
Total number of changes : 227827
Coefficient of resilience : 0.544
Total number of distinct pages : 110

program profile
page no. count cumulative %

1304 125782 25.2 ••♦•••••••

1291 101775 45.5 ••••••••••
1246 38697 53.3 ••••••••♦•

1292 32379 59.7 ••••••••••

1305 22364 64.2 •••••••••

1278 20333 68.3 •••••••••

1212 11885 70.6 •••••

1245 8722 72.4 ••♦•

1244 8087 74.0 ••••

1208 6842 75.4 •••

1259 5784 76.5 •••

1294 5662 77.7 •••

1211 5180 78.7 •♦•

1272 5025 79.7 ••

1282 4613 80.6 ••

1249 4349 81.5 ••

1222 4320 82.4 ••
1274 3984 83.2 •♦

1223 3950 83.9 ••

1219 3861 84.7 ••

1280 3692 85.5 ••

1216 3531 86.2 ••

1250 3352 86.8 ••
1285 3188 87.5 ••

.1297 3045 88.1 ••
1224 2757 88.6 ••
1217 2470 89.1 •

1215 2390 89.6 •

1287 2349 90.1 •

1221 2263 90.5 •

1220 2255 91.0 •

1218 2233 91.4 •

10 100.0

28

APPENDIX C

WS Results for the Real String

STATISTICS FOR real.string
Total of 500000 references with window size 10000

Total no. of slope changes: 819
Space-Time product: 1.086510e+08

Mean working set size: 20.90
Maximum working set size: 56

rs-size count

1 1

2 2

3 17

4 5

5 98

6 4903

7 29411

8 6405

9 20625

10 32866

11 14164

12 9177

13 8746

14 10443

15 160379

16 4666

17 7587

18 9295

19 2082

20 2890

21 1272

22 1397

23 10290

24 387

25 1952

26 33%%

27 2797

28 13569

29 16825

30 4207

31 6540

wcridng set size distribution
cumulative %

0.0 •

0.0 •

0.0 •

0.0 •

0.0 ♦

1.0 ••

8.9 ••••••••••

8.2 ••

12.3 •••••••

18.9 •••••••••♦•

21.7 •••••

23.5 ♦••

25.3 •••

27.4 •••*

59.5 •••<

60.4 ••

61.9 •••

63.8 •••

64.2 •

64.8 •

65.0 ♦

65.3 •

67.4 •••«

67.4 •

67.B •

68.5 ••

69.0 •

71.8 •••«

75.1 •••«

76.0 ••

77.3 •••

29

ws-size count

32 12039

33 9055

34 8371

35 9729

36 10199

37 2850

38 2415

39 6281

40 7417

41 4160

42 3654

43 5741

44 2748

45 5251

48 1350

47 1750

48 2872

49 3226

50 3514

51 2569

52 3613

53 2499

54 1671

55 820

56 26

working set size distiibutian
cumulative %

79.7

81.5

83.2

65.1

87.2

87.7

68.2

89.5

90.9

91.8

92.5

93.7

94.2

95.3

95.5

95.9

96.4

97.1

97.8

96.3

99.0

99.5

99.8

100.0

100.0

•••

Page fault rate: 6.480000e-04

Mean time between faults : 1543.21

Total page faults: 324
Maximum interfault time : 111895

time count

0+ 159

200+ 62

400+ 13

600+ 11

600+ 9

1000+ 9

1200+ 6

1400+ 3

1600+ 2

1800+ 3

2000+ 4

2200+ 0

2400+ 2

interfault time distribution

cumulative %

49.1

68.2

72.2

75.6

78.4

81.2

83.0

84.0

84.6

85.5

88.7

86.7

87.3

30

time count

2800+ 4

2800+ 3

3000+ 3

3200+ 2

3400+ 1

3600+ 0

3800+ 4

4000+ 0

4200+ 2

4400+ 1

4600+ 3

4800+ 0

5000+ 1

5200+ 1

5400+ 1

5600+ 3

5600+ 0

6000+ 0

6200+ 0

6400+ 0

6600+ 0

6800+ 0

7000+ 0

7200+ 0

7400+ 0

7600+ 1

7600+ 0

8000+ 0

8200+ 0

8400+ 0

8600+ 1

8800+ 0

9000+ 0

9200+ 0

9400+ 0

9600+ 0

9600+ 10

Interfault time distribution

cumulative %

88.6

89.5

90.4

91.0

91.4

91.4

92.6

92.6

93.2

93.5

94.4

94.4

94.8

95.1

95.4

96.3

96.3

96.3

96.3

96.3

96.3

96.3

96.3

96.3

96.3

96.6

96.6

96.6

96.6

96.6

96.9

96.9

96.9

96.9

96.9

96.9

100.0

31

APPENDIX D

LRU Results for the Real String

STATISTICS FOR real.string
Total of 500000 references with 21 pages allocated in LRU stack
Space-time product: 1.633800e+08

Page fault rate: 1.456000e-03

Mean time between faults : 686.81
Total page faults: 728
Maximum interfault time : 111416

Interfault time distiibution

time count cumulative %

0+ 495 68.0

200+ 99 81.6

400+ 51 88.6

600+ 19 91.2 •*

600+ 15 93.3 •«

1000+ 14 95.2 «*

1200+ 7 96.2 *

1400+ 5 96.8 •

1600+ 5 97.5 •

1800+ 5 98.2 •

2000+ 2 98.5 •

2200+ 1 98.6 *

2400+ 0 98.6 •

2600+ 1 98.8 *

2800+ 0 98.8 •

3000+ 0 98.8 •

3200+ 0 98.8 •

3400+ 1 98.9 #

3600+ 1 99.0 •

3800+ 0 99.0 •

4000+ 0 99.0 •

4200+ 0 99.0 •

4400+ 0 99.0 •

4600+ 0 99.0 •

4600+ 0 99.0 •

5000+ 0 99.0 •

5200+ 0 99.0 •

5400+ 0 99.0 •

5600+ 0 99.0 •

5800+ 0 99.0 •

6000+ 0 99.0 *

6200+ 0 99.0 ♦

6400+ 0 99.0 ♦

6600+ 0 99.0 *

6600+ 0 99.0 *

7000+ 0 99.0 •

7200+ 0 99.0 •

7400+ 0 99.0 •

32

33

Interfault time distribution

time count cumulative %

7600+ 0 99.0

7800+ 0 99.0

8000+ 0 99.0

8200+ 0 99.0

8400+ 0 99.0

8800+ 0 99.0

8800+ 0 99.0

9000+ 0 99.0

9200+ 0 99.0

9400+ 0 99.0

9600+ 0 99.0

9600+ 7 100.0
•

stack distance distribution

distance count cumulative %

1 272173 54.4

2 155878 85.6

3 41061 93.8

4 12054 96.2 •••

5 6690 97.6 ••

6 4978 98.6 •

7 1857 98.9 •

8 1025 99.1 •

9 721 99.3 •

10 604 99.4 •

11 382 99.5 •

12 369 99.6 •

13 238 99.6 •

14 234 99.7 •

15 315 99.7 •

16 134 99.7 *

17 126 99.8 «

18 132 99.8 •

19 99 99.8 »

20 112 99.8 •

21 90 99.9 •

as 728 100.0 •

APPENDIX E

PFF Results for the Real String

STATISTICS FOR real.string
Total of 500000 references with interfault threshold 1543
Space-Time product: 1.172574e+08
Total no. of slope changes: 417

Mean memory occupancy: 20.71
Maximum memory occupancy: 67

ws-size count

1 1

2 2

3 17

4 5

5 98

6 3

7 20794

8 30024

9 36636

10 20145

11 6800

12 3794

13 16754

14 13533

15 84027

16 8166

17 43665

18 544

19 1030

20 692

21 4139

22 772

23 63346

24 4656

25 4719

26 11199

27 11638

28 6983

29 17341

30 4127

31 5092

32 6250

33 7855

34 4711

35 2278

36 12380

37 3865

38 802

39 2034

40 4440

working set size distribution
cumulative %

0.0

0.0

0.0

0.0

0.0

0.0

4.2

10.2

17.5

21.5

22.9
23.7

27.0

29.7

46.5

48.2

56.9

57.0

57.2

57.3

56.2

58.3

71.0

71.9

72.9

75.1

77.4

78.8

82.3

83.1

84.1

85.4

87.0

87.9

88.4

90.8

91.6

91.8

92.2

93.1

•••

♦ •••

••♦♦

• •«««

»*

34

ws-size count

41 3819

42 1376

43 900

44 2149

45 4259

46 731

47 420

48 210

49 3567

50 1162

51 81

52 61

53 6832

54 12

55 357

56 420

57 619

58 44

59 1026

60 383

61 30

62 43

63 90

64 8

65 557

66 11

67 5472

-working set size distribution
cumulative %

93.8

94.1

94.3

94.7

95.6

95.7

95.8

95.8

96.6

96.8

96.8

96.8

98.2

98.2

98.3

96.3

98.5

98.5

98.7

98.8

96.8

98.8

98.8

98.8

98.9

98.9

100.0

•••

• ••

»••

••••

Page fault rate: 8.420000e-04

Mean time between faults : 1187.65
Total page faults: 421
Maximum interfault time : 80399

time count

0+ 206

200+ 77

400+ 29

600+ 18

800+ 17

1000+ • 8

1200+ 6

1400+ 2

1600+ 1

1800+ 6

2000+ 5

2200+ 1

2400+ 6

2600+ 7

2800+ 2

3000+ 1

3200+ 3

3400+ 2

3600+ 0

3600+ 4

4000+ 0

interfault time distribution
cumulative %

48.9 ••••••••••••••••1

87.2 ••••• ••<
74.1 ••••••••

78.4 •••♦•

82.4 •••••

84.3 ••

85.7 •♦

88.2 •

88.5 •

87.9 ••

89.1 ••

89.3 ♦

90.7 ••

92.4 ••

92.9 •

93.1 •

93.8 •

94.3 •

94.3 •

95.2 •

95.2 •

35

interfault time distribution
time count cumulative %
4200+ 2 95.7 •

4400+ 0 95.7 •

4600+ 1 96.0 •

4800+ 1 96.2 •

5000+ 0 96.2 ♦

5200+ 1 98.4 •

5400+ 1 96.7 •

5600+ 2 97.1 •

5800+ 0 97.1 •

6000+ 0 97.1 •

6200+ 0 97.1 •

6400+ 0 97.1 •

6600+ 0 97.1 •

6800+ 1 97.4 •

7000+ 0 97.4 •

7200+ 1 97.6 •

7400+ 0 97.6 •

7600+ 0 97.6 •

7800+ 0 97.6 •

8000+ 0 97.6 •

6200+ 0 97.6 •

8400+ 0 97.6 •

8600+ 1 97.9 •

8800+ 0 97.9 •

9000+ 0 97.9 •

9200+ 0 97.9 •

9400+ 0 97.9 •

9600+ 0 97.9 •

9600+ 9 100.0 •

36

APPENDIX F

Program Profile of String TTll

During string generation process,
Combined page select state distribution :
sO : 498599 si : 309 s2 : 567 s3 : 0 s4 : 281 s5
Combined page update state distribution:
sO : 498646 si : 568 s2 : 313 s3 : 218 s4 : 0 sS

Total number of page references : 500000
Total number of changes : 228137
Coefficient of resilience : 0.544

0s6

0s6

244 s7 : 0 s8 : 0

0 s7 : 0 sS : 255

program profile
cumulative %

1.3

1.9

5.2

5.3

7.4

7.9

8.5

8.7

8.8

9.3

9.5

9.8

10.1

10.3

10.9

11.0

11.3

14.1

14.5

14.7

15.6

16.2

18.7

16.7

17.3

19.4

20.0

22.7

25.7

25.9

26.1

26.2

26.6

26.9

27.2

28.0

28.1

28.2

page no.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

count

6385

3131

16301

628

10418

2855

2552

1045

496

2871

969

1166

1798

1074

2689

784

1425

13820

2168

891

4974

2704

2507

54

2869

10855

2679

13788

14804

963

1020

522

2049

1408

1469

3927

518

482

•»**«*•*«•

•«*«•

• ••••

• •*«

• •••

• ••

37

program profile
page no. count cumulative %

39 622 28.3 •

40 1873 28.7 •••

41 1721 29.0 •«•

42 2705 29.6

43 826 29.7 ••

44 28

11456

29.7

32.0

•

45

46 2873 32.6 «•«*«

47 1185 32.8 •*

46 797 33.0 ••

49 4411 33.8

50 16624 37.2

51 13421 39.8

52 1976

9235

40.2

42.1

♦•••

53

54 743

12227

42.2

44.7

••

55

56 2691 45.2 •«•••

57 728 45.4 ••

58 1155 45.6 ••

59 1840 46.0 •«•

60 1097 46.2 •«

61 4006 47.0

62 2664 47.5 •••••

63 2597 48.0 ••*«

64 5962 49.2

65 13633 52.0

66 649 52.1 •

67 3766 52.8

68 115 52.9 •

69 1558 53.2 •*•

70 1598 53.5 «•*

71 504 53.6 •

72 1097 53.8 •♦

73 169 53.8 •

74 1850 54.2 •««

75 1357 54.5 •*«

76 12561 57.0

77 5892 58.2

78 5096 59.2

79 13219 61.8

80 5444 62.9

81 10509 65.0

82 7932 66.6

83 1442 66.9 «•«

84 5738 68.1

85 3171 68.7 ««•••

88 1232 68.9 ••

87 5871 70.1

88 11533 72.4

89 544 72.5 •

90 140 72.6 •

91 9474 74.4

92 12877 77.0

93 803 77.2 ••

94 9475 79.1

95 790? 80.7

96 3366 81.3

97 3918 82.1

38

39

urogram profile
page no. count cumulative %

98 32927 88.7

99 5332 89.8

100 5225 90.8

101 4087 91.6

102 695

16438

91.8

95.1

•*

103

104 531 95.2 ♦

105 4848 96.1

106 2810 98.7 ••»••

107 147

11527

96.7

99.0

•

108

109 1928 99.4 •••

110 2922 100.0

APPENDIX G

WS Results for String TTll at T= 10000

STATISTICS FOR /xtra/tplee/TTll
Total of 500000 references with window size 10000
Total no. of slope changes: 613
Space-Time product: 1.052375e+08

Mean working set size: 21.05
Maximum working set size: 56

ws-size count

1 1

2 2

3 17

4 5

5 98

6 4903

7 25417

8 7889

9 20054

10 33756

11 13139

12 8104

13 11421

14 9479

15 159618

16 4953

17 8550

18 11424

19 795

20 4177

21 1272

22 1397

23 10290

24 387

25 1952

26 2655

27 1865

28 9277

29 20552

30 5659

31 6426

32 6488

33 12649

34 10388

35 7245

36 9207

37 2494

38 2002

39 11008

40 7479

working set size distribution
cumulative %

0.0 •

0.0 •
0.0 ♦

0.0 •

0.0 •

1.0

8.1

7.7

11.7

18.4

21.1
22.7

25.0

26.9

58.8

59.8

61.5

63.8

63.9

64.8

65.0

65.3

67.4

67.4

67.8

68.4

88.7

70.6

74.7

75.8

77.1

78.4

80.9

83.0

84.5

86.3

86.8

87.2

89.4

90.9

••

••••

•♦

•••

«•*•

•

•

•

•••

••••

40

ws-size count

41 4218

42 3742

43 4636

44 2801

45 8399

46 1350

47 1750

48 2872

49 3226

50 3514

51 2158

52 4024

53 2499

54 1355

55 1136

56 26

"working set size distribution
cumulative %

91.7

92.5

93.4

94.0

95.3

95.5

95.9

96.4

97.1

97.8

98.2

99.0

99.5

99.8

100.0

100.0

•♦

•••

Page fault rate: 6.420000e-04

Mean time between faults : 1557.63
Total page faults: 321
Maximum interfault time : 111695

time count

0+ 158

200+ 60

400+ 15

600+ 13

600+ 7

1000+ 11

1200+ 4

1400+ 3

1600+ 3

1600+ 4

2000+ 1

2200+ 0

2400+ 1

2600+ 4

2800+ 3

3000+ 1

3200+ 1

3400+ 3

3600+ 0

3800+ 3

4000+ 1

4200+ 3

4400+ 1

4600+ 2

4800+ 1

5000+ 0

5200+ 2

5400+ 1

5600+ 1

5800+ 0

6000+ 0

6200+ 0

interfault time distribution

cumulative %
49.2 ••••••••♦••••••♦.

C79 ,„«,„„.„„••„

72.6 •••••

76.6 •••••

78.8 ♦•♦

82.2 ••••

83.5 ••

84.4 •

85.4 ♦

86.6 ••

88.9 •

86.9 •

87.2 •

88.5 ••

89.4 •

89.7 •

90.0 •

91.0 •

91.0 •

91.9 •

92.2 •

93.1 •

93.5 •

94.1 •

94.4 •

94.4 •

95.0 ♦

95.3 •

95.6 •

95.6 •

95.6 •

95.6 •

41

interfault time distribution
time count cumulative %
6400+ 0 95.6 •

6600+ 0 95.6 •

6600+ 2 96.3 •

7000+ 0 96.3 •

7200+ 0 98.3 •

7400+ 0 96.3 •

7600+ 0 98.3 •

7800+ 0 98.3 •

8000+ 0 98.3 •

8200+ 0 96.3 •

8400+ 0 96.3 •

8600+ 1 96.6 •

8800+ 0 98.8 •

9000+ 0 96.6 •

9200+ 0 96.6 •

9400+ 0 96.6 •

9600+ 0 96.6 •

9600+ 11 100.0 •••♦

42

APPENDIX H

LRU Results for String TTll

STATISTICS FOR /xtra/tplee/TTl 1
Total of 500000 references with 21 pages allocated in LRU stack
Space-time product: 6.370350e+09

Page fault rate: 6.057000e-02

Mean time between faults : 16.51
Total page faults: 30285
Maximum interfault time : 111563

time count

0+ 30123

200+ 67

400+ 17

600+ 12

800+ 10

1000+ 7

1200+ 6

1400+ 5

1600+ 5

1600+ 5

2000+ 3

2200+ 1

2400+ 1

2600+ 2

2800+ 1

3000+ 2

3200+ 0

3400+ 0

3600+ 1

3600+ 2

4000+ 0

4200+ 0

4400+ 0

4600+ 1

4600+ 2

5000+ 0

5200+ 1

5400+ 0

5600+ 2

5800+ 0
6000+ 0

6200+ 0

6400+ 0

6600+ 0

6800+ 0

7000+ 0

7200+ 0

7400+ 0

interfault time cdstribution
cumulative %

99.5

99.7

99.7

99.8

99.8

99.8

99.9

99.9

99.9

99.9

99.9

99.9

99.9

99.9

99.9

99.9

99.9

99.9

99.9

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

43

interfault time distribution

time count cumulative 7,
7600+ 0 100.0

7800+ 0 100.0

8000+ 0 100.0

8200+ 0 100.0

8400+ 0 100.0

8600+ 1 100.0

6600+ 0 100.0

9000+ 0 100.0

9200+ 0 100.0

9400+ 0 100.0

9600+ 0 100.0

9800+ 8 100.0

stack distance distribution

distance count

271863

cumulative %

54.41

2 3423 55.1 •

3 713 55.2 •

4 1440 55.5 ♦

5 10968 57.7 «**

6 67276 71.1

7 34816 78.1

8 12046 80.5 •••

9 6954 81.9 •♦

10 5846 83.1 ••

11 2987 83.7 *

12 1349 83.9 •

13 3650 84.7 •

14 8886 86.4 ••

15 13055 89.1 •••

16 1874 89.4 •

17 3221 90.1 •

18 2727 90.6 •

19 3934 91.4 •

20 4046 92.2 •

21 8641 93.9 *•

oo 30285 100.0

44

APPENDIX I

PFF Results for String TTll

STATISTICS FOR /xtra/tplee/TTl 1
Total of 500000 references with interfault threshold 1543
Space-Time product: 1.183963e+08
Total no. of slope changes: 413

Mean memory occupancy: 20.63
Wa-rimiim memory occupancy: 67

working set size distribution *

ws-size count cumulative %

1 1 0.0 •

2 2 0.0 •

3 17 0.0 •

4 5 0.0 *

5 98 0.0 «

6 3 0.0 •

7 20794 4.2

8 30416 10.3

9 36244 17.5

10 22451 22.0

11 7402 23.5 teo««

12 5512 24.6 • •••

13 14113 27.4

14 11161

83607

29.6

46.415

16 6604 48.1 •«••••

17 43646 56.8

18 316 56.9 •

19 402 57.0 •

20 591 57.1 •

21 3565 57.8 •••

22 625

63396

57.9

70.6

•

23

24 7977 72.2 ••***

25 5626 73.3 • •••

26 13444 76.0

27 12875 78.6

28 15311 81.6

29 4807 82.6 • ♦•

30 2536 83.1 •♦

31 4444 84.0 • ••

32 4475 84.9 • ••

33 12436 87.4

34 4602 68.3 #••

35 1850 88.7 •♦

36 13004 91.3

37 3108 91.9 • •

38 800 92.1 •

39 1465 92.4 •

40 6278 93.6 «**•

45

ws-aze count

41 1149

42 1376

43 900

44 2149

45 4259

46 731

47 420

48 210

'49 3567

50 1162

51 81

52 61

53 6832

54 12

55 357

56 420

57 619

58 44

59 1026

60 383

61 30

62 43

63 90

64 8

65 557

66 11

67 5472

working set size distribution
cumulative %

93.8 •

94.1 •

94.3 •

94.7 ••

95.6 •••

95.7 •

95.8 •

95.8

96.6

96.8

96.8

96.8

96.2

98.2

98.3

98.3

98.5

98.5

98.7

98.8

98.8

96.8

98.8

98.8

98.9

98.9

100.0

• ••

•

Page fault rate: 8.480000e-04

Mean time between faults : 1179.25
Total page faults: 424
Mayiwrmm interfault time : 80399

time count

0+ 203

200+ 82

400+ 25

600+ 15

800+ 14

1000+ 9

1200+ 8

1400+ 7

1600+ 3

1600+ 7

2000+ 4

2200+ 3

2400+ 8

2600+ 7

2800+ 2

3000+ 1

3200+ 3

3400+ 3

3600+ 0

3800+ 3

4000+ 0

interfault time distribution
cumulative %

47.9 .»♦•♦•••••••••••■

67.2 •••••••••••••••••

73.1 •••••••

76.7 ••••

80.0 ••••

82.1 •••

83.5 ••

85.1 ••

85.8 •

87.5 ••

88.4 •

89.2 •

91.0 ••

92.7 ••

93.2 •

93.4 ♦

94.1 •

94.8 •

94.8 •

95.5 •

95.5 •

46

interfault tin c

time count cumulative %

4200+ 2 96.0

4400+ 0 96.0

4600+ 1 96.2 •

4600+ 2 96.7 •

5000+ 1 96.9 •

5200+ 1 97.2 •

5400+ 1 97.4 ♦

5600+ 1 97.6 •

5800+ 0 97.6 •

6000+ 0 97.6 •

6200+ 0 97.6 •

6400+ 0 97.6 •

6600+ 0 97.6 •

6600+ 1 97.9 •

7000+ 0 97.9 •

7200+ 0 97.9 •

7400+ 0 97.9 •

7600+ 0 97.9 •

7800+ 0 97.9 •

8000+ 0 97.9 •

8200+ 0 97.9 •

8400+ 0 97.9 •

8600+ 1 98.1 •

8800+ 0 98.1 *

9000+ 0 98.1 •

9200+ 0 98.1 •

9400+ 0 98.1 •

9600+ 0 98.1 •

9800+ 8 100.0 •

distribution

47

	Copyright notice 1982
	ERL-82-56

