

Copyright © 1982, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

DELIGHT FOR BEGINNERS

by

B. Nye and A. Tits

Memorandum No. UCB/ERL M82/55

1 July 1982

DELIGHT FOR BEGINNERS

by

Bill Nye and Andre Tits

Memorandum No. UCB/ERL M82/55

1 July 1982

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

DEUGHT_FOR_BEGINNERS(ld) 7/1/82 DEUGHT-FORjBEGINNERS(ld)

DELIGHT For Beginners

Abstract

This writeup is meant to help new users get started on DELIGHT. DELIGHT is an in
teractive optimization-based computer-aided design system which was designed to pro
vide a friendly and flexible environment for designers working in a multitude of discip
lines. It not only serves the designer who wishes only to use it as a tool to quickly meet
his needs, but also provides a "guru" with an ideal environment for developing and test
ing new algorithms.

This writeup covers:

1 Introduction, 3

3 Getting started, • : 3

3 Typing commands, 4

4 Basic RATTLE language statements :— 5
including:

4.1 Simple unformatted output, 5
4.2 Formatted output using "printf", 5
4.3 Number conventions for post-attached units, 8
4.4 Expressions and assignments, 7
4.5 Continuation of expressions and assignments, 8
4.8 H-statements, 8
4.7 Statement blocks, 10
4.8 Separation of statements by semicolons, 11
4.9 Using "easel", "case2", ... to make a case

statement, 11
4.10 Loop statements: while, repeat-until and for, 12
4.11 Breaking out of loops with the "break"

statement, 13
and

4.12 Procedures and functions, 14

5 Interrupting RATTLE execution: hard interrupts, 17

1-

viri•: H"irri:ta.a>rattsarflttiiA«r^m^ in » unii '•..mie . .-t-Ttrft:^-

DELIGHT-FORJBEGlNNERS(ld) 7/1/82 DEUGHT_FOR_BEGINNERS(ld)

6 Catching "soft" interrupts, 18

7 Additional RATTLE input and output features, 19

8 Advanced output formatting, 22

9 Extensibility through defines, 22

10 Commonly used DELIGHT commands, 25

11 Redirection of output or echo to a file, 32

12 Graphics and plotting, • 34

13 Matop and other matrix macros, 44

14 An example: Newton Raphson iteration with graphics, 47
and

15 The Optimization Subsystem, 54
including:

15.1 An Introduction, 54
15.2 Formulating an Optimization Problem, 54

and

15.3 Running an Optimization Process. 55

The writeup ends with an

Epilogue —— 58

and

Acknowledgements. • 58

References to supplementary sources of information in the DELIGHT Reference Manual
have been included. (This writeup is actually section Id of that manual.)

.171(1 rWi :,'.'.: atli'.illlii.' rii. i Tji.^ril/.-.t.O" r:nr:-i> •!.

DEUGHT_FOR_BEGINNERS(ld) 7/1/82 DEUGHTJFOR-BEGINNERS(ld)

1 Introduction

DELIGHT is a very powerful interactive computer-aided-design system. From the
user's point of view, it is easy to learn and use, yet contains some very powerful utility
commands as well as engineering design aids.

It is hard, however, for the beginner to know where to start, and how to make the
best use of the multitude of DELIGHT commands and features. The purpose of this
DELIGHTLFOR-BEGINNERS writeup is to point out the important features for new users,
so they can get used to the main ideas of DELIGHT and start maldng good use of it
quickly. To learn more about the goals of the DELIGHT system and its use in engineer
ing design, see the paper "DELIGHT: An Optimization-Based Computer-Aided Design Sys
tem", by W.T. Nye, E. Polak, A.L Sangiovanni-Vincentelli and A.L. Tits, in the Proceed
ings of the IEEE ISCAS, Chicago, Illinois, April 1961. See also an upcoming paper in the
IEEE Proceedings.

In terminal dialogue that follows, user input has been underlined or is inboldface,
for clarity. Also, blank lines have been inserted at various places in the terminal dialo
gue to separate groups of statements, and will not appear on the terminal screen.

All references to supplementary information refer to the DELIGHT Reference Manual
from the University of California, Berkeley. The format is as in the example "See
IF_ELSE(2d)" which refers to a manual section called IF-ELSE in part d of section 2.
Another example is "See LANGUAGE_ENHANCEMENTS(A4)" which refers to part 4 of ap
pendix A,

When using DELIGHT on the UNIX operating system, there is a command, "dlman",
which may be used to obtain sections of the DELIGHT Reference Manual on the terminal
screen. For the above examples, they are obtained by typing "dlman IF_ELSE" or
"dlman LANGUAGE-ENHANCEMENTS", respectively. Typing "dlman CONTENTS" lists all
the sections of the manual which dlman knows about.

2 Getting Started

Start DELIGHT by simply typing "DELIGHT". (If this does not work, check with your
local DELIGHT guru.) The "Identifier" line that may then appear on the screen indicates
some property of the 'memfile' which DELIGHT is restoring from. Memfiles are binary
files which contain precompiled RATTLE procedures, variables, arrays, etc. which the
user will have access to. An understanding of memfiles is not needed at this point; see
the manual section CONVENTIONS(lc) for more information. After the memfile has
been read, the "Welcome to DELIGHT..." message appears followed by any other mes
sages of the day. The terminal screen may appear:

- 3

fffiiliifrilTfrHbiiUMiaiiiwi >imililiiiniftfliiirtni iiWnii'n \u\ii\fjemu&tiat&*je*iMitKagftoaaaua:Ttaa&G&s&ttMHwds&fi'

DELIGHT_FOR_BEGlNNERS(ld) 7/1/82 DELIGHT_FOR_BEGINNERS(Id)

DELIGHT

Restoring from <uemfile> ...
Identifier: Standard Optimization Memfile with Matrix Macros.

***** Welcome to DELIGHT *****
A General Purpose Interactive Computing System with Graphics

for

Optimization-Based Computer-Aided-Design of Engineering Systems
Developed by the

Optimization-Based Computer-Aided-Design Group
University of California

Berkeley, Ca. 94720.

The culmination of your startup of DELIGHT is the prompt "1>". This means that
DELIGHT is ready to accept commands from the terminal.

3 Typing Commands

Once you've seen the prompt "1>", you can type commands, which are requests that
DELIGHT do something. Try typing "date" followed by a carriage return. (As mentioned
in the introduction to this writeup, in terminal examples shown here, what you should
type has been underlined or is in boldface. Also, (l), be sure to TYPE IN ALL BLANKS
exactly as shown here, and (2), be sure to TYPE IN CAPITALS everything which is shown
here in capital letters.) The terminal should appear something like:

1> date

Date: 06/06/82 Time: 16:50:07
1>

If you make a mistake typing a command name, DELIGHT will tell you as in ei
ther of the following:

1> datee

ERROR: Ccnmand not found: "datee"
1> Date

ERROR: Ccnmand not found: "Date"
1>

i:-rm'<ii t?Bfe*'«»^*?m?wjttfctf: irawrjattii^^ .Trs&::u jntxati :•.

DELIGHT_FORJBEGINNERS(ld) 7/1/82 DELIGHT_FORJBEGINNERS(ld)

4 Basic RATTLE Language Statements

RATTLE, for RATfor Terminal language Environment, is the interactive programming
language used in all facets of the DELIGHT system. The basic features of RATTLE are
displayed here in several sections, starting first with the easiest language features. All
examples shown can (and should) be typed directly into the terminal for "hands-on" ex
perience with RATTLE and DELIGHT.

4.1 Simple Unformatted Output

The simplest way to get the value of arbitrary numeric expressions is with the
"print" statement. The "print" statement may be followed by any number of expres
sions as in the following examples:

1> print 1.3
1.300

1> print 1.3 -1.4
1.300 -1.400

1> print 1/3 sin(3.1416/2) 2**64
.3333 1.000 1.845e+19

1>

In the third example, the operator "**" stands for exponentiation. Thus, "2**64" means
2 to the power of 64.

Notice that there are exactly two expressions in the statement "print 1.3 -1.4"
(notice the space between "1.3" and "-1.4") instead of the one expression "1.3-1.4". The
rule by which DELIGHT makes this distinction is explained later in section 4.4, Expres
sions and Assignments.

4.2 Formatted Output Using "print/'

Whereas the "print" statement does not allow any control of the format of the
numbers printed, the "printf" statement does. The "printf" statement requires a quot
ed format control string followed by from 0 to 6 arguments which must be in one-to-
one correspondence with conversion specifications in the control string. The following
two examples show the output of one and then two real numbers:

tiauAtoMitoaAiiiBfatiil ;L^^iBffira«w^ftfcma*-'Wc.^.f>. '£trac^<»j»iftaifc:'ft&H^-i^

DELIGHT-FORJBEGINNERS(Id) 7/1/82 DELIGHT-FOR_BEGINNERS(Id)

1> printf '%r/n' 1/3
.3333

1> printf 'min=%r nDax=%r/n' -2**8 2**9
min=-2.560e+2 max= 5.120e+2
1>

The control string contains two types of objects: ordinary characters, which are
simply copied to the output, and conversion specifications, each of which causes
conversion and printing of the next successive argument on the line. Each conversion
specification is introduced by the character "%" and ended by one of the conversion
characters "i", "r", "c", "s", or "p". See PRINTF(3b) in the DELIGHT Reference Manual
for information on the "i", "c", "s", and "p" specifications; only the "r" conversion
specification is demonstrated here.

To output a real number, "%r" may be used as in the above examples and has a
default of 4 significant figures. You may control this by, e.g., using "%.7r" to get 7
significant figures printed to the right of the decimal point. The "/n" means output a
NEWUNE, Le., go to the next output line, at that point in the output; notice the results
of the first example below: an extra blank line has been output due to the leading "/n"
in the format control string. The second example below shows that a "/" character is
output by preceding it by another "/"; the "/" character is actually an escape charac
ter which changes the meaning of any character it precedes.

1> printf 7n A=%.6r/n B=%.2r/n* 1.0 2k/2

A= 1.000000
B= 1.00+3

1> printf 'Answer is 3//4/n*
Answer is 3/4
1>

4.3 Number Conventions for Post-attached Units

The RATTLE language supports certain metric scale factor suffixes or post-attached
units which may be attached to any number. In RATTLE, a number may be an integer
such as 12 or -44, a floating point number such as 3.14159, either an integer or floating
point number followed by an integer exponent such as le-14 or 2.65e3, or either an in
teger or a floating point number followed by one of the following scale factors, which
may be in either upper or lower case:

6 -

ftfete^lfti^flftrapgsn^iy'iiivfaw^ tinwuttKHi.-: ..^-.'•Taji L^.,:*Bi... tnn

DELIGHT_FOR_BEGINNERS(ld) 7/1/82 DELIGHT_F0R_BEG1NNERS(Id)

p = 10**-12 n = 10**-9 u = l0**-6 m = 10**-3

k = 10**3 me = 10**6 g = 10**9

Letters immediately following a number that are not scale factors are ignored, and
letters immediately following a scale factor are ignored. Hence, 10,10V, lOVOLTS, and
lOhz all represent the same number, and M, mA, MSEC, and mwatts all represent the
same scale factor. The "me" scale factor is for mega-something such as 20megavolts
(ouch!). Note that 1000, 1000.0, lOOOhz, le3, 1.0e3, Ik, lkhz and .OOlmeg all represent
the same number as the following example snows:

1> print 1000 lOOOhz le3 1.0e3 Ik lkhz .OOlmeg
l.OOOe+3 l.OOOe+3 l.OOOe+3 l.OOOe+3 l.OOOe+3 l.OOOe+3 l.OOOe+3

1>

4.4 Expressions and Assignments

Now we explain why "print 1.3-1.4" contains two expressions instead of the single
expression "1.3-1.4". This is due to the following RATTLE convention on where an ex
pression ends: Expressions end at the first blank (or at the end of the line) following
balanced parenthesis. For this definition, an expression with no parenthesis is con
sidered to have balanced parenthesis and thus ends at the first blankfollowing it. Each
of the following examples contains two expressions:

1> print (1 + 2 + 3) ((3) - (2) - (1))
6.000 0.000

1> print max(1, 1.2, -3, 99) min(1, 2, 3)
9.900e+l 1.000

1>

The functions "max" and "min" return the maximum and minimum, respectively, of any
number of numeric arguments.

Assignment statements end at the NEWLINE and have no suck parenthesis rule
(From now on, NEWLINE will be used to indicate the character at the end of a line).
Here are a few assignment statements that you can try:

;£iftk-> _«Afc-:^wir3?3fittf-::r*i.jt-«-.3!;,.ra#r*aj--.

DELIGHTJFOR-BEGINNERS(ld) 7/1/82 DELIGHT_FOR_BEGINNERS(ld)

l>x=l+2 + 3

1> y = sin(x) - cos(x)
1> print x y
6.000 -1.240

1> z000=x/y+2
1>

4.5 Continuation of Expressions and Assignments

Both expressions and assignments may be continued on the next line if they end
with a character which could not possibly legally end an expression. In particular, they
are continued if they end in any of the characters:

+ -•/.(!&
Note below that the prompt character changes to "J" after a partial statement has
been typed in but before the complete (executable) RATTLE statement has been typed.
More will be said about this later.

1> y = 1+
lj 2
1> y = max (1 . !
11 4.5.6)
1> print y+5/

U 3
8.500

1>

4.6 If-staiements

An 'if-statement' allows you to test the value of a logical expression and execute a
RATTLE statement if the logical expression is TRUE. The general form of an if-
statement is:

if logical-expression
RATTLE-stat ernent

else

RATTLE-statement

Unlike Fortran or Ratfor, the logical expression need not be surrounded by
parenthesis. The else-clause, i.e., the word "else" and the associated RATTLE statement
are

K'nii-kTfJ:&A-W»r»:^tra^*iAF.ifr^ Pr~Vd

DEUGHT_FOR_BEGINNERS(ld) 7/1/82 DEUGHT_FOR_BEGINNERS(ld)

optional; if not there and the logical expression is FALSE, execution just falls through
to the next statement.

The first "if" below is erroneous since "if" must be followed by a logical expression
(remember the balanced parenthesis rule) whereas the second two are correct state
ments. After the error, "reset" is typed to return to the normal "1>" prompt state.

On the "reset" command line below there is a comment which starts with the char
acter "#". The DELIGHTcomment convention is that anything following a "#" character
up to the end of the line is considered a comment and is discarded by the RATTLE com
piler in DELIGHT.

1> size = 50

1> if size > 0

if size > 0

ERROR(l)
lj reset

assignment

1> if (size > o)
11
U
5.

print
go
OOOe+1

size

1> if size>0

U
H
5.

print
go
OOOe+1

size

1> if size=50

11
u

print
else

size

11
5.

print
OOOe+1

-size

1>

syntax error [siz >0]
(Back to normal prompt state.)

Note above that the if-statement does not execute immediately since it is wait
ing for a possible else-clause; typing "go" forces it to execute. Of course, the else-
clause may be given, as in the last example, and no "go" will be needed.

The last example above also shows the RATTLE relational operator, "==", for
checking for equality of two quantities. The logical expression "A==B" is true if vari
able A equals variable B. Other RATTLE arithmetic, relational, and logical operators
along with their precedence are shown in the following list. The upper entries have
"higher

utensft-:i£araJ8&srttt£u4Jttmt»*.3.! -fcvrtyr- -l^tfT-.estw^ir^^ hne.t nr.c..*

DEUGHTJTOR_BEGINNERS(Id) 7/1/82 DEUGHT-FOR_BEGINNERS(ld)

precedence" than the lower: "A+B*C" is automatically grouped as "A+(B*C)" since "*"
has a higher precedence (lower numeric value) in column one of the table than "+".
Operators with the same precedence value in column one are grouped left to right:
"A*B/C" is automatically grouped as '(A*B)/C". As a final example, "a>=b|c!=d&e==f"
is grouped as "(a>=b)|((c!=d)&(e==f))".

Precedence Operator

mm

Meaning

Exponentiatic1 >n

2 0 Multiplication
2 / Division

3 + Addition

3 - Subtraction

4 <= Less than or equal to
4 < Less than

4 = Equal to
4 != Not equal to
4 >= Greater than or equal to
4 > Greater than

5 I Logical not
6 & Logical and
7 | Logical or

4.7 Statement Blocks

To make a RATTLE statement such as "if", "for", "repeat", or "while" act on more
than one statement, the statements must be surrounded by curly brackets. With if-
statements, this allows you to program the idea: "if something is true, do this group of
things". Here are a couple of if-statements which use statement blocks:

1> if (size > 0) {
u print size

u print -size

u 1
11 go
5.,OOOe+1

-5. OOOe+1

- 10

{)?i4.P&\:bt>&Pri&l.i£xtt4ia .ar.MSiSfffifil? ;:r~£itf i»?K:*v:cK r:'cx..hlB&&^Zi&\^&?fttiii.is.iiXziti-ii; i.n .\-j:u.

DELIGHT-FOR-BEGINNERS(ld) 7/1/82 DELIGHT_FORJBEGINNERS(ld)

1> if size>0 { printf 'size = %i/n' size ; print size**2 \
U go
size = 50

2.500e+3

1>

The last example shows that the RATTLE statement of the if-statement can be on the
same line as the "if", though this is not nearly as clear a programming style as the use
of indentation in all the other if-statement examples above. The semicolon in the last
example separates two statements as explained next.

4.8 Separation of Statements by Semicolons

Statements (or commands) may be separated by semicolons on the same line as
shown in the following examples:

1> print 1 ; print 3/2 ; date
1.000

1.500

Date: 06/06/82 Time: 17:09:12

1> if 5<8 \ printf 'Blah. ../n* ; x=0 ; print sin(x)]
U go
Blah...

0.000

1>

4.9 Using "easel", "case2\ ... to Make a Case Statement

By using the built-in 'case-' defines (see LANGUAGEJENHANCEMENTS(A4)) which
define "easel" as "if" and "case2", "case3", ... as "else if", you can make a case state
ment as shown in the following example:

1> x = 3

1> easel (x = 1) printf ,wnat?/n'
11 case2 (x = 2) printf 'who?/^
11 caseS (x = 3) printf 'where?/n'

- 11

ttvmrtts&ttaaa&KB^lifa

DELIGHT_FORJBEGrNNERS(Id)

11 case4
lj else
where?

1>

(x = 4)

7/1/82

printf
printf

'why?/n'
'Illegal

DELIGHT_FOR_BEGINNERS(Id)

entry: %i/n' x

This becomes a series of 'else-if's in which the logical conditions are evaluated one at a
time until one is found which is true. Then, its associated statement is executed and
the entire 'case' group is exited. If none of the logcal conditions is true then the "else"
statement, if one is provided, is executed. See IP_ELSE(2d) for an additional warning
about using if-statements in such a case statement.

4.10 Loop Statements: While, Repeat-UntH andFvr

These RATTLE statements, like the if-statemenl, take exactly one RATTLE statement
as their 'body', unless several statements are surrounded in curly brackets. Consider
the following four ways to add up the entries in a one-dimensional array. Tflfhen typing
in any of the examples in this writeup, you need not type in the comments (anything
following a "#"); they are there for clarification and indeed are not underlined or in
boldface type.

1> array z(10)
1> for i = 1 to 10

11 z(i) = i
1>

Create the array.
Initialize the array: z(l)=l,
z(2)=2. z(3)=3, etc.

1> sunl = 0

1> for i = 1 to 10

11 sunl = stml + z(i)
1>

1> sun2 = 0

1> for (i=l ; i<=l0 : i=i+l)
11 sud2 = sudqS + z(i)
1>

12

f METHOD 1

ft METHOD 2

jai:iwij£B^i-rf»iv..*A*tt* •«•-.^ja^t'oaAA. Ait%v..ii.^.«a*ftfrtauawttriiOi*.

DELIGHT_FOR_BEGINNERS(Id)

> sunfl = 0

> i = 1
> while (i <= 10) |
1 susS = sunS + z(i)
1 i = i + 1
1 1
>

>

>

>

1
1
1
1 until (i = 10)

>

sun4 = 0

i = 0

repeat f
i = i + 1

sun4 = sun4 + z(i)

7/1/82 DEL I GHT_FOR_BEGI NNERS (1 d)

§ METHOD 3

METHOD 4

> ## Now check the results.
> printf *%i %i %i %i/n* sunl sum2 sun3 sun4

55 55 55 55

> ## GREAT ! ! !
>

See L00P_STATEMENTS(2e) for additional information about these loop statements,
especially the not-so-obvious for-loop used in METHOD 2.

4.11 Breaking Out of Loops with the "Break" statement

The "break" statement allows you to leave any RATTLE loop before the normal loop
termination. Execution resumes with the statement following the 'body' or last state
ment in the loop. In this example, the inner "j" loop normally would execute 6 times
but due to the if...break statement it only executes 3 times, as seen in the output:

> for i = 1 to 2 I
printf '%i/n* i
for j = 1 to 6 j

printf ' %i/n' j
if (j = 3) break

1
1

13 -

Tha V lferimata*;5#.6ttsnes. ire.ft.u-* ,4./nii. ..tui:^ :-rT»fe.'_l/;£jjm£^:n3n<i¥Hiort- :),t- ' or-ma: nr.n

DELIGHT_FOR_BEGINNERS(ld) 7/1/82 DELIGHT_FOR_BEGINNERS(ld)

1>

1 (Note, here, that j is never
2 printed greater than 3.)
3

1

2

3

4.12 Procedures and Functions

Procedures in RATTLE are analogous to subroutines in Fortran or Ratfor. They allow
you to execute as a unit a group of RATTLE statements, the 'body' of the procedure,
which are compiled only once. A function is identical in structure except that it con
tains one or more "return" statements to specify the value to be returned as the 'func
tion value'. Also, the function 'call' or invocation appears in an expression, as in "print
2+funval(5)".

A procedure or function can have zero or more arguments. If a function has no ar
guments, it can still be called in any expression by following its name with a set of emp
ty parenthesis as in "print 5+fval() fval()/2".

The body of a procedure consists of one RATTLE statement. If more than one state
ment is desired in the procedure body, they must be surrounded by curly brackets,
similarly to the body of loop statements. Exit from a procedure body is automatic
when "hitting the bottom", i.e., after the bottom statement has been executed. To exit
from any other place, a "return" statement may be used. For a function, the function
value to return is the expression value following the word "return".

Here are several function and procedure examples to try, each example separated
by a blank line:

1> function foo

11 return 5+3
1> print foo()
8.000

1>

14

'•F&faOarvtaMaS&i&kitoA «ansl ^israti..~rvst Kwa:»»«i-,;!tiii«'ttKi!?i 'iumi r.s::catf:.rt .-r.nwBfrait/tariSr ra'H?.!'; pr rwatt<i'rmiH^r:

DELIGHT_FOR_BEGINNERS(ld) 7/1/82 DELIGHTJF'OR-BEGINNERS(ld)

1> function foo (x)

WARNING(l) Number of arguments changed on an existing procedure
11 return (x + 4)
1> y = 1
1> print foo(l) foo(y) foo(-4) foo(-2*2*y)
5.000 5.000 0.000 0.000

1>

1> procedure doit (a,b) \
lj if (a = 1) print b
1] else print -b
lj printf 'Leaving doit/n'
11 1
1> doit(1.5)
5.000

Leaving doit
1> doit(2,5)
-5.000

Leaving doit
1>

Note that when function "foo" is defined a second time above, the new function
body completely supersedes the previous one.

Lets make a procedure in a file and accidently leave off the closing curly brack
et. Then we type "include filename", which causes DELIGHT to read the lines from the
file just as if they had been typed at the terminal, and watch what happens. For this
example, the built-in UNK-like editor of DELIGHT is being used. See section EDIT(F) in
the DELIGHT reference manual for details on how to use this editor. Below, the "a"
command takes you into the editor input mode while a single "." alone on a line takes
you out of input mode and back into the editor command mode. The command "lz"
prints one screen full of edit buffer text starting at line 1. "wq" is a combination com
mand which writes out the edit buffer back into the file and then quits (leaves) the edi
tor.

- 15

fttanft i^%&M&ria^t^-&*ertt^^ lute&uu tk«f,«KS4bttilriiiw2se«i5H i.^arc^TOrtmr-:-:ci*H r c.

DELIGHT_FOR_BEGINNERS(Id) 7/1/82 DELIGHT_FOR_BEGINNERS(Id)

1> edit foo

Unable to open "foo"
:a

procedure foo (x) \
if (x = 1) print x
else print -1/x

:lz

procedure foo (x) \
if (x = 1) print x
else print -1/x

:wq

"foo" 3 lines

1> use foo ## NOTE: "use" is defined to be "include"
H

At this point, we notice that the prompt character is different: the "1" in the
prompt sometimes indicates that a "]" is expected, as here. One can either type
"reset" or supply the closing "]". If the closing curly bracket IS supplied, the pro
cedure in the file just included will then be correctly RATTLE compiled and ready to
use. This is shown here followed by the 'call' or execution of the procedure with the
argument "2" and the addition of the missing "]" to the file:

1) 1
1> foo(2)
-.5000

1> edit foo

"foo" 3 lines

:a

1

:lz

procedure foo (x) \
if (x = 1) print x
else print -1/x
1

:wq

"foo" 4 lines

1>

16

arftijfa6aaBia®^^Attffaf^^ri?\jrfrirr*- 'rr.trfr*^'«6rwJHx:>S'.0!:imi. r'H.-: t\p.,- (iih r.h;, s--.ic.hcv V.v.ve

DELIGHT-FORJBEGINNERS(ld) 7/1/82 DEUGHT-FOR_BEGINNERS(ld)

5 Interrupting BATTLE Execution: Hard Interrupts

DELIGHT recognizes two kinds of terminal-generated interrupts, 'hard' interrupts
and 'soft* interrupts. A 'hard' interrupt is when you press the terminal's interrupt or
break key twice in succession; a 'soft' interrupt is just once. (In the rest of this write-
up, we say "press the break key" to mean generate an interrupt even though the means
of generating interrupts on a terminal is highly machine dependent and may not actu
ally involve the "break" key. In fact, the "break" key might abort or kill the entire
DELIGHT program so watch out!)

Type in the next loop and generate a 'hard' interrupt after, say, 5 seconds by press
ing the terminal's break key twice in succession.

1> for i = 1 to 20k
11 j = i**3 + i**2 + i

Interrupt..,
2> print i
5.920e+2

2>

Notice that the prompter is "2>", indicating that you are in a suspended state. The
value of variable i printed will likely be different than the one shown above (probably
much larger if you're on one of those damn fast Crays!).

Interrupt the next loop also:

2> for k = 1 to 5k
21 j = k

Interrupt...
3>

Now you are in interrupt level 3. The maximum interrupt level is 5. Execution of the
"for k..." loop may be resumed by typing "resume":

- 17

r^a£d4dfcSfltoa&ineij^ft«^ <*aawiB!nm«i*i .-InittrsoiVKfls

DELIGHT_FOR_BEGINNERS(ld) 7/1/82 DELIGHT__F0RJ8EGINNERS(ld)

3> print j k
1.319e+3 1.319e+3

3> resume

2> print j k
5.OOOe+3 5.001e+3

2>

The "2>" prompt before "print j k" indicates that the "for k ..." loop has completed.
Now, the "for i..." loop may be resumed by typing "resume". In the following example,
generate a "hard" interrupt by pressing the terminals interrupt or break key twice
where shown in parenthesis:

2> resume (After 3 seconds, generate "hard" interrupt)

Interrupt...
2> print i

4.495e+3

2> ## Creeping slowly ...
2> resume (After 3 seconds, generate "hard" interrupt)

Interrupt...
2> print i
6.494e+3

2> ## Forget it !!!
2> reset

1> resume

Nothing to resume.
1>

The "reset" command has again taken you out of the interrupted state.

6 Catching 'Soft'Interrupts

A 'soft' interrupt is generated when the interrupt key is pressed just once. An exe
cuting procedure can- detect such an interrupt by using "interrupt" in an if-statement
test, as shown in the example below. This can be used to alter program flow or to
suspend execution using the "suspend" statement (see INTERRUPTJ20F(A6)). Stopping
execution with a soft interrupt thereby allows your procedure to suspend at a 'major
stopping point' instead of at some arbitrary statement as when generating a hard in
terrupt. Of course.you may "resume" after either type of interrupt. See also
INTERRUPTS(2k)

-18-

gHiBacrn^^iiwriftH'iiriiftv.iagajiiUBffeKl. vaiu ttWfw~fflfeu*mt&f.2a^«a«!sr,«ii»b•-. :tt£^yp*m*i*tettww&fe&rm^

DELIGHT_FORJBEGINNERS(Id) 7/1/82 DELIGHT_FOR_BEGINNERS(1d)

and INTERRUPTJE0F(A6) for more information.

In the following procedure, the if-statement in the for-loop tests for a soft interrupt.
If one is detected, a message is printed and execution is suspended via the "suspend"
statement. After you type in the procedure, type "catch()M as shown below to execute
it and hit the break key after approximately 1 second:

1> procedure catch \
1

1

1

1

1

1

1

1

11 1
1>

1> catch()
Entering catch, generate an interrupt after 1 second.
Got the interrupt when i = 2077

Interrupt ...
2> reset

1>

printf 'Entering catch '
printf 'generate a soft interrupt after 1 second./n'
for i = 1 to 20k

if interrupt \
printf 'Got the interrupt when i = %i/n' i
suspend
1

printf 'Sorry you did not send an interrupt in tins ! /n'

7 Additional BATTLE Input and Output Features

We now show some more advanced RATTLE features for input and output. In particu
lar, for simple scalar variables or arrays with one or two dimensions, the "printv" com
mand may be used to label and display the scalar's value or the entire array very easi
ly:

1> array yl(3). y2(2.5)
1> printv yl
Column yl(3):

0

0

0

- 19 -

Wtr riK^irfttMfr^te&iwtricamswV tiinrti** t-i^iifcSi i \u«&&*.<< rir.t4s: fciimfcastta z^;3&ctxttfit\fmr&»nt*ir.i-

DELIGHT_FOR_BEGlNNERS(ld) 7/1/82 DELIGHTJPORJBEGINNERS(ld)

1> y2(l,l) = 1.23
1> printv y2
Matrix y2(2,5):

1.23 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00
1> for i = 1 to 2

11 for j = 1 to 5
U y2(i.j) = i+j
1> printv y2
Matrix y2(2,5):

2 3 4 5 6

3 4 5 6 7
1> printv i
Scalar i = 3.000

1>

Note that both arrays printed are initially identically zero; arrays are automati
cally initialized to zero when declared. This is explained further in ARRAYS(2g). Also
note that "printv" is 'smart': it only prints the number of significant figures needed to
show the 'longest' floating-point mantissa.

For a complete discussion of RATTLE input possibilities, see manual sections
RATTLEJ/0(3a), READF(3c), and READF(B23). Here we only show how numbers are
read.

There is a system for input called "readf" which parallels the "printf" statement,
"readf" also requires a format control string followed by from 0 to 6 arguments, which
correspond to the "%" conversion specifications in the control string. The slash charac
ter, "/", here, is also the "escape character" as for "printf'. "/n" appearing in the con
trol string causes the remainder of the input line to be skipped over and discarded,
i.e., it causes a skip to past the next NEWLINE character. A blank appearing in the con
trol string causes any number of blanks (or tabs) to be skipped over in the input.

Here are two examples; the first reads one number while the second reads three
numbers separated by any number of blanks (note the blanks in the second control
string):

1> readf '%r/n'
7.2

1> print x
7.200

- 20

tarMw rjs&fctei&ftra^iaft^

DELIGHT_FOR_BEGINNERS(Id) 7/1/82

1> readf ' %r %r %r/n* x y zOOO
1.2 -2.3 345

1> print x y zOOO
1.200 -2.300 3.450e+2

1>

DEL I GHT_FOR_JBEGI NNERS (1 d)

To input numbers from a file, you may use the "inputJrom" and "inputf" state
ments, "inputf" works just like "readf" except that it reads from the file specified by
"inputJrom". In the following example we first create a file with some numbers in it:

1> edit temp2
Unable to open "temp2"
:a

12 3

4

5

6

:wq

"temp2" 4 lines
1> list temp2

Begin temp2
1 2 3

4

5

6

End temp2
> procedure read_temp2 {

input—from temp2
array y(6)
for i = 1 to 3

inputf ' %r' y(i)
inputf '/n'
inputf '%r/n' y(4)
inputf '%r/n' y(5)
inputf '%r/n' y(6)
printv y
input end

1

- 21

Beginning of input_frcm.

Reading from the same line.
Skip past the NEWLINE.
Reading from separate lines

End of input_Jrcm.

*.-.^ Ha ann.-«K4.; tofta i ftttYtl. i ijJHom.

DELIGHT_FOR_BEGINNERS(ld) 7/1/82 DELIGHT_FOR_BEGINNERS(ld)

1> read_tenx>2()
Column y(6):

1

2

3

4

5

6

1> ## HEY, IT WORKED !!!
1>

8 Advanced Output Formatting

The first example below shows that the field width of a "%r" field may be controlled
by giving the width directly after the "%" character. To left justify the number in the
field, follow the "%" with the "-" character. To specify the number of significant figures
that will be printed to the right of the decimal point, use ".6", for example, after the
field width. Field width and left justification also work for integer fields.

1> printf '"%r" (%12r) <%-12r>/n' 1.234k 1.234k 1.234k
" 1.234e+3" (1.234e+3) < 1.234e+3 >
1> printf #(%15.6r)/n' lk/6
(1.666667e+2)
1> printf '[%5i] (%-5i)/n' 25 25
[25] (25)
1>

9 Extensibility through Defines

The extensibility of RATTLE, that is, the ability to extend the language by defining
new language statements and commands, has probably contributed the most to its suc
cess among advanced RATTLE users. This capability takes two forms, defines and mac
ros, both of which can greatly enhance program readability. Defines are discussed
here; see manual section MACR0S(4c) for a discussion of RATTLE macros.

Defines, patterned after those in Ratfor, allow you, in the simplest usage, to substi
tute one piece of text for another. For example, "define (TWOPI,6.283185307)" allows
you to use the value of the mathematical constant 2*pi in expressions without actually
writing the whole number out. An example of using defines to create a command would
be "define (erase,greras())" which allows you to type "erase" to call built-in routine
greras to erase the graphics screen.

-22

fite& itdtMh^^Mbaitg&s^^erJA^iak fa&Miaisa*tx^m t a, taSafcfcTTiWrhRs<iiocaen ,»iw«m

DELIGHT_FOR_BEGINNERS(ld) 7/1/82 DELIGHT_FOR_BEGINNERS(ld)

Several extensions to defines include (1) arguments, (2) literal strings, which must
appear explicitly when using the define, (3) optional arguments, and (4) default values
for the optional arguments. Consider the define below. It has been broken into two
lines in this document contrary to the DELIGHT define conventions (see manual section
DEFINES(4b)).

define (vector xl yl x2 y2 ; 'in' ''coior='white' ,
grcolp(color) ; grvect(xl,yl,x2,y2))

This define, "vector", has 4 required arguments, xl, yl, x2, and y2 (which appear before
the first semicolon), and 1 optional argument, color. All arguments after the semicolon
are optional and may be followed by "=" and the default characters which will be sub
stituted where their argument name appears in the definition (which follows the com
ma). In the above define, "in" has to be typed explicitly when using the define. The
definition, appearing after the comma, contains two calls to built-in DELIGHT subrou
tines, grcolp and grvect. The terminal dialogue below will introduce each of these
features individually.

This define could be used in any of the following ways:

vector 0 0 11

vector 0 0 11 in red

vector sin(x) l+sin(x) cos(x) l+cos(x) in orange

If you used the second example above in a procedure it would be, using the
definition above, as if you had used:

grcolp('red') ; grvect(0,0,1,1)

The following terminal dialogue shows the creation and use of several defines, start
ing first with the simplest type of define and then proceeding to the various extensions
mentioned above. The first group shows the simplest type of defines, the second group
extends these to defines with arguments, and the third shows the literal string "over"
which must be present when using the define. Also shown are several invalid uses of
the define and their resulting error messages.

- 23

feaiituriSfpr

DELIGHT_FOR_BEGINNERS(Id) 7/1/82 DELIGHT_FOR_BEGINNERS(Id)

1> define (d,4} ## Simple defines
1> define (a.5) define (b,6)
1> print d a b**2
4.000 5.000 3.600e+l

1> whatis d

"d" is a define: "4

1>

<> A >>

1> define (p x,print x**2) ## Defines with arguments.
1> p 5
2.500e+l
1>

1> define (p x 'over' y,print x/y) ## Defines with literal strings
1> p 5
ERROR: expecting "over " for define "p"
1> p 5 over
ERROR: missing arguments after "p"
1> p 5 over 2
2.500

1>

Shown next is the extension which allows optional arguments which may have de
fault values. In the first example, "x" comes after the semicolon and is thus an optional
argument. If no argument is typed after "p", "x" takes on the default value (actually,
just a string substitution) of "8". In the next group of lines, a multi-line define is shown.
It does not have a leading left parenthesis and it ends with the keyword "end".

1> define (p ; x=8 « print x) ## Defines with optional
1> ## arguments with default
1> ## values.
1> P
6.000

1> p 2
2.000

1> define p x
print x
print -x
end

- 24 -

ifefinas^oKSa^toScpsL K' . ir^intii?- (-•*>*,-. uroiio i.i*iar:!3n.ri?rFrH;ii'iHl".;irR <t«rimms-,.sjfv;vvvn

DELIGHT_FOR_BEGINNERS(Id)

1> p 5
5.000

-5.000

1>

7/1/82 DEL IGHT_FOR_BEGINNERS(Id)

Note that each time "p" above is redefined, the new definition completely supersedes
the previous definition.

For additional information on defines, see manual section DEFINE(4b).

10 Commonly Used DELIGHT Commands

The "display" command, with its two or three arguments, permits you to view all the
DELIGHT symbol table entries which are of a specified class and which match an option
ally specified pattern. In this pattern, there are only two 'magic' characters, star (as
terisk,"*") and question mark ("?"). "*" represents a match of zero or more of any
character, e.g., appearing alone it matches any symbol table entry name, while "?"
matches any single character in an entry name. Thus, the command "display defines
L*" would display all of the user's defines starting with the letter L. Similarly, "display
variables ??x" would display all the user's variables containing three characters and
ending in "x".

When starting DELIGHT from the basic optimization memfile, several global variables
already exist as shown in the following dialogue. Other RATTLE variables, created dur
ing the course of this terminal session, also are listed.

1> display variables *

21 variables:

Iter s 0.00000 GLOBAL
NXseqsize = 2.00000e+l GLOBAL
Neq = 0.00000 GLOBAL
Nfineq = 0.00000 GLOBAL
Nineq = 0.00000 GLOBAL

Nparam = 0.00000 GLOBAL
Nsvbound = 0.00000 . GLOBAL
Penalty_param = 0.00000

WO = 0.00000
Wc = 0.00000

i s: 3.00000

25

itia^.i«n«i£%i»^:fito tf-s^sfcifes&i- *<**& >a s**.«t» m\\&»iMw;i:-i» jterf*r.aHi-. aeri ffrfiTHWito*

DELIGHTJFOR__BEG1NNERS(1d) 7/1/82

j = 6.00000

k = 5.00100e+3
size = 5.00000e+l

suml = 5.50000e+l

sum2 = 5.50000e+l

sum3 = 5.50000e+l

sum4 s: 5.50000e+l

X = 1.20000

y = -2.30000

zOOO = 3.40000

1> display defines •

4 defines:

a

b

d

P

1> display arrays •

6 arrays:

Meq
Mfineq
Mineq

yi
y2
z

(0)
(0,0
0)

(3)
(2,5
(10)

)

)

1>

DELIGHT_FOR_BEGINNERS(Id)

GLOBAL

GLOBAL

GLOBAL

For more information on the "display" command, see manual section
COMMAND_DEFINES(A3).

Another useful command is "display-time" which displays a list of procedure
names, total cpu time, direct cpu time, and number of times called for RATTLE pro
cedures and built-in routines, sorted by total cpu time (largest first). Direct cpu time
is the total amount of time actually spent in a procedure but NOT in any procedure
called by it. The number of items listed is specified by an optional argument which has
default value 10. "clear__time" resets all the call-counts and the cpu time values to
zero, i.e., the "display_time" quantities are since the last "clear_time". One of the uses
of these commands is for pin-pointing the major cpu time bottlenecks in a program so
that

26-

fa^M*i&&a&i^^it^^-' '«i!i:.-:-';iA.VtrI»:ilT:t:R«tr.M!:«i«ft!%i!i? « fSrfSi rifcisititfAJin •)!£»'.. '-'Jint^ iui'ri.*5«te n .♦;•<•■

DEUGHT_FOR_BEGINNERS(Id) 7/1/82 DEUGHT-FOR-BEGINNERS(ld)

they may be made more efficient

1> display—time
TOTAL DIRECT NUMBER

SECONDS SECONDS OF CALLS PROCEDURE/MACRO NAME

5.10e+2 Cpu-time since last "clear_Jtime"
3.51e+l 3.51e+l 35 trmcom_

2.67e+l 2.67e+l 5 exedit

2.30e+l 0.00 65 matop
1.74e+l 1.25e+l 4041 pbstpl_
1.35e+l 1.16e+l 381 pbniml_
1.04e+l 0.00 21 mat_func_

1.04e+l 7.00e-3 2 ego_

1.03e+l 0.00 21 fill
1.03e+l 0.00 6 quadprog
9.51 0.00 17 clip

All the procedures and macros listed above are part of the DELIGHT system software.
The total cpu times of your procedures foo, doit, readJtemp2, and catch have been to
tally swamped by those listed above. They would appear if you had typed, for example,
"display-time 10000". Alternatively, try typing the following:

1> clear—time

1> foo(2)
-.5000

1> for i = 1 to 5

lj doit (i.3)
3.000

Leaving doit
-3.000

Leaving doit
-3.000

Leaving doit
-3.000

Leaving doit
-3.000

Leaving doit

27 -

'rtisr..^V5Hi£'&fr»4ifiil).'''.. tfiftf^^ni'.utM&^&rv f.vt»iSirf»fc:fad>803if«'.--.-HUfiiif: ;. *rMH

DELIGHT-FOR-BEGINNERS(ld) 7/1/82 DELIGHT_FOR_BEGINNERS(ld)

1> display_jtime
TOTAL DIRECT NUMBER

SECONDS SECONDS OF CALLS PROCEDURE/MACRO NAME
3.27 — Cpu-time since last "clear_Jtime"
.167 .100 5 doit

6.67e-2 6.67e-2 5 prinf6
1.67e-2 1.67e-2 1 foo

The built-in DELIGHT routine prinf6 listed above is called by the "printf" statement in
procedure "doit". These computer times are on aVAX 11/780 running Berkeley UNIX.

Additional commonly used commands that you can try are "echo" and "noecho"
for turning on and off the echo of lines from the terminal or from a file, "time" for
showing the total cpu time since starting DELIGHT and the difference in cpu time since
the last "time" command, "date" for printing the current date and time of day, and
"history" for showing the last 22 input lines entered from the terminal. Also "whatis",
and "remove" pertain to DELIGHT (symbol table) items such as defines, variables, pro
cedures, etc.

1> echo

1> print 12 3
» print 12 3
1.000 2.000 3.000

1> time

» time

Cpu time: Total 16 Delta 16

1> date

» date

Date: 06/06/82 Time: 18:09::12
1> noecho

» noecho

1> history
47 p 5
48 p 5 over
49 p 5 over 2
50 define (p ; x=8 , print x)
51 p
52 p 2
53 end

54 p 5
55 display variables *
56 display defines *

- 28 -

5Wt»«assfi!^fiu8iBnAisFlifl£ji!ittia&fr^ •'•«<£> MR* itv -i',cz••ihhsti.* -])>:;••.'.».

DELIGHT_FOR_BEGINNERS(ld) 7/1/82 DELIGHT_FOR_BEGINNERS(ld)

57 display arrays *
58 display^Lime
59 clear—time

60 foo(2)
61 for i = 1 to 5

62 doit (i,3)
63 display^time
64 echo

65 print 12 3
66 time

67 date

68 noecho

1> whatis y
"y" is a variable.
1> remove y
"y" removed.
1> whatis y
"y" does not exist.
1>

As shown above, lines echoed due to "echo" are preceded by "»". Also notice
that blank command/statement input lines (i.e., if you just hit the RETURN key) do not
appear in the history list.

To see how "echo" also shows lines being read from a file, turn on input echo and
reuse the file "foo" created in section 4.12 of this writeup:

1> echo

1> use foo

» procedure foo (x) \
» if (x = 1) print x
» else print -1/x
» 1
1> noecho

» noecho
1>

Now let's take a look at some DELIGHT features to aid in debugging RATTLE pro
cedures. We discuss the "trace" and "enter" commands.

The "trace" command is very useful for debugging DELIGHT "RUN-TIME ERR0R"s.
Type

-29-

r:ftBS«)^isWai«JkEfc^'T^«hrtJ£KHEnjn^^ '/r.mHu)-.!. ;i'.r i.n:-: h.'r.•'i.'K \. k^v: r,v,

DELIGHT_FOR_BEGINNERS(ld) 7/1/82 DELIGHT-FOR_BEGINNERS(ld)

in the following:

1> foo(0)

RUN-TIME ERROR: 1 overflow(s) or other floating point exception(s)
0.000

Interrupt...
2> trace

Interrupted IN procedure
foo line 4 of file foo

2> reset

1>

Using the editor, you can now locate the source of the RUN-TIME ERROR: it is on or near
line 4 of file foo. Obviously, it is due to the division by x with x equal to zero on line 3.
The "trace" command can be used whenever an interrupt has occurred, i.e., when the
interrupt level is greater than one (prompt is "2>", "3>", etc.)

Another DELIGHT feature to aid in debugging is the "enter" command. Let us
create a simple procedure with three local variables, a, b, and c:

1> procedure foo (x) {
lj a = 1

lj b = 2

lj c = 3

lj print a*x b*x c*x
lj I
1> too(2)
2. 000 4.000 6.000

1>

After executing this procedure as above, we may "enter foo" and look at the lo
cal variables:

- 30

c.^e-h V.»t^i>8wttauMrai!to^rt« .a.i?s~raEt;iaz n;*:-.fc*v

DELIGHT-FOR_BEGINNERS(ld) 7/1/82 DELIGHT_FOR_BEGINNERS(ld)

1> enter foo

e> display local variables *

3 variables:

a = 1.00000

b = 2.00000

c = 3.00000

e> leave

1>

Note that after entering a procedure with the "enter" command, the prompt changes
to "e>" to remind you that any variables you create or use are actually local to the en
tered procedure. (See manual section PROCEDURES(2h) for additional information on
procedure local variables.) Later, in section 14 of this writeup, the use of "enter" to aid
in debugging is more fully demonstrated.

The real purpose of the history list of input lines is not to look at the lines
displayed by the "history" command but to be able to re-issue previous commands or
lines easily. You may re-issue a command by typing, for example, "!foo" if the com
mand had started with the letters "foo" or "!23" if the command had been number 23 in
the "history" command output. If "!foo" is typed, DELIGHT looks up the history list,
starting from the bottom (most recently typed line), and reuses the first command line
it finds which begins with the letters "foo". The command to be reused is first printed
on the terminal.

1> history 6 ## Display last 6 input lines
84 print a*x b*x c*x
85 j
86 foo(2)
87 enter foo

88 display local variables *
89 leave

1> !fo

foo(2)
2.000 4.000 6.000

1> !88

foo(2)
2.000 4.000 6.000
1>

- 31 -

.-•¥rt!,;K>tt»»liife^ifl!n--"/2^ srt; • -..j; ot*.nifiruT:.:w:. '.i.-ir*»F.!r,.-.„uiru.o

DELIGHT_FOR_BEGlNNERS(ld) 7/1/82 DELIGHT_FOR_BEGINNERS(Id)

Many times, one would like to loop in a manner other than the usual arithmetic
increment of some loop variable. For example, one might want to loop from 10 to 100
with 5 points per decade, logarithmically spaced between 10 and 100. The "loop" mac
ro extends the for-loop capabilities of RATTLE by substituting a RATTLE for-loop which
is generally much messier and less readable than the actual "loop" statement. For the
above example, "loop x from 10 to 100 dec 5" could be used and would cause the follow
ing code to actually be RATTLE compiled:

by_ = 10**(l/5)
for (x=10 ; x<=100 ; x=x*by_)

Using the "oct" keyword instead of "dec" would allow you to specify the number
of loop passes per octave instead of per decade. The "times" keyword causes the loop
variable to be increased (or decreased) by multiplying it by the value of the specified
factor. The "dec" and "times" cases are illustrated in the following simple loop state
ments:

1> loop i from 1 to 100 dec 2

lj print i
1. 000

3. 162

1. OOOe+1

3. 162e+l

1. 000e+2

1> loop x from 4 to 64 timesi 2

lj printf '%i/n* X

4

8

16

32

64

1>

See manual section LOOP(B18) for more information on the loop macro.

-32

wijWiiMjJtkU.-.suSai*-! iv>';"itJBri->'v!ii;rTii-.tlniaEkc«':;' .*titru.-ift. rvjwMKah • -W>k

DELIGHT_FOR_BEGINNERS(ld) 7/1/82 DEUGHT_FOR_BEGINNERS(ld)

11 Redirection of Output or Echo to a FUe

"echo n to filename" is used to cause a copy (an echo) of all DELIGHT output to be
sent to a file as well as to the terminal screen. Similarly, "echo_io_to filename" causes
both DELIGHT input and output to echo to the same file. (Only one of "echo-Q-to" or
"echoJoJto" should be used at a time.) Another similar command is "output_to
filename" which sends all succeeding output to a file but NOT to the terminal screen.
To terminate any of these, "echo-D_end", "echo_io_end", or "output-end" are used,
respectively. WARNING: be sure you "end" the writing to a file before trying to list the
file with the "list" command!

These commands are demonstrated below, starting with echo in, to:

1> echo_io_to tl

Created file "tl"
1> date

Date: 06/06/82 Time: 20:25:33

1> print 1/3
.3333

1> ? # Show input, output, echo redirection.
NO input redirection.
NO output redirection.
Echo output going to "tl".
1> echo-jo-jend

1> list tl

Begin tl - —
» date

Date: 06/06/82 Time: 20:25:33

» print 1/3
.3333

» ?

NO input redirection.
NO output redirection.
Echo output going to "tl".
» echo_io-find

End tl
1> ?

NO input redirection.
NO output redirection.
NO echo output set.
1>

- 33

-~ »rc3l-i;rv :.rsif

DELIGHTJF'OR_BEGlNNERS(ld) 7/1/82 DELIGHT-FORJBEGINNERS(ld)

Now let's try an "output_to" example. Here, ONLY the output goes ONLY to the
file you specify. The "?" macro, which reports on input, output, and echo redirection,
always prints on the terminal, as seen below:

1> output_jto t2
Created file "t2"
1> date

1> array B{2.3)
1> printv B
1> ?

NO input redirection.
Output redirected to "t2".
NO echo output set.
1> output_end
1> list t2

Begin t2 •
Date: 06/06/82 Time: 20:29:35
Matrix B(2,3):

0 0 0

0 0 0

1>

End t2

For more information on these commands see manual sections RATTLE_I/0(3a),
OUTPUT(B19), and ECHO_TO(B8a)

12 Graphics and Plotting

One of the important user features of DELIGHT is the ability to convey information
very effectively using computer graphics. DELIGHT has many high and low level,
terminal-independent graphics commands for creating many types of graphical
displays. A prerequisite to using these commands is that you understand the notions
of 'viewport* and 'world coordinate bounds'. (Only an understanding of viewports is
necessary to use the "plot" or "plot3d" commands, described below.)

The phrases 'viewport' and 'world coordinate system' are taken from Neumann and
Sproul, Principles of Interactiue Computer Graphics. A viewport is a rectangular re
gion on the terminal screen where output is sent. The "viewport" command specifies
this region in a 0-0,1-1 coordinate system in which 0,0 is at the lower left corner of the
screen and 1,1 is at the upper right corner, for all graphics terminals. For example,
"viewport

-34-

DEUGHT_FOR_BEGINNERS(Id) 7/1/82 DEUGHT_FOR_BEGINNERS(ld)

0 0 0.1 0.1" specifies a very small square region in the lower left-hand corner of the
screen while "viewport 0.45 0.45 0.55 0.55" specifies a small region in the center of the
screen. By using "viewport", graphical output may be placed anywhere on the screen
by simply setting the viewport coordinates.

World coordinate bounds are the bounding x.y values between which all x,y coordi
nates are actually passed to the graphics commands. After "world -100 -100 100 100",
which sets the lower left bound to -100,-100 and the upper right bound to 100,100, the
command "cursor 0 0" would place the cursor at the very center of the present
viewport, ready for text output, while "vector -100 -100 100 100" would draw a diagonal
completely across the present viewport. See WINDOW(B34) for a means of giving names
to viewports with prescribed viewport and world coordinate bounds.

So now you are ready for the syntax of a small subset of the graphics commands
described in greater detail in manual section GRAPHICS(B15):

box

color colorname

cursor xl yl
erase

oval

terminal

text *%i' [args]

vector xl yl x2 y2
viewport xl yl x2 y2

world xl yl x2 y2

Draw box around present viewport.
Set present color.
Position cursor for text output.
Erase the entire screen.

Inscribe "circle" in present
viewport.
Set or get terminal type.
Output text characters at
present cursor position using
printf-like control string.
Draw vector between 2 coordinates,
Set screen viewport bounds to
lower-left and upper-right
coordinates specified.
Set world coordinate bounds which
map x,y coordinates into the
present viewport.

Before trying any of these commands you must be on one of the graphics terminals
supported by DELIGHT graphics. To see what teraiinals are supported, type "terminal
choices". Each line shown is for a different terminal or plotter. You will probably be on
either an HP2648a, a Tektronix 4027, or a Tektronix 4010 terminaL Typing "terminal"
alone prints the present terminal type. To specify the Tektronix 4027, for example,
you would type "terminal 4027". In theory, you should type "grinit" to initialize the ter
minal for graphics after specifying any terminal type. But presently, only the Tek
tronix 4027 terminal requires that "grinit" be typed.

35

DELIGHT_FOR-BEGINNERS(Id) 7/1/82 DEUGHT_FORJBEGINNERS(1d)

If you absolutely cannot get to a graphics terminal you may type "terminal dumb"
and get (very) low resolution graphical output. But watch out though since after each
of the graphics commands below, a flush of the dumb-terminal graphics buffer is per
formed. To get the graphical output of several commands on the same screen, make a
statement block by preceding the first command with "{" and following the last com
mand by "j". Only after typing the closing "j" will the buffer flush. ("Terminal dumb"
can also be tried on a graphics terminal for fun.)

Some graphics commands to try are:

1> terminal 4027

1> terminal # Check terminal type.
Terminal is 4027

1> color white

1> box

1> erase

1> viewport .3 .3 .7 .7
1> box

1> world -100 -100 100 100
1> vector -100 -100 100 100

1> color green
1> vector -100 100 -25 25

1> color red

1> cursor 0 0

1> text 'ab=%i' 26/2

1> oval

1>

For plotting graphs, DELIGHT provides the means of plotting arbitrary expres
sions versus one or two parameters (variables). The "plot" command allows you to plot
up to 9 y-value expressions versus a single parameter on the same labeled axis. The
axis is scaled to the min and max automatically. The syntax of the plot command is:

•plot yl__expr [y2_fixpr y3_expr ... y9_expr]
vs x_yariable from from ftxpr to to_expr [{by j inc_sxpr]

|timesj
joct j
jdec j

where everything after "to_expr" is optional but you may choose one of the keywords
"by".

36-

DELIGHT_FOR_BEGINNERS(ld) 7/1/82 DELIGHT_FOR_BEGINNERS(ld)

"times", "oct", or "dec". These keywords have the same meaning as they did for the
"loop" statement explained earlier. If you don't give the optional increment keyword
and expression, "by 1" is assumed. For "times", "oct", and "dec" the x-axis of the
graph is logarithmic. The list of up to 9 expressions may be continued onto succeeding
lines, i.e.. there may be NEWLINE characters between expressions (see second example
below).

Plots generated by the "plot" command may be targeted for black/white or
color terminals. For black and white terminals, the curves drawn can have little trian
gle and square identiflers placed on them to help you identify which curve goes with
which y-variabie expression. This feature is obtained by typing "use <gpidents>". (The
triangular brackets surrounding the filename mean "look for this file in a standard
place in the file system". For more on this, see "File opeohdti and <flle_name> Conven
tions" in CONVENTIONS(lc).) To have the curves drawn in color, type "use <gpcolors>"
(on the HP2646a, colors are simulated using various dashed lines and intensities).

Try the following simple plot commands:

1> viewport 0 0 11
1> use <gpcolors> ## Use this for COLOR terminals. ##
1> use <gpidents> ## Use this for NON-COLOR terminals. ##
1> plot sin(x) vs x from 0 to TWOPI*2 by TWOPI/50

Compiling plot loop
1> plot sin(x) .5*sin(2*x) .2*sin(5*x)
lj vs x from 0 to TWOPI by TWOPI/100

Compiling plot loop
1> plot (l/sqrt(freq**2 + 1)) vs freq from .01 to 100 dec 20

Compiling plot loop
1>

The output plots for these commands are shown in figures 12.1, 12.2, and 12.3 for the
HP2648a black and white terminal (copies made on the HP2631G printer), "use <gpi-
dents>" was selected above. Note that the x-axis of the plot is logarithmic on figure
12.3 due to the "dec" increment keyword above.

For graphing a single expression vs two parameters on a 3-dimensional plot, the
"plot3d" command is used. Its syntax is:

plot3d z_expr vs x from x_start to x_stop by x_increment
vs y from y_start to y_jstop by y_increment

- 37

ua

c
-1

iu

o

-f4

1

o

3

O

*t
o

H
2:
ct
*o

*

a*

•c

H

a
TJ

u>
o

•3 •

>5> I I M I i M M

O -

(0

SO
CD

•S L

ro

/^

^

01 x

ro «?••

o ©
IIM M M i:M M ("W^JJ :.I|I!|I l;!'l|||||||

1
.
6

-
1

.
0

-

0
:

s
i

n
(x

)

V
s

.2
*

s
in

(
5

*
x

)

A
s

.5
*

s
in

(
2

*
x

)

F
ig

u
re

1
2

.2
.

:p
io

t
<

si
n(

x>
.5

*
si

n
(2

#
x
)

.2
#

si
n

<
5

*
x
)

v
s

x
fr

o
m

O
to

TW
O

PI
by

T
W

Q
P

I/
IO

O
"

-n

c
-1

a

•to

-J

ft

*
ro

lA

t>

1

/a

-a

o

3

o

o
o

ex

«n
n

ro
o

©

©

©

CD

©

CD

ro

©

©
ro
CD

*.
3

CT' CO
CD

! M I M M I : I I M ' M M : M M I .' M I : M I I M M I : M M I M ' '

-h

©

\

JO
*

ro

DELIGHT_FOR_BEGINNERS(Id) 7/1/82 DELIGHT_F0R-J3EGINNERS(Id)

where the command actually has to be typed on the same line unless an argument is
continued onto the next line by following a "(" with a NEWLINE as in the file listing of
the second example below. Here are two examples to try for this command. The first
one is typed in directly (here, shifted back to make it fit on the page) and the second
one comes from a standard demo file in the DELIGHT system (note the triangular
brackets surrounding the filename "<P3milkdrop>"). Beware, the second example re
quires approximately 1 minute of CPU time to execute (on a VAX 11/780 running
Berkeley UNIX).

1> plotSd sin(x) *cos(y) vs x frcm 0 to 9 by .5 vs y frcm 0 to 6 by 5
Size: 21 x 13
1> list <P3milkdrop>

Begin <P2milkdrop>

P3miikdrop - 3-d plot milk drop (finite element partial
##========= differential equation solution, ha, ha).

plot3d exp(exp(-x**2-y**2)*(exp(cos(x**2+y**2)**20)+8*sin(
x**2+y**2)**20+2*sin(2*(x**2+y**2))**8))*(
1) vs x from -1.5 to 1.5 by .05 vs y frcm -1.5 to 1.5 by .05

End <P3milkdrop>
1> use <Panilkdrop>
Size: 61 x 61
1>

The output plots for these commands are shown in figures 12.4 and 12.5 for the
HP2648a black and white terminal.

Other files which you may "use" that contain demonstration plot and plot3d com
mands include <P3cylin>, <P3wedge>, <Plowpass>, <rosedemo>, and <roseloop>.
Special thanks to Aristotle Arapostathis at Berkeley for creating many of the expres
sions in these files which produce such "good-looking" 3-dimensional plots. WARNING:
some of the plot commands in these files may take roughly a minute of CPUtime to ex
ecute. File <roseloop> is very entertaining (see manual section ROSE(B26)).

Both the plot and plot3d commands can be interrupted by hitting the "break"
key once, i.e„ by generating a 'soft' interrupt.

41-

Z-axis

9975 /^\!N
.6000 5. / Y^ \

-.2000 v*^l ys. \
-.6006 ..j, \

-.98/5 ': \
6.000 """""'""-....ij \ I

5.000 *""'*"-••i-... \
4.888

3.000

v-asiis

2.000

1 .000

0.000

^\y^J/iIfiI
9.000

3 .06@

0.000
X-axis

I'igm-fc .11'.''!: "plotLid e- in <x)*cos <y) vs x from 0 to 9 by .5 vs y from 0 to 6 by .5"

Z-axis

1 .515e+l

1 ,300e+l

1 .080eH

V.000

A .000

1 .631

1 .500

1 .000

Y-axis

0.000
0.000

-1.000 -1.000

-1 .500 -1.566
K-axls

I- icji*i*t.* I'ti. t?: t;rr.:phit'eil output from "use <P3mi lkdrop>" command.

1 .500

1.000

DEUGmLFOR_BEGINNERS(ld) 7/1/82 DELIGHT_FOR_BEGINNERS(ld)

13 Matop and Other Matrix Macros.

Presently, there is a huge arsenal of numerical analysis software available to
DELIGHT users. Many of these pertain to matrix linear algebra and are from the UN
PACK and Harwell subroutine libraries. Since DEUGHT does not yet allow full matrix
expressions, a set of macros have been written to perform many matrix-related opera
tions in a simple way. These macros allow your RATTLE procedures to be very readable
and self-documenting. The macros also automatically (and hidden from the user)
create all the necessary work arrays and inputs for the calls to the built-in FORTRAN li
brary routines.

The following is a partial list of the matrix operations explained more fully in the
MATRIX-MACROS(C) manual section:

Usage Operation

matop A = B' Transpose of a matrix,
matop A = B + C Addition of matrices,
matop Ainv = inv(A) Inverse of a matrix,
matop LAMBDA,EV = sym_eigen(A) Eigenvalues/eigenvectors

of a synmetric matrix,
clip A = B(3:4,2:6) Clipping out a submatrix.
lineq A*x = b Solving linear equations,
linprog z=argmin|c'*x | A*x=b,x>=0j Linear programming.
det(A) (in any expression) Determinant of a matrix.
||v|| (in any expression) L2 norm of a vector.
«x,y» (in any expression) Inner product of 2 vectors

Try typing in the following matrix operations, "readmatrix" is a command which
prompts for the rows of a one or two-dimensional array.

1> array B(2,3)
1> reaomatrix B

1:12 3

2: -2 -3 -4

1> printv B
Matrix B(2,3):

1 2 3

-2 -3 -4

- 44 -

DELIGHT_F0RJ3EGINNERS(ld) 7/1/82 DELIGHT_FORJBEGINNERS(ld)

1> matop Bt = B'
1> printv Bt
Matrix Bt(3,2):

1 -2

2 -3

3 -4

1> clip Btop = B(l:2,l:2)
1> printv Btop
Matrix Btop(2,2):

1 2

-2 -3

1> matop Binv = inv(B)

Mismatched dimensions in inv ... arg(s): Binv B

Interrupt...
2> reset

1> matop Btopinv = inv(Btop)
1> printv Btopinv
Matrix Btopinv(2,2):
-3 -2

2 1

1> print det(Btop)
1.000

1> array v(5)
1> reaomatrix v

: 1 1 1 1 1

1> printv v
Column v(5) :

1> print ||v|| sqrt(5)
2.236 2.236

1> array w(5)
1> readmatrix w

: 2 3 0 0 0

- 45

DELIGHT_FOR_BEGINNERS(Id) 7/1/82 DELIGHT_FOR_BEGINNERS(Id)

1> printv w
Column w(5) :

2

3

0

0

0

1> print «v.w»
5.000

1>

Now lets try to get the eigenvalues and eigenvectors of a symmetric matrix, and
check if the inverse of the eigenvector matrix times the modal matrix times the eigen
vector matrix gives the original matrix (whew!):

1> array C(2.2)
1> reaomatrix C

1:2 4

2:4 3

1> matop L?EV = sym_eigen(C)
1> printv L
Column L(2):

6.53113

-1.53113

1> printv EV
Matrix EV(2,2):

.8618026 .7496782

.7496782 -.6618026

1> array M0DAL(2,2)
1> M0DAL(1.1)=L(1)
1> MDDAL(2.2)=L(2)
1> printv MODAL
Matrix MDDAL(2,2):

8.53113 0.00000

0.00000 -1.53113

1> matop EVinv = inv(EV)
1> matop temp = MODAL * EV* ## COMPUTE Cnew=EVinv*MODAL*EV
1> matop Cnew = EVinv * temp
1> printv Cnew
Matrix Cnew(2,2) :

2 4

4 3

- 46

DELIGHT_FOR_BEGINNERS(Id) 7/1/82 DELIGHT-FOR-BEGINNERS(Id)

1> printv C
Matrix C(2.2):

2 4

4 3
1> ## --- IT WORKED
1>

. C AND Cnew ARE THE SAME ! ! !

A subset of the available matrix operations in DELIGHT has been implemented
for complex matrices. See the MATRDC_MACROS(C) section of the DELIGHT reference
manual for more information.

14 A Comprehensive Example:
with Graphics.

Newton Raphson Iteration

In the standard .directory, there are four files which contain procedures which
demonstrate a Newton Raphson solution of the 2 by 2 system of nonlinear equations,
y=x**2 and x=y**2. Included in these files is a graphics procedure for drawing the 2-
dimensional axis and the parabolas, and for plotting the Newton Raphson iteration pro
gress on the same axis.

The four files are:

DEMOnewA "Al

all

DEMOnewF The

DEMOnewG The

and

DEMOnewP The

."-file: including this simply includes
of the other files automatically,
function and Jacobian RATTLE procedures
graphics procedure for drawing the axis
the parabolas,
actual Newton Raphson main procedure.

To run this demonstration, first of all, you must be on a real graphics terminal;
you may try "terminal dumb" but the graphical output is flushed after each iteration
and the results are pretty bad. Next, you must RATTLE compile all of the above files by
'including* file DEMOnewA which may be accomplished with "use <DEMOnewA>". The
triangular brackets surrounding the filename mean "look for this file in a standard
place in the file system".

Let's include <DEMOnewA> and list the files. The array_jsequence line in file
<DEMOnewF> declares that we wish to store the last 20 values of a 2-long vector called
"X". The second component of the previous iteration of X could be accessed, for exam
ple, with "X[Iter-l](2)" in any expression. See manual section ARRAY_SEQUENCE(B3)
for

-47

DEUGHT_FOILBEGINNERS(ld) 7/1/82 DEUGHT_F"OR_BEGINNERS(ld)

more on array sequences.

In the file listings below you will probably see a few RATTLE statements which
have not been introduced in this DEUGHTJFOR-BEGINNERS writeup. Hopefully, these
features are somewhat self-explanatory but if not, more information can be found by
looking up the keywords in section ENTRY_INDEX(5) of the DELIGHT reference manual.

1> use <DEMOnewA>

including <gpcolors> (120sec)
including <DEMOnewF> (123sec)
including <DEMOnewG> (127sec}
including <DEMOnewP> (I31sec)
Usage: PGnewton X[0](1) X[0](2) color

1> list <DEUOnewA>

Begin <DEMOnewA>

DEMOnewA - First file (All) to include for Newton Raphson demo

include__ind_print <gpcolors> # Use colors instead of
identifiers for "plot".

include_and_print <DEMOnewF> # Function and Jacobian.
include__and_print <DEMOnewG> # Graphics procedure.
include_and_print <DEMOnewP> # Newt on-Raphson procedure.

End <DEMOnewA>

1> list <DE2SDnewF>

Begin <DEMOnewF>

DEMOnewF - Function and Jacobian for Newton Raphson example.
j»it____—_______
Jrir ————

array-sequence X[20](2) § Keep 20 past values of 2 long vecb

procedure func (x.funval) \ § Function value for Newton Raphson.

array x(2), funval(2)

funval(l) = x(l)**2 - x(2)
funval(2) = x(2)**2 - x(l)

- 48

DELIGHT_FORJBEGINNERS(ld) 7/1/82 DELIGHT_F0RJ3EGINNERS(ld)

procedure jacobian (x,J) \ # Jacobian matrix for Newton Raphson

array x(2), J(2,2)

J(l,l) = 2*x(l)
J(l,2) = -1
J(2,l) = -1
J(2,2) = 2*x(2)
I

End <DEMOnewF>

1> list <D__UDnewG>

Begin <DEMOnewG>
^jf___________

DEMOnewG - Graphics for demo Newton Raphson example.
##======== Draws axis and 2 parabolas: y=x»*2 and x=y**2

procedure Gnewton axis (bound) \

world -bound -bound bound bound

color light § Draw axis,
vector -bound 0 bound 0

vector 0 -bound 0 bound

x = -sqrt(bound) # Draw y=x**2 parabola.

move x x**2

while (x <= sqrt(bound)+.0001) {
clip_draw x x**2
x = x + bound/30

I

y = -sqrt(bound) # Draw x=y**2 parabola.
clip_n_ove y**2 y

while (y <= sqrt(bound)+.0001) \
clip_draw y**2 y
y = y + bound/30

I

grend () # End graphics mode.

- 49

DELIGHT_FORJBEGINNERS(ld) 7/1/82 DELIGHT-FORJBEGINNERS(ld)

End <DEMOnewG>

1> list <DEMOnewP>

Begin <DEMOnewP>
ww—"* ————

DEMOnewP - Example Procedure (with Graphics) to
##===__====__ demonstrate Newton-Raphson loop in RATTLE.
##
USAGE: PGnewton XIinitiaiguess X2initialguess color
EXAMPLE: PGnewton 0.2 1 green

define (PGnewton xl x2 ; ''color='white' , PGnewton_j(xl,x2,color)
printf 'Usage: PGnewton X[0] (1) X[0j(2) color/n'

PGnewton_bound__ =2.5

procedure PGnewton— (xl,x2,color_pstr) \

array J(2,2), f(2)
import PGnewton-bound—
X is global.

0](1) = xl
0](2) = x2

Gnewton—axis (PGnewton bound—) # Draw the axis and parabola
color—v color-pstr § Set the requested color.

move X[0
cursorel X[0
text 'o'

(1) X[0](2) # Place "o" on initial point
(1) X[0](2) -.5 -.5

Iter = 0

repeat \

func (X[Iter] , f) # Get function value.

jacobian (X[Iter] , J) # Get Jacobian.

printf 'Iter=%2i X = %-10r %-10r' Iter X[Iter](1) X[Iter$
printf ' ||f|| = %r/n* ||f||

if (interrupt) \

50

DELIGHT_F0R_BEG1NNERS(Id) 7/1/82 DELIGHT-FOR-BEGINNERS(id)

printf '/nPnewton interrupted at Iter
suspend NO # Don't print "Interrupt
)

restore—position
clip-draw X[Iter](1) X[Iter](2)

= %i

matop Jinv = inv (J)
matop deltaX = Jinv * f
matop X[lter+1] =X[Iter]

Iter = Iter + 1

until (||f || <= 1.0e-14)
1

deltaX

§ Check terminal type.1> terminal

io. s_u__o_uilew

2he

Terminal is 4027

1> PGnewton. . 9 0 red
Iter= 0 X = .9000 0.000
Iter- 1 X = 0.000 -.8100

Iter- 2 X = -.6561 0.000

Iter- 3 X = 0.000 -.4305

Iter= 4 x - -.1B53 0.000
Iter- 5 X = 0.000 -3.434e--2
Iter= 6 x - -1.179e-3 0.000

Iter- 7 X = 0.000 -1.390e--6

Iter- 8 X = -1.932e-12 0.000

Iter= 9 X = 0.000 -3.734e-•24
1> PC-newt on . 5 .5

Iter- 0 X = .5000 .5000 If

RUN-TIME ERROR: Singular matrix in inv

Interrupt...
2> trace

Interrupted IN procedure
errprocmess—

Called by invproc—
Called by PGnewton—

1.211

1.042

.7847

.4687

.1885

3.436e-2

1.179e-3

1.390e-6

1.932e-12

0.000

= .3536

arg(s): J

No-Trace in file <Merrmess>

No-Trace in file <Minvproc>
line 48 of file <DEMOnewP>

51 -

/n' Iter

DELIGHT-FOR-BEGINNERS (Id)

2> enter PGnewton—
e> display local arrays

4 items:

7/1/82

J (2/nJ inv (2,,
deltaX (2)
f (2)

e> printv J
Matrix J (2, 2) *

1 -1

-1 1

e> print det(J)
0.000

e> reset

1> PGnewton .1 2 green
Iter- 0 X — .1000 2.000

Iter- 1 X _ -2.020e+l -4.050

Iter= 2 X — -1.008e+l -.7805

Iter= 3 X _ -5.186 2.932

Iter= 4 X _ -2.690 1.007

Iter= 5 X _ -1.317 -.1502

Iter= 6 X _ 2.366 -8.024

Iter= 7 X _ .3490 -4.034

Iter- 8 X — -2.305 -1.731

Iter= 9 X — -1.029 -.5682

Iter=10 X _ -.6580 .2950

Iter=ll X _ -.1928 -.1793

Iter=12 X _ -2.184e -2 -2.874e--2

Iter=13 X — -8.005e -4 -4.419e-•4

Iter=14 X — -1.947e -7 -6.405e--7

Iter=15 X _ -4.102e -13 -3.793e-•14

Iter=16 X — -1.439e -27 -1.6B3e-•25

DEL IGHT-FOR-BEGINNERS (Id)

4.378

4.137e+2

1.030e+2

2.764e+l

7.247

2.312

6.350e+l

1.645e+l

8.818

2.116
.7577

.3121

3.698e-2

9.149e-4

6.694e-7

4.120e-13

0.000

Notice that in each of these Newton Raphson runs, once X gets close enough to
the 0,0 solution, the norm of f, ||f|| starts decreasing quadratically as expected. The
output graphics for these commands is shown in figure 14.1 for the HP2648a black and
white terminal.

52

*
N

/

\

\

\

^
-

A
-
o

J
:
*
r

1
4
.
1
:

G
r
a
p
h
i
c
a
l

o
u
t
p
u
t

f
r
o
s
i

!,
PG
it
5u
if
eo
n"

c
o
m
n
i
.
a
n
d
s

i
n

f-
4e
_t
an

R
a
p
h
s
o
n

e
x
a
m
p
l
e
.

DEUGHT-FOR-BEGINNERS(ld) 7/1/82 DEUGHT_F'OR_BEGINNERS(ld)

15 The Optimization Subsystem

15.1 Introduction

As a last step before becoming a full member of the DELIGHT user community, you
have to get a taste of the optimization-based design features of DELIGHT. As a matter
of fact, optimal design of various types of engineering systems was the motivation for
developing the DELIGHT system. By trying the simple example below, you will get a
general idea of how to use optimization in DELIGHT. You will find more details in sec
tions OPTIMIZA'nONJNTRO(El), 0PTIMIZATI0N_C0MMANDS(E2) and
0PTIMIZATI0N_ALG0S(E3) of the DEUGHT Reference Manual.

Unless you want to write your own algorithm - in which case you will need to use the
Reference Manual - all you have to do in order to solve an optimization problem is to
give a description, in a suitable format, of the problem you want to solve, and then, us
ing the available conimands, perform an interactive run of this problem with an algo
rithm chosen from the optimization library. Subsections 15.2 and 15.3 describe these
two operations on a simple example.

15.2 Formulating an Optimization Problem

The DELIGHT formulation of an optimization problem consists of a set of files whose
filenames consist of the name of the problem followed by a capital letter, which indi
cates the function of the file. Type in the following example in which an unconstrained
optimization problem is formulated by creating three files: tests (setup), teste (cost
function) and testP (initial parameter data):

1> edit tests

Unable to open "tests"
:a

Nparam = 2 ## Optimize with respect to 2 design parameters.

:wq

"testS" 1 lines

1> edit testP

Unable to open "testP"
:a

X[0](1) = 1.0 ## Initial guess at iteration 0.
X[0](2) =1.0

:wq

"testP" 2 lines

54

DELIGHT-FOR-BEGINNERS(ld) 7/1/82 DELIGHT_JOR_BEGINNERS(ld)

1> edit teste

Unable to open "testC"
:a

function cost(x) [
array x(2)
return (x(l)**2 + 2*x(2)**2)

procedure gradcost (x.g) \
array x(2). g(2)
g(l) = 2*x(l)
g(2) = 4*x(2)
1

:wq

"testC" 10 lines

Note that, in file teste, we have provided a procedure "gradcost" to compute the gra
dient of the cost; this procedure is not really necessary since DELIGHT, by default,
computes gradient partial derivatives by finite differences.

For a more complex optimization problem, the "S" files would also give the
number of constraints of various types (e.g., equality, inequality, functional, singular
value) as well as the values of problem related parameters. Additional files wouldhave
to be provided for the various types of constraints. All of these are explained further in
manual section OPTIMIZATIONJNTRO(El).

15.3 Running an Optimization Process

Once your problem has been formulated, you have to choose an algorithm from the
algorithm library (see OPTIMIZATION_J_LGOS(E3)). You then couple problem and algo
rithm together using the "solve" command. The "testgrad" command allows you to
check if the formulas given for the various gradients are correct by comparing them
with values obtained by finite differences. The meanings of the commands "identify",
"choices" and "substitute" should be clear from the examples below. More information
canbe found in manualsection 0PTIMIZATI0NLC0MMANDS(E2). Try the following:

55

DELIGHT_F0R-_3EG1NNERS(Id) 7/1/82 DELIGHT-FOR_BEGINNERS(Id)

1> solve test using Agradnt
including tests (8sec)
including testP (I2sec)
Unknowns are inX(2), 20 past values stored,

including
including
including
PARAMETER:

PARAMETER:

teste

<Agradnt>
<Sarmi jo>

Alpha =
Beta = .

(14sec)
(15sec)
(18sec)

5 : slope
• : trial

(25sec)
(28sec)
(34sec)

of Armijo line
stepsize along h is Beta**k

including <Dgradnt>
including <Mdirstep>
including <Ostate>
1> identify
PROBLEM:

ALGO:

MAIN-LOOP:

stepsize :
direction

output :
1> testgrad
TYHAT(ParNum)
Gradcost(1)
Gradcost(2)
1> choices

SUB-BLOCK CHOICE

stepsize
direction

output
1> choices stepsize
stepsize CHOICES
Sarmijo plain Armijo
Sexact pseudo-exact
1> choices output
output CHOICES DESCRIPTION
Ostate current iterate, cost and gradient
Oshort just the cost and the norm of its gradient
1> substitute Oshort

Substituting Oshort for output ...
1>

test

Agradnt
Mdirstep

Sannijo
: Dgradnt
Ostate

Frcm grad*
2.000

4.000

NAMES

From Perturbation

2.001

4.001

PROCEDURE AND ARGIMENT USAGE

stepsize(x.h)
direction(x.h)
Type 'output'

DESCRIPTION

stepsize rule for unconstrained min.
line-search (improved grid search)

The "display-parameters" command displays all algorithm related parameters;
these parameters are not local to any procedure and their value can be changed before
starting

-56

DELIGHT-FORJBEGINNERS(1d) 7/1/82 DELIGHT_FOR-BEGINNERS(ld)

(or in the middle of) execution. Execution is controlled by the "run" command and out
put, which is now generated by a procedure in algorithm library file <Oshort>, is
displayed at each iteration. A soft interrupt can be generated to suspend execution
immediately after the output is displayed. Finally, the command "initprob" resets the
design parameters to their initial values by re-including the 'P' file containing the ini
tial guess. Try the following:

1> display-parameters
PARAMETER SOURCE FILE VALUE
Alpha
Beta
1> Alpha
1> run 3

Iter = 0
Iter = 1

Iter = 2

Iter = 3

<Sarmijo> .5000
<Sarmijo> .5000

= .9

cost = 3.000

cost - 2.410

cost = 1.945

cost = 1.577

8

DESCRIPTION
slope of Armijo line
trial stepsize along

Igradcost||
Igradcost jj
Igradcost jj
Igradcostj|

472

971

531

146

h is Beta**k

Interrupt..
2> Alpha =
2> run ## Runs indefinitely.

PRESS BREAK KEY AFTER SEVERAL ITERATIONS,

= 1.823

= .6180

= .3090

= .1545

= 7.725e-2

= 3.862e-2

= 1.931e-2

Iter

Iter

Iter

Iter

Iter

Iter

Iter

4

5

6

7

8

9

10

cost

cost

cost

cost

cost

cost

cost

Interrupt...
2> reset

1> initprob
including testP
1> output
Iter = 0 cost

1>

6063

9.548e-2

2.387e-2

5.967e-3

1.492e-3

3.729e-4

9.324e-5

(53sec)

3.000

gradcost
gradcost
gradcost
gradcost
gradcost
gradcost
gradcost

|Igradcost|| = 4.472

57-

DELIGHT-FOR_BEGINNERS(ld) y 7/1/82 DEUGI^-FOR-BEGINNERS(ld)

Epilogue

Well, you now have a key which opens the door to the charms of DELIGHT, DEsign La
boratory withInteraction and Graphics for a Happier Tomorrow. Good luck!

Ohyes, there is one more thing to know... how to end the enchantment:

1> quit
Goodbye Bill, It is 20:45:49, Date: 06/06/82

Acknowledgements

For their comments and constructive (or destructive) criticisms, we give special
thanks to Dave Riley, Andrew Heunis, Danny Stimler, Polly Siegel, U Guanguan, and Ar
istotle Arapostathis. Also, thanks to John Kaye for reviewing the first two sentences
and pointing out a missing comma.

This work was supported by the National Science Foundation under grants CEE-81-
05790 and ECS-79-13148, by the Air Force Office of Scientific Research (AFOSR) United
States Air Force Contract No. F49620-79-C-0176, and by a grant from the Semiconduc
tor Products Divisionof the Harris Corporation.

58

	Copyright notice 1982
	ERL-82-55

