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Plasma-Sheath-Wall Time-Dependent Behavior

An Informal Survey
Charles K. Birdsall

Abstract There is evidence that plasma-sheath-wall interactions include
large amplitude collective behavior, at low and high frequencies. This report
is a loose collection of such evidence, covering theory, simulations and ex-
periments.

Introduction

Plasmas interact with bounding walls in a variety of ways in various
configurations. These interactions involve sheaths, virtual cathodes, double
layers, self-biasing, and the areas of plasma chemistry and plasma processing.

The configurations range from tiny Langmuir probes to discharges used in

plasma cleaning, etching, sputterings, deposition et al., to first walls in
fusion devices. Some of these interactions exhibit large potential fluctuations
(e@ >>KT) and or collective effects, at low through to high frequencies (e.g. wp).

Evidence of .time dependent plasma-wall behavior grows persistently and
needs further understanding. This survey consists of a 1ist of representative
publications, followed by cut outs from articles with notations. These were
prepared for transparencies for an informal siminar on plasma sheaths and
large plasma potentials held at Biwa-ko, Japan November 20, 21, 1981, led by
Dr. H. Ikegami. Much of the material has puzzled and stimulated me for decades.
The reason for bjnding these is simply the recurring need to refer co-workers
to these works. The list is incomplete, does not sort out definitive works
and is not for journal submission. Additions and corrections will be appreciated.

Some Highlights

Attention is called to a number of clear cut observations of fluctuations
at high frequencies, meaning near up.

Tien and Moshman (1956), using particle computer simulations, observed a
peak in shot noise near (wp) nrinimum TOr @ thermionic diode, electrons only;
Rousset and Birdsall, same model, (1981, or-going work) have some evidence of



ﬂminimum, X minimum oscillations near wpe. B1rdsa11 and Bridges, also using,

simulations (1961, 1963, 1966), found large amplitude oscillations of the
virtual cothode, near “pe, for a cold electron beam in a diode at currents larger =
t ha n- "maximum", with substantial differences between the average of the
time-dependent results and time-independent analysis. T

Dunn and Ho (1963) with electron-ion particle simulation of open circut
plasma diodes (for space propulsion) found an oscillating electron sheath
provided just the electron current needed for neutralization.

Cutler (1964) observed low and high frequency oscillations in a cesium
plasma diode, short-circuited, in the ratio of /mg/mi. High frequency bursts
always occur slightly before the onset of the low-frequency current pulses.
The supposition is that drifting electrons cause an instability [Birdsall
and Bridges electron diode type or Pierce electron-ion (mj>®) diode type
(1944) or electron beam-plasma type] which decreases the average electron
current; relaxation of the resultant charge imbalance produces a cycle of the
ion oscillation. Burger (1964) saw similar effects in simulations, claiming
that dc states do not exist in collisionless plasma diodes; Burger (1965)
provides more details, showing large relaxation-type amplitude oscillations
in current and potential, with frequencies characteristic of the ions. Cutler
and Burger (1966) put experiments and simulations together, showing large
amplitude oscillations at frequencies corresponding to ion transit times, with
high frequency bursts during parts of these fluctuations.

These articles (plus others) are selected to provide evidence of low and
high frequency large amplitude fluctuations in various plasma-wall devices.
This information excites the imagination about the behavior of other plasma-
wall configurations. Are there always electron bursts (at wp) followed by
jon relaxation oscillations? Do such excite large amplitude waves (BGK,
soliton, electron hole), which propagate (or damp) away from the wall as sound-
or fluid- or particle- or pseudo- waves?

Certainly, laboratory and simulation experimentalists are encouraged to
examine high and low frequency spectra and especially to look for possible

bursts near “ pe followed by relaxations nearznpi.



Attention is called to the analysis of Cipolla and Silveitch (1968) on
temporal formation of a plasma sheath at an absorbing floating wall, using
Boltzmann electrons (me-+0) and cold fluid ions. They find that a dipole pulse
(oriented to accelerate ions toward the wall) moves into the plasma, with

Vgrou - decreasing toward v sound’ and spreading (hence, not a linear sound
wave). Thus, there is formation of a "natural" sheath (ni >Ngs width a few
Ap near the wall) and a Bohm presheath (width of 10's of Ap ), in this
nonlinear solution.

I am currently using the same model, but with particle electrons and ions
with simulations done to date with T. Kamimura and Y. Ohara at IPP, Nagoya,
Japan. We can report so fak, for Te>>Ti having non-zero Mo produces large
eﬂwa”/K.Te oscillations at wp; the edge of the region of large ion acceleration and
decrease in Ne’ Ni and Te, propagates away from the wall at Vsoun
wall collection at speeds between Vg and 2Vs' For Ti= Te’ the ion collection
is spread over f( vti)’ centered onv,.. Much remains to be done; progress

will appear in our Berkeley progress reports.

q° with ion

Since the Biwa-ko seminar, a number of additions have been made to the
references, accounting for some breaks in the year by year 1listings. Special
reference to some of these is given, following.

Self-biasing of open circuited walls at plasma boundaries, that is, setting
up floating potentials has been known since Langmuir or earlier, but is still
being studied (e.g.,our simulation model described above). . Self-biasing
also occurs when low frequency rf fields are capacitively coupled to a discharge,
leading to ion acceleration to the wall, as treated by Sturrock (1959) and
Butler and Kino (1963). This mechanism is thought to provide ion acceleration
in the parallel-plate capacitively-coupled rf discharges now widely used in
plasma etching of integrated circuits. [ These papers were provoked in part
by experiments done by myself and A. J. Lichtenberg (1959) attempting plasma
confinement at low frequency which we had misinterpreted. Our rf slow-wave
focusing was later understood and made to work at high frequency on an electron
beam, by G. Rayfield and myself (1964). ]

Double layers have been studies extensively, in space, in the laboratory
and in simulations. This name conjures up a model of a dipole charge layer



with a potential jump. The physics described is a plasma region downstream
from an electron source where there is a potential drop which is relatively
stable and large (ef/KT >>1) causing most electrons to be reflected back toward
their source. This behavior suggests the alternative name of virtual cathode
which is also associated with limiting currents and the possibility of Tow

and high frequency oscillations (a la Birdsall and Bridges, Cutler and Burger).
The papers by N. Sato and K. Saeki and their co-authors deserve careful reading.
The report by Hollenstein et al. (1980) (first read by me March 1982) shows
localized stationary potential jumps with eQKTe>>1 and, indeed, with a spectrum
of high frequency fluctuations centered about fpe with a fullwidth of 0.3 fpe’
and a localized increase of Te. It would be interesting to learn whether
Hollenstein et al. observed pulses of a few to many cycles at fpe (bursts in
time) and whether these triggered (were followed by) activity at lower fre-
quencies associated with ion sound or ions transit time effects.

Ion bursts due to pulsing a grid with small to large potentials at f::fpi
are observed in simulations by Estabrook and Alexeff (1972), using Vlasov ions
and Boltzmann electrons (me-+0). The bursts are ballistic (kinetic) in nature,
(not ion sound) 1ittle affected by the self consistent fields (hence, called
pseudowaves), extending on the order of 10, into the plasma, at velocities up
to about 4 v.. For a grid held negative (at eQ/KTe=-2) Estabrook et al. (1971)
found the ion distribution is almost flat extending to about ¥1.8 vg. These
large ion velocities near a negative grid are similar to those observed in our
particle simulations with an absorbing floating wall.

In laboratory or computer

experiments, some clues as to causes and effects are obtained from spectral
measurements. Random particle noise with a flat spectrum, white noise, is
commonly called shot noise. Spectra which are not flat, but have peaks and
valleys etc., indicate that resonant or collective effects may be occurring.
The curnent! spectra of Tien and Moshman (1956) clearly demonstrate the low
frequency smoothing of shot noise by the dynamics of the potential minimum
(the Deybe cloud) in front of®thermionic emmitter,@"effect known since the
1930's; the peak near w = w_ shown by Tien and Moshman is the overcompen-
sation for shot noise found by Whinnery (1954); the "Tien dip" just below the
peak is open to question. The large oscillations in potential minima obtained
by Birdsall and Bridges (1961, 1963, 1966) for cold beams beyond limiting
currents are resonances at frequencies related to transit times at the plasma



frequency (i.e., fpf_= “pT =nt ); such couple power to external loads poorly

and so must be proged carefully, perhaps by the capacitive probes of Hollenstein
et al. (1980). The spectral clues found by Cutler and Burger (1966) at low and
high frequencies were important in unravelling the physics.

Double layers in the laboratory may be set up by applying large potential
differences across a plasma. In space, in the auroral problem, a current is applied
to the system, leading to instabilities which tend to form holes in ion phase
space which evolve into multiple eﬂ/KTe = 1 double layers, as described by
Hudson and Potter (1981) and others.
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Computer Experiments on Jon-Beam Neutralization
with Initially Cold Electrons

D. A. Duynx* anp L. T, Hot
Stanford University, Stanford, Calif.

Trajectories of clectrons and ions shot into an initially field-free space, as in the ion-pro-
pulsion problemn, have been obtained using a one-dimensional model. The results of a set of
computer experiments are presented, in which the ratios of electron-to-ion injection ve-
locities and currents are varied for large but finite ratios of ion-to-electron mass. For elec-
tron-to-ion velocity ratios less than about 2, static theories of neutralization are confirmed.
For unneutralized and partially neutralized beams, oscillations, and in some cases, randomiza-
tion of electron trajectories are observed. For clectron-to-ion velocity ratios greater than
2 and electron-to-ion current ratios greater than a critical value, neutralization is obtained
by means of an oscillating electron sheath that feeds electron current to the ion beami in a
sel{-compensating manner.
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Fig. 6.7-1. Cross-section view of an ion propulsion system.
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Fig. 6.7-2. A planar ion propulsion system and the associated potential diagram.
Su'ch a system would perform about the sanie as the system of Fig. 6.7-1, except that the
grids would be worn down by ion sputtering and limit the life of the system.
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of=Dumn % o, cold injechioy

130

Fig. 6.7-3. One-dimensional model analyzed here has single velocity ion and electron
beams injected at z = 0.

The injected currents are J; and J, and the injection velocities are ttis and ugy. The
masses per particle per unit area are m; and m,. The injection plane has the property that
it is transparent to electrons and ions injected in the positive z-direction, but it collects
all particles that strike it traveling in the negative z-direction. The electron current density
Jo is equal to the space-charge limited current that would be drawn in a diode of spacing
S, at the potential corresponding (o ne,. The corresponding ion-diode spacing is 5;, the
spacing of the accel grid from the emitter in Fig. 6.7-2.

S]ng Species; all pqv'hdes yefur.

Fig. 6.7-%. lon trajectories for a single-velocity ion beam injected into an infinite region after an imitial transient has died out.

Distance is measured in units of the equivalent spacecharge limited dicde spacing s; for the injected current deasity. Time is measursd
in ion transit times ;, across the distance s5; at the injection velocity. The pattern repeats except for minor fluctuations due to shot noise. The
time step here was 0.25¢,, rather coarse by modern standards. This computation was done in 1962 with a small computer. For a stll
coarser time increment by a factor of two the pattern was substantially the same. One ion was introduced per time step (from D. A. Duna
and [. T. Ho, Computer experiments on ion beam seutralization with initially cold electrons, A/4A4 J. 1, 2770-2777 (1963)].
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Fig. 6.7-6. Electron trajectories for a two species case with (teolttio) = 2.5, (my/m;) = 1800, and (—JfJ;) = L.

The current ratio here is insufficient to give full neutralization and some ions are eveatually ceturned. Only every fifth trajectocy out
to T = 55 is shown, but in the computation electrons were injected uniformly beyond this time. Note that some electrons have already
been returned to the injection plane at this time. The trajectory pattern here is the justification for regarding the beam as a “plasma
bottle” (from D. A. Dunn and I. T. Ho, Computer experiments on ion beam neutralization with initially cold electrons, A/4A J. 1, 2770-
2777 (1963)].
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Fig. 6.7-5. Electron trajeczocies (solid) and ion trajectories (dashed) near the injection plase tor a two-species case with (ugq/uy) = 2.5,
(my/m.) = 50, and (—J/J) = 2.

The current ratio foc this case is large enough to give complete neutralization by means of an oscillating electroa sheath which supplies all
the electron cucrent needed for neutralization at velocities randomly distributed about the ion velocity. Distance is measured in units of s,
the equivalent spacecharge limited diode spacing corresponding to the injected electroa current. Time is measured in units of the electron
transit time ¢, across 5. (from D. A. Dunn and I. T. Ho, Computer experiments on ioa beam neutralization with initially cold electroas,
AldAd J. 1, 27T70-2777 (1963)].
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Computerﬂ Simulation of the Electron Mixing Mechanism in

Ion Propulsion

O. BoneEMAN*

Stanjord University, Stanford, Calif.
' AND

G. KoovEerst : -
Litton Industries, San Carlos, Calij. :

A one-dimensional simulation with electrons and ioas treated as sheet charses in mutual
coulomb interaction and simplified emission conditions (ioas are injected with uniform ve-
locity through a plane accelerator grid, electrons with a thermal distribution from a plane d?-
celerator grid at ship potential) was programmed into a digital computer. The dynamic
buildup of the plasma is observed; the thrust seems to be maintained almost steadily, a:nd
good spoataneous neutralization seems to take place. Nonstatic space charge felds oscillating
at the electroa plasma frequency seem to provide the entropy increase needed for proper mixing.

L/ = the ratio of distance between the ion emitter and
- _;/ the accelerator grid to the distance between
T 73  the accelerator grid and decelerator-emitter

grid . )

M/m = ratio of ion mass to electron mass = /800

@1/¢0 = the ratio of the potential between the sccelerator
=9 4 grid and the decelerator-emitter grid to the

. potential between the ion emitter and the ac-
celerator grid

kT/ego = ratio of mean electron energy to potential dif-

-.-.%30 :;gnce between ion emitter and accelemrfgr
% = number of ion sheets injected per time step
7/n: = ratio of electron sheets injected per time step
=2 to the number of ion sheets injected per time
step
N = the approximate number of ion sheets berween
the acgeierator grid and the decelerator-emit-
gid (36,60, 129,249

The outpugva.riables from the computer‘?u- as follows:

P/ 0 = the ratio of the integrated spaceship po-
. tential at each time step to0 «

Twws/Tuuwt = the ratio of the force exerted on the ship
by all the charged sheets to the ideal
force on the ship calcuiated at each time
step from the change in momentum one
would expect if the ions left the ship
with energy ¢ — ¢

¢/ <o = the ratio of ¢, the poteatial in the piasma
t0 «o as a function of distance from the
accelerator grid; the potential is found
by integrating the electric field in the
plasma from the farthest out sheet to
the accelerator grid
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Two-Dimensional Computer Experiments on lon-Beam
Neutralization

R. P. Wapuwa,* O. Buxeman,t axp D. F. Braucui
QLiuon Industries, San Carlos, Calif.

The two-dimensional electron-ion mixing mechanism focr ion propulsion has been pro-
gramed into a computer. Electrons and ions are simulated by several thousand rods of
negative and positive charge. They are accelernted step-hy-step, the spuce-charge ficlds
being evaluated ut each step by a new superfast technique of integrating Poisson’s equation,
The technique employs Fourier analysis, a marching method, and a capucitance matrix char-
acterizing the electrode system. Integration takes approximately one second for 2% lincar
resolution. A stack of strip ion beams is injected through an accel-grid. Thermal electrons
are released from both sides into each heam. The electron emitters define the decel-potential
but are not placed directly within the beams; free space conditions ace imposed at the beads of
the advancing beams. Trajectory and equipotential plots show that the electron supply and
demand of the beams is regulated by fluctuating fields. A near-neutral plasma is formed ata
potential within a few kT of the electron emitters. The thrust is thus maintained near a
value cocresponding in ion acceleration to this potentiul, beam spread remaining negligible.
Changing parameters, such as masses, currents, and velocities produce expected results, such
as ion turn around when electron emission is reduced 10 zero value.
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Fig. 1 A schematic of clectron and ion injection in an
ion engine.
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High-Frequency Oscillations in a Thermal Plasma

Wittan H. Curier

Hansen Laboratories of Physics, Stanjord Universily,
Stanford, gah'fornic

(Received 3 September 1963)

LO\V—F REQUENCY ion oscillations are frequently observed
in thermal plasma devices. such as power converter plasma
diodes,' and are associated with driit of the plasma electrons.
Birdsail and Bridges® have suggested that an instability of the
drifting electrons should give rise to high-irequency oscillations
with period near the electron transit time across the device, and
that such oscillations decrease the average electron current and
density. Relaxation of the resultant charge imbalance would
produce a cycle of the ion oscillation.

Oscillations of this type have been observed in a thermal cesium
plasma. The apparatus is a cesium-vapor diode utilizing a 1.27-
cm-(§-in.) diam electron-hombardment-heated tungsten button,
opposed by a moveable cold plate, operating in an axial magnetic
field.

With the diode short circuited and the button temperature such
that an excess of ions is avaiiable, smooth ion oscillations are ob-
served as diode current fluctuations with irequency depending
only on the button-to-plate spacing. In addition, an L-C circuit
and detector picks up a signal with frequency 500 to 1000 times

higher occurring in bursts once each cycle of the lower trequency
HRuctuation. Figure 1, prepared from oscilloscope photographs,
Shows the waveform of the low-frequency Buctuations and the
Unwelope of the high-irequency bursts. (The small pips of alter-
hating sign occurring in the detector output are the low-irequency
Current fiuctuations, differentiated by the coupling coil).

Table I lists the observed low and high irequencies as a function
of diode spacing.

The high-irequency bursis alwavs occur in conjunction with the
lgw-irequency fuctuations. The detailed shape of the high-fre.
Quency envelope may vary somewhat as conditions are changed,
but the burst alwavs occuss slightly before or at the onset of each
lqw-frequency current puise. The higner frequency is 500 1o 1000

unes the lower, this ratio being near the square root of the jon-
:ctron mass ratio.

: K. P. Luke and F. E. Jamerson. J. Aupl. Phys. 32, 321 (1962).
+C. K. Birdsail and W. B, Bridges, J. Appl. Phys. 32, 2011 (1961).
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None:dstencé of d¢ States in Low-Pressure JOU\’NJ A’PP ( IQ)( P A\{S‘ .

Thermionic Converters

25 3T 3049 16,

Stanford University, Stanford, California
(Received 24 April 1964)
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Nature of Spontaneous Oscillations in a Cesium Diode Energy Converter*

W. T. Norrist
Research Lodoratory of Electronics, Massachusetts Institute of Teclinology, Cambridye, Massachusells
(Received 12 May 1964)

EMITTER COLLECTOR

¥4 2 -
A | W‘T¢

‘ chnéd

() Fic. 10. Steady-state
distribution curves: (a)
Shows no electron insta-
bility, (b) and (c) prob-
ably will show electron
instability, and (d) is
probably electron stable.
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Theory of Large-Amplitude Oscillations in the One-Dimensional
Low-Pressure Cesium Thermionic Converter

PeTER BURGER
Institute for Plasma Research, Slanford Unitersity, California
(Received 20 August 1964; in final form 18 March 1963)

The large-amplitude oscillations in a one-dimensional, low-pressure cesium thermionic converter are
analyzed. With the help of results obtained from computer calculations designed to simulate the operation
of the converter, the current oscillations are explained in terms of the changing forms of the potential dis-
tribution in the system. The variations in the form of the potential function are explained by means of the
concept of a “temporary dc state.” Such a state differsfrom the idealself-consistent state in that the electrons
and the potential adopt new distributions while the ion distribution stays the same as in the self-consistent
state. In fact, the ions are treated as too heavy to respond to the new potentials while the electrons adjust
themselves rapidly to them. The existence of a temporary dc state is decided by solving 2 static problem
only; but if such 2 state exists, then there is a possibility for relasation-type oscillations in the system with
frequencies characteristic of the ions.
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Computer Experiments on the Randomization of Electrons
in a Collisionless Plasma

P. BtrGeR, D. A. Duxy, anp AL S. Havsted®

Instituie for Plasma Research, Slanford Unirversily, Stanford, California
(Received 23 June 1963)

The large-signal, time-dependent behavior of a one-dimensional, collisionless plasma is simulated
on a computer by calculating the trajectories of a Inrge number of charge sheets in a one-dimensional
space. The equations of motion of the charge sheets are calculated self-consistently with the electric
fields that the charges themselves set up in the diode. A plasma is formed in the diode by the genera-
tion of electron and ion sheets at a constant rate in time and space. The velocity distribution, charge
distribution, and potential distribution of the simulated plasma are investigated. Electrons and ions
are generated with prescribed initial velocities. Because of the heavy mass of the ions, the potential
in the middle of the diode becomes positive with respect to the wall. The potential does not
settle down to a de state, however, but exhibits fluctuations at the electron plasma_irequency. It is
shown that these ri fluctuations randomize the velocities oi the electrons. A clear simiiarity is
shown between the effects of these rf fluctuations and elastic collistons.
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EXPERIMENTS ; OSCILLAT(QRS

)OURN.{L OF APPLIED PUYSICS VOLUME 37, NUMBER 7 JUNE 1v60

Oscillations in the Thermal Cesium Plasma Diode*

Wittiaxt H. CoTLERt AND PETER BURGER
Institute for Plasma Research, Stanford University, Stanjord, California
(Reccived 10 September 1965; in final form 23 February 1966)

Oscillations with frequencies corresponding to ion transit times are observed in thermal cesium diodes
baving parallel-plane construction. Electrons and ions are emitted from heated flat tungsten disks immersed
in cesium vapor. Mcasurements are made with one emilter facing a cold coliector and also with two emitters
iacing each other. Large-amplitude oscillations are observed whenever the collector potential is large enough
1o draw electron saturation current through the diode. Characteristics of these oscillations are well cor-
related with computer-simuiated results and explained by theory developed carlicr. High-frequency bursts
during some parts of the low-frequency fiuctuations are also obscrved as predicted from current-vs-time
curves of the computer-simulated diode. The electron-rich and ion-rich regimes of the two-emitter diode are
found and switching between the two regimes is demonstrated by measuring the ion saturation current with
a probe at the middle of the diode,

Fid ¥4t (a lo Narvis (465 4 @MV‘}W)’%D asallahons
"ove dume ﬁo_’)id v‘earmvjemenf of pafential destvibatin
W $he diode , wode passible . by Qlechon nightw due a

e nfewal  when (Ghs Vemain @naichiely at et

Luke out: @ on acdushe Wave ms*{s\behf'y

b) mul‘h',)(e de stqfes P(Ms Jumps befwoen states

Dovices
L (By= 256 6) B>

—= T = H——
Het @I, mavable ==

Cs Uovor ho+ het

Prede tied o cor?kac(ed SP\or('ctr'cM,k-— [0cin "\g,mp.l

.
= St m; <N . {
X = T T:TL_ X >4 s on rich
Se €

at e er

twg diffoyent
de sdates

§ Ghsorved



yopve 3&\6\5‘

*UOISSILEY U011D942 ad1e] Jof
swn pue 3dej(oa IPOUE SA JUILIND IPOUY ‘+ Ol

©
0 E

-uonciado
u-u0l Aj3U0IIS J0] (DT IIMO]) SWN SA UMD Ipout
put t(#>t1} 1addn) 3Seajoa vpoue sA JuILIND IpOUY ‘g "9Ig

Pouo

A

i BT S St ST et -L‘.::..z 3
) G

iy St

Sl o50

HOJY NOT



T

[Q Vge
Q(ngm\
LMIsS{on

X <1

(@

Most

Common
asci{lahm

<= |

(b)

LR T g e

TPy
ST ‘W’V
PSS S L2

()
= eh
ety 0( > 1

(€

RECRRCER iy

F16. 5. Oscilloscope traces of diode current vs time jor increasing
anode potentials. ia) Large clectron emission (a might be slightly
less than unity). (b) The paramcter « is of the order of unity.
(c) Heavily ion-rich condition.
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Zero-Field Solutions and Their Stability in the One-Dimensional Low-Pressure

Cesium Diode
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il

The dc potential solutions which have zero slope at the emitter are calculated and examined for the low-
pressure cesium diode. It is assumed that ions and electrons are emitted thermionically at the emitter with a

given ratio of ion-to-electron saturation currents and a positive d¢ potential is applied to the collector.
Furthermore, the potential is nowhere negative in the diode and electron saturation current fiows through it.

‘This assumption limits the range of a's to 0<a <1, where « is the ratio of ion-to-electron saturation currents
times the square root of the ratio of their masses. It was found by Auer and Hurwitz that monotonically
increasing potential solutions can exist only for the range of a's, 0 <a <0.405. In the range 0.35 <a <0.405
we found large amplitude oscillations in the diode by computer simulation methods. The static solutions for
a<0.33 were found stable. For 1>a>0.403 the static potential solutions have a long zero slope region
within the diode or become periodic in space. All these solutions were found unstable and nonexistent in
the diode that operates under time-varying conditions just as predicted by Auer and Hunwitz.
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Fic. 1. The possible types (A, B, and C) of static zero-field

solutions in the low-pressure cesium diode which allow electron
saturation current to fow through the diode.
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. F16.7, Normaiized current vs normalized time in the computer-
simulated diode irt the zero-field parameters d/Apn =30, cT'a/kT =
203, a=04. Tze average ion transit time is eight normalized
umse units,
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Fic. 9. Normalized current vs normalized time characteristics
in the computer-simulated diode with parameters d/xog=!09,
eVy/hT =3, 2=042. An atiempt to find the_tvpe-B zero-ileid
solution in the diode with ¢V4/iT = 1.8 failed, and even with this
hizher collector potential, eiectron saturation current does not
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Fi6. 6. Normalized current J/J, vs normalized Llime
(ET/m¥=/¢ in the computer-simulated diode #r the zero-field
parameters ¢ App=30, ¢Ve/kT=42.6, =0.3. The time step for
caleulations was 1/30 normalzed time unit and there are an aver-
age of 4000 sheets in the diode. Ion-to-electron mass ratio
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Fic. 8. The efiect of increasing collector potential on the current-
ve-time characteristics of the simulated diode ({cf. Fig. 7).
Same diode parameters as in Fig. 7 except ¢l'¢/T =30,
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On the temporal development of a plasma sheath

By J. W. CIPOLLA, Jr.f AND M. B. SILEVITCH}
Northeastern University, Boston, Massachusotts 02115

(Received 22 May 1980 and in revised form 10 September 1980)

In this work we study a one-dimensional model for the time-dependent behaviour
caused by placing an uncharged conducting surface in contact with a uniform
equilibrium plasma. Both the probe potential and plasma response are unknown
a priori but are specified through a set of self-consistent model equations and
boundary conditions. We investigate some numerical and analytical conse-
quences of this model. In particular, we consider such issues as (i) the formation
and expansion of a quasi-neutral region connecting the non-neutral sheath to
the distant undisturbed plasma, (ii) the validity of assuming the existence of a
sheath edge; and (iii) the role of both static and dynamic Bohm criteria in the
theory of unsteady sheath development.
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Figure 1. try of the model.
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Ficure 2. Ion and electton densities versus dxstance for several times during (a) the esrly
and (b) the later stages of development. Electron densities are shown dotted.
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Ficure 5. (@) Density difference (n—n,) versus distance {Ap,) for several times during the
initial stages of the formation and expension of the quasi-neutral region. () Density
difference (n - n,) versus distance (Ap,) for several times during the intermediote and lator
stages in the development of the quasi-neutral region. The line laboelled SE marks the »
empirically derived density difference value that specifies the sheath edge data curve §(¢) )
(see text).
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