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Introduction

In the design of large integrated circuit systems there are many opportunities to make mistakes.

Simulation of the design can catch many mistakes and allows the mistakes to be fixed before the

chip is sent.for fabrication. If the design is done at the layout level, the underlying circuit must be

extracted from the layout description. Simulation can then be driven from this extracted circuit For

large, complex designs this step is necessary to insure the correctness of the design.

This report describes Mextra, a circuit extractor that reads an integrated circuit layout description

in Caltech Intermediate Form (CIF 2.0)[1] and creates a circuit description, which can be used to

perform various electrical checks. The circuit description is directly compatible with MOSSIM, a

switch level simulator, MOSERC, a static electrical rules checker, and POWEST, a program that

estimates the power consumption of circuits[2]. Sim2spice can be used to convert the MEXTRA

circuit description to a circuit description suitable for Spice simulation.

Mextra is very similar to the Cifplot -x circuit extractor[2], but much faster. Its average growth

rate is linear in the area of the circuit and the number of rectangles, and its execution speed is an

order of magnitude faster than the ClFPLOT extractor. MEXTRA, however, is not as general as

Cifplot. It handles only manhattan geometry, and it can read only a subset of CIF. Yet these

restrictions seem to be well worth the significant speed up.

Usage

The command line to run Mextra looks as.follows:

mextra basename

MEXTRA will read the file basename.cH and create four new files, basenameAog, basenameal,

basename.slm, and basename.nodes. After Mextra finishes it is a good idea to read the '.log' file.

This contains general information about the extraction. It has a count of the number of transistors,

and the number of nodes. Also it contains messages about possible errors. The \al' file is a list of

aliases for node names that can be used by MOSSIM. The '.nodes' file is a list of node names and

their CIF locations listed in CIF format. It can be read by Cifplot to make a plot showing the

. circuit with the named nodes superimposed. The form of this Cifplot command is:



cifplot basename.notes basenamexit ctatemenL
,, fii» miKt be called first since it does not contain a QF End statement.The basenamcnodes file must De canea iim am

the command is:

tJT^—s messages about possible electric, rule violations. To do aswitch level
simulation with MOSSIM, the command is of the form:

mossim basenames\m
(See [3] and [4] for a description of MOSSIM.)

Names

-««***- the user to specify his own names^^^^^Z
number is assigned to the node. The CIF extens.on command 94 is used to name
of the CIF command is as follows:

94 name x y [laye* d,ayer CT0Ssing &e point
This command attaches the name to the mask geometry *
, >,fM laver is SDecified then any mask geometry crossing the point is given me n

u ,«,„ nnrt« are eiven the same name although they are not connectedAproblem arises when ^^JJl"L the same names, other times we don't Tnis
electrically. Sometimes we want these nodes*ha ^ .^^ tf
frequently happens when aname is specified «ace« *at krepea J ^

. we define ashift register ce» with *e input m*£^'"^. ^
register we could have 8nodes named SR.m. If this hopens« pp AfferentsMft register cells were shorted ^er. To ^s t^x„«, ^ ^
types of names: local global, and«^^*̂ ^ ^ ^ numbeIS „node, it is appended with aunique suffix -^ to #n. -«. -. ^

ending them with asharp sign, # . Names are made gio y
m„r1c t These terminating characters are not considered part of the name, however. Nam



illegal to have aname that is declared both local and global. The extractor will complain if this
happens and make the name local. If aname is declared local or global, any unspecified occurrence
takes on the specified type, i.e. local or global.

It makes no difference to the extractor ifthe same name is attached to the same node several times.
However, ifmore than one name is given to anode, then the extractor must choose which name it
will use. Whenever two names are given to the same node the extractor will assign the name with
the highest type priority, global being the highest, unspecified next, local lowest If the names are of
the same type, then the extractor takes the shortest name. In the '.aT file the extractor lists the
names of any node that has more than one name attached to it Each line starts with an equal sign,
which is followed by alist of names. The '.aT file is readable by Mossm so that it will understand
these aliases.

Transistors

For each transistor found by the extractor aline is added to the \sim' file. The form of this line is:
type gate source drain length width xloc yloc

Type can be one of three characters, V for enhancement, «d' for depletion, or V for unusual
implant Unusual implant refers to transistors that are only partially in an implanted area. (These
are not common and may be a design error. If this type of transistor was intended, it will be
necessary to write a filter to replace these transistors with the appropriate model in terms of
enhancement and depletion transistors.) Gate, source, and drain are the names of the gate, source,
and drain nodes of the transistor. Length, and width are the channel length and width in CIF units.
Xloc, and yloc are the xand yCIF coordinates of the bottom left corner of the transistor, (e. g. the
minimum x and y coordinates of the transistor.)

The extractor guesses the length and width of atransistor by knowing the area, the perimeter, and
the length of diffusion terminals. For rectangular transistors, and puUup transistors with abuttmg
contact the reported length and width' is correct For transistors with corners, or for unusually
shaped transistors the length and width is not as accurate.

It is possible to design atransistor with three or more diffusion terminals. The extractor considers
these as funny transistors. They are entered in the \sim' files in the form:

{type gale nodel node! ... nodeN xloc yloc
The T is followed by the type that is the same as the type for normal transistors, «e\ 'd\ or V. Gate
is the poly node covering the transistor region. Nodel through nodeN are the diffusion terminal
nodes Xloc and yloc are the x and ycoordinates of the transistor. As with any circuit with V
transistors, any circuit with T transistors must be run through a filter replacing each of the funny
transistors with the appropriate model in terms of enhancement and diffusion transistors.



Capacitance C

The •sim' file also has information about capacitance in the circuit Capacitance can come from two
sources Capacitance between anode and substrate, called node capacitance, and capacitance caused
by poly overlapping difflision but not forming atransistor, called poly/diff capacitance. Capac^nce
o Jsistors are not included since most of the tools that work on the *m «•«*»«"
transistor capacitance from the width and length information. The lines containing node capacitance
information are of the form:

C nodel GND cap-value
The form of the poly/diff capacitance information is:

C nodel node! cap-value (xloc yloc)
Cap-value is the capacitance between the nodes in femto-farads. Xloc and yloc are the (x,y)
coordinates of the bottom left comer of the capacitance area.

When calculating the node capacitance, the capacitance for each layer is calculated separately The
layer capacitance is calculated by taking the area of anode on that layer and muluplying it by a
cons^representing the capacitance per unit are, Tnis is added to me product rf •to£—
and aconstant representing edge capacitance per unit lengtii. Tne node capaciunce is the trfal of
the layer capacitances of the node. Node capacitances below acertain threshold are not reported.
The default threshold is 50 femto-farads.

Poly/diffusion capacitance is calculated similar to layer capacitance. The area is multiplied by a
constant and this is added to the perimeter multiplied by aconstant There ,s no threshold for the
reporting of poly/diff capacitance. The default constants are given below.

layer area perimeter
metal 30 0
ooly 50 °§8? 100 100
poly/diff 400 0

' Area constants are in atto-farads Off*8 farads) per square micron. Perimeter constants are atto-.
farads per micron.

Changing Default Values

The extractor tries to do areasonable job with aminimum of help from the user. Often, though, the
values it chooses for certain parameters do not suit the needs of some users. This secuon discusses
how to change the default setting of several parameters.

As part of its start up procedure Mextra reads two files, '-cadAcadrc' and the '.cadre' file in the
user's home directory. Mextra reads these files to set up constants that it will use later. This allows
several program constants to be changed without recompUing. Each line in the .cadre starts with a
keyword that tells the program how to process the line. The case of the keyword does not matter.



Unknown keywords are ignored. This allows several programs to share the '.cadre' files.

One common set of parameters that auser would like to change is the constants used to compute
the node capacitances. These values are dependent on the particular line that is to fabneate the
chip. These values can be changed by entering in the .cadre file lines of the following form:

areatocap layer value

and

perimtocap layer value
TTie value for area is in atto-farads per square micron and for perimeter it is in atto-farads per
micron. By putting the following lines in the '.cadre' file, the capacitor values are set to the values
given in Mead and Conway[5].

areatocap poly 40
areatocap diff 100
areatocap metal 30
areatocap poly/diff 400
perimtocap poly 0
perimtocap diff 0
perimtocap metal 0
perimtocap poly/diff 0

As noted above, any node capacitance below 50 femto-farads is ignored. The user may want to
change this value up or down depending on how important capacitance is in his circurt This
threshold value can be changed with an entry in the '.cadre' file of the form:

capthreshold value .
Value is in femto-farads. A negative value is equivalent to setting the threshold to infinity.

By default Mextra reports locations in cif coordinates. Many designers, though, prefer to think in
another set of units, such as microns or lambda units. While debugging achip- it is often necessary
to look at the geometry near these coordinates. Finding these coordinates with agraphics editor
usually involves aclumsy conversion from CIF units to the units used by the graphics editor. It is
possible to change the coordinate system by including aline in the '.cadre' file of the followmg
form:

units scale
This line makes the basic unit equal to scale centi-microns. The following line sets the basic unit to
microns:

units 100

The coordinates in the '.nodes' file are kept in CIF units since it is aCIF file. The units can also be
set on the command line using the -u option. The following command line sets the basic unit to
microns:

mextra -u 100 file
Setting the units on the command line overrides the units specified in the '.cadre' file.



Implementation ;

Mextra was written to fill a need for a fast circuit extractor for the RISC project As such, very

definite goals were set It should be able to extract large chips in a reasonable amount of time. It
should fit in well with the other tools. It should allow user supplied names. It should check for

obvious errors, and report them in an easy to read fashion. Finally, it should be up and running as

soon as possible.

In having such definite goals set, the generality of the extractor beyond the RISC project was not
considered of major importance. Thus, it was decided that the extractor would handle only

manhattan geometry and that it would read only a subset of the CIF language. This allowed the

extractor to be faster, since checks for non-manhattan features could be eliminated. Also the parser

could use a simple parsing scheme, which did not worry about the more troublesome features of

CIF. Since the problem was simpler, implementation time was shortened. In addition, a simpler

problem made it easier to concentrate on efficient algorithms and to find bottlenecks in the

program.

Mextra is not a very big program; it is less than 6000 lines long, which can be broken down

approximately as follows: 900 lines for utility routines, 350 lines for the scanner, 1300 lines for

interpreter, 1400 lines for dealing with node names and numbers, 1000 lines for sorting and the

geometry extractor, and the remainder is for control, initialization, and user interface. The utility

routines, and the scanner/interpreter routines were made into libraries that have proved useful in a

number of other programs, such as CIFPLOT, Cifstat, and CUPCIF[21.

Mextra is actually made up of two programs. The first program reads the CIF file, sorts it, does the

extraction, and then calls the second program. The second program replaces internal node numbers

assigned during extraction, with either a user supplied name or a final node number. The next

several paragraphs describe the implementation of MEXTRA.

Tiie Scanner

The scanner is a simple, general purpose token scanner. The scanner assumes that the input is

structured into a list of commands. Each command is terminated with a semi-colon. The command

is made up of blank:separated tokens, where the first token is the keyword for the command. The

lowest level is the Input Module. This module reads characters from the input file and puts them

into the line buffer. This module also keeps track of the name of the file and the number of the

line currently being read. Text enclosed in parenthesis is ignored. (Nesting of parenthesis is

allowed.) A command is considered terminated upon reading a semi-colon or upon reaching the

end-of-file.

The next level is the Scanner Module. This module breaks the line buffer into blank-separated

tokens. (A blank may appear in a token only by enclosing text in a quote string. The quote marks



are stripped off by the scanner.) TTiis module maintains aKeywordTable that contains atat of
keywords and associated functions. The first token in each command is compared against the
keywords in the KeywordTable. If amatch is found, the associated function is called with the
number of tokens in the line and an array of character strings where the strings are the tokens of
the command line. If no match is found, the default function is called. The KeywordTabl e is set
by calling KeyScanner(keyword,function). Each call to KeyScanner places anew keyword
and its associated function into the- KeywordTable.

The Interpreter

The input module and the scanner module aid in breaking the input into tokens, yet neither module
knows anything about CIF. The Interpreter Module contains the CIF specific information. The
interpreter starts off by initializing the scanner with QF keywords. The initialization routine looks
like this:

InitScanner();
DefaultScanner(Unknown);
KeyScanner("DS",DefineSymbol);
KeyScanner("DFM,DefineFinish);
KeyScanner(MLM,DefineLayer);
KeyScanner(,,B,\DefineBox);
KeyScanner("P",DefinePolygon);
KeyScanner("W",DefineWire);
KeyScanner("C".DefineCal1);
KeyScanner("94*\DefineLabel);
KeyScanner("9'\DefineSymbolName);
ScannerQ;

Each routine, Def ineSymbol, Def ineLayer, Def ineBox, etc., takes appropriate action for the
type of command it is to receive. The routine Unknown prints an error message.

Each object, boxes, polygons, calls, etc., is either in adefinition or is called at the top level. Those .
objects called at the top level are placed in apseudo-symbol. These objects can then be treated like
any other object Asymbol consists of aname, number, bounding box, and alist of objects. Each
symbol is placed in the Symbol Table according to its symbol number.

After reading the CIF file, the interpreter computes the bounding boxes of all the symbols, and
checks to see that there are no recursive calls. The bounding box of the entire layout is also
computed.

The extractor is not strongly tied into the CIF language. It would be relatively easy to retarget the
scanner/interpreter for adifferent language than CIF, as long as the new language could be broken
down into tokens. For instance, Caesar format[61 would probably fit well into the scheme
described above. Most of the changes needed would be in the interpreter module. It would have to
load the keyword table with different strings. Special characters recognized by the scanner, such as
parenthesis and semi-colon, could be changed by calls to the function



LoadCharClass(ch,class), which sets values in the character class table used by the scanner.

Instantiating the Geometry

The next step is to begin instantiating the geometry of the layout There are three basic functions
that do the instantiation: SortObject, EnumerateSymbol, and Instantiate. SortObject
sorts the objects as it receives them by minimum y onto the ReadyList. SortObject is
discussed in more detail later. The function EnumerateSymbol (n.trans,function)
transforms each object in symbol nby trans and then calls function with the transformed
object When there are no more objects in symbol n, function is called with NIL.

The third function, Instantiate, does the bulk of the work. It takes the objects off the
ReadyLi st in sorted order and breaks the objects down into more basic objects. If the object is a
primitive object, such as abox or polygon, it breaks the object down into edges, and calls
SortObject with each of the edges. If the object is an edge or alabel, it is inserted to the
EventList. If the object is a call, Instantiate calls
EnumerateSymbol(n.trans,SortObject), where nis the number of the called symbol and
trans is the call's transform. This replenishes the ReadyList.

Initially, of course, the ready list is empty. Therefore, Instantiate must prime the ReadyList.
To do this Instantiate puts the objects not in symbol definitions onto the ReadyList. Since
the interpreter puts all objects not in aCIF symbol into symbol #-1, Instantiate starts by
filing EnumerateSymbol (-1 ,G1 obalTransform, SortObject). GlobalTransform
translates the CIF coordinates so. that the transformed bounding box.begins at the origin.

Instantiate continues taking*objects off the ReadyList until the list is empty. When the
ReadyLi st is empty, we know that the layout is fully instantiated. All edges and labels have been
put on the EventList. Of course, if we didn't periodically empty out the EventList, large
layouts would require unreasonably large amounts of the memory. To avoid this, whenever

' Instantiate advances in the Y-direction, it calls MoreEdges() which takes elements off the
event list

Sorting

Like many other programs, Mextra spends much of its time sorting. It is important, therefore, that
sorting be done as efficiently as possible. The sorting method chosen almost exclusively in MEXTRA
was bucket sorting. The number of buckets that are used is chosen according to the size of the chip.

The function SortObject uses abucket structure for sorting. The buckets are 2000 CIF units high.
Each bucket is simply an unsorted Ust, therefore, insertion into abucket is quite easy. Whenever
Instantiate wants anew object, it takes the first object in the lowest bucket When the bucket is
empty, it calls MoreEdges and then advances the pointer to the next lowest bucket



This method of instantiating causes the event list to become full of edges that would normally fall
into one 2000 CIF unit high bucket Edges are sorted into the event list by the function SortEdge.
The event list is actually atwo level bucket structure. SortEdge first determines which of the 2000
possible first level buckets the edge falls into by taking the y-min of the edge modulo 2000. Each of
these buckets are composed of sub-buckets, each 2000 CIF units wide. (Thus the number of sub-
buckets is also determined by the size of the chip. One might think initially that this would take a
great deal of storage, but it turns out that not all 2000 possible first level buckets are used. These
buckets are only created when they are needed. For designs based on alambda grid, where lambda
is 200, the number of buckets used is only 10. If ahalf lambda grid is used twice the number of
first level buckets are needed.) Each sub-bucket is asorted list on x. The appropriate sub-bucket for
an edge is determined by dividing the x-value of the edge by 2000. The edge is then sorted into the
appropriate sub-bucket It is now relatively easy to pull off edges in sorted order.

Node Propagation

Amoving line algorithm is used to propagate node numbers along electrical paths. The chip is cut
into horizontal swaths coinciding with the vertices of the geometry within the chip. For each swath
we create node segments, which indicated horizontal runs that are covered by the geometry of the
swath. Node segments are used to pass node information from one swath to the next Given two
adjacent swaths, by comparing the node segments of each swath we can propagate node information
from one swath to the next Node information stored with the segments at the bottom of the swath
can be passed to the top of the swath by noting when segments in the two swaths overlap.

As an example, consider the geometry shown in figure la. The area between the three dashed lines
represent two adjacent swaths. Figure lb provides acloser look at the two swaths of figure la. Node
numbers are passed up from swath Ato .swath B. By running down the segment list for swath A,
we see that the first segment overlaps the first segment in B. We assign node number 17 to the first
segment of B. We also find that the second segment in Bis overlapped by the second and third
segments of A. The node numbers 43 and 8are merged and the second segment of Breceives the
smaller number, 8. Finally, the third segment of B is overlapped by no one. We generate a new
node number for this segment

During the node propagation phase we record the area and perimeter information for the layers
metal, poly, diffusion, and gate. This information is used to compute node capacitance, and is used
to determine the length and width of transistors. The gate layer is created whenever poly crosses
diffusion (and there is no buried contact present). For each gate region we create atransistor record
in which we store the node numbers ofany adjacent diffusion and the overlapping poly. This gives
us the connections to the drain, source, and gate of the transistor.



Merging Node Numbers

Often during node propagation we will find that we have assigned two node numbers to the same
node. It is necessary to establish an equivalence between these node numbers. This is done by using
alarge array that has one entry for every node number used. This table is used to keep track of
smallest node number merged with anode number. The index corresponds to anode number. If an
entry in the array equals its index then we know that no smaller value has been merged with that
node number. If the entry is smaller than the node number, then the node number is equivalent to
the entry. This entry may in turn point to another entry. Eventually when we follow this path far
enough we will find anumber whose entry in the array equals itself. When two node numbers are
merged we trace the two paths down until we find the two minimum numbers. We then make the
larger of these two numbers point to the smaller. At the end of the extraction phase any reference
to a node number is replaced with reference to the node number's minimum value.

As an example consider the array shown in figure 2a. To merge node number 10 with node number
9 we first find the minimum values for the node numbers. The minimum value for 10 is 7. The
minimum value for 9 is 2. We then enter 2 into location 7. If we now trace for the ininimum value
of 10 we find 2, as shown in figure 2b.

Node Names

Anode name is assigned to anode by associating apoint with the name. Any node that crosses that
point is assigned the name. During the node propagation phase, swaths are scanned to find points
that overlap nodes. When an overlap is found arecord is made of the name and the node number.
After the node propagation phase has completed, in the second pass, node names are substituted for
node numbers.

Performance/Experience

•We have gained considerable experience with Mextra during the RISC[7] project Soon after
MEXTRA was first operating, it was put into use. Since the program was new, many bugs were
found and fixed during this time. Also this proved to be a period of evolution in which a number
of inadequacies and inconvenences were discovered. I believe that this rapid period of program
development and user feedback help make Mextra a more usable and reliable program.

A major factor for Mextra's rapid acceptance was its speed. It was about 10 times faster than
Cifplot for even small cases. We estimated circuit extraction for the entire RISC chip would take
approximately 24 CPU hours using CIFPLOT, which in our heavily loaded computing environment
was infeasible. Circuit extraction with Mextra, however, was found to take about one CPU hour.
This was quite feasible, and the entire chip was, in fact, extracted many times.

The naming facilities of Mextra, though still imperfect, were extremely useful. The naming

10



faculties helped find unfinished LSSD nets, and places where power and ground were connected
backwards: In addition it allowed simulation to take place immediately after extraction without the
need to make plots with the computer generated node numbers.

Mextra was usable immediately because it fit in with many of the other tools. CAESAR-generated
OF could be read, and simulation files for MOSSIM, Moserc, and POWEST were created. In
Zt£ alist of MOSS.M aliases was generated. Hie file of node names and loeauons that was
creTd could be integrated into the plot of the chip layout created by Qfpu,t or converted to
Caesar format by using QF2CA to be viewed in context interactively.

The table below lists the runtimes for Mextra on several layouts.
Name Number of Time Trans/sec

Transistors (mintsec)
padiotrUif 24 :0B 4 8
control-cif 231 • *'
opplaxif 369 :27 13.7fhip.cif 777 1:11 0|
cherry.cif 881 •"
pcchip.cif H16 1=48 10.3
alu.cif 2257 1:83 20.0
shift.cif 3070 3:46 13.8
flfc.df 8276 7:52 . 17.6
scheme79.cif 9443 11:38 13.5
testram.cif 20480 15:26 "-l
rfile.cif 26560 21:18 20.8
chip.cif 35262 36:04 16.3
risc.cif 44424 54:25 13.6

From this table we can see that the growth rate of the algorithm is approximately linear.
Throughout the development of the program, achieving linear, performance was amajor goal.
2ZSmany routines of the program have n> worst case performance we would not expect to **
1 wo,t case performance in practice. Worst case occurs when all the rectangles of me layou la
on top of one another, which is not likely for IC layouts. From the statistics gathered in 8] we
expect die density of chip layouts to be distributed almost uniformly, very far from the worst case.
Tte bin sorting method used by MEXTRA is an example of such behavior. Ahhough tins sorting
method has 0(n>) worst case performance, for .C layouts we would expect 0(n) performance.

Conclusion

The rapid acceptance and use of MEXTRA, and the user feedback provided by the R.SC project help
make Mextra into auseful and reliable tool By concentrating on efficent, linear expected ume
algorithms and by restricting designs to manhattan features. Mextra has achieved significant
performance improvements.

Although the runtimes for Mextra are quite reasonable for current isi circuits, the runtimes may
become infeasible for the next generation circuits because of a10 to 100 fold increase in errant
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complexity. New methods, such as exploiting hierarchy, will need to be develop in order to keep
pace with technological development
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Appendix A: Example Run

. , • po fw hit Qhift register There are two metal busses marked with thePimir<» 1a shows the design of a four bit snirt regisiei. inci^ «2IV d^lta! bus through the center of the eireuit is marked wr. Two other metal hn«
Tmid 'Phil' and 'Ph12'. The shifter is made up of eight calls to abasic: shifty In the
basic cell the input is marked •SR.InT. and the output is marked SR^outf. ta» £««.

Tas id* names. The exclamation point (0 after TOP and V-P indicate that these are
JobTn^s; unconnected nodes with these names should receive the same name.
The '.cadre' file has been set up with capacitance values given in^^^^*
«o 200 since this design was done with lambda =2nucrons. The .cadre file follows.

areatocap poly 40
areatocap diff 100
areatocap metal 30
areatocap poly/diff 400
perimtocap poly 0
perimtocap diff 0
perimtocap metal 0
perimtocap poly/diff 0
units 200

The command line to run MEXTRA is:

After extract itTSportant to check the '.log' file. The listing of 'shift8.1og' is given below.
window: 0 76 -132 0 @u=200
the label 'SR.out' has 8 occurrences
the global label 'GND' has 2 occurrences
the label .'SR.in' has 8 occurrences
the global label 'Vdd' has 2 occurrences
32 enhancement, 16 depletion
39 nodes

Aplot of mis circuit with node names is shown in figure 3b. Nodes with no name assigned1 to, them
are given numbers. Note mat 'SR.ir.*' has generated the names 'SR.intfO' through SR^n#7
"ere 2 seven places in the circuit where the names •SIM* and 'SR.out*' conflict These are
listed in the file 'shiftS-al* listed below.

= SR.in#0 SR.outtfl
= SR.in#l SR.out#2
= SR.in#2 SR.out#3
= SR.in#3 SR.out#4
= SR.in#4 SR.out#5
= SR.in#5 SR.out#6
= SR.in#6 SR.out#7
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Simulation of the circuit can take place using MOSSIM. The command line for using MOSSIM is:
% mossim shift8.sim shift8.al

The simulation file, *shift8.sim\ is listed below.

e Phil SR.in#7 158 2 2 45 -7
e 158 GND 156 2 4 18 -10
d 156 Vdd 156 8.5 2 13 -10
e Phi2 148 156 2 2 29 -15
d SR.in#6 Vdd SR.in#6 8.5 2 62 -18
e 148 SR.in#6 GND 2 4 56 -18
e Phil SR.in#6 138 2 2 45 -23
e 138 GND 136 2 4 18 -26
d 136 Vdd 136 8.5 2 13 -26
e Phi2 128 136 2 2 29 -31
d SR.in#5 Vdd SR.in#5 8.5 2 62 -34
e 128 SR.in#5 GND 2 4 56 -34
e Phil SR.in#5 118 2 2 45 -39
e 118 GND 116 2 4 18 -42
d 116 Vdd 116 8.5 2 13 -42
e Phi2 108 116 2 2 29 -47
d SR.in#4 Vdd SR.in#4 8.5 2 62 -50
e 108 SR.in#4 GND 2 4 56 -50
e Phil SR.in#4 98 2 2 45 -55
e 98 GND 96 2 4 18 -58
d 96 Vdd 96 8.5 2 13 -58
e Phi2 88 96 2 2 29 -63
d SR.in#3 Vdd SR.in#3 8.5 2 62 -66
e 88 SR.in#3 GND 2 4 56 -66
e Phil SR.in#3 78 2 2 45 -71

" e 78 GND 76 2 4 18 -74
d 76 Vdd 76 8.5 2 13 -74
e Phi2 68 76 2 2 29 -79
d SR.in#2 Vdd SR.in#2 8.5 2 62 -82
e- 68 SR.in#2 GND 2 4 56 -82
e Phil SR.in#2 58 2 2 45 -87
e 58 GND 56 2 4 18 -90
d 56 Vdd 56 8.5 2 13 -90
e Phi2 48 56 2 2 29 -95
d SR.intfl Vdd SR.intfl 8.5 2 62 -98

• e 48 SR.intfl GND 2 4 56 -98
e Phil SR.in#l 38 2 2 45 -103
e 38 GND 36 2 4 18 -106
d 36 Vdd 36 8.5 2 13 -106
e Phi2 28 36 2 2 29 -111
d SR.in#0 Vdd SR.in#0 8.5 2 62 -114
e 28 SR.in#0 GND 2 4 56 -114
e Phil SR.in#0 18 2 2 45 -119
e 18 GND 16 2 4 18 -122
d 16 Vdd 16 8.5 2 13 -122
e Phi2 7 16 2 2 29 -127
d SR.outtfO Vdd SR.out#0 8.5 2 62 -130
e 7 SR.out#0 GND 2 4 56 -130
C Vdd GND 242
C Phi2 GND 84
C Phil GND 84
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Appendix B: Simple ClF Format ;

ClF, the Cal-Tech Intermediate Form, is an interchange format for integrated circuit mask designs.
As such, it should be quite simple and efficient to parse. Yet this is not the case. The syntax of OF
is very general, making it difficult to parse. Since CIF is not meant to be adesign language, there is
no need for this generality. Generality should give way to efficiency.

The OF parser of Cifplot was designed to recognize any valid CIF construct As aconsequence the
parser is slow. Yet by adding alittle more structure to CIF it could be made tremendously more
efficient This section presents a structure to format CIF that is easier and faster to parse. This
simple CIF structure is just asubset of CIF 2.0, so it is fully compatible with existing CIF programs.
At the same time it does not sacrifice any of the expressive power of OF.

Apotential defect in building tools that recognize just this subset of CIF is that it might lock us into
aclosed environment, where our tools would only work on locally generated CIF files. OF files from
other universities that do not follow this standard could not be read. This is not a problem,
however. CIFPLOT already has a full CIF parser, and it can output a file in simple CIF format Thus,
for any general CIF file it is possible to create an equivalent simple CIF file.

Each command in CIF 2.0 is made up ofone or more tokens. The first token indicates the command
type. Each command is separated by asemi-colon. For instance, the command for abox located at
the origin with length 10 and width 4 is the following:

B 10 4 0 0;

But this can also be expressed as any of the following:

Box with Length = 10 Width = 4, Located @ 0,0;
BOX 10,4/0.0;
BIRD10CAT4X0ZZZ0;
B10+4&0/0;

However, the following is illegal OF:

B10-4&0/0;
There is no inherent syntax in CIF that any low level scanner can exploit In general every character
must be passed directly to the parser to be interpreted.

Simple CIF places two basic restrictions on CIF syntax: first that every token must be separated by a
blank or comma; second that all characters in acommand, except blanks and commas, must be part
ofa token. The first restriction allows the scanner to break acommand into separate tokens. The
second restriction gets rid ofextra characters, which are just noise, in the command line. These extra
characters have no place in an interchange format, and only add to the complexity of the language
parser. Some might argue that these extra characters increase readability, but no one should be
reading CIF! These two restrictions allow alow level scanner to break the CIF into tokens before
passing these tokens to the parser.
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The CIF Delete Definition command is very hard to implement and is hardly ever used. The

effect of Delete Definition can be achieved by a simple renumbering of the symbols in a CIF

description. Since it adds no power to the language, is not widely used, and is difficult to
implement, the Delete Definition command is not allowed in simple ClF. By the same

argument, symbol redefinition is not allowed.

Language Extensions

This section discusses extensions not part of the official CIF language, but that can be added to our

structured CIF without introducing incompatibility with standard OF.

The constructs of OF can be used to express the physical layout of an integrated circuit Since OF

has become the standard language for expressing ic designs, it is often desirable to keep more

information than just geometry. Text to be placed on checkplots is useful to help a designer

understand his circuit Node names are useful in programs like circuit extractors and wire routers in

order to relate information back to the designer through names that are meaningful to him.

Information about the size of lambda is useful for programs such as design rule checkers.

Information about the last time a symbol was modified is useful for tools that do incremental

checking on a circuit Yet none of this information is necessary for fabrication. ClF provides for

extensions to the language by user extension commands. Our structured CIF should establish a

standard notation for user extension commands. No user extension command should make CIF

incompatible for fabrication, however.

Experience with Simple-ClF

As an example of the efficiency gains achievable from simple-CiF, let us compare the programs

Cifplot and Mextra. Cifplot recognizes the full cif language; Mextra recognizes only simple-

CIF. After comparing the times needed by each program to read in several CIF files, the scanner of

Mextra was found to be about seven times faster than Cifplot. Considering the size of CIF files

this is a very significant speed up. In addition, the scanner/parser of Mextra is less than 400 lines

of code; the scanner/parser of Cifplot is about 1200 lines of code. By being smaller, the

scanner/parser code for Mextra was written, tested, and debugged much more quickly than the

code for Cifplot. Thus, the scanner/parser modules of Mextra occupied a lesser percentage of the

implementation time.

The importance of this is easy to overlook. The amount of effort that is put into developing a CAD

tool versus the payoff is an important consideration. There always seems more work to do, than

there are people to do it It is wasteful to spend time on developing complicated parsers for clumsy

interchange formats when there are many useful tools that need to be developed.
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11 7

10 8

9 4

8 7

7 7

6 4

5 5

4 2

3 3

2 2

1 1

Fig. 2a. Merge Table
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10 8

9 4

8 7

7 2

•5 4

5 5

4 2

3 3

2 2

1 1

Fig. 2b.MergeTable afterMerging 9 & 10
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Fig. 3a. Eight Bit Shift Register
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Fig. 3b. Eight Bit Shift Register after Extraction
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