Copyright © 1982, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

THE WAVEFORM RELAXATION METHOD FOR TIME DOMAIN
ANALYSIS OF LARGE SCALE INTEGRATED CIRCUITS:
THEORY AND APPLICATIONS

by

Ekachai Lelarasmee

Memorandum No. UCB/ERL M82/40
19 May 1982

THE WAVEFORM RELAXATION METHOD FOR TIME DOMAIN ANALYSIS OF
LARGE SCALE INTEGRATED CIRCUITS: THEORY AND APPLICATIONS

by

Ekachai Lelarasmee

Memorandum No. UCB/ERL M8zZ/40
19 May 1982

ELECTRONICS RESEARCH LABORATURY

Coliege of Engineering
University of California, Berkeley
94720

Abstract

The Waveform Relaxation (WR) method is a new decomposition méthod for
solving a system of mixed implicit algebraic-differential equations over a given
time interval. This method essentially uses an iterative relaxation scheme such
as the Gauss-Seidel relaxation or the Gauss-Jacobi relaxation in which the ele-
ments of the relaxation ars waveforms of unknown variables. The decomposed
system obtained through the relaxation scheme is also a system of mixed impli-
cit algebraic-differential equations but is much easier to solve than the original
gystem.

The application of this method in the area of tirme domain simulation of
integrated circuits is emphasized. Although the WR method has a theoretical
basis, it can be given a simple physical interpretation when applied to the
analysis of integrated circuits. In particular, the convergence conditions of the
method can be given either in terms of the numerical properties ‘of the circuit
equations or in terms of the properties of the circuit components. This method
is shown to be a viable alternative to the conventional techniques for simulating
large scale integrated circuits since sufficient conditions for its convergence are

quite mild and are always satisfied by a large class of practical circuits.

The performance of the WR method when applied to a particular class of cir-
cuits, i.e., MOS digital integrated circuits, ere studied and evaluated via a proto-
type simulator called RELAX. The repetivity and directionality of digital subcir-
cuits as well as the digital nature of the signals are exploited in the simulator to
increase the speed of computation and to utiiize the storage efliciently. Prelim-
ipary comparisons between RELAX and the standard circuit simulator SPICE
have shown that RELAX is fast and reliable for simulating MOS digital integrated

circuits.

Acknowledgements

1 am deeply grateful to my research advisor, Professor Alberto L.
Sangiovanni-Vincentelli, who introduced me into the exciting area of computer-
aid design and optimization and has consistently guided me with enthusiasm

throughout the course of my graduate study.

I appreciate the scholarship from the Anandamahidol Foundation (Bangkok,
Thailand) which has given me the financial support in persuing my graduate
study here at U.C. Berkeley. I also appreciate the research grants from Harris
Semiconductor Corporation, IBM Corporation and Joint Services Electronic Pro-

gram contract F49620-79-C-0178.

I wish to express my sincere thanks to Professor A.R. Newton, Dr. Albert E.
Ruehli from IBM Research Center and J.P. Spoto from Harris Semiconductor for
many useful and stimulating discussions necessary for the progress of this work
and to the DELIGHT creator William T. Nye for numerous assistances in program-
ming. I also wish to express the pleasure of my association with many friends:
Dr. M.J. Chen, Dr. V.H.L. Cheng, G. DeMicheli, C.L. Gustafson, R.J. Kaye, M. Lowy,
W.T. Nye, D.C. Riley, Dr. V. Visvanathan and the Projectile people of Ridge Pro-

ject.

Finally, I wish to express my special gratitude for the inspiration and caring

provided by my dearest parents: Yothin and Yuwadee.

Table of contents

Chapter 1: IDLrodUCLionccccceceeceivnecrrerineeresteeeeneereesesessessssnesessannees
Chapter 2: Overview of Simulation Techniques ..
2.1 Standard Simulatorscceeeeeerueerene. rreteeesasessnetsnnttesaneansens
2.2 DeCOmMPOSILION ...ccveerererreererrerunrisessreessisneessneesesesssesasesinsensans .
2.2.1 Tearing Decompositioncceeeeeeeruveerneeeessvecsseesenessans
2.2.2 Relaxation Decompositioncccecceeeeiveererereesrnnereanessonns
2.2.2.1 Timing Simulation......ccccceereunene ceessnnanieaniennens
2.2.3 Concluding RemMAarksccccceeemreeereercnneeriessneencesssesees
Chapter 3: The Waveform Relaxation Methodcccouueeeiveeeecerresreneressanenes
3.1 Mathematical Formulationc.cceeeerereereeessivenneeesnecsnesessecsennns
3.2 The Assignment-Partitioning Processccocoveeeereensuneecnnans
3.3 The Relaxation Processcccceeeereeecveeeneernnneeecssecssnnesseeecne
3.4 Circuit Examples and Their Physical Interpretations
Chapte;r 4. Consistency of the Assignment-Partitioning Process
4.1 Definition of Consistency and EXamplescccerueueeuerceennene.

4.2 The Formal Approach for Finding and Checking

Chapter 5:
5.1
5.2

5.3

a Consistent AP Processcceeeeeeeevnnnnnen

Convergence of the WR Method

................................

................................

Contraction Theorems in Functional Spacecccceerruvvenen...

Convergence of the Canonical WR Algorithmccouuueeen...ss .

Existence of the Canonical WR Algorithm

ooooooooooooooooooooooooooooooo

10
13
18
21
31
31
32
33
35)

41

47
56
56

59

Chapter 8: WR Algorithms for Simulating Large Scale

Integrated CIrCUilSccccceiviiiiiiiinineeiiiiniiieiieeeseeseenssssonssnnnnees 71
8.1 Nodal Circuit Equations and the WR Algorithmc....... 72
8.2 Modified Nodal Equations and the WR Algorithm 75

8.3 Guaranteed Convergence of WR Algorithms for

MOS CIFCUILS .eucireiiereranimecenemneinieeieesiessmisiessessnsesnsssssssessessanes 7
6.4 WR Algorithm with Adaptive MOS Modelsccoveevennnisirnrunannee. 80
Chapter 72 RELAX: An Experimental MOS Digital Circuit Simulator 89
7.1 Basic Algorithms in RELAX ..c.ccccocvmeenieieeenrnninnienenenceineeescieseanees 89
7.2 Scheduling Algorithmccceeeieerieenminiiieiineneeceeiereen. 90
7.3 Latency and Partial Waveform Convergence 93
Chapter 8: Organization of RELAXcccciiiiinieiiiiiniinnisnncceiecssssssissnneene 99
8.1 Look-ahead Storage Buffering Schemecoovervrermmennnicnienanns 102
Chapter 9: Performance of RELAXcccciiiiiiiiiiiiinnnnnniinineimniiee 107
Chapter 10: Conclusioncccoieiieeneeiiineciinees esssenacasesesersssncasnseassssessssnsunan 114
REfEIONCES ..coivviiiereniineiiiiiiiiiiieiioiiettatssttessstsetssersnsasesesarsassesssnsassesanssassssness 118
Appendix A: Proofs of Theorems and Lemmasccccceeeererivccssisineciniesicsanena Al
Appendix B: The Use of Iteraive Nonlinear Relaxation Methods
in Time Domain Simulation of MOS circuitscccccceeeeeee. B.1

Chapter 1

Introduction

Shnt#ation programs have proven to be eflective software tools in evaluat-
ing or verifying the performance of integrated circuits during the design phase.
Circuit simulators such as SPICE [1] and ASTAP [2] have been widely used by cir-
cuit designers to provide accurate electrical analysis of the circuits being
designed. Although these simulators are designed to perform many types of
analysis such as "de" analysis, small signal (or "ac") analysis and time domain
(or "transient") analysis, the majority of the use of these simulators in present
day circuit design is in the latter area of time domain analysis, the most compli-

cated and expensive type of analysis.

In this dissertation, we shall focus on time domain or transient circuit
simulation. This type of simulation involves the solution of a system of
differential equations describing the circuit. The most common approach to
solving the circuit equations in time domain analysis consists essentially of the
use of three basic numerical methods: an implicit integration method, the
Newton-Raphson method and the sparse Gaussian Elimination method. We refer
to this approach as the standard simulation approach. Circuit simulators that
use this standard approach (such as SPICE and ASTAP) are called standard cir-
cuit simulators. The bulk of the storage and computation of the standard simu-
lation approach lies in the process of formulating and solving a system of linear
algebraic equations simultaneously. It turns out [3] that both the storage and
computer time required by standard circuit simulators grow rapidly as the size
of the circuit, measured in terms of circuit components, increases. Hence, the
cost-effective use of standard circuit simulators for performing transient simu-

lation has been generally limited to circuits having a few hundred devices (e.g.

transistors) or less.

As we move into the era of VLSI (Very Large Scale Integrated) circuits, the
demand for simulating larger and larger circuits is continuously growing. It is
clear that to simply extend simulation techniques used by standard simulators
to circuits containing over 10,000 devices is not practical. Hence new algorithms
and simulators must be developed. A survey of these algorithms is given in [4].
These new algorithms include, for example, Block LU factorization, the Tearing
Algorithm for solving linear algebraic equations, the Multilevel Newton-Raphson
algorithm and timing simulation algorithms. A common theme underlying all
these algorithms is the use of large scale system decomposition.

The purpose of this dissertation is to introduce another decomposition
method for time domain simulation. This method is called the #aveform Relaza-
tion (WR) method. The idea behind the development of this method originated
from a study of the work of Newton [5] who formulated the timing simulation
algorithm in the form of a relaxation technique for solving the nonlinear alge-
braic equations associated with the discretization of the circuit differential
equations. In the WR method, relaxation decomposition is applied at the level of
differential equations whereas, in other previously proposed decomposition
methods, &ecomposition is applied at the level of (linear or nonlinear) algebraic
equations. Both theoretical and computational aspects of the WR method will be
discussed in detail. In particular, the development of an experimental program
for simulating MOS digital integrated circuits based on the WR method is
described. The program is named RELAX. Preliminary tests of the program and
its performance comparison with SPICE indicate that the WR method is highly
suitable for analysing this type of large scale integrated circuits.

The organization of this dissertation is as follows. In Chapter 2, we give a

brief review of the standard simulation approach and a comprehensive discus-

sion and classification of various decomposition techniques. The rest of this
thesis can be subdivided into two parts. The first part, consisting of chapters 3,
4 and 5, describes the WR method and its numerical properties in a purely
mathematical context. The second part, consisting of chapters 6 to 9, deals with
the WR method in a circuit simulation context. A brief description of these two

parts is given below.

In Chapter 3, the mathematical description of the WR method together with
the concepts of a decomposed system and the assignment-partitioning process
are given in Chapter 3. In Chapter 4, the effect of the assignment-partitioning
process of the WR method on the dynamical behaviour of the decomposed sys-
tem is described and the concept of consistency of the assignment-partitioning
process is presented. An algorithm based on graph theory to produce a con-
sistent assignment-partitioning process is also described. In Chapter 5, conver-
gence properties of the WR method are fully discussed by using contraction
mappings in functional spaces. Sufficient conditions for convergence of the WR
method are given and convergence of the WR method using an adaptive error

control mechanism is also discussed.

We begin the second part of this thesis by specializing the WR method to the
analysis of VLSI MOS circuits in Chapter 8. Two WR algorithms are described and
are shown to converge under very mild and realistic assumptions. In Chapter 7,
the details of a few important techniques in implementing the WR method in
RELAX are given. The organization of the program is described in Chapter 8 and

its experimental results are given in Chapter 9.

Finally, the proofs of all theorems and lemmas are given in Appendix A and
in Appendix B we explore the use of iterative techniques to improve the numeri-

cal properties of timing simulation algorithms.

Chapter 2

Overview of Simulation Techniques

Time domain simulation of a continuous dynamical system, such as an
integrated circuit, traditionally uses three basic {or conventional) numerical

methods.

a) An implicit integration method which approximates the time derivative

operator with a divided difference operator.

b) The Newton-Raphson (NR) method for solving a system of nonlinear alge-

braic equations.

¢) The Gaussian Elimination (GE) method for finding the solution of a system of

linear algebraic equations.

The integration method transforms ordinary differential equations into a
discrete time sequence of algebraic equations. If the differential equations are
nonlinear, the discretized algebraic equations are also nonlinear and can be
solved by the NR method. The NR method in turn transforms nonlinear algebraic
equations into a sequence of linear algebraic equations which is solved by the GE

method. This hierachical organization of numerical methods is shown in Fig. 2.1.

When certain structural and/or numerical properties of a given system of
equations are met, the system can be solved efliciently by using the so called
decomposition techniques. By decomposition, we mean any technique that
allows several subsets of the given equations to be solved individually by using
conventional numerical methods. In our opinion, decomposition is indispensible
in simulating efliciently large scale dynamical systems such as large scale
integréted circuits. Various decomposition techniques have been proposed in

the circuit simulation literature. A survey of these techniques is given in [4].

In this chapter, we will briefly review the direct applications of the conven-
tional numerical methods in what we call standard simulators, such as SPICE [1]
and ASTAP [2]. Then we will describe the basic concepts and properties of two
tundamental approaches to achieving system decomposition, which have led to
the development of several simulators such as SPLICE [5], MOTIS [8], MACRO [7].
SLATE [8], DIANA [9], SAMSON [10] and CLASSIE [11].

2.1. Standard Simmulators.

We define a standard simulator to be a simulator that directly applies the
conventional numerical methods (i.e., an implicit integration method, the NR
method and the GE method) to the solution of the system of equations describ-
ing the behaviour of the circuit to be simulated. Typically, the circuit equations

can be written in the following form
f(é(t).z(t),u(t)) = 0; z(0) = z, (2.1)

where z(¢) € R® is the vector of the unknown circuit variables, u(t) € R is the
vector of the independent (or input) variables, zq € K" is the given initial value
ofxz and f : R'xR"xR -R" is a continuous function. Let §{¢; ; i = 0,1,...,N} denote
a sequence of increasing timepoints selected by the simulator with £ =0 and
ty = T where T is the given simulation time interval.

By applying an implicit integration method, the system of equations (2.1) is
transformed into a discrete time sequence of algebraic equations by replacing
z(t,) with an approximating formula

Z(t) ~ Alz(t)) i=12..N (2.2)

Hence, the resulting algebraic equations at time t; can be written as

TA@) zow) 2 g(z) = 0 (2.3)

where z; denotes the computed value of z(#;) and 4 u(t).

The fact that the approximating formula can be chosen in a variety of ways
gives rise to a number of integration methods with different numerical proper-
ties, i.e., order of consistency convergence and stability [12]. The most com-
monly used approximating formulae in the circuit simulation are the Backward
Differentiation (BD) formulae of order 1 to 8 [12] and the Trapezoidal formula
[12]. For example, the first order BD formula, also known as the Backward Euler

(BE) formula, is given by

z(t) = z(ti—y)

Az(r) = T2 (2.42)
T -1
and the Trapezoidal formula is given by
x t -2 t - [
() = 2 Z8Z2la) g (2.40)

b =t

To advance the timepoint, the timestep A; E t; — t;—; is normally selected to
ensure that the local truncation error [12] associated with the approximating
formula is within the prescribed tolerance. The computation of the local trunca-

tion error requires that (2.3) be solved accurately.

The solution of (2.3) is obtained in a standard simulator by directly applying
the NR method. To start the NR iteratipn. an initial guess z0, called a predictor,
of the solution is obtained through a prediction step that uses the information of
the past trajectories of z. For example, a simple linear extrapolation of the past
trajectories gives the following predictor (also known as the Forward Euler pred-

ictor).

) = o+ _}_l‘:'(zi—l - Zi-3) (2.5)

The iteration equation of the NR method is given by

8 (zpNak -zb1] = g k=12 (2.6)

where Qg—(z{"‘) denotes the Jacobian matrix of g evaluated at zF~! and k
oz g *

denotes the NR iteration count. The NR iteration is carried out until the conver-

gence is achieved.

The solution of (2.8) is obtained in a standard simulator by directly applying

the GE method. In circuit simulation environments, the coefficient matrix of
(2.8) is usually very sparse, i.e., the matrix -gz— has very few nonzero elements

per row. Hence the GE method is usually implemented in standard simulators by
using sparse matrix techniques [1,28]. It is important to exploit the sparsity of
(2.6) since the computational complexity of the GE method applied to an nxn
full matrix is proportional to n3 whereas the computational complexity of the GE
method using sparse matrix techniques is on the average [1] proportional to
n?%; a € [1.2,1.5].

Standard circuit simulators such as SPICE [1] and ASTAP [2] have proven to
be reliable and eflective when the size of the circuit, measured by the number of
circuit components, is small. As the size of the circuit increases, the primary
storage and computer time used by these simulators increase rapidly [3]
despite the use of sparse matrix tec.:hniques. It has been estimated [13] that the
simulation of a circuit containing 10,000 Metal-Oxide-Semiconductor (MOS)
transistors from £=0 to £=1000ns, using SPICE on an IBM 370/168 computer,
would take at least 30 hours of computer time. Hence, the cost effective use of
standard circuit simulators has been limited to circuits which are considered

small in today VLSI technology.

2.2. Decomposition.

Decomposition refers to any technique that subdivides the problem of solv-
ing a system of equations into several subproblems. Each subproblem
corresponds to solving a subset of equations, called a subsystem, for a subset of
the system variables. Decomposition can be applied at any level of equations,
i.e., differential equations, nonlinear algebraic equations and linear algebraic
equations. In effect, the system of equations, no matter at what level it is, is
viewed by a decomposition technique as a composition of several subsystems (of
the same level of equations) with interactions between them. When the system is
decomposed into subsystems, the solution of each subsystem is in general car-
ried out by using the conventional numerical techniques that we have described

earlier in the previous section.

There are two different approaches to achieving system decomposition,
namely the tfearing approach and the relazation approach. These two
approaches are characterized by different ways of updating the interactions
between subsystems and by different numerical properties. Tearing is the
approach that aims at exploiting the block structure of the system to achieve
decomposition while maintaining the numerical properties of the numerical
method that is used to solve the system. Hence, the computational complexity
of this approach depends critically on the structure of the system. Clearly, this
approach does not provide any gain over conventional numerical techniques
when the system structure is not sparse or when the block structure of the sys-
tem cannot be exploited. On the other hand, relaxation is the approach that
decomposes the system into subsystems so as to reduce the complexity of the
solution of the decomposed system regardless of whether the system structure
is spa;'se or not, i.e., the decomposed system is always easier to be solved than

the original one. However, the numerical properties of this approach are com-

plet.eljv governed by the relaxation scheme, not by the numerical method used
to solve the subsystems. These two approaches will be described in more details

in the next sections.

In describing the structure of a system of equations, it is customary to

introduce the notion of a dependency matrix defined as follows.

Definition 2.1 The dependency matrix D € 20.1}"”' associated with a system of

n equations in m» unknown variables is a matrix whose 1,j-th element Dy is

defined by

_ 1 if the i—th equation involves the j —th variable
Dy = | 0 otherwise

The main advantages of using decomposition techniques are:

a) The structural regularity and repetivity of the subsystems, such as those

encountered in large scale integrated circuits, can be exploited.

b) Additional savings in computing time can be achieved by incorporating
bypassing schemes [3,5,7,8,10] that exploits latency or dormancy of a sub-
system. These schemes allow a simulator to avoid solving a subsystem when

its solution can be cheaply predicted within a reasonable accuracy.

¢) Decomposition techniques are suitable for computers with parallel or pipe-
line architectures since more than one subsystem can be solved con-

currently.

10

2.2.1. Tearing Decomposition.

Tearing is an approach that exploits the sparsity structure of the depen-

dency matrix of the system to be solved. The particular structures! that are

suitable for the tearing decomposition are
a) the Bordered Block Diagonal (BBD) structure as shown in Fig. 2.2a.
b) the Bordered Block Lower Triangular (BBLT) structure as shown in Fig. 2.2b.

From these two structures, we see that if the variables associated with the
borders of the matrices ‘are known, then the values of the remaining variables
can be easily obtained by solving separately the subsystems associated with the
diagonal blocks. For this reason these variables are called the tearing variables.
However, in the tearing approach, the values of the tearing variables are not
computed (or updated if the algorithm associated with the tearing decomposi-
tion is iterative) from the subset of equations identified by the last diagonal
block of the dependency matrix.? Instead, they are computed from another sub-
set of equations, called a reduced subsystem, which has to be constructed by an
algorithm as we shall see later. The number of equations in the reduced subsys-

tem is equal to the number of the tearing variables.

Tearing decomposition of linear algebraic equations can be implemented in
two different ways, namely the Block LU Factorization [15] and the Tearing Algo-
rithm [15].% To illustrate the basic ideas behind these algorithms, consider the

system of equations shown in Fig. 2.3, i.e,,

Az = b

1 In showing a matrix structure, all nonzero elements are confined to the shaded areas only. The
shaded areas, however, may themselves contain some zero elements.

2 We shall see that, in the relaxation approach, these variables will be computed from this subset
of equations.

3 Note that Gearge [14] has interpreted the Tearing Algorithm as a particular form of the Block

LU Pactorization. We prefer to keep these two algerithms separated to give a better intuitive feeling
of the main ideas of these algorithms.

11

where A € R is in BBD form as shown in Fig. 2.3, z = [&] € R" is the vector of
the unknown variables and w is the vector of the tearing variables.

In the Block LU Factorization, the variable ¥ is first eliminated from the
system of equations to obtain the following reduced subsystem from which the

value of the tearing variable w is obtained.
(E-DB'C)w = by, - DB"b,,

where the meanings of all matrices and vectors are given in Fig. 2.3. The com-

puted value of w is then used to compute the value of v blockwise.

In the Tearing Algorithm, the solution is obtained by applying the Sherman-
Morrison-Woodbury formula [16]

z = A~ -A"'G[I + HAT'G]'HA %

where the meanings of all matrices are also given in Fig. 2.3 (F in the figure is a
nonsingular matrix). Here the solution of the reduced subsystem involves the
process of formulating and inverting the reduced system matrix I + HA-G
whose size is equal to the dimension of w. The full details of the implementa-

tions of both tearing decomposition algorithms are given in [15].

The use of tearing decomposition in solving a system of nonlinear algebraic
equations gives rise to an iterative method called the Multilevel Newton-
Raphson (MLNR) method [7]. We briefly describe this method with the help of an
example. Consider the problem of computing the "dc” solution of the circuit in

Fig. 2.4a. Assume that the circuit equations can be written as

Fizpvy) =0 (2.7a)
Sz vy) = O (2.7b)
iz, vy) +ia(zav)) = 0 (2.7¢)

where z; € R® is the vector of all internal variables of the first subcircuit,

12

T, € R**! is the vector of all internal variables of the second subcircuit including
va, [1° R'xR -+ R describes the equations associated with the first subecircuit,
J2: R*"'xR » R**! describes the equations associated with the second subcir-
cuit, i,: R"XR- R and iy: R**!xR+ R From this set of equations we see that
the output voltage v, of the first subcircuit is the tearing variable. The decom-
posed (or torn) circuit is shown in Fig. 2.4b. In the MLNR method, the reduced
subsystem is constructed by treating z, and z, as functions of v;, ie., from

(2.7a) and (2.7b)

z, =g,(vy) and 2z = galvy)

and substituting them into (2.7¢). Thus the reduced subsystem has the following

form

i(g(v), v)) +ix(ga(vy), vy) 2 gw) =0 (2.8)

The reduced subsystem (2.8) is then solved for the tearing variable v, by using

the NR method which yields the following iterative equation
2@t -] = gt k=12 (29)

where the evaluations of g(v%™!) and Favg—(v’f“) are performed by applying
1

another level of the NR method to (2.7a) and (2.7b). The full details of the imple-
mentation of this method is given in [7]. In circuit terms, the construction of the
reduced subsystem can be interpreted as replacing each subcircuit by an
equivalent (Thevenin or Norton) circuit which is referred to in [7] as the ezact
macromodel. The reduced subsystem is thus equivalent to the interconnection
of these exact macromodels. For example, the reduced circuit associated with

the circuit equation (2.7) is shown in Fig. 2.5.

Examples of circuit simulators that use tearing decomposition are:

13

a) CLASSIE [11], SLATE [8] and SAMSON* [10]. These simulators implement the

Block LU Factorization in the solution of the linear algebraic equations.

b) MACRO [7]. This simulator implements the MLNR method for solving the

nonlinear algebraic equations.

Note that whereas the original system of equations may be sparse, ie., its
dependency matrix has a small percentage of nonzero elements, the reduced
subsystem may not. Hence the computational advantage of this approach over
the standard approach depends crucially on how small each decomposed sub-
system and the reduced subsystem are. However, the numerical properties of
the tearing approach are the same as those of the standard numerical methods
applied to the system without using decomposition. In fact, for linear algebraic
systems, both the Block LU Factorization and the Tearing Algorithm give the
solution in a finite number of steps since the solution of the reduced subsystem
gives the exact values of the tearing variables. For nonlinear algebraic systems,
the MLNR method still has the same local quadratic rate of convergence as that

of the conventional NR method.

2.2.2. Relaxation Decomposition.

Decomposition of a system into subsystems by relaxation is not restricted
or fixed by the block structure of the dependency matrix of the system. There
is no special procedure for constructing the reduced subsystem in order to
solve for the tearing variables as in the tearing approach. The system of equa-
tions is simply partitioned into subsystems of equations. Within each subsystem,
the variables to be solved for are called internal variables and the other vari-

ables involving in the subsystem are called ezternal variables. If every

4 SAMSON also implements a blockwise relaxation technique for solving the nonlinear algebraic
equations. It is an example of using decomposition techniques at different levels of equations in the
same simulation.

14

subsystem has only one internal variable (or equivalently one equation), the
decomposition is said to be done pointwise. Otherwise, it is said to be done

blockwise.

To solve a subsystemn for its internal variables, the values of its external
variables (which are internal variables of other subsystems) are simply guessed
or updated (through an iterative procedure), ie., the subsystem is decoupled or
decomposed. This approach usually requires an iterative procedure for repeat-
edly solving the decomposed subsystems so that the values of the external vari-
ables of each subsystem can be updated by using the information from the
current or previous iterations. Two well known types of relaxation are the
Gauss-Seidel (GS) [17] relaxation and the Gauss-Jacobi (GJ) [17] relaxation. Fig.
2.8 gives examples of the use of relaxation decomposition at different levels of
equations where k£ denotes the iteration count. Fig. 2.7 shows how to associate
relaxation with the conventional numerical methods at different levels of equa-

tions in the hierachical organization of a time domain simulation.

Unfortunately this approach does not guarantee that the sequence of
iterated solutions will converge to the exact solution of the given system unless
a certain numerical condition on the partitioned system is satisfied. This condi-

tion is called the convergence condition of the relaxation iteration.

As an example, consider the following linear algebraic equations
Az = b (2.10)
where z € R" is the vector of the unknown variables, 4 € R*" and b € R". Let
A= L+D+U (2.11)

where Le R ™ is a strictly’ lower triangular matrix, D € R is a diagonal

matrixand U e R" " isa strictly upper triangular matrix.

8 A strictly (upper or lower) triangular matrix is a triangular matrix with zero diagonal elements.

15

Starting with an initial guess z° € R", the iteration equation of the pointwise

GS relaxation method applied to (2.10) is given by

(L + D)z**' = b - Uz* (2.12)
from which we obtain
(L + D)[z** —z*] = - U[z* -=z*F7]
Hence
[zE*! = 2z¢] = = (L + D)"'U[z* - z*] (2.13)

Therefore the GS relaxation iteration will converge for any given initial guess z°
if and only if all eigenvalues of the matrix (L + D)!U have magnitudes less than
unity.

Now, applying the pointwise GJ relaxation to (2.10), we obtain the following

iteration equation
Dzkt! = b —(L + U)z* (2.14)
which leads to the following recursive error equation
zk¥l —zk = - DYL + U)z* - =zF7!) (2.15)

Hence, the GJ relaxation iteration will converge for any given initial guess if and

only if all eigenvalues of D~!(L + U) have magnitudes less than unity.

The convergence condition of the relaxation iteration clearly limits the
class of systems to which relaxation can be applied. From practical points of
view, it is also very important to be able to check whether or not relaxation can
be applied before starting the iteration. This implies that we must find a numeri-
cal condition on the elements of the system to guarantee that the convergence
condition is satisfied. For instance, if the matrix 4 in (2.10) is strictly diagonally

dominant [17], then the convergence condition of either GS or GJ relaxation

18

iteration will be satisfied. In circuit simulation, this sufficient condition must be
further interpreted in terms of the properties of circuit elements. If (2.10)
describes the "dc" node equations of a linear resistive circuit, then the condition
that the circuit contains only resistors, i.e., there are no dependent sources, is
sufficient to guarantee the strictly diagonally dominance ;>f A. Obviously, this
condition severely limits the type of linear circuits to which relaxation can be
applied. Unfortunately weaker convergence conditions (although they exist) are
difficult to characterize or compute. For this reason, relaxation decomposition

has never been used in the "dc” simulation part of a circuit simulator.

The relaxation decomposition has been first used in the time domain circuit
simulation by the timing simulator MOTIS [8]). This approach has later been
modifled and implemented in other mired-mode simulators such as SPLICE [5],
DIANA [9] and SAMSON [10]. The particular association of relaxation with the
conventional numerical methods used by these simulators has given rise to a

new area of time domain simulation called the timing simulation.

2.2.2.1. Timing Simulation.

Timing simulation is a time domain circuit simulation which uses a particu-
lar nonlinear relaxation approach for solving the nonlinear equations derived
from the time discretization of the circuit differential equations. This type of
simulation approach was originally introduced [6] for the simulation of MOS digi-
tal circuits. The particular characteristic of timing simulation is that the relax-
ation iteration is not carried out until convergence is achieved. Only one itera-
tion (or sweep) of relaxation is performed and the results are accepted as the
solutions of the nonlinear equations. Thus the timesteps must be kept small to
reduée the inaccuracy of the solutions of the nonlinear equations. However,

since the computational expense of taking one iteration is very small, the com-

17

puter time used in the timing simulation is usually much smaller than that of
the standard simulator. In fact, with the inclusion of the ‘selective trace algo-
rithm or event scheduling algorithm in SPLICE [5] to exploit the latency of digi-
tal subcircuits, the timing simulation approach can be at least two order of mag-
nitude faster than the standard simulation approach. Two critical assumptions

that are responsible for the success of timing simulation are:

1) There is a grounded capacitor? to every node in the circuit.

2) The subcircuits to be decomposed have unidirectional or almost unidirec-

tional properties both in the steady state and in the transient situations.

Unfortunately, there are many MOS digital circuits which contain large
floating capacitors and/or trees of pass transistors (see Fig. 2.8). Experiments
with these circuits have indicated that the timesteps have to be kept small in
order to obtain accurate and reliable solutions. This is further complicated by
the fact that there is no reliable technique to determine the appropfi.ate sizes of
these timesteps. The estimation of the local truncation error from the solutions
in order to determine the timestep is no longer reliable since there is no
guarantee that the nonlinear equations are accurately solved at every
timepoint.

To illustrate the basic steps and numerical properties of timing simulation,
we consider a circuit, such as the one shown in Fig. 2.8, whose node equations

can be written as
Cu+flvau) = 0; v(0)=V (2.18)
where () € R is the vector of the unknown node voltages, u(t) € R is the vec-

tor of the independent sources, C € R*™" is the node capacitance matrix in

which Gy is the sum of the capacitances of all grounded and floating capacitors

8 A grounded capacitor is a capacitor in which one of its terminels is connected to a known vol-
;gge source, such as an input voltage source or a canstant voltage source, i.e., ground or power sup-
y.

18

connected to the i-th node and —-Cy, % # j is the total floating capacitance
between the i-th and j-th nodes, and f :R'xF-R' is a Lipschitz continuous
function [25] each component of which represents the sum of currents feeding
the capacitors at the i-th node. Note that all capacitors are assumed to be
linear and that C is strictly diagonally dominant since there is a grounded capa-

citor to every node.

In timing simulation, the time derivative ¥ is discretized by an implicit
integration formula such as the Backward Euler formula in MOTIS and SPLICE or
the Trapezoidal formula in MOTIS-C [27]. For this example, we assume that fixed
timesteps of size h are used and that the time derivative is discretized by the

Backward Euler formula, i.e.,
o 1
v(ty,) N ‘h—('v (teer) =v(8))

Hence, the nonlinear equations obtained through the discretization of (2.18) are

given by

Clugsy =) + Rf (V4y, wsy) = 0 (2.17)

where vy v (t4)), v ®u(t) and w,y = w(ty,,). If (2.17) is solved exactly, then
the sequence of v; will possess all the numerical properties, i.e., consistency and
stability, of the Backward Euler integration method. This is, of course, not the
case in timing simulation. Let

C = L+D+VU (2.18)

where LeR"™™ is a strictly lower triangular matrix, D € ™ is a diagonal
matrix and U e R ™" is a strictly upper triangular matrix. In timing simulation,
(2.17) can be solved either by GJ relaxation as in MOTIS or by GS relaxation as in
MOTIS-C and SPLICE but only one iteration of relaxation is performed. Applying
one iteration of the pointwise GJ relaxation to (2.17), we obtain the following

equations

. A

19

DS —v®) + (L +)T, —-v¥) + kY (v, v wa) = O (2.19)

where uﬁ,’: € R is the guess for the relaxation and, for each component index

j=12..n,

0 A 0 0 0 o .
fc.l,(”i%: v W) = fj(vi%l. ce .'Uici'-’l,_,- v‘&,lj ' 11&’1,“- P -”&’1,,, LTHRY)

(2.20)

Similarly, applying one iteration of the pointwise GS relaxation to (2.17), we
obtain the following equations

(D + LY, = v&) + VS, —v8) + hf s (08, v&) = 0 (2.21)

where vfﬁo €R' is the guess for the relaxation and, for each component index

Jj=12..mn,

0 A 0 0
fa‘s,(”&sx. v$. wa) = Ji (Ut";'-sl,o <o .111?1,- ‘Ui?l,ﬂ- ce -1’1.?1” L Uge) (2.22)

Note that neither (2.19) nor (2.21) are equivalent to (2.17). Hence neither the
sequence of ¥ nor the sequence of v necessarily possess the same numerical
properties as the sequence of v;. In other words, the numerical properties of the
Backward Euler integration method are not necessarily preserved through the
one sweep of the relaxation process. Therefore, a complete analysis of the
numerical properties of these combined integration-relazation methods has to
be carried out to characterize them. Such an analysis has been done in [18] for
the case when v =v& and v&, = v®. 1t is interesting to note that in this
case, when C is not diagonal, the combined integration-relaxation methods are
not even consistent, i.e., the sequence of »& or v does not converge to the
true solution of the original differential equations (2.18) as the stepsize A goes
to zero. This result can be easily shown by examining (2.19) and (2.21) when

v8 =vf and v&, = v¥. From (2.19) we obtain

DG, —v®) + hf (& v %) = 0 (2.23)
and from (2.21) we obtain

(D + LYwE —vf) + hfesW8 v& wy) = 0 (2.24)

We immediately see that the effects of L and U which are due to the floating
capacitors completely disappear from (2.23) and partially disappear from (2.24).
In fact (2.23) can be exactly obtained by applying the combined integration-GJ-
relaxation to the following differential equations (with the initial guess

”&’xu = v®)
D+ f(v.u) = 0; v(0) =V (2.25)

and similarly (2.24) can be exactly obtained by applying the combined

integration-GS-relaxation to the following differential equations (with the initial
guess v585 = v
D+LyYw+f(v,u) = 0; v(0)=V "~ (2.28)

That is, these methods are solving dynamical systems which are not the same as
the original system described by (2.18). The circuit interpretations of both
(2.25) and (2.28) for the original circuit of Fig. 2.8 are shown in Fig. 2.9 and Fig.
2.10 respectively. This is a good example to show why these methods work
rather well when there are no floating capacitors or when the floating capaci-

tances are small compared to the grounded capacitances.

Some of the drawbacks of the above methods can be overcome. It can be
easily shown that the use of the Forward Euler formula to generate the initial
guess for the relaxation will at least make the combined integration-relaxation
method consistent with the circuit equations. Also the study carried out in [18]
has indicated that the use of another type of relaxation based on an idea by
Kahan [19] results in a class of combined integration-relaxation methods, called

the modified symmetric Gauss-Seidel integration, which has better numerical

21

properties. Another simple way to improve the reliability of timing simulation is
to continue the relaxation iteration until convergence is achieved. This latter

technique is dicussed in more detail in Appendix B.

2.2.3. Concluding Remarks.

We have described and classified various decomposition techniques that
have been proposed and implemented. Whereas the relaxation approach to solv-
ing linear and nonlinear algebraic equations has been treated quite extensively
(see [17] for the linear case and [20] for the nonlinear case), the study of the
relaxation approach at the differential equation level is still open both as a
numerical method and as a new tool for performing time domain simulation. At
this level, each decomposed subsystem is still a system of differential equations
and hence can be solved in the time domain by using conventional numerical
methods, e.g. the Backward Euler formula, the Newton-Rapiuson method and the
Gaussian Elimination method as shown in Fig. 2.7. The purpose of this disserta-
tion is to provide a complete study of this new decomposition technique which

we call the Waveform Relazation (WR) method.

system of nonlinear

differential equations

AV 4
Incremental Time Loop . | Implicit numerical

integration formula

system of nonlinear

algebraic equations

AV4

NR iteration Loop Newton-Raphson

\/

fteration

system of linear

algebraic equations

: AV4

Gaussian

Elimination

Solution vector

g 2.1
Hierachical organization of conventional numerical methods

for time domain simulation

tearing variables

}

1

> border

7

)
7

Fig. 2.2a
Bordered Block Diagonal (BBD) form of a matrix.

N N

tearing variables

Py

Y

> border

Fig. 22
Bordered Block Lower Triangular (BBLT) form of a matrix.

B Cc
= = A
D E
o 1
¢
A = ® ° |+
D F E-F
A G H
B c v bv
») E w (a,
A x b
Fig. 2.3

Various terms associated with Block LU Factorization and Tearing Algorithm.

WV

:
/

(a)
W W\~
A - ¢, ‘:z
4 v T2 | %
w v v +
-.,.r } 1 1 .'E
by
Fig 2.4

@) An interconnection of two analog inverters.

b) Node tearing decomposition of the circuit in Fig. 2.4a.

Y
-
4 &
@ E
.. _
Fig. 2.5

The reduced circuit of the circuit in
Fig. 2.4a as viewed by the tearing variable v,.

JiZt zh 2570 287 uy) =0]
Lozt 2%, 25 25 ug) =0 <+ |

GS
Relaxation

N
B

L2y, 21, Zp, 2o, uy) =0

Je(Z1 21, 22, T2, u) =0

a) Relaxation decomposition of differential equations

Jizt 25 uy) =0 -~
-«

f!(zf-l ' 35. u’?) =0

GJ
Relaxation

K—

Ji(z1, 22, uy) =0

Jo(Zy T2 uz) =0

b) Relaxation decomposition of nonlinear algebraic equations

Cuzf + alng" +u, = 0 .

a2zt + agpzl +ux =0 4| Relaxation

GS

K=

aT) + a1 pZe+uy =0

Q1T + QgaPp + Uz =0

¢) Relaxation decomposition of linear algebraic equations

Fig. 2.6

¥ RELAXATION : system of nonlinear
i__ jteration differential equations
Implicit numerical Implicit numerical
integration formula integration formula
¥ RELAXATION : | system of nonlinear
i__ iteration algebraic equations
+ v
Newton-Raphson Newton-Raphson
iteration fteration
T RELAXATION : system of linear
;_ fteration algebraic equations
! Vs
Gaussian Sparse Gaussian
Elimnination Elimination
Solution subvector

Fig. 2.

Solution vector

7

The use of relaxation at various levels of system of equations.

=
\/ floating capacitor

v, Cs v,
“; __> i 3 DC

pass transistor

e | l
l Lo

Fig. 2.8
A typical MOS circuit that contains a pass transistor and floating capacitors

a

.|ﬂ

Fig. 2.9

The circuit interpretation of the application of

the combined integration-GJ-relaxation to the circuit of

Fig. 2.8 (according to equation (2.25)).

—

— Vv v,
of 1 IH'.-
L] i <> I
P ||0
P c* c
Tw

Y
=<

Fig. 2.10
The circuit interpretation of the application of

the combined integration-GS-relaxation to the circuit of

Fig. 2.8 (according to equation (2.26)).

31

Chapter 3

The Waveform Relaxation Method

In this chapter we describe the basic mathematical concept of the
Waveform Relaxation (WR) method together with a few circuit examples to
demonstrate the physical interpretation of the decomposition achieved by the
method. '

3.1. Mathematical Formulation.

We consider dynamical systems which can be described by a system of

mixed implicit algebraic-differential equations of the form:

F(y,y.u)
E(y(0) - yo)

0 (3.1a)
0 (3.1b)

where y(t) € R is the vector of the unknown variables at time ¢, §/(t) € K’ is the
time derivative of y at time ¢, u(t) € R is the vector of the input variables at
time £, yo € R’ is the given initial value of y, F': xR’ xR +F is a continuous

function, and £ e R¥?, n = p is a matrix of rank n such that By(t) is the state

of the system at time £.

Note that equation (3.1b) is meant to supply the initial conditions for the
state variables [23] of (3.1a). We shall assume that yg is chosen so as to give
y(0) = yq, ie., yo also satisfles all the algebraic relations embedded in (3.1a).
In circuit simulation, yg is usually obtained from the so called "dc” solution of

the system, i.e., it satisfles

F(G0)ye u(0)) = 0 ;: ¢(0)=0 (3:2)
The general structure of a WR algorithm for analyzing (3.1) over a given
time interval [0,T] consists of two major processes, namely the assignment-

partitioning process and the relaration process.

3.2. The Assignment-Partitioning Process.

In the assignment-partitioning process, each unknown variable is assigned
to an equation of (3.1a) in which it is involved. However, no two variables can be
assigned to the same equation. Then (3.1a) is partitioned into m disjoint! sub-
systems of equations, each of which may have only differential equations or only
algebraic equations or both. Without loss of generality, we can rewrite (3.1)

after being processed by the assignment-partitioning process as follows:

Fi(d1, vy dy u)

i
o

) (3.3a)
Fm(?}mr Zi;mo A, w)

E(y(0) —yo)

0 (3.3b)

where, for each i = 1,2,...,m, y; € R is the subvector of the unknown variables
assigned to the i-th partitioned subsystem, F; : R*xR*xR® "PixR +F" is a con-

tinuous function, and

e

A col? (yy, .. . Yo Yisrr - - - Yo

Yoo Yot Yisn oo - 1 Ym) (3.3¢)

It is clear that if the vectors d;, ¢ = 1,2,...,m, are treated as the input vari-
ables of the system described by (3.3a), then the system can be easily solved by
solving m independent subsystems associated with F}, F, . . ., fj, respectively.
Therefore they are called the decoupling vectors of the subsystems. This gives

rise to the notion of the decomposed system as given in the following definition.

. There are cases in which the algorithm has better convergence properties if the subsystems
are nondisjoint. For such cases, we can consider the nondisjoint subsystems as being obtained from
partitioning an augmented system of equations with an augmented set of unknown variables.

2cal (a, b) 2 &]

3

Definition 3.1 The decomposed system associated with an assignment-
partitioning process applied to (3.1) "consists of m independent subsystems,
called decomposed subsystems, each of which is described by

F@e v e, w) 0 (3.4a)

E(y:(0) = yoi)

0 (3.4b)

where yg; € R™ is the subvector of the given initial vector yq. u; € RP " is the
vector of the decoupling inputs, Fj: R'<xR*xR? PixR + R is a continuous
function as given by (3.3a), and £; € R'WH, n; < p; is a matrix of rank n; such
that E,y is a state vector of the i-th decomposed subsystem described by (3.4).

3.3. The Relaxation Process.

The relaxation process is an iterative process. For simplicity, we shall con-
sider two most commonly used types of relaxation, namely the Gauss-Seidel [17]
(GS) relaxation and the Gauss-Jacobi [17] (GJ) relaxation. The relaxation process
starts with an initial guess of the waveform solution of the original dynamical
equations (3.3) in order to initialize the approximate waveforms of the decou-
pling vectors. During each iteration, each decomposed subsystem is solved for
its assigned variables in the given time interval [0,T] by using the approximate
waveform of its decoupling vector. For the GS relaxation, the waveform solution
obtained by solving one decomposed subsystem is immediately used to update
the approximate waveforms of the decoupling vectors of the other subsystems.
For the GJ relaxation, all waveforms of the decoupling vectors are updated at
the beginning of the next iteration. The relaxation process is carried out

repeatedly until satisfactory convergence is achieved.

Let the superscript index k denote the WR iteration count. Then the gen-

eral structure of a WR algorithm can be formally described as follows:

The WR Algorithm Model 3.1

Step 0: (Assignment-partitioning process)
Assign the unknown variables to the equations in (3.1) and partition
(3.1) into m subsystems of equations as given by (3.3).

Step 1: (Initialization of the relaxation process)
Set k=1 and guess an initial waveform (y%(¢):¢ €[0,T]) such
that ¥%(0) = ¥(0) = yo

Step 2: (Analyzing the decomposed system at the k-th WR iteration)

For each i = 1,2.....,m, set

df = col(¥f.....uf. vfS. ..y
VA YT RS 7T RN 7 A

for the GS relaxation, or

df = col (¥, ... vyt wER. .. YL

L T} = s N] A

for the GJ relaxation, and solve for (y¥(¢): ¢ € [0,T]) from

F(yk vt dfu) = 0 | (3.5a)
E (yf0) - w(0)) = 0 (3.5b)
Step 3: (Iteration)
Setk = k+1 and go to step 2. .

Remarks.
1) A simple guess for (y%(t); t €[0,T])is y%(t) = y(0) for all ¢ [0, T].

2) In the actual implementation, the relaxation iteration will stop when the
difference between the waveforms (y%(t): t €[0.T] and
(y*~Y(t): t €[0,T)), i.e.. (Tt Iy () = y*~Y¢) is sufficiently small.

35

3) In analogy to the classical relaxation methods for solving linear or nonlinear
algebraic equations [17,20], it is possible to modify a WR algorithm by using

a relaration parameter w € (0,2). With w, the iteration equation (3.5) is

modifled to yield
F(yk gk dtw) = 0 | (3.8a)
E(y¥0) -%(0) = 0 (3.6b)
yE =y ro(gl-yE) | (3.6c)

4) Note the following two important characteristics of the WR Algorithm Model
3.1
a) The analysis of the original system is decomposed into the indepen-
dent analysis of m subsystems.
b) The relaxation process is carried out on the entire waveforms, i.e.

during each iteration each subsystem is individually analyzed for

the entire given time interval [0, T]. "

3.4. Circuit Examples and Their Physical Interpretations.

In this section, we shall use a few specific examples to demonstrate the
applications of the WR Algorithm Model 3.1 in the analysis of lumped dynamical
circuits and to give the circuit interpretation of the decompostion. Different
formulations of the circuit equations will be used to illustrate the resulting

decompositions.

Example 3.1

Consider the circuit shown in Fig. 3.1. Using Nodal Analysis [23] formulation

with v; and v; as the circuit variables, the node equations of the circuit are

(C,+ Cg)v, —Cxua+ Gu, = J ; v,(0) = ¥, (3.7a)

36
(Ca+ Ca)op = Cgdoy + Goug = O ; v,(0) = ¥, (3.7b)

Let v, and v, be éssigned to (3.7a) and (3.7b) respectively and let (3.7) be
partitioned into two subsystems consisting of {{3.7a)} and §(3.7b)}. Applying the
WR Algorithm Model 3.1, the k-th iteration of the corresponding GS-WR algorithm

corresponds to solving

(Cl + Cs)‘f)f - 031.15-1 + Gl'!l’f = J; ‘Uf(O) =V (3.83)
for the first subsystem, and
(Cz + Cs)‘l.lgk - Cs’ﬁf + Gg‘U's = 0; 115(0) = Vg (S.Bb)

for the second subsystem. The circuit interpretation of the decomposed circuit

at the k-th iteration, as described by (3.8), is shown in Fig. 3.2,]

Example 3.2

Consider the circuit shown in Fig. 3.1. Using Modified Nodal Analysis [21]
formulation with v;, v, and ig as the circuit variables, the circuit equations can

be written as

C,+Guy+ig = J i v,(0) =W, (3.9a)
Cfiz + Gauz—=is = 0 v2(0) = Vp (3.9b)
ig=C3(d, =9y = 0 (3.9¢)

Let v,, v, and ig be assigned to (3.9a), (3.9b) and (3.9¢c) respectively and let
(3.9) be partitioned into two subsystems consisting of §{(3.9a)] and
$(3.9b),(3.9¢c)}. Applying the WR Algorithm Model 3.1, the k-th iteration of the
resulting GJ-WR algorithm corresponds to solving

Cot+ Gk +i§™! = J v¥(0) = (3.10a)
for the first subsystem, and
Cauf + G -i§ = 0 v§(0) = v, (3.10b)

37

i§ - Cg(vFr1-2%) =0 (3.10c)
for the second subsystem. The circuit interpretation of the decomposed circuit

at the k-th iteration, as described by (3.10), is shown in Fig. 3.3. n

Example 3.3
Consider again the circuit shown in Fig. 3.1. Using a "Sparse Tableau [22]
like" formulation with v,, v, w3 i;, iz and ig as circuit variables, the circuit

equations can be written as

Cw,—-1i, = 0; v,(0) = ¥; (3.11a)
Cig—iz = 0 ; v2(0) = V3 (3.11b)
Cqvg—1ig = 0 (3.11c)
vg—=v;+vz = 0 (3.11d)
G, +i,+13 = J (3.11e)
Ggup +ig—1ig = 0 (3.11f)

Let vy, vg, i3, vs, 1;, 12 be assigned to (3.11a) through (3.11f) respectively
and let the system be partitioned into three subsystems consisting of
§(3.11a),(3.11e)}, §(3.11b),(3.11f)} and {(3.11c),(3.11d)}. Note that we cannot
assign v,, va, vs to (3.11a), (3.11b), (3.11c) respectively since one of them has to
be assigned to (3.11d). Applying the WR Algorithm Model 3.1, the k-th iteration of

the resulting GJ-WR algorithm corresponds to solving

cvf-if = 0 v5(0) = 1, (3.12a)
Gk +ik +i§! = J (3.12b)
for the first subsystem,
Cuf-i§ = 0 v5(0) = %, (3.12¢)
Gk +if - = 0 (3.124)

for the second subsystem, and

.38

Cobk -k = 0 (3.12¢)

v v+t = 0 (3.12f)
for the third subsystem. The circuit interpretation of the decomposed system

at the k-th iteration, as described by (3.12), is shown in Fig. 3.4. :]

ey,

R
L
L‘ 2 G izv
C*) J gGJ, c.l cz' ? §Gz
Fig. 3.1
k k
o s
C3 c3
®7 3g, ¢, O v

2

£ §

V, <1>

Fig. 8.2
Example 3.1: Circuit interpretation of a GS-WR algorithm

applied to the circuit of Fig. 3.1.

¥ 2"
%
Ms 36, ==¢, CDi:" v) &Gz 36!

Fig. 3.3
Example 3.2: Circuit interpretation of a GJ-WR algorithm
applied to the circuit of Fig. 3.1.

k
v " + 5 -
]

k-1 3 G

CD'T §Gz TS D "':.' Ls(‘D T ng ".k.‘C:D é') v,

Fig. 3.4
Example 3.3: Circuit interpretation of a GJ-WR algorithm

applied to the circuit of Fig. 3.1.

k-1

41

Chapter 4
-‘Consistency of the

Assignment-Partitioning (AP) Process

In this chapter we introduce the concept of consistency of the assignment-
partitioning (AP) process and show how an inconsistent AP process can lead to
serious convergence problems for the relaxation process of the WR algorithm.
The formal approach for finding a consistent AP process or verifying its con-
sistency directly from the system equations will be addressed by using tech-
niques based on the graph-theoretic interpretation of the algebraic-differential
dependency matriz associated with the system equations.

4.1. Definition of Consistency and Examples.

Decomposition of a system of equations into subsystems of equations
through relaxation is specified by the AP process. If the system is purely alge-
braic, i.e., it contains only algebraic equations, then the decomposed system as
defined in the previous chapter will also be purely algebraic independent of the
choice of assignment and partitioning. However, in our case the given system
contains differential equations. Hence, it is possible that, for some particular
choices of assignment and partitioning, some differential equations of the sys-

tem are converted into algebraic equations in the decomposed system.

To show the effect of the AP process on the dynamical behaviour of its asso-
ciated decomposed system, consider the following system of equations
Zy+z,+Tp+u;, = O (4.1a)

éz*’tg +zy+uz = 0 (4.1b)

12

Assume that we want to partition this system into 2 subsystems consisting
of §{4.1a)} and §{(4.1b)}. If we choose to assign z, and z, to (4.1a) and (4.1b)

respectively, then the decomposed system according to Definition 3.1 is given by

0

T, +xT,+U,; +u,
ég+22+172+1£2 =0
which is a dynamical system with two state variables z; and z, as in the original

system (4.1). On the other hand, if we choose to assign z; to (4.1b) and z; to
(4.1a), then the decomposed system is given by

~ 2
Zp+u +u+u, 0

Zy+Ug+Uz+uz = 0
which is a purely algebraic system, i.e., it has no state variable.

From the above example, it is clear that different choices of the AP process
can result in decomposed systems with entirely different dynamical behaviours.
Furthermore, it is very important to choose an AP process such that the dynam-
ical behaviour of its associated decomposed system is as close to that of the ori-
ginal system as possible in order to obtain good convergence properties of the
relaxation process. Therefore, by using the concept of state variables [23), we
can classify the AP processes into two categories, namely the consistent AP pro-

cess and the inconsistent AP process.

Definition 4.1 An AP process is said to be consistent with a given dynamical sys-

tem if any choice! of the state vector of its associated decomposed system is
also a valid choice of the state vector of the given system. The decomposed sys-
tem associated with a consistent AP process is also said to be consistent with

the given system and a WR algorithm that uses a consistent AP process is called

a consistent WR algorithm. =

1 In general, the choice of state variables of a dynamical system is not unique.

43

The following two examples illustrate why consistency of the AP process

plays an important role in the convergence of the relaxation process.

Example 4.1 Consider a dynamical system described by

Y +ys—-u = 0; y(0)=0 (4.2a)
Y1—-yYz = 0 (4.2b)

This system has one state variable. Suppose that ¥, and y, are assigned to
(4.2b) and (4.2a) respectively and that the system is partitioned into two subsys-
tems consisting of {(4.2a)} and {(4.2b)]. Applying the WR Algorithm Model 3.1,
the k-th iteration of the resulting GS-WR algorithm corresponds to solving

yE = u-gf™ (4.3a)

vi = b (4.3b)

Notice that the decomposed system at the k-th iteration, as described by
(4.3), is purely algebraic. Hence, this AP process is inconsistent with the given

system. From (4.3), it is easy to derive that the iterated solution of the decom-

posed system is given by
=1 di k
WO = s = B0) s (0 Srvi©

which leads to the following results:

a) If the initial guess of the relaxation process is y(t) = e~* with @ > 0, then
the iterated solution y¥(-) or y%(-) will diverge. This result is independent of

the input » (*).

b) If the input is u(t) = e~ with @ > 1 and yP(¢) = 0, then the iterated solu-

tion will diverge.

c) If the input is piecewise continuous with at least one discontinuity, e.g.

= 0 t<1

u(t) = { 1 t>1
and y?(¢) =0, then the iterated solution will be discontinuous and
unbounded at the points of discontinuity of the input whereas the exact
solution of the given system is continuous and bounded within any finite
time interval.

d) If u(t) =a and y?(t) =0, then the iterated solution y%(t) or y%(t) con-

verges to ¥,(t) = §2(t) = a whereas the exact solution of the given system

isy,(t) = ya(t) = a(1—e™*). =

Example 4.2 Consider again the same dynamical system described by (4.2).
This time we assign y, to (4.2a) and y; to (4.2b). Applying the WR Algorithm
Model 3.1, the k-th iteration of the resulting GS-WR algorithm corresponds to

solving

-

Y u—-y§t y5(0) =0 (4.4a)

k
2

v vi (4.4b)

Notice that this time the decomposed system at the k-th iteration, as
described by (4.4), has one state variable ¥, which is also a state variable of the
given system. Hence, this AP process is consistent with the given system of
equations (4.2). In contrast to Example 4.1, we shall show that, for any given
time interval [0, 7], the iterated solution of (4.4) always converges to the exact
solution of the given system (4.2) independent of the initial guess y?(-) and the
input u(-).

From (4.4) and (4.2), we obtain
yf-v = -5 -y y5(0) =y, (0) =0

from which the solution is

yEE) —y(t) = - {‘ [y5 1 (1) - ya(P)]aT

Multiplying (4.5) by e~%, we have

e (yk(t) —yy(t)) = - e-m{‘ezf[e ~27(yk=1(7) —yy(r)]ldT

Hence

le=2(yh(t) —yi(t))] = e‘”{'e”’le'z’(y’f"(f) - yy(7)ldr

Define

e A -2t k(+) —
E* = ,’é‘[%f‘n“’ (Wi (t) =y (e
From (4.6) and (4.7), we have
le2(@h(t) —yi(t)| s e®['e¥E*ldr forall ¢ €[0,T]
0

s E"‘le'z‘f‘ea"df forall ¢ €[0,T]
0

< %—E"" for all ¢ €[0,T)

Therefore

k 1 e 1
E* = ZE szkE"

(4.5)

(4.6)

(4.7)

Hence }:imEk =0 which implies that the iterated solution (y%(t):t €[0,T])

always converges to the exact solution of the given system (4.2) independent of

the initial guess ¥ (-) and the input u(-).

The above two examples clearly indicate that an inconsistent AP process

can lead to serious convergence problems for the relaxation process of the WR

algorithm and should be avoided. To give an intuitive reason why inconsistent

AP processes should be avoided, consider a dynamical system which has n

states. Suppose that an inconsistent AP process applied to this system produces

an inconsistent decomposed system having m states where m # n. This means

46

that the natural response of the decomposed system has m natural time con-
stants whereas the natural response of the given system has n natural time con-
stants. Therefore it is not very likely that the iterated solution obtained from
the relaxation process which iterates only on the decomposed system will con-
verge to the exact solution of the given system, let alone the fact that it might
not converge at all. For this reason, we shall focus only on consistent WR algo-
rithms. Note that all the AP processes that we used in the examples of the pre-
vious chapter are consistent with the circuit equations. We shall also see later
that, for large scale integrated circuits, there are simple procedures that
automatically guarantee the consistency of the WR algorithms. Of course, using
a consistent AP process does not necessary imply that convergence is
guaranteed. Additional conditions on the consistent decomposed system to
guarantee convergence of the iterated solution will be discussed in the next

chapter.

Having stated that inconsistent AP processes are undesirable, the next
problem that we shall address is how to obtain a consistent AP process or how to
verify that an AP process is consistent or not. In general, there are two
approaches to this problem, namely the physical approach and the formal
approach. The physical approach is based on the physical interpretation and the
physical structure of the system being considered. For example the state vari-
ables of a lumped electrical circuit are usually voltages (or charges) across
capacitors and currents (or fluxes) through inductors. Hence, given the circuit
topology, a circuit designer can easily identify the state variables of the circuit.
This approach uses the fact that the decomposed system also has a physical
interpretation (as we have demonstrated earlier in the previous chapter). Based
on the physical interpretation, the state variables of the decomposed system
are identified and are used to verify consistency of the AP process. In fact, to

obtain an AP process, it is customary to first identify the state variables of the

47

given system and then choose an AP process such that these variables are also
the state variables of the resulting decomposed system. On the other hand, the
formal approach relies on using an algorithm to identify the state variables of
the system directly from the system equations without depending on the physi-

cal interpretation. Hence it is more general than the physical approach.

4.2. The Formal Approach for Finding and Checking a

Consistent AP Process.

In order to check the consistency criteria formally as specified by
Definition 4.1, we must be able to identify directly from the system equations a
set of variables that can form a state vector of the systerm. However, since we
are dealing with a system of mixed implicit algebraic-differential equations of

the most general form, i.e.,

F@g.y.vw) =0,

we shall not attempt to determine explicitly the state equation form of the sys-
tem equations. In fact, a global representation of the state equations of the sys-
tem may not even exist. Therefore, in our approach, we shall identify the state
vector of the system symbolically from the dependency structure of the system
equations which is given in the form of an algebraic-differential dependency

matrix.

Definition 4.2 The algebraic-differential dependency matriz of a system of p

equations in p unknown variables y;, ¥2.....Yp is a matrix D € R’? whose tj-th

element is given by

Dy = 0 if the i-th equation does not involve y; or Y §
Dy = 1 if the i-th equation involves y; but not v i
Dy = 2 if the i-th equation involves ¥ .

48

Definition 4.3 The symbol"i.c state vector of a given system of equations whose
algebraic-diﬁerehtial dependency matrix is D is the largest state vector that a
system of equations whose algebraic-differential dependency matrix is D can
have. The dimension of the symbolic state vector is called the symbolic number

of states of the given system. .

For example, consider a lumped electrical circuit consisting of independent
sources, capacitors and resistors. It is easy to see that the symbolic number of
states of the circuit is equal to the total number of capacitors minus the total
number of CE and C loops where CE loops are loops of capacitors and indepen-
dent sources and C loops are loops of capacitors only. Note that in this case the
symbolic state vector is also the state vector of the circuit. In most cases, it is
easy to identify the symbolic state variables of any circuit by simply examining
the circuit topology and the type of elements in the circuit, e.g. resistors, capa-
citors and inductors. However, the following example shows that, for any arbi-
trarily given system of equations, the symbolic state vector may be larger than

the actual state vector of the system.

Example 4.3 Consider the following system of equations

0 (4.8a)

1.5y, + 3.0y2 + ¥y —u,
1.0y, + 2.0z + Y2 — Uz

0 (4.8b)
Multiplying (4.8b) by 1.5 and subtracting it from (4.8a), we obtain
Y, -]uf’yg = U - 1.5’“2 (4.9)

which is an algebraic equation. Hence this system has only one state, i.e., either
Y, or yz. Equation (4.9) is a conditional algebraic equation since it is induced by
particular values of the coeflicients that make the coeflicient matrix of y singu-
lar. Notice that a slight random perturbation of the coeflicients can easily des-

troy this conditional algebraic relation since a matrix of the same zero-nonzero

49

structure as the coeflicient matrix of y is nonsingular for all values of the
coefficients except for a set of null measure [26]. The symbolic number of states
of (4.8) is thus equal to 2 and the symbolic state variables of the given system

are y, and y,. : -

Assumption 4.1 (Nondegeneracy of the symbolic state vector).

Given a systemn of algebraic-differential equations, its state vector is a sym-

bolic state vector. s

The nondegeneracy assumption 4.1 makes the problem of finding a state
vector of a given system tractable. This assumption is rather mild in practice.
Based on this assumption, we can formulate our problem into a graph problem
dealing only with the algebraic-differential dependency matrix of the given sys-
tem. We first introduce a few definitions derived from the standard definitions in

graph theory [24].

Definition 4.4 The weighted bipartile graph associated with an algebraic-

differential dependency matrix D € P of a given system of equations is a

bipartite graph, denoted by (S,V,B), with the following properties:

a) S=V={12..p}]. S and V are the sets of nodes in the graph. S
corresponds to the set of indices of the system equations, i.e., the row

indices of D, and V corresponds to the set of indices of the system vari-

ables, i.e., the column indices of D.

b) B ={swv)|s €S, v eV, D, # 0] represents the set of all edges joining the
nodes of S to the nodes of V.

c) The weight of an edge (s,v) € B, denoted by w(s,v), is equal to Dy,. .

50

Definition 4.5 A maiching of a weighted bipartite graph (S,V,B), denoted by ¥,
is a set of edges with the property that no two edges have a node in common. If
|M| =|S| = | V| where |:| denotes the cardinality of a set, i.e., the number of

edges in M is equal to the number of nodes in either S or ¥, M is then said to

be a complete matching. ']

From the above definition, a matching is actually a graph-theoretic
interpretation of the assignment stage of the AP process. That is, each edge of
the matching represents the assignment of a system variable to a system equa-
tion. The weight of the edge indicates whether the assigned variable will be
treated as a symbolic state variable or not. An example of a system of equa-
tions, its weighted bipartite graph and some complete matchings of the graph is
shown in Fig. 4.1 and Fig. 4.2.

Definition 4.8 The weight of a matching M of a weighted bipartite graph

(S.V,B)isequalto), w(sw), ie, itisthe sum of the weights of all edges in
(sv)e N

the matching. A complete matching M is said to be a mazimum weighted com-

plete matching of a weighted bipartite graph if its weight is larger or equal to

the weight of any other complete matching of the graph. 2

For example, consider the systems of equations shown in Fig. 4.1 and Fig.
4.2. In both cases, it is easy to see that both ¥, and M3 are maximum weighted
complete matchings but M, is not. In Fig. 4.1, the weight of #, or Mg is 6
whereas the weight of M, or Mgin Fig. 4.2is 5.

The following lemma gives a graph property of a maximum weighted com-
plete matching which will be useful in checking whether an AP process is con-

sistent or not.

51

Lemma 4.1 Define an alternating cycle with respect to a matching # of a given

weighted bipartite graph (S,V.B) as a set of edges, denoted by L, such that it
forms a simple cycle (or loop) in the graph and that no two edges of LnH have a
node in common, ie., the cycle is formed by alternating edges from M and M
where M denotes the complement of . Then M is a maximum weighted com-

plete matching if and only if, for any alternating cycle L with respect to M,
Pw(s.w) (sw)elnM] = (Pwlsw)| (s,v) € LnH] (4.10)

i.e., the total weight of edges in the alternating cycle that belong to M is larger
than or equal to the total weight of edges in the cycle that do not belong to M. =

We now give the following result which states that the symbolic state vector
of a given system of equations is associated with a maximum weighted complete

matching of its weighted bipartite graph.

Lemma 4.2 Given a system of p algebraic-differential equations in p unknown
variables ¥, ¥a..... Yp and its weighted bipartite graph (S.V.B), let ¥ be a max-
imum weighted complete matching of the graph. Then the set of variables
tyy | (s,v) € ¥ and w(s,v) = 2} is a set of the symbolic state variables of the sys-
tem and ¢ —p is the symbolic number of states where ¢ is the weight of X. If

the system also satisfies the nondegeneracy assumption 4.1, then the set

{9y | (s.v) € M and w(s,v) = 2} forms a state vector of the system. s

For example, in Fig. 4.1, the weight of the maximum weighted complete
matching M, or M3 is 8, indicating that the symbolic number of states of this
system is 8-3 = 3. Hence, provided that the coefficient matrix of ¥ is nonsingu-
lar, the set of the state variables of the system is {y,, ¥2. ¥g}. In Fig. 4.2, the
weight of the maximum weighted complete matching M, or M3 is 5, indicating
that the symbolic number of states of the system is 5-3 = 2. Hence, provided
that the coeflicient matrix of ¥ attains its maximum rank (which is 2), the set of

state variables of the system is either {y,, ¥s} or {v1. ¥2}.

52

We are now ready to describe an algorithm for finding a consistent AP pro-
cess. The basic idea behind this alg;u'it.hm is to maintain the symbolic state vec-
tor of the given system as a symbolic state vector of the decomposed system.
Hence, the resulting AP process is consistent with the given system if both the
given system and the decomposed system satisfy the nondegeneracy assump-

tion 4.1.

Algorithm 4.1 (Algorithm for Finding a Consistent AP Process)

Step 1: Find a maximum weighted complete matching # of the weighted bipar-
tite graph associated with the given system of equations

Step 2: Select the assignment according to M/ and the state variables according

to Lemma 4.2.
Step 3: Perform the partitioning of the system equations into subsystems of

equations. .

Remarks

1) The problem of finding a maximum weighted complete matching is a stan-
dard problem in combinatorial optimization [24] and there are efficient

algorithms for it.

2) By assigning the variables according to the matching # given by Step 1, we
guarantee that M is also a maximum weighted complete matching of the
weighted bipartite graph associated with the decomposed system indepen-

dent of the choice of partitioning of Step 3. -

To check if an AP process is consistent or not, first map the assignment of
the given AP process into a complete matching of the weighted bipartite graph
and apply the result of Lemma 4.1. If the matching satisfies (4.10) of the lemma,
then it is a maximum weighted complete matching and, by Lemma 4.2, we can

conclude that the AP process is consistent with the system.

210 0O riu by 4120 |ly, U,y
0 azagx ‘!22 + |ba baabas||y2| + |ua| = 0
0 ag a3 |l¥Ys 0 bgabeg||Ys Ug

. (a)

1% equation o 1% variable

2md equation sé— iR 2™ variable
3™ equation 3™ variable
S 14
(b)
My, = §(1.1).(22), (3,33
He = §(1.2), (1), (3.3)}
My = {(1,1). (23). (3.2)}

(c)

Fig. 4.1 a) The system equations.
b) The weighted bipartite graph associated with the system. Solid lines

represent edges with weight=2 and broken lines represent edges
with weight=1.

c) Some complete matchings of the graph.

e 0 O|lw, bu bz 0 |{¥a u,

0 0 0 @2 + bZI b& bza Ya| + Ug] = 0
0 age @ss||ys 0 bg basl|ys us
(a)
1* equation s————» 12 variable
\><:
2" equation &= =~ - - =38 2™ variable

~

3™ equation 3™ variable
S 1 4
(b)
My, = {(1.1),(2.2), (3.3
My = {(1.2), (2.1). (3,33
Hs = {(1.1).(2.3). (3.2}

(c)

Fig. 4.2a) The system equations.
b) The weighted bipartite graph associated with the system. Solid lines

represent edges with weight=2 and broken lines represent edges

with weight=1.

¢) Some complete matchings of the graph.

Chapter 5

Convergence of the WR Method

A WR algorithm applied to a given dynamical system is said to conwverge if it
generates a converging sequence of iterated solutions whose limit is the solution
of the given system with the given initial conditions. In this chapter we give
sufficient conditions on the decomposed system to guarantee convergence of
the WR algorithm. The key principle behind them is the well known mathemati-
cal concept of contraction property of a map. To be able to give the convergence
conditions of the WR algorithm in a simplified form, we shall introduce the
definition of the canonical WR algorithm. Sufficient conditions to guarantee the

existence of a canonical WR algorithm will also be given.

5.1. Contraction Theorems in Functional Space.

From an abstract viewpoint, the WR method can be considered as a fized
point algorithm [20] or a method of successive approrimations for finding a
fized point [20] of a map in a functional space of waveforms. To illustrate this

point, we define Y as a space of waveforms within a given time interval [0,T]. ie.,

Y = @():[0.T]-R} (5.1)
Next, we define a map F: Y-»Y such that F(y(:)) is the solution of the decom-
posed system with the given initial condition and with y(-) as the guess in com-
puting the decoupling vector of each decomposed subsystem. Then the relaxa-

tion iteration of a WR algorithrn can be rewritten as
v () = F*'() (5.2)

Clearly, if ¥ (') is the exact solution of the given system, we have

v

57

7(¢) = F@FO) (5.3)
That is, the solution of the given system is a fixed point of the map F and the WR

algorithm, as described in the form of (5.2), is called a fixed point algorithm.

The sufficient condition for convergence of a fixed point algorithm is based
on a well known property of the map F whose fixed point is being sought. This
property is called the contraction property [20] defined as follows.

Definition 5.1 Let Y be a complete normed space [28] (or a Banach space [28]).
AmapF: Y-Yis contractive if there is a constant ¥ € [0,1) such that

IP(y) -F(z)l = 7lly —=l forall zycY .

Theorem 5.1 (Contraction Mapping Theorem)

Let Y be a complete normed space and F: Y-Y be a contraction map. Then
F has a unique fixed point § € Y satisfying § = F(y). Furthermore, for any initial
guess y¥° € Y, the sequence {y* € Y]g-, generated by the fixed point algorithm

y* = F@*) k=12,
converges uniformly to 4 and the rate of convergence is given by
lv* -7l = 7’ -7l (5.4)

where ¥ is the contraction constant of F.]

The Contraction Mapping Theorem [20] is a well known theorem in
mathematics. Since it is of importance for the proof of the convergence of the
WR algorithm, we shall review the proof of this theorem in the appendix. This
theorem will serve as a fundamental mean for deriving sufficient conditions for
the convergence of the WR algorithm in terms of the numerical conditions of the

decomposed system equations as we shall see in the next section.

58

In practice, due to rounding or discretization errors in evaluating F, an
approximate sequence is generated in place of the exact sequence, i.e.,
y*®*! # F(y*). Furthermore, the map F itself can also be sequentially approxi-
mated. The next theorem states that if F is contractive, there is an adaptive
scheme for controlling the errors due to these approximations which will gen-

erate a sequence of solutions that converges to the fixed point of F.

Theorem 5.2 Given that F and F;; ; £k =0,1,...,2 are contraction maps from a
completed normed space Y to Y with contraction constants y and 9, : & =0,
1...., respectively, let § € ¥ be the unique fixed point of F, i.e., F(§) =¥, and

fy* € Y] be a sequence in Y. Define

ee 2 |Fe(y®) -yt k=0,1,.00 (5.5)
& = |[Fe(@) -F@)I k= 0,1, (5.8)
O é & + 6‘; k =0,1,..,2 (5.7)
and
A 1=J:j+17i if0sjsk-1 (5.8)
Bes = 1 LY

Then the following statements hold.

a) -l s Beovlly® -7l +§;oﬁkjaj (5.9)
| -~ [0
b) gl s [yt -+ (5.10)

1=7% 1-%

k
c) If ’lcun ag =0, ’I‘imﬂk,- =0foranyj and Lim Y Brj = ¢ < oo,
then ,l‘imy"‘ =Y.
Corollary 5.2 If 7, <% <1 forallk =0,1,...,~ and lima, =0, then

- k-A
fmy® =y -

Remark Note that (5.9) and (5.10) have different uses. Whereas (5.9) is used to

prove the convergence of the approximate sequenc