

Copyright © 1982, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

COMPRESSION AND THE DETERMINISTIC TIME HIERARCHY

by

Faith E. Fich and Shafi Goldwasser

Memorandum No. UCB/ERL M82/4

1 February 1982

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Compression and the Deterministic Time Hierarchy

Faith E. Fich and Shafi Goldwasser
Computer Science Division

University of California
Berkeley, California 94720

1. Introduction

Throughout this paper, the model of computation being used is the one tape

deterministic Turing machine. The symbol T\ will be used to denote the i + 1st Turing

machine in the standard enumeration of all one tape Turing machines where i, viewed

as a string, is actually the description of Ti. When we are interested in a Turing

machine which computes a specific function / we will use the symbol T*. If T is a Tur

ing machine then §T\x~\ denotes the number of steps the Turing machine performs on

input x. The notation \x | is used to represent the length of the number x when writ

ten in binary with no leading zeros. In particular, 10| =0.

In 1968, Hartmanis [3] proved a now well known theorem (Theorem 10) conr

cerning complexity classes defined by time bounded one tape Turing machines. We

prove a theorem (Theorem 9) similar to Hartmanis's theorem in which "infinitely often"'

is replaced to "almost everywhere". Suppose fz(n) is fully time constructive

(Definition 8) and fz(n) ^ s(n)f i(n)\f i(n)| infinitely often, where e(n) is any un

bounded function of n. Then Hartmanis asserts there are languages that can be com

puted in 0(/g(n)) steps, but take more than / j(n) steps for infinitely many n. We as

sert there are languages that can be computed in 0(/z(n)) steps, but take more than

/i(n) steps to compute for almost all n. Moreover, our f x and /2 satisfy conditions

surprisingly similar to Hartmanis's fx and /2.

2

We obtain our result by developing a new version of the compression theorem

for one tape Turing machines, and then applying it to fully time constructible func

tions.

In 1960, Rabin [9] proved the existence of arbitrarily complex 0-1 valued re

cursive functions. Later, Blum [2] proved the compression theorem which sets upper

and lower bounds on the number of steps to compute certain of these functions. We

give a new characterization of the functions that can be used as lower bounds in the

compression theorem, in applications to the time complexity of one tape Turing

machines. Our class of lower bound functions include not only honest functions

(Definition 2) but also functions that are honest up to a polynomial (Definition 4). In

addition we improve the upper bound given by the compression theorem for one tape

Turing machines.

Similar results were obtained independently by Seiferas, Fischer and Meyer in

[12]. Other related results pertaining to space complexity can be found in [8] and [10].

2. Expansion of the Compression Theorem

Let s(x) be any unbounded nondecreasing function of a: such that s(x) < x for

all x ^ 0. Furthermore suppose there is a Turing machine which computes s(x) tJhat

takes at most 0(x) steps on input x. Intuitively, think of s(x) as a slowlygrowing, easy

to compute function of x, e.g. s(x) = \x| - 1. Let P(v,w) = w \w |e(v) + ws(v)\ s(v) \

+s(v)v.

Theorem 1 . For every recursive function / there exists a 0-1 valued function g such

that:

1) if Ti computes g then #Ti[x] > f (x) almost everywhere

• 3

and2) there exists a Turing machine T9 which computes g such that

#T*[x] = 0(P(\x\,f(x)) + #T'[x]).

Proof: The idea is to construct g in stages such that at stage x the value of g(x) is

determined. This value of g(x) depends only on those previous stages j for which

OsS; s5e(|x|), f(j) < s(\x |), and #T'[j] ss s(\x\). During stage x, only the first

e(|x|) + 1machines, T0 ^ed*!). are examined.

Given a recursive function / consider the following procedure which succes

sively defines the value of j(x) for x = 0,1, 2, • • •

for x «- 0,1,2, • • • do
begin
compute /(x)
fori «- 0toe(|x|) do

run 7t[x] for/(x) steps
select the least i such that

l)#7i[*]*/(*)
2) Ti was not cancelled during the computation ofg(j)

for any j such that 0 <> j -s e(| x |),
/(^<e(|*|),and#7,/[J]ss*(|*|).

if there is such an i
f lif ri[x] = 0

thenlet tfOO ♦" 1oif 7;[x] * 0 //thereby cancelling machine 7* //
else let$r(x) 4- 0

end

Claim 1 . No Turing machine 7< gets cancelled infinitely often.

Proof: Suppose 7* is cancelled for the first time at stage z. Let y be the smallest

value such that e(|y |) s* maxf z, /(z), #7*[z]j. Now, for all xfey, s(|x|)^z,

e(|x|)^/(z). and «(|*|)fe#7*[*]. Hence during the computation of g(x) the pro

grams knows that 7* has been cancelled, and thus does not cancel Tt again.

Claim 2 . If 7; computesg then #7*i[x] > /(x) almost everywhere.

4

Proof: Suppose that Ti computes g but #7i[x] £/(x) infinitely often.- Since Tt never

gets cancelled, for all x such that i ^ e(|x |) and #7i[x] £ / (x), there must exist a Tur

ing machme 7*. with k < i, that gets cancelled. There are an infinite number of such

x's. Therefore there exists a Turing machine 7*. with k <i, that gets cancelled

infinitely often. This contradicts Claim 1.

The following program computes g(x) quickly. Here CANCELLED is a list con

taining quadruples (*, i, /(i), §Tf[i]) indicating that during STAGE(i) (i.e.

STAGE{i,f (i)%#T*\i\)) Turing machine Tk is cancelled. For each nonnegative integer

i, there will be at most one quadruple whose second component is i. The quadruples

are kept sorted in increasing order of their second components.

function PSl(x)
begin
CANCELLED *- tf>
for i «- 0 to c(| x |) do //perform those stages i for which i, / (i),

and #7*[i] are sufficiently small//
begin
run 7*[i] for e(|x |) steps
if#r'[i]*e(|*|)and/(i)*e(|«|)

then perform STAGE(i.f(i),#Tf[i])
end

run Tf[x] until it halts // to compute / (x) //
PSI(x) «- STAGE(x.f(x)tO) // #7*[x] is not needed in STAGE{x)

and computing it would take too much time //
end

function STAGE(i,y,z) // when this function is invokedy = / (i)
and, except when i = x,z = #7** [£].//

begin
for A: «- 0 toe(|i|) do

begin
if there is no quadruple (A:, j,f(j), #Tf[j]) in CANCELLED such that

[0*J*e(|i|)./0)*e(|i|). and #?*[*]* e(|i|)]
then begin

run 7fc[i] for y steps
tf Tt[i] halts in this time

then begin // cancel Turing machine 7* //
if i i* x then append (i,y,z tk) to CANCELLED
if Tk[i] = 0

then return(l)

else return(O)
end

end

end

return(O) // in this case no machine that
affects g(x) will be cancelled
during the ith stage //

end

Claim 3 . There is a one tape Turing machine T9 which implements the program G

such that #7*[x] = 0(F(|x|./(x)) + #T*[x]).

Proof: Consider the time taken to compute g (x) by this algorithm.

STAGE(i) is computed for i = x and for all i ^ e(|x |) such that / (i) ^ e(|x |)

and#7*[i]*8<|*|).

For all quadruples (A:, i, /(i), #T*[i]) in CANCELLED, i^e(|x|),

/(i)^e(|x|). k ^ c(|i|)^ e(|e(|x|)|). and #7,/[i]^ e(|x|). Thus the length of each

such quadruple is 0(| e(| x |) |). At most one quadruple is added to CANCELLED at each

stage and at most e(|x |) + 2 stages are performed. Hence the total length of &W-

CELLED is 0(s(\x\)\e(\x\)\).

Determining if there is a quadruple in CANCELLED whose first component is k

and whose other components are at most s(|i|) can be done in 0(length of C/W-

CELLED) steps. Similarly, to append a new quadruple to CANCELLED takes 0(length of

CANCELLED) time.

The simulation of the one tape Turing machine 7*[i] for f (i) steps can be ac

complished on one tape in time f(i)(\k\ + |/(i)|) by carrying both a timer and the

description of Tk along with the tape head. The description of 7*. the initial value,

/ (i), of the timer, and the input i must be copied to set up the initial configuration Foir

8

the simulation. This takes time 0(|*| + \f(i)\ + |i|).

By assumption the cost of computing s(\i \) is 0{\i |).

The cost of STAGE(i) consists of the cost of computing e(\i \), the cost of con

trolling the for loop, the cost of appending a new quadruple to CANCELLED if a machine

is cancelled during STAGE(i), and for each iteration of the for loop, the cost of searchr

ing CANCELLED and the time taken to simulate machine Tk[i] for /(i) steps. Thus, in

total, the number of steps performed at STAGE(i) is

0(|i|+e(|i|)k(|i|)|+e(|z|)U(|z|)|

+"£l)U(W)|e(l*l)l +/(i)(l*l +l/(*)l)>+ 1*1 +l/WI +M])

= 0<*(|i|)[e(|x|)k(|x|)| +/(i)|e(|i|)| +/(i)|/(i)l +|i|]).

To test whether/(i)^e(|x |) and #T'[i] ^ e(\x\) it sufilces to run T*[i] for

e(|x|) steps. By carrying a timer along with the tape head, our one tape Turing

machine can perform the computation of Tf[i] for e(|x|) steps, in e(|x |)|e(|x|) j

steps. There is also an associated overhead of \i\ + |e(|x |) | to initialize the input and

the timer.

The cost of computing G(x) consists of the cost of computing /(x), the cos4 of

computing e(|x |), the cost of performing STAGE(x), and for each i, 0^ i ^ e(|x |), the

cost of running T*[i] for e(|x|) steps and possibly the cost of performing STAGE{i).

Computing /(x) takes #f/[x] steps. By assumption, the cost of computing e(|x|] its

0(|x |) steps.

Thus the total time taken by the Turing machine which implements PSl(x) is

#7*[*] +0<|*| +e(l*l)[e(|*|)|e(|x|)| +/(*)<|e(l*l)l + !/(*)!)+ 1*1]+

'̂ [•(NDIed*!)! +1*1 +k(|x|)| +e(|i|)(£(|x|)|e(|x|)| +f(i)\e(\i\)\

+ /(i)l/(i)l + |i|)])

= #r/W+0(/(x)e(|x|)|/(x)|+/(x)e(|x|)|e(|x|)| + s(|x|)|x|)

= 0(#r/[x] + P(|x|./(x))).

Although our description might seem to indicate the need for multiple tapes,

careful inspection will reveal that only multiple tracks on one tape are required. 0

Now we look at what happens when restrictions are placed on the function /.

Definition 2 . Let Q(v,w) be a total function. A function /:N-»N is said to be

Q-honest if it is recursive and there exists a Turing machine T* which computes /

such that #7*[x] = 0(Q(\x|./(x))).

This definition is closelyrelated to a definition given in [8].

The following theorem is an immediate consequence of Theorem 1.

Theorem 3 . For every ^-honest function / there exists a 0-1 valued function g such

that:

1) if Ti computes g then #7\[x] > / (x) almost everywhere

and 2) there exists a Turing machine T* which computesg such that

#T*[x]=0(P(\x\,f(x)) + Q(\x\.f(x))).

Asimilar result is also obtained for a larger class of functions.

Definition 4 . Let Q(vtw) and R(vtw) be total functions. Atotal function / :N-♦ Nis

said to be Q-honest mod R if there exists a ^-honest function h such that

R(\x\J (x)) &h(x) St / (x) almost everywhere.

8

Clearly, if R(v,w) Sriw almost everywhere then every ^-honest function is Q-

honest mod R. Also note that / is not ^-honest mod R if and only if for all ^-honest

functions h either h(x) < f (x) infinitely often or 7i(x) > R(\x |,/ (x)) infinitely often.

Let R(v,w) be a polynomialwhich is a nondecreasing function of its variables.

theorem 5 . For all functions / which are ^-honest mod R there exists a 0-1 valued

function g such that:

1) if Ti computes g then #7i[x] > /(x) almost everywhere

and 2) there exists a Turing machine T9 which computesg such that

#V[x] = 0(P(\x\,R(\x\.f(x)))+Q(\x\,f(x))).

Proof: Since / is ^-honest mod R, there exists a ^-honest function h such that

#(l* I./ (*)) ^ h(x) S: / (x) almost everywhere. ByTheorem 3 there exists a 0-1 valued

function g such that:

1) if Ti computes g then #7<[x] > h(x) S: /(x) almost everywhere

and 2) there exists a Turing machine T that computes g such that #7*[x] =

0(P(\x\M*))+Q(\z\.f (*)))= 0(P(\x\,R(\x\,f(x))) + Q(\x\,f(x))).U

3. A Converse for the Compression Theorem

Lemma 6 . Let T be a Turing machine which halts on all inputs. Then the function

h(x) = #r[x] is a ^-honest function for all total functions Q(v,w) such that

Q(v,vj) s- w |w | almost everywhere.

Proof: h(x) can be computed by running T[x] until it halts, keeping count of the

number of steps which have been performed on a separate track. This counter is car

ried along with the tape head so that each step of T[x] can be simulated in at most

9

0(|A(x)|) steps. Thus h(x) can be computed in 0(h(x)\h(x)\) = 0(Q(\x |,/i(x))}

steps. D

Theorem 7 . If / is not ^-honest mod Qfor all polynomial bounded functions Q(v,w)

then for all polynomials P(y,w) and all Turing machines T which compute 0-1 valued

functions

either l) #T[x] < / (x) infinitely often

or 2) #7*[x] >P(\x\,/(x)) infinitely often.

Proof: Suppose / is not ^-honest mod Q for all polynomials Q(v,w). Let P(v,w) be

any polynomial, let T be any Turing machine which computes a 0-1 valued function,

and let h(x) = §T[x]. Let Q(v,w) = P(v,w) + w \w | ^ P(vtw) for all v,vj. Since / is

not ^-honest mod Q and h is ^-honest it follows from Definition 4 that either

h(x) <f(x) infinitely often or /i(x) > Q(\x\ ,f (x)) ^ P(\x \,/(x)) infinitely often. Q

4. Examples

The following example illustrates a recursive function / which is not 9"nonest

modR for any polynomials Q(v,w) and R(v,w).

Consider any language L £P (i.e. there is no deterministic Turing mcahine

which recognizes L in polynomial time). Define

/(*)«-
x ifx el

|x| ifx ZL

Suppose / is g-honest mod R for some polynomials Q(v,w) and R(v,w).

Then by Theorem 5 there exist a polynomial Pq,r(v$w) and a 0-1valued function g such

that:

1) if Ti computes g then #7<[x] > / (x) almost everywhere

10

and 2) there exists a Turing machine T9 which computes g such that

#7^[x] =0(;P<?J?(|x|./(x))).

Let y be such that, for all x >y, #7*[x] <s i^Ux |./(x)), #T9[x] > /(x),

ands(x) > FgjeOx |, |x |). Such a y must exist.

Now #7*[x] < Pqji(\x I,|x |) if and only if x ££ for all x > y. If x e L, then

#7*[x] >/(x) =x > P$,j?(|x |, |x |). Conversely, suppose x £ Z,. Then / (x) = |x | and

#T*[x] < PQtJi(\x\,f(x)) = PQM(\x\,\x\).

Consider the following Turing machine TL which recognizes L. For x -& y use

table look-up to determine whether x e L. For x >y run 7*[x] for P^j?(|x |,|x|)

steps. If T[x] halts in this time then x e L and 7^ accepts; otherwise x &L and 7^ re

jects. Clearly, #Tz[x] ^ P(\x |, |x |) almost everywhere. Thus LeP which contradicts

our choice of L.

Figure 1. A function which is not Q-honest mod R.

11

Hence / is not ^-honest mod R for any polynomials Q(v,id) and R(v,w). The

same result would be true if

/(*)
s(|x|) ifx el
r(jx|)ifx erz,

"Where r(u) is a polynomial function of u and s(it) is a recursive function which is not

bounded by any polynomial function of u.

— *L

figure 2. A function which is not Q-honest but is Q-honest mod R.

Let c > 1 be a constant. For any polynomial Q(v,w) ^ \c \v and any polyno

mial R(v,w) &w2 there is a recursive function which is ^-honest mod R but not Q-

honest.

Consider any language L & P. Define

, , ex if x e L
'<*>«- * if* *£

12

Let h(x) = ex. Then R(\x |./ (x)) 2> /2(x) Ss h(x) Ss / (x) almost everywhere

and the number of steps to compute h(x) = 0(|x|) = 0(£(|x|,/i(x))). Hence / is Q-

honest mod R.

Since £(|x|./(|x |)) is polynomial function of |x| and L CP it follows that

/(x) cannot be ^-honest.

5. Implications for the Deterministic Time Hierarchy

The following definition is from [6] and [3].

Definition 8 . A function /(n):N -» N is said to be fully time constructible if there

exists a Turing machine T such that #7[x] = / (| x |) for all x St 0.

Most well known functions are fully time constructible. One consequence of a

function / being fully time constructible is that / (n) 2s n for all n St 0. Another is the

following theorem, mentioned in the introduction.

theorem 9 . Let /j be a fully time constructible function, and let s(x) be an un

bounded nondecreasing function of x such that e(x) < x for x 2s 0 and which can be

computed in 0(x) steps. For all total functions /g such that

/2(|x|)S£e(|x|)/1(|x|)|/1(|x|)| almost everywhere, there exists a language L with

characteristic function g such that

1) for all Turing machines Ti that compute g, #7i[x] > /i(|x |) almost everywhere

and 2) there exists a Turing Machine 7^ that computes g such that

#7*[x]=0(/8(|x|)).

Proof: Let h(x) = /i(|x |). Then, by Lemma 6, h is ^-honest for Q(v.w) = w \VJ

13

From Theorem 3 it follows that there exists a 0-1 valued function g such that »

1) for all Turing machines 7\ that compute. 0, #7i[x] > h(x) = /i(|x|) almost

everywhere

and 2) there exists a Turing Machine T9 that computes g such that #7*[x] =

0(e(\x\)h(x)\h(x)\ + S(\x\)h(x)\e(\x\)\ + e{\x\)[x\ + h.(x)\h(x)\).

ButA(*)=/i(l*l)=l*l >e(|z|). Therefore #T»[x] = 0(e(ii|)/,(|x|)|/1(|a:|)|) =

0</s(|*|)).Q

Figure 3. An illustration of the relationship between f \t fz and ftT9 in Theorem 9.

Now compare this with Hartmanis*s theorem ([3], [8]).

theorem 10 . Let /g(n) be a fully time constructible function, and let s(n) be any

slow growing, unbounded function of n. Then for every total function fi(n) such that

/2(n) St e(n)/1(n)|/1(n)| infinitely often there exists a language L with characteristic

function j such that

1) for all Turing machines 7i that compute g, #7i[x] > / x(\x \) infinitely often

Le. L <ZDTIHE(fx{\x\))

and 2) there exists a Turing machine T9 that computes g such that

#7*[x] = 0(/2(|x|))i.eL zDTIME{fz{\x\)).

14

Figure 4. An illustration of the relationship between /1. /2. and #T* in Theorem 10.

The major difference between this theorem and previous one is that this

theorem only shows that all Turing machines which compute g must run slowly

infinitely often whereas Theorem 9 shows that all Turing machines which compute g

must run slowly almost everywhere. Notice that this corresponds to the difference in

the relationship between fY and /2 in the two theorems, i.e whether

/2(n)st s(n)f x(n)\f x(n)\ infinitely often or almost everywhere. This is illutsrated in

figures 3 and 4.

Our theorem requires /x to be fully time constructible and /2 to merely be

total, as compared to Hartmanis's theorem, which requires /2 to be fully time con

structible and /1 to be total. This is a consequence of the way the two theorems are

15

total, as compared to Hartmanis's theorem, which requires /2 to be fully time con

structible and / j to be total. This is a consequence of the way the two theorems are

proved. Hartmanis does a diagonalization over all Turing machines which run "slower"'

than /2. On the other hand, we perform a diagonalization over all Turing machines

which run "faster" than / lm

We do have to pay a small price for the improved result. The function e in the

statement of our theorem is restricted to be something which is "easy to compute"

rather than being an arbitrary unbounded function.

Acknowledgements

We would like to thank Manuel Blum who suggested this problem to us and

gave us vast amounts of encouragement and insight. This research was supported by a

Natural Science and Engineering Research Council of Canada Postgraduate Scholar

ship, National Science Foundation Grant MCS79-15763, and National Science Foundation

Grant MCS79-03767.

Bibiliography

l] Borodin, A, Computational Complexity and the Existence of Complexity Gaps, JA.CM
19:1, 1972. 158-174.

2] Blum, Manuel, A Machine-Independent Theory of the Complexity of Recursive Func
tions, JACM 1422, 1967, 322-336.

3] Hartmanis, J., Computational Complexity of One-Tape Turing Machine Computar
tions, Functions, JACM 15:2, 1968, 325-339.

4] Hartmanis, J., and Hopcroft, J. E., An Overview of the Theory of Computational Cam?
plexity, JACM 1R3, 1971, 444-475.

5] Hartmanis, J., and Stearns, R. E., On the Computational Complexity of Algorithms,
Trans. Amer. Math. Soc.117, 1965, 285-306.

8] Hopcroft, J. E., and Ullman, J. D., Introduction to Automata Theory, Languages, and

	Copyright notice 1982
	ERL-82-4

