

Copyright © 1982, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

USING A RELATIONAL DATABASE MANAGEMENT SYSTEM

FOR COMPUTER AIDED DESIGN DATA

by

Antonin Guttman and Michael Stonebraker

Memorandum No. UCB/ERL M82/37

25 March 1982

ELECTRONICS RESEARCH LABORATORY

This work was supported by the National Science Foundation under grant
ECS 8007683 and by the Air Force Office of Scientific Research under
grant 78-3596.

USING A RELATIONAL DATABASE MANAGEMENT SYSTEM

FOR COMPUTER AIDED DESIGN DATA

Antonin Guttman

Michael Stonebraker

University of California
Berkeley

1. Introduction

There has been considerable interest in using relational database
systems to manage data for computer aided design (CAD) systems.
However, concerns have been expressed that database systems generally
have been designed for other uses and might not be well suited to CAD.
In addition, there is concern that relational DBMS's are too slow. The
purpose of this paper is to report our experience with implementing a
CAD application in a relational DBMS and comparing its performance with
a non-database CAD package.

In Section 2 we discuss the database schema that was used and
describe the structure of the special purpose CAD package. Then in
Section 3 we indicate the experiments performed and give the results.
Section 4 contains a discussion of the results. Lastly, Section 5
indicates areas where a relational DBMS was found to be inadequate as a
support tool for CAD applications.

2. The Database Schema.

The application package benchraarked was KIC, a graphics editor for
integrated circuit designs developed at Berkeley [2]. A KIC database
consists of a collection of circuit "cells". Each cell can contain mask
geometry and subcell references. A complete circuit design expands into
a tree, with a single cell at the root and other cells, used as
subcells, for the non-root nodes. Mask geometry can be associated with
each node in the tree. During editing KIC stores a circuit in virtual
memory on a VAX 11/780 computer.

Our INGRES schema reflects the above structure and has five main
relations:

cell master (name, author, master id, defined)

cell ref (parent, child, cell ref id, t11-t52)

box (owner, use, x1 , x2, y1 , y2)

wire (owner, use, wire id, width, x1, y1 , x2, y2)

polygon (owner, use, polygon id, vertnum, x, y)

In the cell master relation, name is the textual name given to the
cell and author is the name of the person who designed it. Master id is
a unique identification number assigned to each cell. It is used for
unambiguous references to the cell within the database.

The cell ref relation describes subcell references. For example,
if the cell "cpu" contains "register" as a part, then the cell ref
relation contains a tuple in which parent is the identifier of "cpu" and
child is the identifier of "register". T11 through t32 are a 3 X 2
matrix specifying the location, orientation and scale of the subcell
with respect to the parent. This representation of a spatial transform
is the one generally used in computer graphics [3].

The box relation describes mask rectangles. Owner is the
identifier of the cell of which the box is a part. Use specifies the
mask layer; e.g. metal or diffusion. X1_ and x2 are the x-coordinates
of the left and right sides of the box while £l_ and y2 are the y-
coordinates of the top and bottom.

A "wire" is a connected path of lines. Each tuple in the wire
relation describes one line segment, giving the coordinates of its
centerline (x1_, y^, x2, y2) and its width. Wire id is a unique
identifier for a particular wire. Owner and use mean the same as for
the box relation.

A "polygon" is a solid shape with any number of vertices. One
vertex is stored in each tuple of the polygon relation. X and £ are the
coordinates of the vertex, and vertnum orders the vertices (tuples)
within one polygon.

3.. The Experiment

For our test data we used circuit cells from two design projects at
Berkeley. GORDA is a prototype layout for a switched capacitor filter
[5], and decO-1 is a part of the RISC VLSI computer [6,7]. The design
descriptions were translated from KIC files and loaded into the INGRES
database.

We programmed three representative CAD retrieval operations and
measured the speed of our test programs compared to KIC performing the
same operations. The test programs were written in C and made calls to
the INGRES DBMS [4].

Top-level geometry retrieval. The first program retrieved the
geometry data associated with a given circuit cell, not including
geometry belonging to subcells. This is the first step in most CAD
editing sessions.

Geometry retrieval with tree expansion. The second program
retrieved geometry for all cells referenced in a fully expanded design
tree. Geometry for lower level cells was transformed to its proper
position relative to the root cell. This operation produces a plot of
an entire design.

Retrieval by location. The third program retrieved top-level
geometry that fell within a small area in the middle of a cell. This

operation would be used to "window" a circuit.

The tables below show the results of the tests. Geometry Tuples
refers to the number of tuples representing geometry retrieved from the
INGRES database during each operation. CPU Time and Elapsed Time were
reported by the operating system. The msec/Tuple figures are time
divided by the number of INGRES tuples. The Relative Time rows give the
slowdown factor of our test programs relative to KIC.

ii

Circuit
ii

ii

il
GORDA

i Geometry Tuples ii 592 |
ii KIC INGRES |
ii
n
ii

| CPU Seconds ii
|i 7.5 24.0 |

| CPU msec/Tuple ii
ii
ii
ii

13 41 i

1 Relative CPU Time
ii
iij|

1 3.2 |
i Elapsed Seconds n

n
n
n

7.5 41]

Elapsed msec/Tuple ii
Ii 13 69 |

Relative Elapsed Time il 1 5.5

Test 1: Top Level Retrieval

Circuit

Geometry Tuples

CPU Seconds

CPU msec/Tuple

Relative CPU Time

Elapsed Seconds

Elapsed msec/Tuple
Relative Elapsed Time

ii
n
n

-ti
ll
it-

41

-Ti
ll
II
II

-ti
ll

-44-

KIC

128.3

10

1

128.3

10

GORDA

12r779

Test 2: Retrieval with Tree Expansion

INGRES

443-5

35

3.5

649

51

5.1

"1
i
i

—t

i i
i Circuit j! dec0-1 |

i Geometry Tuples j| .448 i
KIC | INGRES j

| Geometries in Window | 87 i 85 j
i CPU Seconds } •75 j 14.5 !

i CPU msec/Tuple j 9 | 171 I
j Relative CPU Time j 1 i 20 j

] Elapsed Seconds } •75 | 33 |
i Elapsed msec/Tuple j
j i

9 | 388 j

Relative Elapsed Time 1 j 45
Test 3: Retrieval by Location

4_. Discussion of Results

In Tests 1 and 2, the factor of three increase in CPU time for
INGRES can be attributed primarily to the fact that INGRES is a
general-purpose DBMS while KIC includes only functions that it requires.
Any DBMS used in place of special purpose code will show some decrease
in performance. This cost must be balanced against the advantages of
using a DBMS, e.g. simplification of application software, data
independence, etc.

The elapsed time measurements show a larger performance difference,
about a factor of five. This is mainly because INGRES geometry data is
disk resident. KIC geometry data resides in virtual memory, and since
the tests were run on a dedicated machine with ample main memory, KIC's
data was actually in real memory.

KIC has a spatial bin structure that allows it to quickly isolate
geometry in the window for Test 3. INGRES has no such access method and
must perform a sequential search.

The new features suggested in the next section may narrow the
performance gap. In addition, changing INGRES to manage a virtual
memory database would dramatically improve performance.

5_. New Features

During our experimentation we identified four features that should
be added to a relational DBMS to facilitate CAD applications. We
discuss them in turn.

5/J_. Ragged relations

It would have been convenient for a field in a relation to repeat a
variable number of times. In our database, for example, this would have
allowed us to store data for a varying number of "boxes" in the
cell master relation, instead of in a separate, box relation. The

cell master relation could have been defined by

cell master (master id, name, author,
defined, &(use, x1, x2, y1, y2)).

where the notation "&(...)" means that the group of five fields
describing a box is repeated, once for each box. The wire, polygon and
cell reference relations could be coalesced with the cell master

relation in a similar way.

This revised schema might be more natural for a user to understand.
In addition, it would speed access to the geometry for a particular
cell, since the geometry would be in one tuple rather than distributed
across three relations.

We propose this extension under the name "ragged relations". One
way to support ragged relations would be to first provide ordered
relations, which has been suggested by Stonebraker and others [8,1l],
and then allow relations to nest, so that a field of a relation could be
an ordered relation. We are investigating this idea.

A database with ragged relations or nested relations is not in
first normal form, and reflects the hierarchical nature of the data. A
language that provides just the standard relational data manipulation
operations must be augmented before it can be used with ragged relations
or nested relations. We are investigating such an augmentation.

5..2_» Transitive Closure

Our second test program was required to expand subcells which could
nest a variable number of times. This is an operation similar to a
transitive closure and does not correspond to a single INGRES query. We
have extended the syntax of QUEL with a * operator to facilitate such
tasks. For example:

range of r_ _is cell ref
range of t^ ^s. tree
retrieve * into tree (cell = r.child)

where r.parent = ROOT
or r.parent = t.cell

Here the tuple variable _t ranges over the tree relation, which is the
result of the query. The retrieve adds tuples to tree, and is repeated
(with jt ranging over the new tuples) until there are no new additions.

Some database operations involving transitive closure are possible
in Query-By-Example [12] and in the ORACLE system [13].

5/JL* Access by spatial location

Many CAD programs, like our third test program, need to retrieve
design data according to its spatial location. This test would have run
much faster in INGRES if data could be classified according to a system
of spatial "bins", i.e. by approximate location.

We are considering adding a spatial bin mechanism to INGRES as an
extension of the secondary index facility. A two-dimensional array of
bins is defined by a grid. A bin index is a file containing, for each

bin, pointers to all the objects that might overlap that bin.
Geometries in a particular area can be found quickly by looking in the
index under the appropriate bins. For example, a bin index could be
defined by:

index on box is boxbins

(minTxl ,x2) through max(x1_,x2) by 10,
min(y1 ,y2) through max(y1 ,y2) by W).

This bin index is based on a grid of 10 X 10 squares. The min-max
expressions specify the size of each box and define the set of bins it
could overlap.

5_.4_. Unique identifiers

Codd and others [9,10] have suggested the usefulness of unique
identifiers for database objects. They should be generated
automatically by the database system and handled internally as a special
type. In our application we were forced to manage our own unique
identifiers for cells, wires, etc.

S_. Conclusions

INGRES performs typical computer aided design retrieval operations
considerably slower than special purpose programs. We have suggested a
number of enhancements that could be made to a relational database
system that would improve performance and make the system easier to use
for CAD applications. We are continuing to look for additional
mechanisms along the same lines.

2* Acknowledgements

This work was sponsored by NSF grant ECS-8007683-Wong-2/82 and by
AFOSR grant 78-3596-Stonebraker/Wong-6/82.

8^. References

[l] Held, G.D., M.R. Stonebraker and E.Wong "INGRES: A Relational Data
Base System," Proc. AFIPS 1975 NCC, Vol. 44, AFIPS Press, Montvale,
N.J.

[2] Keller, K. Kic, A Graphics Editor for Integrated Circuits, Masters
Thesis, Dept. of Electrical Engineering and Computer Science,
University of California, Berkeley, CA. June 1981.

[3] Newman, W.M. and R.F. Sproull "Principles of Interactive Computer
Graphics," McGraw-Hill, N.Y. 1979.

[4] Woodfill, J. et al. "INGRES Version 6.2 Reference Manual," Memo
No. UCB/ERL M79/43, Electronics Research Laboratory, University of
California, Berkeley, CA. July 1979.

[5] The circuit cell GORDA is a layout prototype of a switched
capacitor filter made by Jesus Guinea at Electronics Research Labs,
University of California, Berkeley, CA.

[6] Patterson, D.A. and C.H. Sequin "RISC I: A Reduced Instruction Set
VLSI Computer," Proc. Eighth International Symposium on Computer

Architecture, May 1981, pp. 443-457.

[7] Fitzpatrick, D.T. et al. "A RISCy Approach to VLSI," VLSI Design,
Fourth Quarter (October 1981), pp. 14-20. (Also appears in
Computer Architecture News, March 1982.)

[8] Stonebraker, M. and J. Kalash "TIMBER: A Sophisticated Relation
Brouser," Memo No. UCB/ERL M81/94, Electronics Research Laboratory,
University of California, Berkeley, CA. December 1981.

[9] Codd, E.F. "Extending the Database Relational Model to Capture
More Meaning," ACM Transactions on Database Systems, Vol. 4, No. 4,
December 1979, pp. 397-434.

[10] Lorie, R.A. "Issues in Database for Design Applications," IBM
Research Report RJ3176 (38928) 7/10/81.

[il] Lorie, R.A., R. Casajuana, and J.L. Becerril "GSYSR: A Relational
Database Interface for Graphics," IBM Research Report RJ2511
(32941) 4/24/79.

[12] Zloof, M. "Query-By-Example: Operations on the Transitive
Closure," IBM Research Report RC 5526 (Revised) (#24020) 10/29/76

[13] "ORACLE SQL Language - Reference Guide," Copyright by Relational
Software Incorporated, October 1980.

	Copyright notice 1982
	ERL-82-37

