

Copyright © 1982, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

THE INFLUENCE OF PROGRAM DYNAMICS ON PERFORMANCE

by

R. Bassein

Memorandum No. UCB/ERL M82/33

5 May 1982

THE INFLUENCE OF PROGRAM DYNAMICS ON PERFORMANCE

by

Richard Bassein

Memorandum No. UCB/ERL M82/33

5 May 1982

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

The Influence of Program Dynamics on Performance

Richard Bassein1

1. Introduction

To model a program for simulation, one may construct a job script, a

detailed trace in virtual time of demands on the computer system's resources

[Mead78]. In general, the load imposed by these demands changes throughout

the life of the program; thus the job script reflects the dynamic behavior of the

program. This job script model will be called the "raw model". One may elim

inate the dynamics in the model by replacing the original pattern of demands by

a pattern, periodic in virtual time, which distributes the load evenly throughout

the program's execution. The resulting model will be called the "periodic

model". It should" be noted that this description leaves undefined a certain

parameter: the number of periods into which the life of a particular program

should be divided. The choice of this parameter will be discussed later.

The question considered in this report is: How much is the prediction of

performance altered when the raw models of the programs in a workload are

reduced to periodic models? In other words: what is the influence of the dynam

ics of program resource demands on performance? In practical terms: what

loss of accuracy may one expect if program models and simulators are

simplified by making them periodic and deterministic? The program perfor

mance measures I used in evaluating the models are based on the waits each

program encounters at each server. The system performance measures are the

throughput and the queue lengths at the servers.

'Partially supported by NSF grant MCS80-12900 and Mills College, Oakland, CA.

I studied the above question by preparing raw job script models for pro

grams of an interactive workload, deriving periodic models from them, running

both on simulators and comparing the results. My general conclusions were that

throughput was hardly influenced at all by program dynamics and that queue

lengths and the program performance measures were influenced more by

tampering with the distributions, rather than dynamics, of the programs'

resource usages.

2. Disclaimers

Several issues are not addressed by this report as result of limitations on

the time allotted to its preparation.

Perhaps the most glaring omission is the lack of validation of the raw job

script model of the programs by comparison with actual program runs. This

omission can be defended on two grounds. First, the comparison between the

the raw job script model and the periodic one is the main focus of this report,

hence the extent to which the raw model represents the original programs' per

formances is secondary. Also, Mead and Schwetman have validated the accuracy

of a job script model in [Mead78], and their method of building job scripts was

followed closely enough to justify confidence in my results.

As Mead and Schwetman point out, job scripts cannot model paging

behavior, since this behavior is dependent on the total load on the system.

Since I modeled a virtual memory system, I had to reach a compromise on this

point. Because the system I modeled does not pre-load, butbrings in pages only

on demand, each program exhibits, throughout its execution, a base page fault

pattern from its demand loading. I measured this pattern by running the pro

grams on a system lightly loaded enough to allow each program its entire

memory demand. The load-dependent paging pattern is added on top of this.

Thus the raw model assigns to each program a base fault rate for each cpu

request and the simulator adds to this a fault rate computed from a parameter

(called the "thrash factor") of the program and from the total memory demand

at the time. The thrash factor is used to select a lifetime curve from an ad-hoc

one-parameter family of possibilities. Ideally the thrash factor should be meas

ured during the life of the program, and an appropriate value for it assigned to

each cpu request of the raw model; since such a task would have greatly compli

cated the measurement phase of the project, I used a single ad-hoc value of the

thrash factor for all cpu requests of all jobs. The periodic model assigns a con

stant base fault rate and a thrash factor, equal to that used in the raw model, to

each program. The simulators' handling of page faults will be discussed in detail

in the next section.

Only one mix of programs, the one actually occurring on the machine being

used, was tested (although with three different numbers of users and distribu

tions of between-job think times); the results would make a stronger statement

if several different natural mixes of programs had been used. In particular, the

workload available for modeling was heavily weighted toward cpu use.

It would have been interesting to compare both the raw. and periodic

models with stochastic and queueing models based on the data from the raw job

script. I focused on deterministic simulation for two reasons. By comparing the

performance of the raw job script model with that of the periodic one, I was

attempting to isolate the influence of the programs' dynamics on their perfor

mance. In addition, certain applications, such as the use of modeling by an

operating system to adjust itself to changes in the workload [SerazziSl], may

require simulation runs too short for the appropriate use of stochastic methods:

stochastic methods, including the methods of queueing theory, are directed

toward the computation of steady state parameters, and these applications are

concerned with short-term, transient behavior.

3. The system, the workload, and the simulators

The system I modeled is a VAX 11/7802 running Berkeley UNIX3 with virtual

memory. The specifications for the components are:

COMPONENT SPECIFICATIONS
main memory 4 megabytes
cpu 1,000,000 instructions/second
disks(2) mean seek: 0.03 seconds

mean latency: 0.006 seconds
transfer: 806 kilobytes/second

disks(2) mean seek: 0.03 seconds
mean latency: 0.0083 seconds
transfer: 1200 kilobytes/second

terminals up to 80 (9600 baud and 300 baud)

Using data from the system's accounting program, I selected 17 programs

based on number of times used, total cpu time, total real time, and total 1/0

activity. I measured the resource demands of each of the selected programs

with a program that reads, once a second, an executing program's resource

usage data that the operating system maintains; the code for the measurement

tool and job script preparation programs appears in Appendix A of [Bassein82].

I prepared terminal scripts for the simulator invoking the selected programs in

the approximate proportions in which they appeared in the accounting data,

with between-job think times chosen from an exponential distribution with given

mean (30 seconds for the workloads I tested). Descriptions of the workloads

appear in Appendix I.

The two simulators, "raw" and "periodic", use the same basic system model

but differ in those respects necessary for handling raw and periodic program

models, as described below. The code for both simulators appears in Appendix C

of [Bassein82]. The basic system modelconsists ofa cpu, 4 disks, andterminals.

tyAX is a trademark of Digital Equipment Corporation.

aUNDCis a trademark of Bell Laboratories.

The service discipline at the cpu is, like that of the system being modeled

[Joy8l], 32-level foreground-background with a 250 millisecond quantum at each

level. Incoming jobs do not pre-empt a job in execution. The jobs in level 0 have

highest priority, those in level 31, lowest priority. The level number of a job in a

background queue decays (to higher priority!) by a factor of 0.9 per second until

that job gains access to the cpu. As will be seen in the next section, a quantum-

based service discipline presents most of the difficulty in passing from the raw

to the periodic model.

Both simulators use FCFS scheduling at the disks. (The simulators only use

three disks since it was not possible to identify program usage of the fourth.)

The raw simulator generates seek and latency times for the disks using pseudo

random numbers. The periodic simulator sends each program to each disk once

in each period: the number of blocks transferred is the same each period for

that program and that disk. This number, possibly fractional, is determined by

dividing the total number of blocks transferred by that program at that disk

during its execution by the number of periods, in order to preserve the total

transfer time. The periodic simulator uses fixed seek and latency delays for

each disk. However, these must be adjusted according to the number of periods

into which the execution of the program is divided in order to preserve the total

uniprogramming execution time of the program. Thus, if the raw model for a

given program makes N visits to a certain disk and the periodic model has M

periods, hence makes Mvisits to that disk, the seek and latency delays for that

disk in the periodic model must be multiplied by N/M to compensate for the

change in the number of visits.

During a cpu service, the raw simulator uses the executing job's current

page fault rate and thrash factor, the current total memory demand on the sys

tem, and pseudo-random numbers to compute the time until the job's next page

fault; if this lifetime is less than the duration of the current burst (as truncated

6

by the service discipline), then the job is sent for a page fault after executing for

the lifetime. The periodic simulator determines a (not necessarily integral)

number of page faults for each job, depending on the job's (fixed) page fault rate

and thrash factor, the (fixed) length of the cpu request (not truncated), and the

current total memory demand on the system, at the beginning of each cpu

request. Again, the seek and latency times must be adjusted according to the

total number of page fault requests and the number of periods.

The periodic simulator takes advantage of the periodicity of each job script

by reading in only one period and then repeating its sequence of resource

demands. The choice of the length of a period for each program, and thus the

size of the requests during a period, will be discussed in the next section. Thus

the storage requirements for the periodic models are a small fraction of those

for the raw models: statically, the periodic models occupy about 2% of the space

that the raw models take for the programs I modeled; dynamically, the periodic

simulator uses less than one half the space that the raw one does.

Since I focused on short simulation times, and was therefore concerned

with transients and non-stationary behavior, an individual run of the raw simula

tor could not be expected to produce statistically meaningful results. Thus the

raw simulator repeats the simulation with a given workload a specified number

of times, with new seeds for the pseudo-random number generators for each

run. The means and standard deviations of the performance indices based on

the repeated runs are reported by the simulator. Since the period simulator is

completely deterministic, its results must be judged from a single run with each

workload.

Both simulators start statistics collection when a given number of terminals

become active for the first time and stop when fewer than that same number

have yet to complete their terminal scripts.

4. Results

The output from the simulators appears, along with a description of the

workloads in Appendix I.

To put the effect of the quantum-based cpu service discipline in perspec

tive, first consider the results for FCFS scheduling at the cpu as well as at the

disks, obtained by setting the quantum to a value larger than any cpu request.

The period length for each periodic model was chosen to make the length of its

periodic cpu request equal to the mean of the lengths of the cpu requests of the

corresponding raw model. Note that values displayed for simulation with the

raw model represent means based on 10 runs; throughout the entire report, 95%

confidence limits for the system performance indices of the raw models

correspond to maximum errors of 2% and, in most cases, less than 1% . The fol

lowing table presents results for the system indices from simulation with 16 ter

minals:

FCFS SCHEDULING AT THE CPU: SYSTEM PERFORMANCE

PERFORMANCE INDEX RAW PERIODIC %ERROR

throughput 0.0935 0.0916 -2.0
highest priority
cpu queue length

disk 1 queue length
disk 2 queue length
disk 3 queue length

The stability of the system indices is not surprising in the light of the

results of Denning and Buzen [Denning77].

The program indices I measured for each program were the stretch factor,

that is, wait time plus service time divided by service time, at the cpu and the

waits at the disks. (Wait and service times here are the totals for one execution

of the program.) As a result of the actual cpu service discipline, the wait time a

3.61 3.63 +0.6

0.183 0.177 -3.3

0.0216 0.0212 -1.9

0.0301 0.0288 -4.3

B

job experiences varies directly with the length of its cpu bursts; thus it seems

more appropriate to measure the stretch factor than just the wait there.

Throughout all the simulations, the disk waits were completely scrambled

(in terms of percent change) in passing from raw models to periodic models. The

effect on the rest of the results was small, however, since the workload was so

heavily oriented toward the cpu that a program's total wait at all the disks never

exceeded 1.5% of its total execution time. In fact, it may be the relatively light

use of the disks which caused the results there to be so unpredictable. Conse

quently, the only program performance indices that will be considered are the

stretch factors at the cpu.

Again using FCFS scheduling at the cpu, when raw models were replaced by

periodic models, the mean change in the stretch factor at the cpu was 12.0%,

with a maximum change for any program of 26.9%. The distribution of errors

was:

FCFS SCHEDULING AT THE CPU:
ERROR IN STRETCH FACTORS FOR PERIODIC MODELS

%ERROR NUMBER OF PROGRAMS

25-30 *

20 - 25 **
15 - 20 **
10 - 15 ***
5-10 *******

0-5 **

Getting reasonable results, where possible, with a quantum-based service

discipline at the cpu requires more analysis in choosing the period length.

Choosing, as I did initially, a program's period length to make the periodic cpu

request equal the mean of the raw model's cpu requests will affect the stretch

factor at the cpu very seriously (although the effect on some system indices

may be much less severe). For example, although the raw model of a program

9

may have a mean cpu request of just under a quantum, it may still have a

significant portion of requests using several quanta, each such request incurring

a significantly longer wait With the above choice of period length, the periodic

model will never experience these longer waits. To compensate for this prob

lem, I adjusted period lengths according to the following analysis. Suppose that

raw model jobs experience an expected wait of wk for a cpu request exceeding

k-1 quanta but not exceeding k quanta. If the fraction of a particular job's cpu

requests that exceed k-1 but not k quanta is pk, then the expected total wait

experienced by the job is w =^Pkwk' r^ie constant request of the periodic

model should then select that ufc which is closest to in. Three problems with

this analysis are: when the entire workload is converted to periodic models, the

Wjg will change; the gaps between the values of the u^ may not allow the reason

able approximation of w by a wk\ the computation of the itfe depends on unk-

nown performance parameters, such as the cpu utilization. (See Appendix II for

the computation of the ufc and the adjustment of period lengths.) Nevertheless,

a coarse correction based on these considerations yielded significant improve

ment in the values of the stretch factor at the cpu. In the following, "periodic"

will refer to periodic models with cpu requests equal to the mean of the raw

model requests and "adjusted" will refer to periodic models with period length

adjusted as suggested above.

As seen in the tables below, the throughput continues to be stable while the

queue lengths are very erratic.

10

FOREGROUND-BACKGROUND SCHEDULING AT THE CPU:
SYSTEM PERFORMANCE FOR THREE LOADS

12 terminals:

INDEX

throughput
cpu queue 0
disk 1 queue
disk 2 queue
disk 3 queue

RAW

0.0807

0.214

0.0776

0.0029
0.0027

16 terminals:

INDEX RAW

throughput 0.0912
cpu queue 0 1.62
disk 1 queue 0.185
disk 2 queue 0.0217
disk 3 queue 0.0305

24 terminals:

INDEX RAW

throughput 0.0994
cpu queue 0 2.45
disk 1 queue 0.234
disk 2 queue 0.0565
disk 3 queue 0.0312

PERIODIC %ERROR

0.0780

1.703

0.155

0.0186

0.0263

-3.3

+695.8

+99.7

+541.4

+874.1

ADJUSTED %ERROR

0.0806

0.993

0.161

0.0205

0.0270

-0.1

+364.0

+107.5

+608.9
+900.0

PERIODIC %ERROR ADJUSTED %ERROR

0.0914 +0.2 0.0915 +0.3

1.98 +22.2 1.72 +6.2

0.184 -0.5 0.198 +7.0
0.0222 +2.3 0.0233 +7.4

0.0298 -2.3 0.0302 -1.0

PERIODIC %ERROR ADJUSTED %ERROR

0.1010 + 1.6 0.1003 +0.9

3.32 +35.5 3.10 +26.5
0.244 +4.3 0.251 +7.3

0.0744 +31.7 0.0691 +22.3

0.0281 -9.9 0.0308 -1.3

It should be noted that with 24 terminals the cpu was nearly saturated, with a

utilization of over 97%.

The percent errors in the stretch factors, due to passing to periodic

models, were:

NUMBER OF PERIODIC ADJUSTED
TERMINALS MEAN MAX MEAN MAX

12 31.1 66.4 13.4 37.1

16 28.4 72.5 16.8 44.8

24 37.4 88.7 29.6 76.9

The distributions of errors for the 16 terminal workload were:

FOREGROUNDBACKGROUND SCHEDULING AT THE CPU:
ERRORS IN STRETCH FACTORS FOR PERIODIC AND ADJUSTED MODELS

%ERROR PERIODIC ADJUSTED

45- ****

40-45 * **

35-40

30-35 *** *

25-30 *

20-25 *

15-20 ** ****

10-15 ** ***

5-10 ** **

0- 5 ** ****

11

By spreading the waits io* farther apart, heavier loads exacerbate the problem

of matching an expected wait wk for a periodic model with the raw model's wait

w.

The interaction of the period length with the quantum can be illustrated

further by varying both of them together to preserve the quantum usage pattern

of each program. The tables below show the small effects on performance

resulting from doubling and quadrupling the quantum and the adjusted period

lengths of the programs for the 16 terminal workload. (Note that a program's

total resource demands limits the possible expansion of its period.) A practical

consequence of this period expansion is the corresponding shortening of the

running time of the simulator: the running time is approximately inversely pro

portional to the period expansion, due to the reduction in the number of events

to be processed.

12

EXPANDINGTHE PERIODAND THE QUANTUM

Global performance:

INDEX RAW

throughput 0.0912
cpu queue 0 1.62
disk 1 queue 0.185
disk 2 queue 0.0217
disk 3 queue 0.0305

2xPERIOD %ERROR 4xPERIOD %ERROR

0.0923 + 1.2 0.0917 +0.5
1.68 +3.7 1.69 +4.3-
0.195 +5.4 0.202 +9.2
0.0240 +10.6 0.0232 +6.9
0.0307 +0.7 0.0302 -1.0

Percent errors in stretch factors:

ADJUSTED> DOUBLED QUADRUPLED

mean 16.8 16.1 18.7
maximum 44.8 41.5 41.4

Thus, not much accuracy is lost in return for the dramatic saving in running

time.

5. Conclusions

Program dynamics had very little influence on the throughput in all cases;

if this is the main performance index to be predicted, there is no harm in pass

ing to periodic models and expanding the period lengths to save simulation time.

Queue lengths, however, behaved very erratically when job script requests were

tampered with, although less so under heavier loads. However, it appears that

altering the distribution of the lengths of requests in the presence of a

quantum-based service discipline, rather than the dynamic pattern of requests,

was the principal cause of error. Similarly, stretch factors were significantly

influenced by modifying request distributions in the presence of a quantum-

based service discipline; with some care they can be brought under fair control

except under heavy loads. If one is going to replace raw models with periodic

13

ones, little additional error is introduced into the stretch factor predictions by

expanding the period, in coordination with the expansion of quanta, if they are

used.

Acknowledgements

It is a pleasure to acknowledge the kind support and advice I received from

the PROGRES group in general and from Professor Domenico Ferrari and Juan

Porcar in particular. In addition, I would like to thank Bill Joy for providing infor

mation on the workings of the Berkeley UNIX system on the VAX.

References

[Bassein82] Bassein, R., "The Influence of Program Dynamics on Performance".

MS report. 1982, Department of Electrical Engineering andComputer Science, U.

C. Berkeley.

[BryantSO] Bryant, R. M., SIMPAS User Manual, Computer Sciences Technical

Report #391, 1980, University of Wisconsin - Madison.

[Cooper8l] Cooper, R. B., Introduction to Queueing Theory, 1981, North-Holland

Pubi. Co., New York.

[Denning77] Denning, P. J. and Buzen, J. P., "Operational analysis of queueing

networks", in Proc. Third Int. Symp. Computer Performance Modeling, Measure

ment, and EualuaMon, 1977, North-Holland Publ. Co.. Amsterdam, The Nether

lands.

[JoyBO] Joy, W. N., Comments on the performance of UNIX on the VAX, available

from the Department of Electrical Engineering and Computer Science, U. C.

Berkeley.

14

[JoyBl] Joy, W. N., Conversation.

[Mead78] Mead,. R. L and Schwetman, H. L, "Job scripts - A workload description

based on system event data", National Computer Conference, 1978, pp. 457-464.

[Serazzi8l] Serazzi, G., "The Dynamic Behavior of Computer Systems". Experi

mental Computer Performance Evaluation, 1981, North-Holland Publ. Co.,

pp. 127-163.

15

Appendix I: The workloads and results

The three workloads consisted of the following 17 programs: as, cat, ccom,

cpp, du, ex, grep, Id, Is, mail, more, pcO, pi, ps, px, trofl, and w. The number of.

times each appeared in a simulation may be found in the COUNT column of the

output of the simulator.

Excerpts from terminal scripts follow; an asterisk preceding a program

name indicates that no between-job think time should precede the execution of

the program.

A login sequence:

mail w is more Is

A C editing and execution sequence:

Is ex cpp *ccom Is cat ex ps cpp *ccom *as *ld Is cat ex cpp *ccom *as *ld Is

A Pascal editing and execution sequence:

Is ex pi Is cat ex pi *px Is ps pcO *as *ld Is cat ex pcO *as *ld Is

An editing sequence:

is ex Is ex Is ex Is trofl

A logout sequence:

ps Is more Is mail Is du

The output from a sample raw simulation and the corresponding adjusted

periodic simulation follows. The workload for the sample simulations had a

mean between-job think time of 30 seconds with 16 terminals.

The performance indices reported for each program are the degree of mul

tiprogramming during its execution, the number of context switches, the cpu

16

stretch factor, and the disk waits. The system indices reported are the interar-

rival times, service times, utilizations, and queue lengths. The raw simulator

prints four lines for each index: the first is the mean over 10 simulations of the

mean of the index for each simulation; the second is the standard deviation over

10 simulations of the mean of the index for each simulation; the third is the

mean over 10 simulations of the standard deviation of the index for each simula

tion; the fourth is the standard deviation over 10 simulations of the standard

deviation of the index for each simulation. The periodic simulator prints the

mean and standard deviation of the index for its single simulation.

Jan 5 23:23 1.932 15t301.pr Page 1

Raw 51 «nula4:Ion (vj.-<:lni)

Program steps file: prog.st
Program arrival file: 16t30i

=» 1.0e+06

0.90000

0.00027000
seek, latency, and block I/O times

Memory size = 4.0eJ*03
Memory reference rate
Quantum = 0.25090
Priority decay rate =
Top cpu level = 31
Context switch time:
Number of disks » 2;
0.0300000 0.0050000 0.0012407
0.0300000 0.0060000 J.0012407
0.0300000 0.008300'J 0.0008333

Cluster factor = 2.00
20 terminals at 0.0011458 sec
20 terminals at 0.0366667 sec. per char.
Seed for page fault stream = 123487
Seed for seek time stream » 78653
Seed for latency time stream a 124508

Number of active terminals for termination:
Number of simulator runs: 10
Using virtual memory.

Statistics collected from 27.89210

Statistics collected from 27.89210 •

Statistics collected from 27.89210

Statistics collected from 27.89210

Statistics collected from' 27.89210

Statistics collected from 30.19731

Statistics collected from 30.19731

Statistics collected from 30.19731

Statistics collected from 30.19731

Statistics collected from 30.19731

Terminated ?.t *?902.625 (*5.995>
Number of jobs » 453.800 (3.490)
Throughput = 0.0912444 (0.0004905)
Normal terminations: 1.00000

per char.

PROGRAM

as

COUNT

18.600
(

0.516

<

MLTPRG

12.431
0.292

2.033

0*441

CTXTSW
138.002

1.498

9.722

5.494

ccom 14.900

<

0.316
(

12.860

0.093

2.012

0.127

239.078

1.830
13.965

4.178

CPP . 15.000
(

0.000

<

12.369

0.245

2.220

0.283

38.207

1.079

9.739

1.179

du 11.600
<

0.699
{

11.902

0.500
2.143
0.574

55.666
1.565

11.341
1.170

ex 44.000
(

0.000

{

13.234

0.016

0.747
0.024

308.955

0.704

,9.829
0.642

8.00000

CPU DISKS
8.70050715 0.65084294 0.00000000 0.03987800
0.86289270 0.13731648 0.00000000 0.00958702
5.92414252 0.39727506 0.00000000 0.04334269
0.78614938 0^06661262 0.00000000 0.00748242)

4.56269648 0.14282624 0.00000000 0.13580193
0.15420800 0.02760095 0.00000000 0.02137486)
1.43386135 0.13067263 0.00000000 0.10447464
0.18829584 0.03149237 0.00000000 0.02147787)

3.69048019 0.10288110 0.00000000 0.02188844
0.21868336 0.01606335 0.00000000 0.01404576 >
1.41406006 0.10162198 0.00000000 0.03442619
0.09222523 0.01985715 0.00000000 0.01726116)

2.89804994 0.17862327 0.00000000 0.00000000
0.22887401 0.03147474 0.00000000 0.00000000)
1.50320703 0.14581311 0.00000000 0.00000000
0.18249828 0.04012018 0.00000000 0.00000000)

7.54421460 0.65953737 0.00184932 0.00000000
0.15735729 0.03225048 0.00129991 0.00000000)
1.95667847 0.20401533 0.00864219 0.00000000
0.10224622 0.02039962 0.00543288 0.00000000)

Oan 3 23:23 -032 15t301.pr Page 2

f irid

grep

Id

Is

ma11

more

pc0

P1

ps

px

troff

vaxima

w

cat

i) ./i'00

{

,:> . 003

0.009

if. 00-J

0.000 •*.:?'JJ

15.000

(

<

11.543

0.350
1 .350

0.45-t

36. 13 3

•i/.SoS

1O.A00

<

0.513
(

11.64a
0.312
2.303
0.293

;/.623
2.539

i .£07

134.300
(

1.776

(

12.335
0.072
1.998

0.183

94.314
0.377
9.511

0.S46

20.400
(

0.516
(

11.769
0.055
1.694

0.180 .

30.464
0.141
1.064

0.122

44.000

(

0.816
(

11.729
0.098
1.847
0.168

52.778
0.417
3.738
0.383

9.000
<

0.000
(

12.927
0.227
1.251
0.396

258.911
6.435

25.847
11.626

10.000
<

i- 0.000

(

13.926
0.170
0.863
0.139

130.660
3.846

37.546
4.495

23.300
{

0.675
(

12.520
0.281

2.054
0.254

26.911
0.888

3.870
1.016

5.000
(

0.000
(

13.131
0.1&I
0.641
0.241

105.520
1.726
3.122
1.319

5.000
(

0.000

(

12.080
0.091
1.439

0.121

363.380
2.388

18.478
4.448

0.000
(

0.000
<

ST.BBB
0.000
0.000
0.000

0.000
0.000
0.000
0.000

15.300
(

0.483

<

It.736
0.178

'•• 1.593
0.220

44.685
0.880
7.354

: 1.231

36.000
(

0.471
<

12.315
0.244
2.022
0.204

175.145
2.259

23.853
3.764.

J.Z2GB342* 0.00030000 B.BBBBQBiSB B.BBBSBBBh
ti.iMWiWM 0.00000000 0.000000*™ 0.00000000)
'i.aaJSi3J20 0.00000000 0.00000000 B.BBVWQr.B
£.00000043 0.00000030 0.B000B3BSI 0.00000000 }

4.3?915*42 0.10749257 0.00680341 0.00000000
0.325260^5 0.02620979 0.00490872 0.00000000)
1.65705036 0.08375909 0.01921026 0.00000000
jj.53313153 0.02503266 0.0113074(5 B.BBBBiJUBB)

5.91333591 0.17484155 0.00000000 0.00000000
1.44726435 0.02923094 0.00000000 0.00000000)
5.36293013 0.13114442 0.00000000 0.00000000
3.80517331 0.03375236 0.00000000 0.00000000)

3.16877805 0.06956781 0.00183963 0.00000000
0.04891643 0.00300762 0.00092252 0.00000000)
1.15912714 0.06971213 0.00958276 0.00000000
0.10047910 0.00660982 0.00317755 0.00000000)

8.43833751 0.00000000 0.00185036 0.00000000
0.23020581 0.00000000 0.00148357 0.00000000)
3.03626034 0.00000000 0.00823136 0.00000000
0.25471096 0.00000000 0.00686627 0.00000000)

3.23505845 0.14010695 0.00368857 0.00000000
0.26541478 0.01659193 0.00239194 0.00000000)
3.99441809 0.09855960 0.01336818 0.00000000
0.35083392 0.01483016 0.00678936 0.00000000)

3.85626992 0.28036119 0.19344992 0.06207510
0.43947015 0.04906588 0.08640514 0.02519729)
1.64095704 0.13275997 0.22413415 0.06029954
0.85150746 0.03576349 0.12945326 0.02416193)

3.64874356 0.37398445 0.06634834 0.00000000
0.25871887 0.06873563 0.03453482 0.00000000)
1.33354125 0.25158261 0.11293889 0.00000000
0.21578927 0.06628594 0.07254481 0.00000000 >

4.21931968 0.09140518 0.00000000 0.00000000
0.34254763 0.02065008 0.00000000 0.00BBB000 >
3.24237533 0.08180204 0.00000000 0.00000000
0.36716598 0.01648181 0.00000000 0.00000000 >

10.08763814 0.08479931 0.00693766 0.00000000
1.14938165 0.£21641681 0.00877405 0.0J100000)
4.88947281 0.07027064 0.01290004 0.00000000
0.72260099 0.03548693 0.01410989 0.00000000 >

7.50738295 0.40446837 0.01368678 0.06290307
0.30615051 0.05982265 0.01453619 0.02171204 >
4.27699286 0.13569326 0.02525457 0.06060569
0.34663151 0.06761483 0.03098566 0.02409481)

0.00000000 0.00000000 0.00000000 0.00000000
0.00000000 0.00000000 0.00000000 0.00000000 J
0.00000000 0.00000000 0.00000000 0.00000000
0.00000000 0.00000000 0.00000000 0.00000000)

8.09867359 0.06341862 0.00222412 0.00000000
0.73431095 0.01424219 0.00178849 0.00000000)
7.57552286 0.05860195 0.00795255 0.00000000
li08095450 0.01076102 0.00637030 0.00000000 >

3.29117270 0.78120783 0.00000000 0.00000000
0.13778538 0.05542485 0.00000000 0.00000000 1
i.02924061 0.40274201 0.00000000 0.00000000
0.17054708 0.06388465 0.00000000 0.00000000 >

Mean memory demand: 3.014e+03.(9.099e+02)
Context switch overhead: 14.14341000 < 0.09686384)

SERVER ARRIVALS SERVICE UTILIZATION QLENGTH
cpu 0.09138212 0.08085317 0.88760979 (0> 1.61522868

.".J: 23 19 32 13t3«T

di-kC2j

disk[23

(

0. :'."05 4 3 3 fi 2
6'.03561877

0.00124738

^.25UaoJ83

0.00173924

0.38152253

0.01068255

1.78092199

0.01516375

5.22825701

0.15832023

1.32953159

0.00910995

17.60320889

0.22968228

?.•'.:."-•\}00 tf.703* *".r*
f;.;j '* :f-J841 0.31579352

0 . i:;'*j.; 3 4 6 5 0.00 i 7 "' <j i I

0.y4,?J25»4 0.1G2345J?
0..J0^13i44 0.001 13399
0..K2550S7 0.369225C3
.1.S-vw '122 0.0013 54 /n

J.0'r-JS")n33 0.0216i56:>
0.JJJ31729 0.0002'J 9 73
0.02154696 0.1454383^
0.00021707 0.00095439

7.03353105 0.02970234
0.00023795 0.00032150
0.02172119 0.16977577
0.00020607 0.00089273

• . -_• :-T730 >
* . 'ijf9151

*,..;Ji3a505)

•J. l-:55876
.J.JJ2J6979)
J.14139451

• ./1/7986)

.'». jii3200
u.-t«0Jl909 >
0.-. 1332935
0.;jli0457)

-7. —047697
0.,'J032323)
0.:-5S3390
0.0J129836)

Jan 5 23:34 19*2 . 16t30icre.pr ?ag-s

P&r iodic 3 i:.iu !-2t1on (por~'n>

Prn.-jrom steos file: prog.pr
Progr.u.i arrival file: 16t30icre

Memory size - 4.0e+03
Memory r^rerenc** rate a 1.0e*06
Quantum = .0.25000
Priority iecay rate » 0.90000
Top cpu iev»sl =31
Context swj-ch time: 0.0002/000
Number of disks » 3; seek, latency, and block I/O times:
0.0300000 0.0050000 0.0012407
0.0300000 0.0060000 0.0012407
0.0300000 0.0033000 0.0008333

Cluster factor = 2.00
20 terminals at 0.0011458 sec. per char.
20 terminals at 0.0366667 sec. per char.

Number of active terminals for termination
Using virtual memory.

8.00000

Statistics collected from
Terminated at 4917.212
Number of jobs processed «•
Mean throughput = 0.0914669
Normal termination.

PROGRAM

as

ccom

cpp

du

ex

find

grep

Id

Is

mal 1

more

pc0

Pi

ps

PX

troff

COUNT

18

14

15

13

44

0

15

18

132

28

41

9

10

21

5

MLTPRG

12.795
1.830

13.262
1.375

12.821
1.768

11.948

2.020

13.212

0.728

0.000

0.000

11.211
2.099

12.286
1.594

12.363

1.847

11.807

1.831

12.150
1.589

13.294
1.543

14.098

1.140

13.240
1.608

13.091
0.501

12.249

1.482

30.19731

447

CTXTSW
95.944

0.236

205.714
26.205

36.400
6.801

55.308

3.545

281.091

26.328

0.000
0.000

26.933
0.258

20.000
0.000

87.114
13.595

26.786
4.779

45.951
4.653

140.111
2.667

87.000
7.196

19.667

3.039

90.400
7.893

333.200
34.967

CPU DISKS
8.83786341 1.95573591 0.
3.41675917 1.12429607 0.

5.47595979 0.58220509 0
3.52883051 0.59671174 0,

4.38078273 0.13883735 0
1.75934301 0.12136779 0

2.98741435 1.02215988 0
1.21368941 0.65174802 0

7.70025466 0.80713311 0,
2.34736268 0.23775985 B.

0.00000000 0.00000000 0.
0.00000000 0.00000000 0.

3.83239458 0.02371065 0.
1.17125093 0.07058033 0,

7.98028820 0.51635885 0
4.49987917 0.51826066 0

2.98274879 0.02508651 0
1.14587057 0.06088276 ff.

9.87721494 0.00000000 0
5.37787482 0.00000000 0

6.97947307 0.09396498 0
2.70390498 0.09252020 0.

2.12718879 0.00535373 0.
0.24355017 0.01606118 0.

4.32909950 0.04620528 0
i.76280525 0.09308430 0

2.38684108 0.10727215 0
0.89472431 0.10693919 0

7.62846524 0.00443198 0
3.59629972 0.00583310 0

7.43912267 0.37693419 0
4.01900854 0.35679363 0

00000000 0.09053098
00000000 0.11178580

.00000000 0.01852409

.00000000 0.04333016

.00000000 0.02060336

.00000000 0.02912916

.00000000 0.00000000

.00000000 0.00000000

.15422752 0.00000000

.12530758 0.00000000

.00000000 0.00000000

.00000000 0.00000000

.00331007 0.00060600

.00642701 0.00000000

.00000000 0.00000000

.00000000 0.00002000

.01553545 0.B00W0000

.£T3S6'i513 -0-000210000

.01352974 0.00000000

.03336894 0.00000000

.01944844 0.00000000

.04947875 0.00000000

.03629873 0.00000000

.08777224 0.00000000

.01615820 0.00000000

.03619294 0.00000000

.00000000 0.00000000

.00000000 0.00000000

.00000000 0.00000000

.00000000 0.00000000

.02996297 0.03371691

.04008710 0.06488504

Jan 5 22:24 1532 16t301cre.pr Page 2

v a .< .ma

v;

cat

qltest

q2test

q3test

q4tost

15

36

0

0

0.000

0.000

11.834

1.832

12.069
2.465

0.000
B.BBB

B.BBB
B.BBB

B.BBB
B.BBB

B.BBB
B.BBB

3.203 2.BB233233 J.33233133 2.BB233333 ^.U^a.yU
0.000 0.00000000 0.00000000 0.00000000 B.BBBBBa.-U

"3 333 6.94994132 5.0! 12^05 0.00000000 B.BBSQSM.-M
T.339 5.85247551 0.03303091 0.00000000 2.323323Ji

163 273 2.97543971 1.32337701 0.00000000 0.00000000
24!956 0.82493073 1.H25974Z 0.00000000 0.20333433

3 000 0.00000000 0.0.0000000 0.00000000 0.0000*0*0
0!j&00 0.00000000 0.00000id00 0.00000000 0.00000000

0 000 0.00000000 0.00000000 0.00000000 0.00000030
0*.000 " 0.00000000 0.00000000 0.00000000 0.00222233

0 322 B.BBBBBBBB B.B33220BB B.BBBBBBBB 3.B3B22232
b'.BBB B.BBBBBBBB 3.BB2222BB B.BBBBBBBB B.BBB20232

B 022 B.BBBBBBBB 2.B2222BBB B.BBBBBBBB B.B3B23032
0.000 0.00000000 0.00000000 B.BBBBBBBB 0.00000002

Mean memory demand: 3.058e+03 < 8.713e+02)
Context switch overhead: 12.02445000

SERVER

cpu

dlskUl

d1skE2j

diskC33

ARRIVALS
0.10240971
0.12019659

0.19270929
0.23766933

0.14949033
0.23674500

2.52533421
24.32926353

SERVICE UTILIZATION QLENGTH
0.09107760 0.39170379 (0) 1.71562510
0.06658099 0.31075578 1.79843447

0.03178358 0.16492682 0.19351308
0.03816138 0.37111998 0.49680066

0.00327577 0.02191278 0.02333182
0.01014770 0.14639995 0.15636355

0.07549826 0.02989333 0.03019357
0.02084172 0.17031573 0.17393206

17

Appendix II: The computation of waits in a foreground-background queue

As defined in the text of the report, wh is the expected wait experienced by

a request of more than k-1 quanta but not more than k quanta; call such a

request a "k-request". Let q be the quantum. The tvk may be estimated as fol

lows. Assume that interarrival times are exponentially distributed with mean X"1

and that service times, for the workload as a whole, are exponentially distri

buted with mean jiT1. As a result of the foreground-background service discip

line, a k-request waits for, essentially, at most the first k quanta of any other

request in the queue during the busy period in which the k-request arrives: a

newly arriving k-request will complete without waiting for the portion exceeding

k quanta of preceding requests and will have to wait for the first k-1 quanta of

any request entering before it completes its service. (Actually, this is exactly

correct only if an incoming job pre-empts one in service and there is no over

head for context switches.) Now let Wi be the expected wait experienced by all

requests not exceeding i quanta, that is, 1-requests through i-requests. Wi can

be computed by the Pollaczeck-Khintchine formula [Cooper8l] for the M/G/l

queue with service time frequency function st(0 equal to ue'^ for t = 0 to iq,

having a mass of e~*w at t = iq, and vanishing beyond iq. Thus,

, where Ti and af are the mean and variance, respec-

tively, of service times based on the service time frequency function st(0. and

Pi =\Ti. So ^ =JtfMe-t*dt +iqe^** =M-i(l-e-<«) and
o

a? =ft2txe->*dt +(ig)«8-*« - rf = ^l-a/age-*«-«"«'*). Finally,
o

pTfl-g-^l+i^)] where =Xr and T= -i lf s{t) =!_+-,* for aU t,
* l-pCl-e-1")

the actual distribution function of service requests, then the fraction of requests

using at most i quanta which actually use no more than i-1 quanta is

r

IB

fi =^r*1)^?). The wk can be computed from the Wx by wk = k ** k1♦

For q = 0.25 seconds, X"1 = 0.09, and fjT1 = 0.08 (approximate values from the 16

terminal raw simulation), the values of wk for k = 1 to 4 are: 0.39, 5.94, 10.13,

12.30. (By inserting test jobs with fixed request lengths, I measured these values

as: 0.31. 4.47, 15.42, and 17.76, respectively, close enough for the purpose here.)

Given the wk and the distribution of request lengths for a particular pro

gram, its expected wait and the necessary adjustment of period length can be

estimated as described before. To keep the periodic program models indepen

dent of the system model and to allow the raw models to be disposed of, this

should ideally be accomplished from the periodic job scripts, without recourse

to the raw job scripts. However, the importance of the exact relationship of cpu

request lengths to the size of the quantum makes this impossible. For example,

one could assume an exponential distribution of requests from a particular pro

gram and compute its expected wait from its mean request. The outliers in the

following table of request distributions show why such an assumption is unsatis

factory:

PROGRAM NUMBER OI*REQU EbTSUSING n IX>B+ QUANTA

as 85 7 0 0 0 0 1 0

ccom 46 23 27 10 4 0 0 0

cpp 41 0 0 0 0 0 0 0

du 56 3 0 0 0 0 0 0

ex 314 2 0 0 0 0 0 0

grep 28 1 0 0 0 0 0 0

Id 16 2 0 1 0 0 0 0

Is 90 3 0 0 0 0 0 0

mail 31 0 0 0 0 0 0 0

more 47 2 0 0 0 0 0 0

pcO 107 31 3 0 0 0 0 0

Pi 63 24 4 0 0 0 0 0

ps 17 4 0 0 0 0 0 0

px 12 1' 1 2 2 0 0 0

trofl 94 28 29 21 6 1 0 0

w 36 2 0 0 0 1 0 0

cat 173 6

19

Based on the above table and the computation of the ft**. I adjusted the period

lengths by the following factors:

PROGRAM ADJUSTMENT FACTOR

as 2.0
ccom 1.0
cpp 1.0
du 1.0
ex 1.0
grep 1.0
Id 2.0
Is 1.0
mail 1.0
more 1.0
pcO 1.0
pi 2.0
ps

px

1.0

0.75

trofl 1.0
w 3.0
cat 1.0

	Copyright notice 1982
	ERL-82-33

