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Abstract

Higher- and mixed-order nonlinear circuit elements have been introduced

to provide a logically complete formulation for nonlinear circuit theory. In

this paper, we analyze the circuit-theoretic properties of these elements,

including reciprocity, passivity and losslessness. We have derived necessary and

sufficient conditions for a higher- or mixed-order n-port element to be reciprocal

or antireciprocal. We have shown that under very mild assumptions, most nonlinear

higher-order 2-terminal elements are active and not lossless. Finally, we

show that the number of lossless linear higher-order 2-terminal elements far

exceeds that of the passive linear elements.
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1. INTRODUCTION

Higher- and mixed-order elements have been introduced in [1] to

provide a logically complete formulation for nonlinear circuit theory. In [2],

we have shown that these elements can be synthesized using only linear reactances,

linear controlled sources, and two-terminal nonlinear resistors. Our synthesis

procedure indicates that a distinctive feature of higher- and mixed-order elements

is that they possess internal dynamics that are more complicated than those of

conventional circuit elements. In this paper, we shall provide an analysis of

the circuit-theoretic properties that result from such complicated dynamics.

In Section 2, we derive necessary and sufficient conditions for a higher- or

mixed-order n-port element to be reciprocal or antireciprocal. These conditions

are applicable to an n-port element described by a "v^-controlled," "i''6'-
controlled," or a "hybrid" representation. We shall see that these conditions

reduce to the well-known reciprocity or anti-reciprocity criteria for conventional

n-port elements.

Section 3 deals with passivity and activity of 2-terminal higher-order elements

described by an explicit representation, v'a' =f(i^']. There are basically
three main results in this section. Theorem 3.1 takes the well-known result

that a 2-terminal negative resistor, inductor or capacitor is active, and
extends it to a much larger class of elements. Theorem 3.2 shows, in essence,
that almost independently of the properties of f(-). the condition |3-a| > 2
implies activity. Most of the results covered in these two theorems are

statements about when a 2-terminal higher-order element is active. Equivalently,
we are establishing a set of necessary conditions for passivity. As a result,
the only possible (nonlinear) candidates for passivity are those lying on the
solid lines in the circuit-element array in Figure 2. Finally, Theorems 3.3
and 3-4 treat the linear case in great detail; since in that case, it is possible
to derive both necessary and sufficient conditions for passivity for a subclass
of elements. The passive linear elements in this subclass are shown by the solid
lines in Figure 4.

In Section 4, we study the losslessness of 2-terminal higher-order elements,

also described explicitly by v^ =f(i^). Just as in the case of passivity,
we shall introduce three main results in this section. Theorem 4.1 parallels

Theorem 3.1 in the sense that we shall show that a large class of higher-order

elements can never be lossless. Theorem 4.2 states a sufficient condition for

the losslessness of the state representations for a very specific class of elements,
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namely, those lying on the -45° line a+0 = -1, as shown in Fig. 5. There is

no analogy to this result in our passivity theory. Finally, Theorem 4.3 states

a necessary and sufficient condition for losslessness for a subclass of linear

higher-order elements. The lossless elements belonging to this subclass are

represented by the solid lines in Figure 6. Even though the same subclass of

linear elements are considered for both passivity and losslessness, by comparing

Figures 4 and 6 we can see that the number of lossless linear elements far exceeds

that of the passive linear elements. This observation shows that the traditional

practice in classical circuit theory to study losslessness only for passive circuits

or circuit elements is too restrictive.

Finally, Section 5 contains our concluding remarks and suggests possible

avenues for future research. For brevity, most of the results in this paper will

be presented without proof. The interested reader is referred to [3] for detailed

proofs.

2. RECIPROCITY AND ANTI-RECIPROCITY

Let N be a time-invariant n-port described explicitly by

5-f(n) (2.1)

where f:Rn -»• ]Rn,

r- fv(0l,v(a2) vK)i(3k+l) M

. ,M W ,(f5k> (<W „K>,
n~ i.'i »'? »•••»•[( 'k+1 '*** n '*

and for z = v. or i^, j = l,2,...,n,

zW(t)A ^
dtK

z ("k)(t) AZ("k)(0) +
t

z("k+1>(t)dt f

where zv ;(0) is an arbitrary constant j

Definition 2.1. Equation (2.1) is defined to be

a) an i^ -controlled representation if k=n,
b) a v^a -controlled representation if k= 0, and
c) a hybrid representation if 0 < k < n.
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Definition 2.2.. In the case where f:JRn-*IRnec,we define the associated
linearized n-port NQ of Nabout the operating point QA(^Hq) by

I =A(nQ)n,
where £and ndenote the corresponding port variables of N« and A(tiq) € ]Rn xir
denotes the constant real Jacobian matrix

dA(nQ) A^f(n) n=nQ

Definition 2.3. Let N be a time-invariant n-port described by any of the

representations given in Definition 2.1, where f : IRn •»• IRn e C. Let NQ denote
its associated linearized n-port.

a) N is reciprocal (resp., anti-reciprocal) about an operating point Q iff the

following condition holds: for any (£',n') and (|",n") belonging to NQ, the
associated voltage-current pairs (v',?') and (v",i") satisfy

v' *?'» = v" *i' (2.2a)

(resp., v' *?'» =-v" *i') (2.2b)

b) N is reciprocal (resp., anti-reciprocal) iff it is reciprocal (resp., anti-
reciprocal) at all operating points Q.

c) N is non-reciprocal iff it is neither reciprocal nor anti-reciprocal.
a

Remark. According to Definition (2.3), the only relevant signal pairs (£,n) in

considering reciprocity or anti-reciprocity are those starting from the bias

point Q; therefore, zero-initial conditions are implicity assumed. It is,

therefore, usually more convenient to work in the frequency domain in which
conditions (2.2a) and (2.2b) become

<V(s),I"(s)> = <V"(s),I,(s)> (2.3a)
and

<V'(s),I"(s)> = -<V"(s),r(s)> , (2.3b)

Inj>ractice, | and n are simply the smal1-signal components of £ and n. Here,
(S,n) can be an^ signal pair satisfying I =A(n0)n.
Here, the notation "x*y" for two IR"-valued time functions x and y denote the

convolution

[x(-)*y(-)](t) a I f x.(x)y. (t-T)dx
- k=l J-oo K k
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where V(s), V"(s), I'(s), I"(s) denote the Laplace Transform3 of v'(t), v"(t),
i'(t), i"(t), respectively, and <•,•> denotes the vector dot product in R .

(o) n
Theorem 2.1. Let N be an iVP;-controlled higher- or mixed-order n-port element

as described in Definition 2.1. Let A(nQ) be the Jacobian matrix of the associated
linearized n-port Ng, as given in Definition 2.2:
a) N is reciprocal if, and only if

(i) a. +0. =ak +Sk Vj,k =1,2,...,n
J J

and

(ii) A(tiq) is symmetric Vru e lRn.

b) N is anti-reciprocal if, and only if

(i) aj +$j =ak +3k Vj,k =l,2,...,n;
and ) (2.5)

(ii) A(tiq) is skew-symmetric VnQ e Rn

Remark. A dual result holds for the case where N is ^"'-controlled. Note that
the current-controlled n-port resistor and inductor, and the charge controlled

n-port capacitor all satisfy condition (i) in parts a) and b) of the above

theorem; in which case, this theorem reduces to the reciprocity or antireciprocity

criteria given in [4]. H

Proof. Since N is an i^'-controlled higher-order or mixed-order n-port, its
associated linearized n-port NQ can be described by

lit) =A(nQ)n(t),
where

(ou) (a )
S(t) =(y, 1 (t) vnn (t))

and. ^(M JeJn(t) =(1, ] (t) in n (t)) .

The Laplace Transform of the above can be written as

V(s) =A'VuqJB I(s) (2.6)

A fl(nq) Is ,

15

(2.4)

n

q n

For an IR -valued time function x, we define its Laplace Transform to be
(CO

e"stx(t)dtA X(s).
-00
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where V(s) (resp., I(s)) denotes the Laplace Transform of the voltage (resp.,

current) vector associated with £(t) (resp., n(t)),

°h a2 an
A A diag(S ,S ,...,S ) is an nxn matrix,

and o o ft
Pi Po Pn

B A diag(S ,S ,...,S ) is also an nxn matrix.

Now let (v* (O.i* (•)) and (v"(-)>i"(")) be any two Laplace-transformable signals
of Ng, whose Laplace Transforms are (V'(s),r(s)) and (V"(s),r(s)), respectively.
a) A straightforward calculation using equation (2.6) shows that condition (2.3a)

for reciprocity in this case is equivalent to

r,T(s)[fiT(nQ)-^(TiQ)3r(s) - 0, VnQ, I"(s), and I'(s).
This is true for all I"(s), I'(s) and n0 if* and only if ft (ru) = ftOig) for all
rig £ 3Rn, i.e., ft(ng) is symmetric for all possible values of nQ. Let ^(ng)
(j,k = l,2,...,n) represent the elements of the matrix A(rig). Recalling the
definition of ft(rig) from equation (2.6), ft(n0) is symmetric for all ng if. and
only if

s6|rajw= ^""Vv* VnQ •
This, in turn, holds if, and only if, for all j,k = l,2,...,n,

(i) a.+Bj =ak+8k
and

(ii) ^jk(nq) =\j(*1q) Vrin» ^-e-> a(tiq) is symmetric.

Hence N is reciprocal if, and only if conditions (2.4) are satisfied.

b) For anti-reciprocity, condition (2.3b) is equivalent to requiring that

I,,T(s)[ftT(nQ)+ft(nQ)]I,(s) - 0, VnQ, I'(s) and I"(s).
Using similar arguments as part a), this is true if, and only if conditions (2.5)

in the theorem are satisfied.

Example 2.1. Consider the mixed-order 2-port element:

(2.7)

v(-3) = 2i(-1M"2)
vl ^1 q2

The linearized 2-port about the operating point QA Oin »120 ) 1S descr,bed by
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;(-3) "21(-2)
^2Q

2iH)
L 1Q

2iH)
^1Q

?(-2)
*2

(2.8)

Since <*•+£. = -4 for j = 1,2, and the Jacobian matrix on the right side of •

equation (2.8) is symmetric for all n0> by Theorem 2.1, this 2-port is reciprocal
n

Example 2.2. The mixed-order 2-port element

vO) =2i i("2>
Vl *V2

v2 = 11
(2.9)

has a^+3-j = 1 and a«+$2 = ~2« Despite the fact that the constitutive relation in
this case takes on the same form as that of Example 1, this 2-port is non-reciprocal,

since it does not satisfy condition (i) in both parts of Theorem 2.1. a

Theorem 2.2. Let N be a higher- or mixed-order n-port element with a hybrid

representation as described in Definition 2.1. Let A(nQ) be the Jacobian matrix
of the associated linearized n-port NQ, as given in Definition 2.2. With 0 < k < n
as in Definition 2.1, we partition A(n0) as follows:

n-k

A(nQ) =
A^dig)

A2l (y

A12(nQ)

A22(nQ) )n-k

a) N i

(i

(ii

and

(iii

b) N

(i

and

(ii

s reciprocal if, and only if

a.+6. = ak+3k Vj,k = l,2,...,n

A^fng) and A22(n0) are symmetric Vtiq:

A12(nQ) « -A21(nQ), VnQ .
s anti-reciprocal if, and only if

a^+6,- = a.,+8,, Vj,k = l,2,...,n,
J "J Vpk

A(rig) is skew-symmetric for all rig

-7-
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Remark. The proof of this theorem is a straightforward generalization of that of

Theorem 2.1, and is therefore omitted. For an n-port resistor with a Hybrid I

or Hybrid II representation [4], Theorem 2.2 reduces to the usual reciprocity or

anti-reciprocity criteria. However, Theorem 2.2 can be applied to a much larger

class of n-port elements, as the following examples illustrate. n

Example 2.3. The type 2 3-port traditor is described by [5]:

=-Ai^v.*1

»2--Alj"1)v3 (2.11)

The linearized 3-port about an operating point QA(ijg .ion >v3n) associated
with (2.11) is

vl

v2
=

•H)
_ 3

0

-Av
§9.

Ai (-1)M12Q

-Av
3Q

Ai H)
1Q

-«H)
2Q

-AiiH)
19.

•?(-D

IH) (2.12)

In this case, a-+8- - -1 for j = 1,2,3, and condition (ii) in part a) of
j j

Theorem 2.2 is satisfied, we can conclude that the type 2 traditor is reciprocal

Using similar arguments, it is easy to show that all the six types of 3-port

traditors are reciprocal. n

Example 2.4. Consider a type 2 (a, ,0-j )-(a2»$2) higher-order mutator described
by [2]

r (ain
vi 0 1

r sn
v2

(6,)
-1 0

(e2)
h

(2.13)

In the case where a-j+B-. = a2+3o» the mutator of equation (2.13) is anti reciprocal
by part b) of Theorem 2.2. (For example, a gyrator which has a-i = a« = 3-j = 32
= 0 is known to be anti reciprocal [4]). However, the mutator of equation (2.13)

is non-reciprocal whenever cu+8-i t a2+$2. From this, we can conclude that any
type 2 higher-order mutator transforming port variables along the lines a+$

= constant are antireciprocal.
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Example 2.5. A type 1 (a.j ,$.|)-(a2,$2) higher-order mutator is described by

(a-,)

(3,)

1 0

0 -1

(a2)

(Bo)
(2.14)

Whenever a1+61 = a2+$2, the mutator of equation (2.14) is reciprocal by part a)
of Theorem 2.2. Hence, any type 1 higher-order mutator transforming port variables

along the lines a+3 = constant are reciprocal. n

3. PASSIVITY AND ACTIVITY

An electrical network is called passive if it is capable of delivering no

more than a finite amount of energy to the outside world. In this section, we

shall study the passivity property of a 2-terminal higher-order element with an

v -controlled representation:

v(a) =f(1(e)} (3.1)

(a)Dual results can be obtained for the vv '-controlled case by interchanging the
roles of v^a* and v°' in the subsequent discussions.

We are going to study passivity in a state-space setting as formulated in

[6], We first note that under very mild technical assumptions on the function f,

every 2-terminal higher-order element described by equation (3.1) has a state

representation:

x = f(x,u)

y A (i,v)T =g(x,u)

(3.2)

Example 3.1. Consider the case where a > 1 and 6^1. The state representation

for the higher-order element is

-9-



r

\ X|6)+1 =f(X|3|)

X|3|+2 =x|

X, = u

= Xi

B
= X

|3|-1

3|+1

\.
|3|-Hx " x|8|+a-l

J

(3.3)

LVJ Lxibim

The technical assumption on f in this case is that it be Lebesgue-integrable

This example is typical of the four possible forms of state representations

for the higher-order element of equation (3.1) with a > 0 and 3 < 0 [3].

n

Example 3.2. With a = 0 and 3 > 1> the state representation is

fXj =u ^

X2 = xl

v. X3 * X8-l

A8

f(u)
(3.4)

As in Example 3.1, the technical assumption on f in this case is that it be

Lebesgue-integrable. This example is typical of the two possible forms of state
representations for a > 0 and 3 > 1 [3], n

Example 3.3. With 3 < a < -1, the higher-order element of equation (3.1) has
the following state representation:

r
x, = u

X = X-.
2 1

"\

>.

X,B| = X|8|-bv.

'11

v .f(0C|3|-|a|,,,,,X|3|-l,X|3|)_

where the function f in the output equation is defined by
Jet I

f(x el-kl »••»x|gi) A
dt

a
f(z)

-10-
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For such a representation to exist, we require that f e C'a' . This example
is typical of the four representations that can arise whenever a £ -1 [3].

n

The following is adapted from [6]:

Definition 3.1. Let i c IRn denote the state space of the 2-terminal higher-order
element described by equation (3.1). Let y(xQ) denote the set of all admissible
values of y(x,u) A (i(x,u),v(x,u)) that evolve from the initial state XqSL
a) The available energy EA : E+ IR u {«>} of the element is defined to be

EA(xn) A sup {-[ i(x(t),u(t))v(x(t),u(t))dt} .
A ° -ye/(x0) Jo

T>0U

b) The element is passive iff EA(xQ) < +» for all Xq6E. Otherwise, it is
defined to be active. n

Theorem 3.1. Assume

(i) there exists aGR such that af(a) < 0, and

(ii) (a=0, 3>0) or (a>0, 3=0).

The 2-terminal higher-order element described by v^a' =f(v*') is active under
these assumptions. n

Proof. The proof consists of three parts due to the three different state

representations that can occur when assumption (ii) is satisfied,

a) The state representation for the case (a=0, 3>1) is given in equation (3.4)

of Example 3.2. By hypothesis, there exists a6K such that if we denote

b A f(a), then sgn(b) = -sgn(a) with a i 0, b f 0. Choose the initial state

Xq = 0, Let

u(t) = a, Vt > 0

Then i(t) =xB(t) =|f- , Vt > 0

v(t) = f(a) = b Vt > 0.

and

EA(X0} =VIZ {'(n 3b ^dt> =̂T>0 -'O

Hence for our particular choice of u(t) and xQ, the available energy of the
element is infinite. Therefore, the element is active by Definition 3.1.

b) For (ct>l, 3=0), the state representation is [3]
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x, = f(u)

,x2 = Xl

X = X t
a a-1

\- J

(3.6)

a

Choose the initial state Xq = 0, and, for t >_ 0, pick

u(t) = a,

where a is as given in assumption (i) in the theorem. The proof of this part

proceeds as in case a) above.

c) For (a=0, 3=0), the state representation is [3]:

i u

x1 = 0 , =

V f(u)
(3.7)

Pick u(t) = a, for all t >_ 0, where a is as given in assumption (i) of the

theorem and xQ = some arbitrary constant. Then it is easy to verify that

T>0 -iiEA(x0) = sup {- ab dt} = +oo ,

Hence the higher-order element is active.

Example 3.1. Consider the 2-terminal higher-order element

y(l>..1. (3.8)

(1)as shown in Figure 1. The point marked "a" on the i-vv ' characteristic

satisfies the hypothesis of the theorem, and therefore we can conclude that

this element is active. It is worthwhile to point out that whereas the nonlinear

capacitor described by v = e1 is passive [6], the element of equation (3.8)
is nevertheless active, even though the current and voltage differ by the same

order (i.e. 3-ot = -1) in both cases. This illustrates the importance of

recognizing that higher-order elements can exhibit properties that are quite

different from those of conventional circuit elements. *

Theorem 3.2. If f :IR •+ IR is piecewise-continuous whenever a > 0 and |a| times

continuously differentiate whenever a < 0, and, depending on the integer values

-12-



4
a and 3, satisfies the conditions in Table 1, then the 2-terminal higher-order

element v^a' = f[V ') is active. n

Remarks. The proof of this theorem consists of a case by case analysis of the state

representations, corresponding to different values of a and 3. The basic idea

behind the proof follows the line of that of Theorem 3.1: to show activity of

a particular element, we work in the corresponding state space I of the element.

We find an input waveform u(*) and an initial condition xQ e I such that the
available energy Ea(xq) is infinite. For most of the cases covered in Theorem 3.2,
the input waveforms used in proving activity are more complicated than that for

Theorem 3.1. The details of the proof can be found in [3].

The essential content of this theorem is that |3-a| > 2 implies activity,

regardless of f, which is not too surprising when one considers the linear case

(later on in Theorem 3.3). The remaining assumptions of the theorem may look

complicated, but they actually boil down to excluding paralogical cases (except,

perhaps, in cases c) and i), where the assumptions needed to validate the proof

are a bit stronger than one would have expected). Note, however, that some parts

of the theorem statement — specifically cases a), b) and j), allow the possibility

of |3-ct| £ 1 for activity, so the results are not simply an extension of

"intuitively obvious" linear circuit properties. In particular, the following

needs to be pointed out:

a) For (a>l, 3>1)> so long as the function f is piecewise-linear, the 2-terminal

higher-order element v^a' =f(v^) is always active. An obvious corollary to this
is that the linear element v*a' = k1^' with a,3 >1 can never be passive, no matter
what value k takes on.

b) and j): The results here for (a>l, 3=0) and (a=0,3>l) only hold for functions

that are not linear. We shall see later, when we consider the linear case, that

passivity implies linearity in these cases. This is a truly interesting result

because it is the first known instance (in state space theory) of elements which

are passive when linear, and which, for any deviation, no matter how small, from

linearity, become active. To illustrate the above observation, consider a

vO)_.j(0) element described by i=f(v^), when f(v^) =Cv^ is linear, the
element reduces to a 1inear capacitor and is therefore passive if C >. 0. However,

when f(«) is nonlinear, the element no longer behaves like a capacitor.

c) Applied to the linear case, this result for (a>l, 3=-l) states that, the

4The conditions on f can be further relaxed [3]. For ease of exposition, we
shall omit all technical details.
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element v'01' =ki'"1' with a >. 1can never be passive. Note that |3-a| >2, i.e.|3-a|
implies activity in this case, and the result here will appear as a direct consequence

of Theorem 3.3, to be present later.

d) In this case (a>0, 3<-2), all 2-terminal higher-order elements of practical

interest are active. The only function f to which the theorem is inapplicable is

the trivial case of f(z) = 0 Vz e IR.

e)-i) The restrictions on f in these cases (where a<-l) are satisfied by almost

all functions that are |a| times continuously differentiate. Applied to the

linear case, the results state that |3-a| > 2 implies activity.

The above discussion shows that Theorem 3.2 says, in effect, that provided the

function f satisfies certain minor restrictions, a large portion of 2-terminal

higher-order elements described by v^a' =f(i^) can never be passive. More
specifically, we would expect to find the passive nonlinear elements to lie on

the solid lines in the fourth quadrant of the circuit-element array, as shown in

Figure 2. n

Example 3.2. Consider the charge-controlled memristor [4] described by

VH) =^H)]3 m (3.9a)

The above equation can be rewritten as

v=3[i("1}] i . (3.9b)

Note that for a given input signal i(t) equation (3.9b) represents a time-varying

linear resistor of the form

v(t) = R(t) i(t),

where R(t) ^ 0 Vt > 0. Note, however, that R(t) cannot be prescribed apriori,

but changes with i(t). It is easy to verify that for any initial state

= 1*~ '(0), the available energy of this memristor is

Efl(xn) = sup {-f i(t) v(t)dt} =0,
H u T>0 J0

admissible i

and therefore the memristor is passive.

x0
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Example 3.3. Consider the 2-terminal higher-order element described by

VH) a ffiC-2)^ (3 10a)

where f : IR -»• IR ec .

We can recast the above equation as

v=r{i{'2))^'}) , (3.10b)

where f'(it-2)) A£ fjz) (_2) .
Note that (3.10b) is just the constitutive relation for a time-varying linear

capacitor, of the form

v(t) - C(t) iH)(t),
(where C(t) Af'(i("2)(t)))
Provided that C(t) > 0 for all time t > 0, i.e., f'(z) > 0 for all z e ]R, the

higher-order element of equation (3.10) is passive. This can be verified by

considering the integral

i
Since C(t) > 0 Vt e [0,T] and C(t) is continuous in that interval (because f € c ),

it must attain a maximum and a minimum value. Denote the minimum by Cm^n(T). From

i(t) v(t)dt =
0 J0

C(t)1("l}(t)1(t)dt .

equation (3.11), we get

r-T

i(t)v(t)dt > -Cm.n(T)
JiM)(0)

iH)diH)

(3.11)

For any initial state xQ =l' '(0) in the state space, the available energy is
given by

fiM)(T) i n f-nEA(xQ) = sup {-cmin(T) 1l 1Jd1l ''}
A 0 T>0 min J.(-l),rtxi(-1}(0)

admissible i

sup {CIB4Bi(T)[(1(-l)(0))2.(1(-l,(T))2]}
T>0

admissible i

mm

•sup CCL^tDd^'tO))2}
T>0

min
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Since for all T > 0, we have 0 < C • (T) < ~, the available energy is dependent

only on the initial state ii ;(0), and is bounded for each given value of i^ '(0),
we can conclude that the element is passive. The condition f'(z) > 0 Vz e ]R is

satisfied by many simple functions, as for example, f(z) = ez. Hence, the higher-
order 2-terminal element v^"1^ =e^"2' is passive. This is to be contrasted with
Example 3.1, which shows that the element / '= e1 is active.

The above two examples may lead one to believe that the passivity criteria for

those 2-terminal elements shown in Figure 2 are the same as those of the

conventional circuit elements. However, this is not always the case, as the

following example illustrates:

Examples 3.4. Consider the 2-terminal higher-order element described by

VH) =[iH)^ (3.12a)

By analogy with Example 3.2, one may expect this element to behave like a time-

varying resistor, and should therefore be passive. We shall now show that such
an "intuitive" reasoning is incorrect. Rewriting equation (3.12a) in a familiar

form, we obtain:

v=Si^2^!^^]2 +3[i(-2)]i (3.12b)

By applying an input current i(t) = cost for t > 0, and considering zero initial
conditions, we can find that the available energy of the element described by

equation (3.12) is given by

EA(0) =sup {6[I -̂ f-+2sin T-2̂ 1 ]}
= +00.

Hence, the higher-order element of equation (3.12) is active. n

Theorem 3.3. Let P, denote the class of linear 2-terminal higher-order elements
described by

v(a) = ki(B), ke ir (3.13)

5A similar argument shows that the higher-order 2-terminal element described by
by i^"1' =g(v^"2') behaves like atime-varying linear inductor, and is therefore
passive when ^ g(z) >0Vz € ]R .
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satisfying

(i) a <0 or I
(ii) a>1and the initial conditions v^a"J^(0) =k1^"^(0), j=2,...,cJ

(3.14)

Any 2-terminal higher-order element belonging to the class PL is passive if, and
only if

a) |3-a| < 1 and

b) k > 0 (with k > 0 only when a = 1) n

Remark. Although Theorem 3.3 considers a relatively small subclass of linear

2-terminal higher-order elements, it is nevertheless all that we really need to

consider, since most of the elements not belonging in the class PL have been
shown to be active in Theorem 3.2. In fact, the only linear elements which are

covered by neither Theorem 3.2 nor Theorem 3.3 are those in cases (a=0, 3^1) and

(a>l, 3=0). These will be considered later, in Theorem 3.4. We would also like

to stress that in Theorem 3.3, for the case a > 1, we are only considering those

elements with constrained initial conditions; and such elements are quite different

from those considered in Theorem 3.2. For example, the linear higher-order

element v'1' = kv'1', whose initial conditions satisfy v(0) = ki(0) is no different
from a linear resistor v = ki, which is passive if, and only if k > 0. The very

same element with unconstrained initial conditions is very different from a

linear resistor — it has to be built using linear reactive elements and controlled

sources, as shown in Figure 3 (where the IF capacitors can have arbitrary initial

conditions). The implications of this remark on the definition of passivity can be

found in [7],

Proof. We first note that except for the case a = 1, every element in P. has an

equivalent representation

v= ki(e-a) (3.15)
If |3-a| = 0, (3.15) is just a 2-terminal linear resistor which is passive if,

and only if, k > 0. The only case we have to consider is when |3-a| t 0. In

this case, the element has the following state representation:

Representation (3.15) is equivalent to the original representation (3.13) in
the sense that they both possess the same set of voltage-current pairs.
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(3.16b)

It is easy to verify that [B jAB •A2B; ••• jA'e~aHB] has rank |3-a|; hence,
the state representation (3.16) is completely controllable [7]. By Theorem 8

in [6], the state representation (3.16) is passive if, and only if, the transfer

function matrix

H(s) A C(sI-A)"]B +D

is positive real. A simple calculation shows that for representation (3.16),

H(s) = (
k/s

1/s

k

3-ct

3 a

v.^-

, 3-a < 0

(3.17)

, 3-a > 0 .

In either case, H(s) is positive real if, and only if k^ 0 and |3-a| < 1.

Consider now the case a=l. The only linear 2-terminal higher-order element

that is not active by Theorem 3,2 is when 3=0. The completely-controllable state

representation in this case is

«, •-• 0 • [;,] •
It is easy to show that in this case, the transfer function is just H(s) = k/s,

which is positive real if, and only if k > 0. Therefore invoking Theorem 8 in

-18-



[6] again, the higher-order element is passive if, and only if k > 0. (For k = 0,

the element is just a constant voltage source, which is known to be active.)

Theorem 3.4. The only passive elements of the form

v=f(i^e)) with 3>1or v^ =f(i) with a>1
are the linear elements

v=ki^, k>0
and

v^ =ki, k>0

Remark. Even though this theorem is a direct consequence of Theorems 3.2 and 3.3,

the proof is nevertheless quite complicated and can be found in [3]. A summary

of the results for the linear case can be found in Figure 4. The linear elements

shown by the solid lines in the fourth quadrant are passive if, and only if k >. 0.

Those in the first quadrant are passive under the same condition provided that

the initial conditions are constrained to satisfy equation (3.14). The two

circles in the circuit-element-array indicate those elements which are passive

if, and only if k > 0, regardless of the initial condition. «

4. LOSSLESSNESS

An electrical network is lossless if it is incapable of delivering net

energy to, or absorbing net energy from the external world. Throughout this

section, we shall adopt the state space approach in [8] to study the losslessness

of two-terminal higher-order elements. Basically, we treat losslessness as the

path-independence of energy consumed while traversing any two points in the state

space. The 2-terminal higher-order element that we shall concern ourselves

with has the same description as in Section 3 (c.f. equation (3.1)). The following

definitions are adapted from [8]:

Definition 4.1. Let S denote the state representation of a higher-order element

and let I denote the corresponding state space.

a) The energy consumed by the element due to an input waveform u(») applied over

the time interval [t-., t23 is defined to be

r*2 i(x(t),u(t)) v(x(t),u(t))dt .

Jtl
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b) S is a lossless state representation if the following condition holds for

every pair of states xa, xb € E: The energy consumed is the same for any two
input waveforms u-i(-) and u2(«) applied over the time intervals [0, T-j] and
[0, T2], respectively, that drive the element from initial state xa to final
state Xu. Otherwise, S is not lossless. n

Definition 4.2. A state representation S is defined to be totally-observable

if it satisfies the following conditions:

(i) S is completely observable [8] and

(ii) S is input-observable, i.e., to any admissible current-voltage pair

(i(#)»v(-)) associated with agiven initial state xQ, there corresponds exactly
one input waveform u(»)- n

Definition 4.3. The higher-order element is lossless if there exists for this

element a totally-observable state-representation S which is lossless by Definition

4.1. Otherwise, the element is not lossless. H

Remark. Definitions 4.1 and 4.3 distinguish between a lossless state representation

and a lossless element. The importance of such a distinction is explained

carefully in [7] in which the definitions are formulated for a general nonlinear

n-port. While there may exist a lossless state representation for a nonlinear

n-port, one cannot simply conclude that the n-port itself is lossless. The

difficulty in checking whether or not an n-port is lossless lies in the requirement

of the existence of a totally-observable state representation. Input-

observability is usually easy to check, since almost all networks of practical

interest have this property [8]. However, complete-observability poses a problem,

since to the best of our knowledge, there does not exist any criteria for testing

this property, except for the case of a linear n-port. It is beyond the scope of

this paper to expound on the implications of observability on losslessness. Most

of our subsequent results in Theorem 4.1 consist of showing that a 2-terminal

higher-order element is not lossless. According to Lemma 3.3 in [8], to show

that the element is not lossless, it suffices to find only one input-observable

state representation that is not lossless. Since it has already been shown in

[3] that every 2-terminal higher-order element v*a' =f(i^'J has an input-
observable state representation, all that is required would be to show that

this representation is not lossless according to Definition 4.2. Theorem 4.2

does not concern the observability issue, as it gives a sufficient condition for

the losslessness of the state representations of a specific class of elements;

and Theorem 4.3 deals with the linear case in which all that needs to be checked

is the complete controllability of the state representation [8]. «
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Theorem 4.1. If f :R •*• ]R is piecewise-continuous, and, depending on the integer

values of a and 3, satisfies the conditions in Table 2, then the 2-terminal

higher-order element described by v^01' =f(i'**') is not lossless. n

Remarks. For the case (a>l, 3>1) the restriction on f is satisfied by a large

class of piecewise-continuous functions; in particular, this includes all linear

and odd functions. Note that in this case, all the elements v^ =f(i^') which
are not lossless are also active, according to Theorem 3.2.

For (ot>l, 3=0), the criterion for non-1osslessness and activity are identical;

hence we can conclude that all active elements falling in this category are not

lossless, and vice-versa.

The restrictions on f in the case (cfO, 3<-2) can be satisfied by almost any

non-trivial piecewise-continuous function. In particular, the linear element
(Q)

v = kiVP' for any even, negative value of 3 is not lossless. Also, by comparison

with Theorem 3.2, almost all 2-terminal higher-order elements that are not lossless

are active.

The above observations may lead us to believe that only passive 2-terminal

higher-order element can be lossless. However, as will be apparent in Theorems 4.2

and 4.3, this is not always the case. In fact, it is worthwhile to point out here

that traditionally, losslessness has been studied only for the case of passive

n-ports. One novel feature in our present definition of losslessness is that

it allows for the consideration of losslessness even for active n-ports.

Just as its counterpart in Section 3, the proof of this theorem consists of

a case by case analysis of the different (input-observable) state representations

for the element, depending on the values of a and 3. We drive the system with a

cyclic input waveform and show that in one period T, the energy consumed from an

initial state x(0) to final state x(T) = x(0) is nonzero. Repeating this input

for another period, the energy consumed is twice the amount of that concerned in

the first cycle. Since different amounts of energy are consumed along two

different trajectories in the state space having the same initial and final state,

we can conclude that the element is not active. The details of this proof can

be found in [3]. n

lalTheorem 4.2. If f is piecewise continuous when a ^ 0, and fee11 when a<l,

the 2-terminal higher-order element v^01' = f(i^') with g+3 = -1 has a lossless

This condition can be relaxed, as shown in [3], but for the sake of brevity, we
shall not dwell on technical details.
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state representation. H

Proof. The basic idea behind the proof is to show that the energy consumed

during the time interval [t-|,t2] is dependent only on the initial state x(t^)
and final state x(t2).
a) For ct = 0> 3 = -11; The state representation for the 2-terminal higher-order

element v*a' =f(v^) is given by [3]:

xn = u, _f("iU
The energy consumed during the interval [t,, t2] is

x(t9)

It/^^'^U)^1^
which is dependent only on x, (t,) and x-j(t2).
b) For a >^ 1, 3 =-ct-l 9 the state representation is [3]

L

x, = u

x2 = xl

X j.1 = x
a+1 a

^

\x+2 "f<Vi>

Xa+3 = Xa+2

x2a+l = x2a
J

v l2a+l

(4.4)

(4.5)

Consider the energy consumed in [t-,, t2]:
t2 i('})lt2)
I iv dt = I vdi^1*Jti JiH)(ti)

Using integration by parts recursively on the right side of the integral, we get

f i(t) v(t)dt = I [(-l)P-1v(P-1)(t)i(-P)(t)]f2 +f v(a)di(-a-1}
Jtl P=1 *1 Ji(—D(t,)
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Each term in the summation on the right side of the-above equation is just a

product of the state components (c.f. equation (4.5)) evaluated at initial time

t-j and final time tg. The integral on the right side can be rewritten as

1("apl,(t2)

which is a function only of the (oc+l)-th state component evaluated at t-j and t2.
Hence the energy consumed as the state trajectory traverses from initial state

x(t-j) to final state x(t2) is dependent only on the endpoints. By Definition (4.2)
the state representation (4.5) is lossless,

c) For a £ -1, 3 = -a-1, the state representation for the element is [3]:

X, = u

•

x2 = xl \ .
•

•

x2|a|-l =x2|a|-l

*2|a|-1
f(u,x-j,... »X|a| )

where f:IR 'a' •*• R is defined to be

a

««.xV-..X|0|)A-[Srf(z)
:=i^=x,

a

(4.6a)

(4.6b)

By applying integration-by-parts recursively as in part b) above, the energy

consumed within time interval [t-,, t2] is
i(-a-l)(t j

(-DP-^tP-DttW^U)I !2 +f 2 fd^-^Jdl^"1' (4.7)
Jtl Ji(-1)(t1)

It is easy to verify that for p=1, ..., |a|, v^"P'(t) is dependent only on
x-i(t),...,Xi i(t). Hence, by comparison with state representation (4.6a),

expression (4.7) is found to be dependent only on the initial state x(t-j) and the
final state x(t2). Thus the state representation is lossless. n

Remark. Theorem 4.2 states that any 2-terminal higher-order element v^ = f(ve')
lying on the -45° line in the circuit-element-array shown in Figure 5 has a

P=l
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lossless state representation. Notice that the charge-controlled capacitor

((a,3) = (0,-1)) and the current-controlled inductor ((a,3) = (-1.0)) both

fall under the consideration of this theorem. n

Theorem 4.3. Consider a linear higher-order element described by equation (3.13)

and belonging to the class PL (c.f. equation (3.14) in Theorem 3.3). The linear
element is lossless if, and only if, k = 0, or |3-a| is odd. *

Proof.

a) For k = 0, all elements in class P, satisfy i(t) = v(t) = 0, for all t > 0.
Hence it is obviously lossless.

b) Suppose k f 0, using exactly the same techniques as in the proof of Theorem

3.3, we can show that all linear elements belonging to class P, have a completely
controllable state representation with transfer function matrix

H(s) =
k/se"a

l/s6""
, or k/s.

(c.f. equation (3.12)). By Theorem (5.1) in [8], the element is lossless iff

H(jca) = -H(ju)). Clearly, this condition is satisfied for H(s) in this case if,
and only if |3-a| is odd.

Remark. The conclusion of this theorem is in agreement with Theorem 4.2 for

the case (a>l, 3=0). However, for (a>l, 3>1), Theorem 4.2 states that all linear

elements with a ^ 1, 3 >. 1 can never be lossless. We must, once again, draw the

distinction between the unconstrained elements and constrained elements. The

present result holds only for those elements whose initial conditions satisfy

condition (3.14). This is not surprising, because the higher-order elements

belonging in the class PL and satisfying condition (ii) in Theorem 4.3 are
precisely those which behave like inductors and capacitors, and should therefore

be lossless. Another distinguishing feature of this result is that even negative

linear capacitors and inductors are classified as lossless elements. Since such

elements are active, they have not even been considered in classical circuit

theory in the context of losslessness. The lossless 2-terminal linear higher-

order elements in class PL are depicted in Figure 6. Note that this includes
the passive elements of the same class, as shown in Figure 4.
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5. CONCLUDING REMARKS

So far, we have derived necessary and sufficient conditions for reciprocity

of a higher- or mixed-order n-port element, and sufficient conditions for passi

vity and losslessness of 2-terminal higher-order elements. For a subclass,

namely P^, of linear 2-terminal higher-order elements, we have derived both
necessary and sufficient conditions for passivity and losslessness.

Theorem 3.1 states that a large class of 2-terminal higher-order elements

of the form v'a' =f(ve') are active. In fact, provided that fsatisfies
certain minor restrictions, the only nonlinear candidates for passivity are

the elements that lie in the region shown in Figure 2. In Example 3.3, we have

identified a passive higher-order element that is different from the conventional

circuit elements. The problem of finding sufficient passivity conditions for

nonlinear elements in this region still remains open. One interesting feature

of the elements in this region is that any (a,3)-element behaves like a time-

varying linear (a-1, 3-l)-element (for a,3 £ -1) whose time-varying parameter
depends on the signal waveforms.

Even though losslessness in the linear case has been covered thoroughly in

Section 4, the results for the nonlinear case are not as complete as their

counterparts in Section 3 on passivity. This is inevitable, because unless the

subject of nonlinear observability has been further investigated, there exists

no systematic method of testing the lossless properties of the rest of the non

linear higher-order elements. Alternatively, one can attempt to reformulate

losslessness as a property that is independent of state representations.
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FIGURE CAPTIONS

Figure 1: i-/ ' characteristic for the 2-terminal higher-order element of
Example 3.1.

Figure 2: Possible nonlinear passive elements prescribed by Theorem 3.2.

Figure 3: Synthesis of the (unconstrained) linear higher-order element
vo). ki(D.

Figure 4: The passive linear elements in class P, are those with k^ 0, lying

on the solid lines. The-two circles represent those linear elements that

are passive if, and only if k > 0.

Figure 5: Higher-order elements with lossless state representations.

Figure 6: The lossless linear elements in class P, are represented by the

solid lines.



a 3 f

a > 1 > 1 no restrictions

b > 1 = 0

C (i) ab < 0, and3a,beK suchthat|(ii) af(b) f bf(a)
c >i = -1 3 integer k and A. e R for j = 0,1,...,k, such that

k ?
f(z) < I A.zJ Vj e [0,oo) or (-co.O].

j=0 J

d > o 1-2 3a e r such that f(a) f 0

e < -1 < a-2 3a €RH+l such that ^f(iM) a*80

f < 3-2 1-1 3a e R such that ^ f(z) t 0
z=a r

g 1-2 > 1

h < -2 = 0 3a GR such that a-^ f(z) 7* 0z=a r

i = -1 > 1 3b >0, M>0such that ^- f(z) >MVz e [b,oo)

j = 0 > 1 3a,bGR suchthatf (1) ab<0and
U11) bf(a) jt af(b)

Table 1



a 3 f

> 1 > 1 3a,b e r such that

(i) ab < 0, and

(ii) af(b) =* bf(a) f 0

> 1 = 0 3a,b € R such that

(i) af(b) f bf(a), and

(ii) f(a) f(b) < 0

= 0 1-2
and takes

on only
even

values

36 > 0 such that

(i) f is injective and continuous
in the interval [-6/2, 6/2], and

(ii) f(x) f f(0) on a set of nonzero
measure Vx e [-6/2, 6/2].

Table 2
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