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1. INTRODUCTION

The results presented in this paper are the outcome of a preliminary

study into an important problem that arises when we try to construct and

analyze fuzzy models of complex or ill-defined systems. Whilst a fuzzy model

can be defined in many ways, we use the term to refer to a set of fuzzy rules

that together form an algorithmic description of system behavior. Any set of

rules is easily transformed into a fuzzy relation (under some suitable

assumptions about fuzzy implication), but the reverse transformation is

considerably more difficult. Indeed, this problem of "Relation Decomposition"

turns out to be surprisingly intractable in its more general forms. The bulk

of this paper is concerned with a description of the principal issues, and the

attempts we have made to deal with them.

The remainder of this introductory section includes a more detailed

description of the problem, provides some basic definitions, and indicates two

general strategies for uncovering rule-based decompositions of an arbitrary

fuzzy relation. Section 2 describes our first solution technique,

"Iterative Decomposition", and Section 3 describes our second technique,

ot - Decomposition". Finally, Section 4 discusses the properties of the set

of solutions to tne decomposition problem, considers future directions for

this research and attempts to place our results in the framework of a more

general fuzzy modeling methodology.

1.1 FUZZY MODELS

We view a fuzzy model as a collection of fuzzy rules that together form

an algorithmic description of system behavior. Thus if a system has an input

space OC and an output space *V , each rule is a statement about the

relationship between OC and °V . More formally, a rule is denoted

by X^ =*> Y£ , where X^ is a fuzzy subset of OC and Y^ is a fuzzy subset

of °V . Every rule can be translated into a binary fuzzy relation, R^ on



.SfX^/ , under some suitable definition of implication. We have chosen the

outer-product form described by Zadeh [5], partly because of its importance in

most applications of fuzzy set theory to control system design (see Tong [3]

for a review), and partly because we feel that in many contexts it is

unreasonable for the modeler to infer anything at all if the antecedent to the

implication is not true. Thus we have

Rt(x,y) = X£(x) A Y£(y) (1.1)

where A denotes the infimum (or minimum) operator.

The overall behavior of the system can be determined by firstly forming

an aggregate of the rules and then secondly by defining a fuzzy rule of

inference. The system relation R, is defined by

A N
R(x,y) = V RiU,y) (1.2)

i=l

where N is the number of rules and V denotes the supremum (or maximum)

operator. Then for an arbitrary input to the system, denoted X, we can

compute the corresponding output Y from

Y(y) = V (X(x) A R(x,y)) (1.3)
x

We often write this more compactly as Y = XoR , and illustrate the concept

in Figure 1-1.
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Figure 1-1: Fuzzy Relational Models

1.2 DECOMPOSITION

So far, we have shown that a system may be described by a relation, R,

which is the union of several individual rules relating input and output

conditions. It is clearly trivial to proceed from the set of Ri to R, but

to reverse the process and move from R to a set of R^ is a much more

complex and subtle problem. We call this reverse process Relation

Decomposition. Before indicating two approaches to the solution, we will

briefly discuss our motivation for attempting the problem.

Given a relation, R, there are a number of reasons why one might want

to obtain a rule-based description. In the decision-making context, a

relation may have been built up over a series of interviews, providing many

rules. We could use Relation Decomposition to look for a more compact

representation of the decision-maker's algorithm, possibly to check for any

inconsistency. In the controller design context, we may have synthesized a



controller by solving a fuzzy relational equation and may desire a rule-based

description rather than a relational one. A third possibility would be that

we have constructed a fuzzy relation by observing the input-output behavior of

the system and wish to transform it into a rule-based description of system

behavior.

Relation Decomposition is thus a very powerful tool both for model

assessment and model construction. We have divided the possible solutions to

this problem into three classes: exact minimum rule solutions, term set

matching solutions and approximate solutions. This is illustrated in Table 1-

1. By exact minimum rule solutions, we mean those solutions with the smallest

number of rules required to decompose R exactly. Term set matching

solutions are those in which the antecedents and consequents of the rules are

required to match elements of some predetermined term set. Approximate

solutions are those which decompose R approximately.

We have confined our attention in this report to the first class of

solutions. However, we believe our techniques to be applicable to all the

problems although we have not fully explored the changes and generalizations

that would be required. We are inclined to the view that approximate

solutions might eventually be the most practical, but realize that an

understanding of the exact minimum rule decomposition is a useful introduction

to the complexity of the problem.

1.3 TWO APPROACHES TO THE PROBLEM

We recall that the relation R is the union of several rules, and that

each rule is the cartesian product of a pair of input and output conditions.

This suggests two approaches to the problem.

In the first approach, we observe that by combining Equations (1.1) and

(1.2) we obtain



Classes of solution # Reasons for choosing Comments

Exact minimum rule

decomposition

N Original rules exist, but alternative,

possibly more compact, set required.

Original rules "lost".

Model altered through subsequent

modification and is to be compared

with original.

No previous description of R exists.

Essentially mathematical.

Term set matching >N For training new process operators.

For comparison with original

linguistic rules.

Linguistic interpretation

Approximate

solutions

<N Many rules required for an exact

decomposition, several of which

contribute very little to the

overall model.

Data of questionable accuracy.

Most useful in practice?

Table 1-1: Classes of Decomposition



N

R(x,y) = V X£(x) A Y,(y) (1.4)
i=l

Now, if we rewrite the itn input condition, X^t as the ith column of a
relation A, and the itn output condition as the itn row of a relation B, then

A(x,i) = X£(x)

B(i,y) i Y-(y) (1.5)

substituting into Equation (1.4) we obtain

N

R(x,y) = V A(x,i) A B(i,y) (1.6)
i=l

which is simply the composition of A and B. Therefore

R « AoB (1.7)

The problem may thus be re-stated as follows: "Given a finite discrete

relation R, find N, where N gives the number of rules in the solution, and a

finite discrete relation pair (A,B), such that A°B = R".

We have developed an iterative technique for solving AoB = R , given

only R. It will find N, where N is the minimum number of rules necessary

to define R , and provide the complete set of solutions in this minimum rule

space. It can also find a partial set of solutions in higher order spaces,

involving more than N rules. This technique will be described in the next

section.

Let us now turn to the second approach. In the first approach, we



proceed from R to an immediate listing of all the rules with their

antecedents and consequents. The second approach involves two stages.

Firstly, we break R down into its constituent R^ (Equation (1.2)) and

then provide a range of solutions for each R^ (Equation (1.3)). This

technique is much less easy to express mathematically than the iterative

technique, because it requires the analyst to examine the Of-levels which

constitute R and we are not aware of a convenient and powerful mathematical

notation to express the complexity involved. However, this technique is

successful in revealing parts of the set of solutions which cannot be obtained

under the iterative scheme. This ot-level technique will be discussed in the

third section of the paper.

In this section of the paper, we have introduced the problem of Relation

Decomposition. We have indicated our motivation for attacking this problem,

believing that a successful technique for solving it would be a widely useful

tool in both control and decision-making contexts. There are several classes

of solution to the decomposition problem, but we will be restricting ourselves

to the problem of finding exact decompositions. We have developed two

techniques for solving this problem which will be discussed in the next

sections of the paper. The first is an iterative technique based on a direct

approach to the problem and the second technique involves studying

the ot-levels of R , to produce decomposition indirectly.



2. THE ITERATIVE TECHNIQUE

In the first section, we showed that the decomposition problem could be

restated as "Solve AoB = R when only R is known and the number of rules is

unknown". This is similar to some previous relational problems that have

appeared in the literature and we have utilized these earlier results in our

approach. (A preliminary discussion of the problem is given in Tong and

Efstathiou [4]). Sanchez [2] has shown how given R and A(or B), one may

find out if a B(or A) exists, which will solve AoB = R and, furthermore,

one may generate the maximum B(or A) such that A©B = R . Pappis and

Sugeno 11] have shown mathematically how to find the set of minimal solutions,

given R and A (or B). Observe that given R and A (or B), the set of

possible solutions form an upper semi-lattice, i.e. one maximum and many

mimina. For a statement of the relevant results from Sanchez, and Pappis and

Sugeno, see Appendix A.

In this section, we will describe our iterative technique for solving the

decomposition problem and illustrate it with an example. We shall indicate

some general results as well as suggesting some conjectures which may or may

not withstand analytic testing. We shall also demonstrate the shortcomings of

this method.

2.1 GENERAL AIMS

It has been shown [2] that given R and A(or B), the set of solutions

for B(or A) will form an upper semi-lattice. The dimensions of B(or A) will

be uniquely determined.

Turning to the problem when R only is known, we seek for each N, a

set of solutions for both A and B. Denote these as Jl N and £B N . We are

seeking the set «^« so that any element of it, A, will be guaranteed a B

such that A©B • R. . Similarly for & N . This may be stated:



^Ae JN, 3B : AoB = R

and

•V-B e #N, 3A : AoB = R

Since N is not uniquely determined, we suppose that there is a minimum value

for N for which Jl N and 5N exist. Denote those by Jl min and 5min. There

will be sets Jl^ and #N with N> min. The iterative solution seeks ^Amin

and <8 • . the complete set of solutions in the minimum rule space. It must
min * r

also determine this minimum number of rules.

2.2 THE BASIC METHOD

The iterative method for finding Jlmin and5m£n may be described in four

steps. See Figure 2-1.

The crux of step one is, clearly, in picking the initial condition.

These conditions must guarantee a solution, or the results of Sanchez, and

Pappis and Sugeno, will not be useful. There are two obvious conditions which

we may use

(i) set A - R and B - Im,
(ii) set A = IQ and B - R

where I, is the lxl identity relation. In case (i), we are immediately in

the Jl and 91 spaces. The free dimension has been set at m. Similarly,
m m r

case (ii) puts us in the n-rule space. At this stage we have only one element

in either Jl or & . The next step allows us to expand this space.

Given an initial A, call it Aq, be it either R or In, we may use

this with R to generate a B and Bj* , where B denotes the maximum and

B,* denotes the set of minima generated after one calculation. We now have

a range of elements in iB«o , where N° is the dimension of the space.

These B may be used to expand Jl from Aq. B1 may be used to generate



1. Pick an initial Aq and Bq such that

A0 e °* N» and B0 6 "^N-

2. Iteratively expand Jl-^ and 5^.

Check for smaller rule solutions. If detected,
restart iteration in lower rule space,
o?N_ and #N_.

4. Continue until no new elements are generated,

Figure 2-1: The Iterative Scheme

10



A«* and Bi* will generate more A . Repeating this cycle will extend

the ranges of Jl and B until no new elements are generated. Recall that

we may start from AQ = R or Bq = R. Both halves of the problem must be

investigated to obtain a complete picture of Jl and 3t . See Figure 2-2.

We are seeking a minimum rule solution but do not know if the space in

which we are working represents a minimum rule solution or not. We may move

into a lower rule space if one or more of the rules generated by existing

(A,B) pairs is redundant. Recall that each rule is given by the cartesian

product of a column from A and the corresponding row from B.

Ri = A*i A Bi*

A rule is redundant if it is a subset of another rule. This is obvious both

because R is formed from the union of the R^ and because such a rule's

input and output conditions would be supplied by another rule. Hence, we may

say that a smaller rule space may be used if there exists a p and a q such

that

*ip * aiq > ** and bPj * bqj • *j

Then column p may be deleted from A and row p may be deleted from B.

Redundant rules are usually easy to spot in practice because a column

consisting entirely of zeros appears in a minimum A or a row of zeros

appears in a minimum B.

Once the smaller rule space has been detected we use the reduced A (or

B) as an initial condition in «JN_ (or #N_ ), which is then iteratively

expanded, again watching for redundant rules. The process stops when no new

elements are found, i.e., the maximum and minimum elements regenerate their

parents.

11
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1Bll •B12 '"I

21 .22\ AZi AZZ \
* 11 * 12 ' '*' '

11 11rxA 1xa l
1 21 * 22 * *''>

Notation: right index in upper position means generated as a maximum,

right index in lower position means generated as a minimum,

first right digit indicates number of times operation has

been performed,

second right digit is an identifier;

left index in upper position means parent was a maximum,

left index in lower position means parent was a minimum,

first left digit should be one less than the first right

digit,

second left digit identifies the parent.

Figure 2-2: Iterative Expansion of Jl-^ and B^

12



2.3 EXAMPLE

For notation, see Figure 2-2. Suppose R is given as

R .3 .5 .6 1.0

.5 .7 .7 .4

.8 .8 1.0 .3

.9 .7 .2 .2

1.0 .7 .2 0

2.3.1 An=R, find BJ

,1 , 1.0 .7 .2 0

.3 1.0 .2 0

.3 .5 1.0 0

.3 .5 .6 1.0

1.0 .7 .2 0

.5 1.0 1.0 .3

.5 .8 1.0 .3

.3 .5 .6 1.0

0 0 0 1.0

.5 .7 .7 .4

.8 .8 1.0 .3

.9 0 0 .2

1.0 0 0 0

0 0 0 1.0

0 .7 0 .4

0 0 .7 .4

.8 0 1.0 0

.9 .2 0 0

.9 0 .2 0

.9 0 0 .2

1.0 0 0 0

where "J" denotes a choice of rows

Here we have followed our standard practice of alternating between

generating a maximum or minima. Only one minimum was generated at A«, but a

total of 6 were found at A^. These will now be traced separately.

%1
0 0 0 1.0

0 .7 0 .4

.8 0 1.0 0

.9 .2 0 0

1.0 0 0 0

13

«+lJ
,51 =

1.0 .7 .2 0

.5 1.0 1.0 .4

.8 .8 1.0 .3

.3 .5 .6 1.0



51,
0 0 0 1.0

0 .7 0 0

0 0 1.0 0

.9 .2 0 0

.9 0 .2 0

.9 0 0 .2

1.0 0 0 0

B7 = B51

Here, three minima occur at A^. They all generate B7 as their
SI

maximum, but it equals B and so the iteration halts.

't+2

k«*3

0 0 0 1.0

0 .7 0 .4

.8 0 1.0 0

.9 0 .2 0

1.0 0 0 0

0 0 0 1.0

0 .7 0 .4

.8 0 1.0 0

.9 0 0 .2

1.0 0 0 0

B52= BU2B 41B

B53= Bi+3B 41B

51

51

51We have the result that each of Aai, A^£ and Aao generates B and

that this maximum generates three more minima which are all smaller by two

elements than A^, A^ and A43.

44
0 0 0 1.0

0 0 .7 .4

.8 0 1.0 0

.9 .2 0 0

1.0 0 0 0

14

,54
1.0 .7 .2 0

1.0 1.0 1.0 1.0

.5 .8 1.0 .3

.3 .5 .6 1.0



51+A
6

0 0 0 1.0

0 .4 .7 0

0 0 .7 .4

.8 0 1.0 0

.9 .2 0 0

.9 0 .2 0

.9 0 0 .2

1.0 0 0 0

At A6 we find six minima. Three of these are three of those found

at A^, but the other three, which have a new second row, must be examined

again.

A61 0 0 0 1 .0 B71- B54 = 1.0 .7 .2 0
0 .4 .7 0 1.0 1.0 1.0 1.0

.8 0 1.0 0 .5 .8 1.0 .3

.9 .2 0 0 .3 .5 .6 1.0
1.0 0 0 0

5l4Ac, =» 0 0 0 1.0 B72 = B71'62
0 .4 .7 0

.8 0 1.0 0

.9 0 .2 0

1.0 0 0 0

5^* a
A63 0 0 0 1.0

0 .4 .7 0

.8 0 1.0 0

.9 0 0 .2

1.0 0 0 0

B73 = B71

This gives us no new leads and indicates that these are the best minima.

Let us return to our investigation of Aa.

15



ki+5

55,

•46

^45

0 0 0 1.0

0 0 .7 .4

.8 0 1.0 0

.9 0 .2 0

1.0 0 0 0

0 0 0 1.0

0 0 .7 .4

.8 0 1.0 0

.9 0 .2 0

.9 0 0 .2

1.0 0 0 0

0 0 0 1.0

0 0 .7 .4

.8 0 1.0 0

.9 0 0 .2

1.0 0 0 0

,55 „

,56

1.0 .7 .2 0

1.0 1.0 1.0 1.0

.5 .8 1.0 .3

.3 .5 .6 1.0

,55

and A^g both have a column of zeros which may be deleted, bringing

us into Jl^ and S^ ; this cycle soon stops. For a complete map of this

calculation, see Figure 2-3.

2.3.2 An=R, find Bi

.0 0 0 0

0 .8 0 0

0 0 1.0 0

0 0 0 1.0

.3 .5 .6 1.0

.5 .7 .7 .4

.8 1.0 1.0 .3

.9 .7 .2 .2

1.0 .7 .2 0

There is little of interest here. It is not surprising that seeking the

minimum yields the so-called sub-identity, although other minima may sometimes

be found. This has also been included in Figure 2-3.

16



4 rule solutions

3 rule solutions

• •

Note: the relative heights of the spots indicates

which are the greatest maxima or lowest

minima.

Figure 2-3: Solution from Aq = R

17
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2.3.3 B/y=R, find AJ

,5 _

1.0 .3 .3 .3 .3

.4 1.0 .5 .5 .5

.3 .3 1.0 .8 .8

.2 .2 .2 1.0 .9

0 0 0 0 1.0

1.0 .5 .5 .3

.4 1.0 .7 .5

.3 1.0 1.0 .8

.2 .2 .2 .9

0 .2 .2 1.0

1.0 .5 .3

.4 .7 .5

.3 1.0 .8

.2 .2 .9

0 .2 1.0

0 .5 .6 1.0

0 .7 .7 0

0 .8 1.0 0

0 0 0 0

1.0 .7 .2 0

0 0 .6 1.0

0 0 0 0

0 .8 1.0 0

1.0 .7 0 0

0 0 .6 1.0

0 .8 1.0 0

1.0 .7 0 0

This chain is most interesting. Each time a minimum B is calculated,

only one exists and it has a redundant rule. Once the three rule solution is

found, the cycle stops. We would not expect to find any new elements in the

ranges of «Ja, JN, &^ or S^ had the column or row of l's been retained.

LNote that we have automatically deleted redundant rules from A(or B); we

continue this practice in the remainder of the report].

2.3.4 Bn=R, find A,

1.0 0 0 0 0

0 .7 0 0 0

0 0 1.0 0 0

0 0 0 .9 0

.2 0 0 0 .9

0 .2 0 0 .9

0 0 .2 0 .9

0 0 0 .2 .9

0 0 0 0 1.0

18

Five minima appear at A.
We shall study each in turn,



'11

21

12

32

•13

14

15

1.0 0 0 0 0

0 .7 0 0 0

0 0 1.0 0 0

0 0 0 .9 0

0 0 0 0 1.0

1.0 0 0 0 0

0 .7 0 0 0

0 0 1.0 0 0

.2 0 0 0 .9

0 0 0 0 1.0

1.0 0 0 0

0 .7 0 0

0 0 1.0 0

.2 0 0 .9

0 .2 0 .9

0 0 .2 .9,
0 0 0 1.0

1.0 0 0 0 0

0 .7 0 0 0

0 0 1.0 0 0

0 .2 0 0 .9

0 0 0 0 1.0

1.0 0 0 0 0

0 .7 0 0 0

0 0 1.0 0 0

0 0 .2 0 .9

0 0 0 0 1.0

1.0 0 0 0 0

0 .7 0 0 0

0 0 1.0 0 0

0 0 0 .2 .9

0 0 0 0 1.0

21 =

,22

23

,2i+ „

,25 =

19

.3 .5 .6 1.0

.5 1.0 1.0 .4

.8 .8 1.0 .3

1.0 .7 .2 .2

1.0 .7 .2 0

.3 .5 .6 1.0

.5 1.0 1.0 .4

.8 .8 1.0 .3

1.0 .7 .2 0

,22

,22

.3 .5 .6 1.0

.5 1.0 1.0 .4

.8 .8 1.0 .3

1.0 1.0 1.0 1.0

1.0 .7 .2 0



A26 = 1.0 0 0 0 0

0 .7 0 0 0

0 0 1.0 0 0

.2 0 0 0 •91
0 .2 0 0 .9
0 0 .2 0 .9
0 0 0 .2 .9>
0 0 0 0 1.0

The most interesting thing to observe from this exercise is that it does

not provide any 3-rule solutions at all. See Figure 2-4 for the map to this

problem. Observe that in the 3-rule space, there is only one maximum A and

one maximum B. We have only one minimum B, but two minimum A.

2.4 COMMENTARY

Despite our assertions about our iterative method, we have been unable to

prove any significant global properties for the scheme. The things that we

can prove are described in Appendix A, and in this section we will consider

some questions that we hope will be the starting points for future research.

2.4.1 Shortcomings in Higher Rule Spaces

Our experimental experience leads us to believe that the iterative method

can detect the complete set of solutions in the minimum rule space. It would

clearly be useful if it could do the same in higher rule spaces.

Unfortunately, this is not so. It seems that the initial conditions AQ =R
or Bq = R impose some structure on the class of solutions which will be

detected.

This may be illustrated using the example of Section 2.3. The range of

Jlq which was found, is as follows:

Aq = R yields one maximum A and nine minimum A, viz-
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5 rule space

4 rule space

3 rule space

Note: in 5 rule space

21
A.. * B -**A.. , A.„ , A. _ , A. , , A-
11

A12 ' A13 »A14**"B
A —»-B —^-A AAA
5 A12 » A13 » A14 ' A15

• A"

V

11 ' "12 » "13 ' 14 » 15
22

Figure 2-4: Solution from Bn = R
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.3 .5 .6 1.0

.5 .7 .7 .4

.8 1.0 1.0 .3

.9 .7 .2 .2

1.0 .7 .2 0

0 0 0 1.0

0 .7 0 0

0 0 .7 .4

0 .4 .7 0,
.8 0 1.0 0

.9 .2 0 0

.9 0 .2 0

.9 0 0 .2

1.0 0 0 0

Bfl = R yields one maximum A and three minimum A, viz-

1.0 1.0 .5 .3

.4 1.0 '.7 .5

.3 1.0 1.0 .8

.2 1.0 .2 .9

0 1.0 .2 1.0

V

Ab = 1.0 0 0 0

0 .7 0 0

0 0 1.0 0

.2 0 0 .9

0 .2 0 .9

0 0 .2 .9,
0 0 0 1.0

An extra subscript has been added to indicate their source. Permuting the
V

A to make them easily comparable, we obtain

0 0 0 1.0

0 .7 0 0)
0 0 .7 .4

0 .4 .7 0,
.8 0 1.0 0

.9 .2 0 0

.9 0 .2 0

.9 0 0 .2

1.0 0 0 0

V

0 0 0 1.0

0 .7 0 0

0 0 1.0 0

.9 .2 0 0

.9 0 .2 0

.9 0 0 .2.
1.0 0 0 0

Observe that all these minima have a .9 and 1.0 in the first column. Does

a class of solutions exist for which this is not the case? Indeed so.
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L* =. 0 0 0 1.0

0 0 .7 .4

0 .8 1.0 0

0 .9 0 0

1.0 0 0 0

1.0 .7 .2 0

.9 .7 .2 .2

.5 .8 1.0 .2

.3 .5 .6 1.0

This is just one of the possible minimum A which would not be detected under

the iterative scheme. To be sure, many more examples exist.

We can obtain some insight into the reasons why these undetected minima

exist, by looking at the patterns of the rules which they produce. There are

three main groups of minima as detected by the iterative method. An example

of each is below, together with the minimum B such that A«B - R .

'01

k02

k03

0 0 0 1.0

0 .7 0 0

0 0 1.0 0

.9 .2 0 0

1.0 0 0 0

0 0 0 1.0

0 0 .7 .4

.8 0 1.0 0

.9 .2 0 0

1.0 0 0 0

0 0 0 1.0

0 .4 .7 0

.8 0 1.0 0

.9 .2 0 0

1.0 0 0 0

01B11 = 1.0 .7 .2 0

.5 .7 .7 .4

.8 .8 1.0 .3

.3 .5 .6 1.0

02B11

03B11

1.0 .7 .2 0

0 0 0 .2

.5 .8 1.0 .3

.3 .5 .6 1.0

1.0 .7 .2 0

0 0 0 .4

.5 .8 1.0 .3

.3 .5 .6 1.0

Each column-row pair constitutes a rule and their product will form a

relation. Now, because we have chosen minima, this will mean that there is

the least amount of redundant information in the (A,B) pair. The rules will

not overlap any more than is absolutely necessary, which makes the patterns of

the rules very clear. See Figure 2-5 and 2-6. We may observe that whereas
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A01 ° 01B11

,6 1.0

.8 1.

A02 ° 02B11

. ♦ 3 .5 .6 1.

. .5 7 .7 3 3 .4 4

.8 .7 .2 5 8 1.0 3

.9 .7 .2 .2

1.0 .7 .2

A03
0 03B11

.8

.9

1.0

.7

.7

.7

2

2

2

7

8 1

Figure 2-5: Rule Patterns Under the Iterative Scheme
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v* *

A o B

1.0

,7

.8 1,

.6 1.

Figure 2-6: Extra Non-Iteratively Discovered Decompositions

the iterative scheme always couples the fourth and fifth rows of R, the

extra solution couples other rows of R and leaves the fifth row of R by

itself. The reason for rows to dominate in these patterns is due to our

selection of minimum A's. The reason for this will become clearer in the

section on the Of-level method.

Generally, in a higher rule space the iterative method is limited by the

starting conditions. The AQ = R , BQ = R starting points limit subsequent

exploration of Jl and S . We have not devised any method for decoupling

rules or redistributing information from one rule to another or others. Given

that we know how many rules are in the minimum rule space, it is likely that

the construction of patterns of rules in a higher space directly from the
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minimum rules is possible. Clearly, we require some means of studying the

fundamental structure of R. The next section of this report describes a

means of so doing.

2.4.2 Some General Questions

To conclude this section we consider, or rather merely state, some

questions for which we would like an answer. As yet we do not have even an

intuitive notion of what the answers might be, and we are sure the list is

incomplete.

- How many maxima and minima are there in J„ and S«?

- Can we select any other viable initial conditions?

- How can we guarantee that all the minima have been found for any
N-rule space? How can we tell?

- Why does the apparent structure of J„ and ^N differ?
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3. Of-LEVEL TECHNIQUES

In Section 1.3, we mentioned two techniques for decomposing fuzzy

relations. The first of these, the iterative method, was described in Section

2, and now we move on to consider the second technique. This is based on

studying the Of-levels which define the relation R. From the a-levels, we may

construct rules individually and then provide a range of solutions for each

rule, indirectly solving AoB = R. This technique suffers from the lack of a

convenient mathematical notation, but we shall describe it as well as

possible. First, we require some definitions.

3.1 DEFINITIONS

In [6], Zadeh provides the following definition:

For a in [0,1], an Of-level-set of a fuzzy relation R is denoted

by Rft and is a non-fuzzy set in DCxty defined by

Rcr = {<x>y) : R(x,y) > a }

Thus the Rft form a nested sequence of non-fuzzy relations, with

«1 * *2 * %<= R«2

From this it follows that any fuzzy relation from 0C to <ty admits of the

resolution

R = V Of R 0<a<l
ot w

where V stands for the union and aRff denotes a subnormal non-fuzzy set
defined by
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GfRa (x,y) = Of (x,y) e Ra
= 0 otherwise

3.2 a-LEVEL SETS

Any ot-level-set may be considered as a binary relation, i.e., a relation

from DC to 0} , but consisting entirely of zeros and ones. For us, the most

important feature of such a Boolean relation is that it may be decomposed into

two relations, A and B. We decompose a Boolean relation by looking for

patterns in the O's and I's which form a relation and then use these to make

the rules.

Now, an important feature of a Boolean rule, i.e., a rule which consists

of a column of O's and I's combined with a row of O's and I's, is that it is

always arranged in blocks. Such a rule can never give a triangular pattern,

for example. In this way

aft = [0 1 1 0 1 }i ba - [1 1 1 0 ]

yields

Ra = 0 0 0 0
1110

1110

0 0 0 0

1110

The blocks in this Ra are separated because of the zero in the 4 place

of aa .

To decompose a relation which consists of a regular pattern like this,

set

aa (i) = row maximum ba (j) = column maximum
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s y Ror <i,j) = V Ra (i,j)
J 1

It will frequently be the case, however, that a relation consists of more

than one rule. To decompose it successfully, one must separate out the
patterns. For example,

where

0 0 11 = Ra U Ra
0 0 11 "1*2
1110

1110

Rcr, s 0 0 1 1 r = Q Q Q Q
1 0 0 1 1 a2 0 0 0 0

0 0 0 0 1110
0 0 0 0 1110

Hence, Ra » Aa o Ba , where

Aa 3 l ° Ba = 0 0 1 1
1 0 1110
0 1

0 1

The rules are combined column by column for A and row by row for B as
explained in 1.3.

Under the iterative scheme we observed several properties of the range of
solutions. They also exist for Boolean relations and we may obtain some
insight into why they arise.

3.2.1 Higher Rule Spaces

For the example Ra considered above, there is clearly only one

decomposition under two rules, i.e., there is only one way in which R may
be blocked into two patterns. However, there are several ways in which it may
be blocked to give three rules. See Figure 3-1. It is obvious that some
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(i)

0 0 1 1 A<* = 0 1 1 •B* = 1 1 0 0

0 0 1

1

1 0

1

1

1

1

0

0

0

0

0

1

0

0

1 1 0 1

1 1 1 0 1 1 0

(ii)

0 0 1 1 Aa = 0 0 1 Ba- 1 0 0 0

0 0 1 1 0

1

0
•

1

1

0

0

0

1

0

1

1

0

01 1 1
1

1 1 1 0 1 1 0

(iii)

0 0 1 i At* = 0 0 1 *« = 1 1 0 0

0 0 1 l 0

1

0

1

1

0

0

0

0

0

1

1

0

1 1 T 0 1

1 1 i 0 1 1 0

(iv)

(v)

0 0

0 0

1 1

1 1

1 1 1 0

1 1 1 0

Aa = 0 1

0 1

0 0

1 0

B<* = 1110

1110

0 0 11

0 0 11 ll Aa - 0 1 0 Ba = 1 1 1 0

0 0 11
1

ll
0

0

1

0

0

1

0

0

0

0

0

1

1

1

1 1 1

1 1 1 0 1 0 0

Figure 3-1: Three Rule Decomposition of R
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blocks could easily be united to give one block, but the first pattern could

not be transformed simply into two blocks, i.e., without redistributing one

block between the other two.

It would be nice if we had some means of looking at Ra and computing

immediately how many decompositions exist for a given number of rules. Such a

procedure should be possible, but we do not know it.

3.2.2 The Range of Values

To continue with this example, we can see that there is only one two-rule

solution. However, in the three-rule space where a choice is available to us,

we have a range of solutions. The three-rule decompositions of Figure 3-1

contain no overlap of the rules. If we permit the rules to overlap, we can

construct a range of solutions. See Figure 3-2. The rules as drawn in 3-2

have been extended as far as possible to overlap with other rules in 3-2.

Note that the extension has been to lengthen the row dimension of the pattern.

This means that only Ba is changed.

This illustrates the important property that for a given Aa , there

will be a range of Ba , depending on the degree to which the rule patterns

overlap.

3.2.3 Several Minima

Looking again at Figure 3-1, we see that the Aa are the same for (ii)

and (iii) although the corresponding Ba are different. This is the

phenomenon of several minima. It is often the case that given Aa , there may

be several ways of choosing the blocking patterns on R, without overlap.

This leads to several minima, one minimum Ba for each unique pattern of

blocking R. However, for this Aa , there is only one maximum Ba. See

Figure 3-3. Observe that the Ba's are not homomorphic under row

permutation.
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(a)

(b)

0 0 T i

0 0 l

l

i

1 1 0

1 1 l 0

A =
^Of 0 1 1 B<* = 1 1 0 0

0 1 1 0 0 1 0

1 1 0 0 0 0 1

1 1 0

0 0 1 1 A' = 0 1 1 Bi = 1 1 1 0

0 0 1 1 0

1

1

1

1

0

0

0

0

0

1

1

0

01 1 1 1

1 1 1 0 1 1 0

(a) without overlap of rules

(b) with overlap of rules

Figure 3-2: Range of Solutions
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A<* = 0 1

0 1

1 0

1 0

0 0 1 1 maximum Ba = 1 1 1 0

0 0 1 1 1

0

1

0

1

1

0

1 1 1 0 1

1 1 1 0

0 0 1 • 1 first 1 0 0 0

0 0 1 1 minimum Ba = 0

0

1

0

1

1

0

1 1 1 0 1

1 1 1 0

0 0 1 1 second 1 1 0 0

0 0 1 1 minimum Ba = 0

0

0

0

1

1

0

1 1 11 0 1

1 1 ll 0

Figure 3-3: Maximum and Minimum Ba 's
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3.2.4 Maximum Aa vs. Maximum Ba

We have just seen that to obtain a maximum B , we should seek to extend

the rule patterns along the rows. Similarly, to obtain a maximum A , we

should extend a column pattern along a column. This means that rules drawn

without overlap to accommodate a maximum A will tend to be tall and thin,

whereas those drawn for a maximum B will be broad. The

particular Ra which we have been using does not illustrate this very well

(although compare Aa (ii) and (iv) in Figure 3-1) so a different Ra has

been used in Figure 3-4. Observe the different shapes of the rules. It is

apparent that as much information as possible has been placed in Ba

and Aa somehow, so as to make them maximal. When a choice is available,

extending rows will maximize B and extending columns will maximize A. Had

we been seeking the two-rule decomposition here, no choice would have been

available.

3.2.5 Comments

Some of the results discussed above might seem trivial and obvious, but

they are very important when we come to consider the complete R, as formed

from the nested Ra . These results will help us recognize which features of

the nested Ra are important in determining the properties of Jl™ and 5™

and the reasons for the minimum number of rules. One of the most important

results is that several minima, ranges of results etc., come from the

existence at some stage of a choice in the ways of drawing the blocks of rules

on the Of-level-set. Unfortunately, we lack a compact mathematical

representation of this and any analytic means of identifying the number of

choices available in general.
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(a)

(b)

0 1 1 1

1 1 1 1

1

1

1

1

0

0

0

0

0

1

1

1

1

1

1

1

1 1

1 1

0 0

0 0

Aft -

A'

0 0 1 B<* = 1 1 0 0

0 1 0 1 1 1 1

1 0 0' 0 1 1 1

1 0 0

1 1

1 1

1 0

1 0

B&« 1 0 0 0

0 1 0 0

0 0 1 1

(a) seeking maximum B

(b) seeking maximum A

Figure 3-4: Seeking Maxima
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3.3 NESTED Ot-LEVEL SETS

In Section 3.1, we quoted Zadeh's result that

R = V or R 0<a«l
Of "

We have already looked at the decomposition of each a-level-set into an Aa

and Btt . Now we must turn to the problems of decomposing complete relations.

The most important features here are producing "consistent" decompositions and

finding what is the minimum number of rules.

3.3.1 Consistent Decompositions

In Section 1.1 we wrote

N

R = V R£
i=l

Each of the relations which describes a rule can also be written in terms of

its or-levels.

Ri = V Ria 0<Of<l; i=l,...,N (3.1)
Of "

This means that

Ror " Y He

i.e., any Of-level-set of R is the union of the Of-level-sets of all

the R^. But Equation (3.1) also implies that the Qf-levels for each rule are

nested according to:

al * a2 - \ <= *«2
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The problem is, therefore: "At each a-level, draw blocks to represent the

rules, so that the blocks remain nested for 0<or^l ".

When drawing rules on the ot-levels, we start at 0f = 1.0. Starting at

Of = 0.1, or the lowest level of discretisation such that a>0, does not

provide enough information on the shapes the rules are likely to take. At

Of= 1.0, every normal rule will be represented and may be distinguished.

As we proceed down the a-levels, we will be faced with choices. These

are:

1. assign information to an A,

2. assign information to a B,

3. create a new rule.

The first two choices refer to the decision on whether to extend an

existing rule block lengthwise (assign to A) or breadthwise (assign to B).

There will be cases where no rule may be extended to cover a new a-level, in

which case we must create a new rule. Sometimes the possibility arises where

new information may be assigned to a number of the existing rules. This gives

the possibility of many minima. Many of these ideas, and their connection to

our previous results on Of-level-sets, will be made clearer by an example.

(See Section 3.4).

3.3.2 The Minimum Number of Rules

The minimum number of rules is determined as Of-level analysis is

performed, but we may place a lower bound upon the number of rules by

examining the a-level-sets themselves. See Figure 3-5. If we draw blocks

upon each Of-level as if to represent rules, but ignoring other Of-levels and

conditions for consistency for now, we will see that there is a minimum number

of blocks required to cover each Of-level. Denote the minimum number of rules
V V

at a by Na . We know that any ot-level-set which requires Na rules can
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v1.0

*0.7

v0.4

0 0 0 0

0 0 0 0

o o Q] o
0 0 0 0

Q] o o o

0 0 0 0

0 1 1

1

1

11

1

1

1

1

1

0

0

0

0

0 1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

R0.9" ° 0 0 0

0 0 0 0

0 0 0 0
[T] o o o
|jj 0 0 0

0.6

*0.3

0 0 0 o
0

1

1

1

1 1

1 1

1

1

1

1

0 0

0 0

1 1 1 1

1 1 1 1

1 1 1 1

1 1 0 1

1 1 0 0

.3 .5 .6 .4

.5 .7 .7 .8

.8 .8 1.0 .8

.9 .7 .2 .3

.0 .9 .2 0

"•0.8

x0.5

*0.2

Figure 3-5: How Many Rules?
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, J.I I vbe decomposed into Na rules, where Na > Na . But by definition an
v

Of-level-set which requires at least Na rules can never be decomposed using
v

less than Nft rules. So, we must look for the Of-level which requires most

rules to place a lower bound on the minimum number of rules. Hence,

N £ V Na
Of

In Figure 3-5, we see that some Of-levels require only two rules, but some
v

require three. [Note that Na is written alongside each a-level-set]. The
v

fact that Rj q requires less than the V Na rules indicates that at least

one rule will be subnormal. In fact, the example of Figure 3-3 requires four

rules, as we shall see when we return to it in Section 3.4.3.

The minimum number of rules is determined by the existence of a

"critical" Of-level. This a-level may appear to require only Na rules for
v

decomposition but it is impossible to construct a Na -rule map on

this a-level which is consistent, in the sense that

Rai c= Rft c= Raii for Of'^Of 2- Of"

The number of rules which critical a-levels require, determine the minimum

number of rules. If more than one critical a-level exists, then the maximum

of their respective minimum number of rules is required.

3.4 EXAMPLES

3.4.1 Minimum Rule Solutions

We take the example from Section 2.3, see Figure 3-6. By inspection, we

can see that at least three rules will be needed to cover R. To restrict our

choices, we will seek to form the maximum A, i.e., assign to columns

wherever possible.
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1.0

*0.7

0.4

0,
0 0 0 0

0 0 02o
0 0 0 0

[l] o 0 0

0 0 0

0 1 1

1 1 1

1

1

1

1

0

0

0.
0

2°
0

0 1 1

1

1

11

1

1

1

1

1 1 2°
0

0

1

1

0

0

x0.9

*0.6

"0.3

o o o [T],
0 0 0 0 "

o o 02 0
0 0 0

0 0 01
0 0 • »l
0 1 1 0

1

1

1

1 1 0

20
0

1

1

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

0

2 0

0

.3 .5 .6 1.0

.5 .7 .7 .A

.8 .8 1.0 .3

.9 .7 .2 .2

1.0 .7 .2 0

*0.8

x0.5

v0.2

Figure 3-6: Seeking Maximum A
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R| q and Rq ^ are easy to decompose. The decisions to use only three

rules and assign to columns, block the 0.9 with 1.0. At Rq g, we can add

to rule 1 columnwise, but must extend rule 2 row-wise because 0.8 is a

critical a-level. The columnwise extension of rule 1 would not be consistent

in three rules with Rq y. Rq 7 requires rule 1 to be extended row-wise,

causing some overlap with rule 2. Rule 2 will produce a 0.8 in this position,

rule 1 will contribute only 0.7. At Rq 3, we had the choice of extending

rule 2 row-wise or rule 3 columnwise. Here is an example of our decision to

maximize A taking effect. The resulting A solution is:

.3 .5 1.0

.5 .7 .4

.8 1.0 .3

.9 .2 .2

1.0 .2 0

There were no choices in assigning the rows, so the minimum B is

1.0 .7 0 0

0 .8 1.0 0

0 0 .6 1.0

To find the maximum B solution, we assign to rows. See Figure 3-7.

Given the three rule constraint, no choice is possible until Rq g. The

obvious row-extending pattern here would have been:

0

0

0 0 [I]
0 0 0

1 1 11 0
1

1

0 0 0

0 0 0

However, it is not possible to draw a pattern on Rq 7 which is

consistent with decomposition of Rq g and so it must be discarded in favor
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c1.0

0.7

v0.4

x0.2

o 0.
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0 0 010

0 0 0
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1 1 1

1
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0
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0.
0

0

0

0

0 1 1 1

1 1 1 1

1 1 1 0

0

1 1

1 1

0

0

1 1

0.9

v0.6

0.3

x0.2

o 0,
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0 0 0

0

0 0 ll '1
0 1 1

1

0

1

1

1

1 0
2

0

0

1

1

0

0

1 1

3
1 1 1 1

1 1 1 1 »

1 1 1 1 )
1 1 1 1

/

1 1 1 0

x0.8

0.5

Figure 3-7: Seeking Maximum B
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of the A maximum-like decomposition. Our first departure from the previous

example comes at Rq c when rules 2 and 3 are both extended row-wise, rather

than 1 and 2 columnwise. Thereafter, the decomposition proceeds smoothly

until Rq 2 » where rule 1 must be extended row-wise, and either rule 2 or 3

column-wise. Extending rule 3 to cover the fourth row is a little unnatural

because it will give a bimodal rule, but it is a legitimate alternative. Our

solutions are now:

max

mm

1.0 .7 .2 0

.5 .8 1.0 .3

.3 .5 .6 .1

0 0 1.0

0 .7 .4

.8 1.0 0

.9 .2 0

1.0 0 0

or 0 0 1.0

0 .7 .4

.8 1.0 0

.9 0 .2

.0 0 0

We may confidently assert that the A's and B which were obtained, together

with the respective A or B maxima, are minima because of the overlap involved.

To be sure, a fair amount of overlap does occur, but this is the minimum

amount required. To find the maximum B which corresponds with the maximum A we

may use Sanchez' result, or by taking the a-level-blocks and extending them

row-wise wherever possible, so long as consistency with lower a-levels is

maintained. This is not so simple as it might sound and Sanchez' method is

reliable. Just taking a-level-sets and trying to maximise overlap is not a

good method, because it can easily produce sub-maxima. Over-enthusiastic row

wise extension at one a-level can delete opportunities for column-wise

extension elsewhere.
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3.4.2 Non-Minimum-Rule Solutions

In the earlier discussion of this example, we indicated that not all of

the four rule solutions available could be detected under the iterative

scheme. The a-level patterns for these solutions are indicated in Figures 3-

8, 3-9 and 3-10.

Here, we can see that the fourth rule is not introduced until a= 0.7,

Figure 3-8, a= 0.2, Figure 3-9, or a =0.4, Figure 3-10. In fact, with the

existence of four ones at a= 0.9, the fourth rule could have been introduced

there. See Figures 3-11 and 3-12 for two decompositions where the fourth rule

was introduced at a= 0.9.

It could also have been introduced at or« 0.8, but we shall not give any

more examples here.

From this, we confirm that the iterative scheme does not see all the

possibilities for creating solutions in the higher than minimum rule spaces.

It would seem that the iterative scheme does not make any choices about

a - ot where

or* = A ( V R(i,j) )
J 1

i.e., the minimum column maximum. The details of this mechanism are still to

be investigated.

3.4.3 N f V L,
a a

In Section 3.3.2, we described how bounds were placed on the minimum

number of rules and mentioned the existence of critical a-levels. Let us

v
return to the example of Figure 3-11, which has V Ntt = 3 , although we

a

indicated in the text that four rules would in fact be needed. See Figure 3-

13.
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At a= 0.8, there are four ways of drawing three rules, consistent

with Rq <j and Rq 7. However, none of these can be extended to cover Rq /-.

This a-level introduces the row pattern [0 0 10] and none of the existing

rules can cope with it. Hence an extra rule needs to be introduced. This

could be done either at a = 0.8 or a= 0.6. The critical a-levels

are Rq ^ and Rq g. Although both can be covered by three rules, four rules

are required for consistency.

3.5 CONCLUDING REMARKS

The a-level technique is very useful, particularly because of the

insight it gives us on the structure of R. The patterns which the rules

combine to form on the a-level-sets shows how many minima may arise and is

especially useful in choosing maximum A or maximum B. We can find parts of the

solution space which are invisible to the iterative technique. Indeed, so

many new solutions become available that we immediately encounter the main

problem of this technique: the lack of an adequate notation.

It soon becomes very difficult to express an a-level-set conveniently.

Generally we require information on both the row and column patterns of R ,

which needs to be compared with that from the a-level above. We need to be

able to automate the assignment of portions of the a-level-set to particular

rules and we do not have a mathematically acceptable way of doing this,

although it is a very easy task for a human to perform.

The most important insight which this technique gave us, trivial as it

may seem, was that assigning to columns produced maximum A's and assigning to

rows produced maximum B's. By using these rules as our guide when faced with

a choice at any a-level, we were able to structure our study of Jl and S .

The choices are also limited by remaining in the minimum rule space. However,

once we move above that space, the choices become bewildering very soon,

because one can choose at which level to introduce the extra rule.
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We will have no way of easily counting the number of minima, short of

analyzing all the a-levels. This is a problem particularly in higher spaces

where we would like to know the effects of introducing an extra rule at

various a-levels. The number of choices seem to grow geometrically. But,

it is the fundamental nature of this approach which leads us to believe that

it would supply answers to many of our questions.
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4. REVIEW AND COMMENTARY

Relation decomposition has proved to be a frustrating and fascinating

problem. We have gained some insights and appear to be close to a complete

solution. This final section of the report will review our work so far, point

out our problems and suggest directions for this work in the future.

4.1 THE ITERATIVE TECHNIQUE

The iterative technique has been fairly successful, but our understanding

of it is still incomplete. The main problem is in the so-called starting

conditions. Our use of A a R and B s ft as the first positions in the

bootstrapping procedure seem to severely limit the range of solutions which

can be detected. Taking A • R and seeking B seem to have the effect of

giving us no choice on the a-levels above the sub-identity. We need some

other intelligently chosen starting conditions which should have the effect of

coupling other rows and columns in a way that the identity cannot do. We also

need to know how many sets of starting conditions should be sought in order to

reveal all of Jl and & .

The other persistent problem with the iterative approach is in knowing

exactly how many minima exist in either Jl or <B . As we move up towards

the maximum B e <B , the number of minimum A which it can generate seems to

decline. At first we thought there might be some rather magical B, less

than Bmax, which would generate all possible A^^. This is not the case,

but it would be nice to know how to choose sufficient B to generate all the

minimum A's, and we would need to be able to count these B's as well. It

would also be nice to be able to examine R alone and determine directly how

many minima exist, but we suspect this will not be possible.

Our stated aim with the iterative technique is to explore the minimum

rule space. However, we have no proof that the iterative technique is

guaranteed to find the minimum rule space, although it seems never to fail to
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do so in practice. There would seem to be some rather special constraints in

effect in this space, so it might be a little easier to prove things. For

example, how many maxima exist in the minimum rule space? Would it be easier

to count minima in the minimum rule space, before actually searching for them

all? We have never proven anything about convergence of the iterative

technique, nor the number of iterations required to reach convergence. Would

it be possible to solve this, given minimum rule space conditions?

The range of solutions, Jl and S , represent a transfer of information

between A and B. A minimum has, in some sense, the minimum amount of

information possible, with the rest of the information contained in its

partner. But, there is a sense in which some minima are "better" than others.

The minima with most zeros are "better". A "good" minimum would be one, such

that the maximum and minimum generated from it are the same. In this sense,

the identity is a very good minimum, but it needs too many rules. The good

minimum produces very little overlap of its rules. Overlapping rules imply

redundant information, but this is sometimes unavoidable in the minimum rule

space.

We have not looked very closely at the influence of starting conditions

on the rules which are guaranteed. We know that taking A = R and seeking B •
° mm

means that Bj, looks like the identity relation. This will make A look like

columns of R. Seeking Bmax would make B look like rows of R. Indeed, rows or

columns of R often appear unchanged in the solutions. With a square R, it

would be particularly interesting to observe how information is balanced

between A and B depending on the starting point. The starting point, A or B =

R, also affects the range of solutions which are found and we have not

examined whether it is best (if it is best) to seek maxima or minima first.

54



4.2 THE a-LEVEL TECHNIQUE

The a-level technique extended our knowledge of the decomposition

problem considerably. We realized the importance of certain critical

a-levels which determined the minimum number of rules required to decompose

R. Choices which could be made at a-levels with a<acrit determined the

number of minima which could be generated. The number of minima is closely

dependent upon choices made at higher a-levels.

The main problem in applying this approach, has been in finding a.

convenient notation. The A and B matrices into which a particular R may be

decomposed are probably as convenient a method as any, but what we really

require is a reliable technique for finding all possible decompositions of a

given R. It is a simple task for a human to perform, since it consists of

enclosing all the I's in an a-level set in rectangular boxes. This is quite

difficult to put into a firm algorithm because of the number of choices which

must be made. Since boxes may overlap one must be careful not to eliminate

valid choices because they might seem to have plenty of redundancy. The

columns of A can be combined under union to form columns of R, so it is no

easy matter to ensure all possible combinations have been tried.

Studying column patterns leads us to suspect the existence of disjoint

sets of solutions. This result was completely unexpected and led us to look

at many more properties of the solution space. We have since realized that

the behavior of a given a-level within a complete relation does not seem to

match the behavior of that a-level if it is analyzed separately. This does

seem a most surprising result and could well yield the final solution to this

problem.
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4.3 STRUCTURE OF THE SOLUTION SPACE

A difficulty we have had throughout this work is a less than perfect

understanding of the structure of the solution spaces for A and B.

Although we know that the range of solutions for each step in the iterative

scheme is an upper semi-lattice, it is clear that the union of these is not.

Furthermore, our investigation of the a-level scheme has raised the

possibility of partitioned solution spaces. We are left with a incoherent

picture of the the inter-relationships between the elements in the solution

space.

Our approach to the decomposition problem has been to search for

algorithmic solution procedures. Unfortunately, this tends to obscure the

structural issues. We feel that an understanding of solution space structure

will only be gained by examining some of the basic algebraic issues that our

problem raises. We have conducted no research on this, but what follows is a

very rudimentary outline of some algebraic concepts.

From our basic definitions (see Section 1.1) we have the result

that RcrjCxty. An alternative view would be that R is a mapping from DC

to 4} which we can write as

V

Now let us define a finite discrete space Z-^ of cardinality N, then

the unknown relation A is a mapping from DC to S« ,and the unknown

relation B is a mapping from 2„ to 0} . Or, using the notation defined

above
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zH

B
zM -<y

Algebraically, we are looking for a decomposition of R such that the

following diagram is satisfied

R

Sn

We can now ask some very general questions of this structure. For

example, does such a Z„ exist, what is the least cardinality of Z™ , what

properties must the mappings A and B have, etc.? Our previous

investigations tell us that a Z„ does always exist, and we can place some

bounds on its cardinality. However, the other questions are unresolved, and

must await further investigation.

4.4 PRACTICAL CONSIDERATIONS

In Section 1.2, we mentioned some aspects of approximate solutions,

although we have confined ourselves to seeking exact solutions to the problem.

In considering an approximate solution, one must decide firstly why an
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approximate solution is desired and then choose the definition of "equal", or

"nearly equal", which is most appropriate.

For example, if we decide to look for a solution with a smaller number of

rules than that stated by the minimum rule (exact) solution, one must accept

that the resulting R° will not match R in all the contours. The gradients of

R will be smoothed out. But if some low level detail is all that is lost,

then it is probably adequate. In this case, we could choose a and j3 such

that

R(i,j) 5> a R0(i,j) = R(i,j)
R(i,j) < a R0(i,j) a R(i,j)± 0

or R (i,j) < a

An 0-approximation such as

R°(i,j) = R(i,j)± 0

could cause displacement of the peaks unless some scaling factor were

introduced, but the approximation rules above would avoid that problem.

However, there may well be some cases in which displacement of the peaks is

quite acceptable.

We could take an opposite rule such as:

R(i,j) *5 a Re(i,j) = R(i,j)
R(i,j)>a R(i,j)^a

This rule might be better for large, sparse relations when it is more

important to have zeros and small elements properly positioned.

We could explore the possibilities of regarding "approximately equal" as

an operator. If A<=V and B<=q; and R<= Q , then we could regard
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"approximately equal" as an operation in 1/X^x5 . This operation returns

the identity when A°B = R . Otherwise, the returned value gives some idea of

the mis-match between A«B and R. An element-by-element comparison would be

just such an operation, but it could be useful to have something a little more

subtle.

We are inclined to feel that approximate solutions are likely to be of

the most practical benefit, although it is a necessary first step to study

exact solutions. Since many practical relations are based upon not wholly

reliable data, there would not seem to be strong arguments for single-mindedly

demanding an exact decomposition. When modeling an ill-understood process,

one wants to be able to construct a model, describe it, and then submit it to

further observation and test. If a crude approximation does not suffice then

more elaborate descriptions can be found and tested instead. This seems to be

in keeping with a pragmatic, fuzzy approach.

This work has been done in the hope that it would be practical and

useful, so we must consider the problems of implementing a rule-based model

and of calculating decompositions for relations of the sort which one would

expect to meet. So far, we lack firm analytic procedures and the short-cuts

which good theorems would provide. So, it would still present a problem

should we try to analyze a many-element, multi-dimensional relation. The

relations we have been using to test our ideas are only toys in real terms.

Clearly, we still have a very long way to go before realizing practical

results.

4.5 POSSIBLE DIRECTIONS FOR THE FUTURE

We have often been struck by the concept of information, and the way in

which information is shared between the A and B. So far, we have not been able

to devise a suitable measure for the information content of A or B which

reflect the number of rules, the amount of necessary, yet redundant,
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information and the number of non-zero elements. If we could assess the

information content of R directly, we might be able to gauge better the amount

of information required in the A and B, and thereby how to achieve the "best"

minima. A definition of "best" here is also pending, awaiting a good '

definition of information. We must be aware of the information content of

each rule and how the combination of rules affects this. We know in some

sense that as an A or B lose information, they somehow lose their capacity to

produce minima. We know that a rule which can take a larger range of possible

values is somehow less useful. This is observed when a row or column of R

features in a rule. Generally, these take only very restricted ranges,

implying a great importance. On the other extreme, rules which have a range

anywhere between 0 and 1 are completely useless and may be deleted. Our

measure of information must involve some sort of comparison between A, B and

R, and possibly require rule-by-rule calculations.

The work on a-levels has brought us many new insights. We should look

again at row and column patterns and how an a-level set can be reliably

broken down into the column or row patterns, looking out for choices which

might lead to disjoint sets of solutions. We need to look at the interactions

between a-levels and how this affects the number of minima which may be

found. Once we have chosen a convenient notation, this could prove to be very

fruitful.

We could also think about changing the problem slightly. For example,

had we chosen other definitions of implication or composition, would our

results be affected drastically? Why and under what circumstances would other

definitions be a better model of the processes of reasoning? We have been

concentrating upon the minimum rule solution, but when in a higher space, how

easy is it to prevent the solution for dropping back to a lower rule space and

how easy is it, in fact, to match to a predetermined term set? We have held

all these notions in reserve, awaiting better progress.
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4.6 A FINAL COMMENT

The results we have reported are an attempt to define some procedures for

fuzzy relation decomposition. As a final comment on the work, we would like

to show its relevance in the wider context of a complex system modeling

methodology.

A complex system is characterized by the large amount of information that

flows between its component parts. The difficulty of manipulating and

understanding this information is a major problem when attempting to analyze,

and make decisions in, complex environments. One way of addressing this issue

is to ask if there are ways of aggregating the information so that its

essential meaning and structure are preserved. We believe that fuzzy set

theory is an ideal tool with which to develop aggregation techniques, and that

fuzzy relational models are very powerful basic concepts.

Thus we view fuzzy models as a way of representing low-level highly-

detailed information in a more compact and meaningful form. Given this basic

premise, we need to develop a set of tools that allow us to manipulate fuzzy

relations. Relation decomposition is one such tool. It has, when fully

developed, the ability to generate linguistic descriptions of complex

information structures, and may help resolve some very important questions.
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Appendix A. DEFINITIONS AND LEMMAS

This appendix contains the elementary definitions and lemmas that we have

used in the development of our iterative scheme for fuzzy relation

decomposition. We start with some results from Sanchez [2] and Pappis and

Sugeno Ll], and conclude with some of our own.

Definition 1: For any given pair of elements a and b in [0,1], we
define the a -operator such that c = a a b and

c = 1 if a ^ b
c •» b if a > b

Definition 2: A^fuzzy relation R is contained in a fuzzy relation R
(written R c R ) whenever

R(i,j) $ R*(i,j) ¥i,j

Definition 3: Let R be a fuzzy relation, then the fuzzy relation RT is
the transpose, or inverses, of R and is defined by

RT(i,j) = R(j,i) Yi.j

Definition 4: Given two relations P an Q, then the o -composition of P
and Q (written P « Q) is given by

PoQ(i,j) = V P(i,k) A Q(k,j)
k

Definition 5: Given two relations P an Q, then the a -composition of
P and Q (written P@ Q) is given by

P@Q(i,j) = A P(i,k) a Q(k,j)
k

Lemma 6: For every pair of fuzzy relations A and B, we have (assuming
dimensional consitency)

B ?= aT @ (A o B)

A c (B @(A o B)T)T

Proof: see Sanchez [2]
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Lemma 7: For every set of fuzzy relations A, B, R we have (assuming
dimensional consistency)

A o (aT® R)c R
(B@ RTr o Bc R

Proof: see Sanchez [2]

Lemma 8: Given fuzzy relations A and R, let & be the set of fuzzy
relations B such that A o B = R. Then

(i) Q f 0 iff B*AT@R e £

(ii) if S i 0 then B is the largest element in &

Proof: see Sanchez [2]

Lemma 9: Given fuzzy relations B and R, let Jl be the set of fuzzy
relations A such that A o B = R. Then

(i) Jl # 0 iff A = (B@RT)T 6 Jl

(ii) if J M then A is the largest element in Jl

Proof: see Sanchez [2]

Definition 10: For any given pair of elements a and b in [0,1], then
we define the Q -operator such that c = a 0 b and

c = 0 if a < b

c = b if a ^ b

Definition 11: Given a column vector a_ = [ai,...,a ]T such that
a^ = a (the maximum element in a) or 0 (i=l,...,n), then the set

<t>(a.) of f-vectors is given by

4>(a) k { f(a) }

where f(a) = (J^,..., fn)T

r£ = 0 or a

i
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Note: (i) that there is only one non-zero element in each f-vector ,
corresponding to the maximum element in each a_; (ii) that a_ contains
only a and zeros, and that the number of f-vectors is equal to the
number of non-zero elements in a.

Definition 12: Given a fuzzy relation A with m columns a.., assume that
*Uj) is defined for j=l,...,m . Then the set <p(A) of matrices f(A)
is given by

<J>(A) 4 {f(A) }

where f(A) » [ fU^,..., fU^ ]

Definition 13: Given a fuzzy relation B and a row vector £, then the
6-composition of B with £ (written B(§) £ ) is given by

B (§) r(i,j) = ( A B(i,k) a r(k)) 0 (B(i,j) 0 r(j))
k

Lemma 14: Given the fuzzy relation- B and the fuzzy set £, all the
fuzzy sets _a such that a_ o B = r are given by

V( ?(B@ r))T <: a < (B@ rT)

•V- f(B<§)r) e <p(B®r)

Proof: see Pappis and Sugeno [1].

Remark: the set V( fi(B ® r))T contains all the minimum
solutions.

Lemma 15: Given the fuzzy relation A and the fuzzy set r, all the
fuzzy sets Jj such that A o b^ = £ are given by

V( £(AT(5>£T)) ^ b < AT@£

Proof: similar to previous lemma.

Remark: the set V ( ? i(AT(5)£T))T contains all the minimum
solutions.

These definitions and lemmas provide all the necessary theory for

determining the complete set of solutions at every step in the iterative

scheme. What follows are a few results that allow us understand the structure

of the solution space (but see section 4.3 in the main body of the report).

65



"k -k
Lemma 16: Given A, A e Jl and A c A then

(A*T @ R) c (AT <§> R)

Proof: by Definition 5

LHS(i,j) = A A*(k,i) a R(k,j)
k

RHS(i,j) » A A(k,i) a R(k,j)
k

•if

But A(k,i) < A (k,i), therefore by definition 1

A*(k,i) a R(k,j) < A(k,i) a R(k,j) Yi,j,k

So that LHS(i,j) < RHS(i.j) Yi,j

Lemma 17: Given B, B e Q and BgB then

(B*@ RT)T S (B @RT)T

Proof: same form as proof for Lemma 16.

Lemma 18: The maxima of «_^(or S ) must be generated by the minima of
5(orJ )

Proof: follows from the ordering results of Lemmas 16 and 17.
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