
 

 

 

 

 

 

 

 

 

Copyright © 1982, by the author(s). 
All rights reserved. 

 
Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 
lists, requires prior specific permission. 



DESIGNING A DATABASE FOR INGRES

by

L. E. Dumont

Memorandum No. UCB/ERL M82/23

1 February 1982

(A



Research sponsored by the National Science Foundation Grant ECS-8007683.



DESIGNING A DATABASE FOR INGRES

by

Lorna E. DuMont

Memorandum No. UCB/ERL M82/23

1 February 1982

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



Research sponsored by the National Science Foundation Grant ECS-8007683,



DESIGNING A DATABASE FOR INGRES

The first step in developing an INGRES database is to
select formats for the relations that will hold your data—
that is* to design the logical schema. This tutorial
explains how to use the command 'designdb' to help you do
this. Most of the tutorial is available in the on-line
explanations! but you should read through it before you
begin a design* to give yourself an overview. Refer back to
the tutorial or to the on-line version whenever you have
questions.

REFERENCES: Some familiarity with INGRES is assumed;
if you have never used INGRES/ you should begin with "A
Tutorial on INGRES" (UCB/ERL M77/25) and "Creating and
Maintaining a Database Using INGRES" (UCB/ERL M77/71), both
by Robert Epstein. The "INGRES Reference Manual" (UCB/ERL
M79/43) provides a general purpose guide to INGRES. This
design-aid is based to a large extent on a design
methodology developed by Randy Katz and Eugene Wong; refer
to "Database Design and Translation For Multiple Data
Models" (UCB/ERL M80/24), by Randy Katz, if you are
interested in the underlying approach.

PURPOSE: This design-aid provides: 1) a natural
framework and orderly procedure for specifying your design,
and 2) automatic creation of a normalized INGRES schema.
The framework used is that of objects and relationships; the
six steps within the design-aid 'designdb' will help you to
select an Intermediate Design—of objects and relationships
among them—based on knowledge of the data you eventually
want in your database. When you are satisfied with your
choices, step 7 of the design-aid will take the Intermediate
Design and produce an INGRES schema. This schema will be
normalized* so as to preclude unexpected side-effects as you
update your data.

CALLING DESIGNDB: The information that you specify
while using this design-aid is held in an INGRES database,
designated the 'design- information database'. If you are
begining a new design, you must create an empty database for
this purpose, using the Unix command 'creatdb'. The command
'designdb' will start the design- aid, and you supply the
name of the design-information database. If you stop the
design-aid (see below), you may continue your design later
by calling 'designdb' and supplying the same database name.
You may also modify a completed design, by saving the
design-information database and supplying that name to
'designdb '.



—Page 2—

MENU OF STEPS: When 'designdb' has finished the
initia1iztion, you will see a menu of steps, as below:

Select step:
0 =print general explanation 1 =choose entity sets
2 =choose relationships 3 =choose subschemas
4 schoose constraints 5 =analyze and display
6 =choose attributes 7 =produce design and quit
5 = q,uit, saving work

Please type a number from the menu.

It is suggested that you begin each design by selecting
these steps in order. You can at any time return to an
earlier step to modify your design; you can also select
steps out of order whenever you wish, but you may get a
message directing you back to complete an earlier step. You
can always postpone working on a design by selecting step 8
(=quit, saving work); the choices you have made so far will
be saved in the design-information database.

STEPS 1 TO 6 (MENU OF OPERATIONS): In steps 1 to 6 you
are working on the intermediate design. Each step is
explained in the corresponding section of the tutorial; an
example is shown, with remarks (indicated by < ) for
clarity and titles (e.g. <LIST> ) for easy reference. Each
step has its own menu of operations, similar in format to
the menu of steps. Operation 0 on each menu will print the
same explanation that is in the tutorial. The other
operations are specific to the step; within each one, the
design-aid will prompt you for the necessary information
(see the examples).

THE RETURN CONVENTION: The 'return' key is your way of
'escaping' or 'backing up'. When you see a menu of
operations and the 'operation?' prompt, you can 'back up' to
the menu of steps by pressing return. You may then select
another step. In general, when you respond to any prompt by
pressing return, without typing anything (not even a space),
this will let you 'escape' from that prompt and will back
you up to an earlier level of prompt. This will become
clearer as you look at the examples, but it is always safe
to press return until you are back at one of the menus.
(You won't be able to back up beyond the menu of steps).
The only exceptions to this use of pressing return are
clearly marked.

STEP 7: When you have completed steps 1 to 6, and are
satisfied that your intermediate design adequately reflects



—Page 3—

the real-world meaning of your application, select step 7
(=produce design and quit). This step produces two files,
one with a listing of your intermediate design and the
resulting INGRES schema, and one with 'create' statements
for the relations in the schema. If you ever decide to
modify your design, simply supply the name of the design-
information database to 'designdb', make your modifications,
and select step 7 once more.

THREE NAMES TO REMEMBER: It is especially important to
remember the name of the design-information database, since
you must know this name to continue or modify a design. It
is also important to remember the two file names that you
choose in step 7 for the design/schema file and the
'create-statement' file. (The file names will appear in your
directory, once they have been created). You should be
prepared to choose new names (or reuse previous names) when
you use step 7 of designdb.



—Page 4—

STEP 1: CHOOSE ENTITY SETS

1.1. INTRODUCTION

The first step toward your intermediate design is to
identify those real-world objects about which you want to
record information in your database. An object is called an
'entity'; for example, 'Matilda Zilch' and 'machinist2'
could be entities. Entities are grpuped into SETS (or
TYPES), such as 'employees' and 'jobs'. In step 1, you
choose the entity sets (entity types) for your design. Note
that in the design stage you are specifying only the types
of entities and not the entities themselves; 'employees' and
'jobs' become part of your design, but 'Matilda Zilch' and
'machinist2' will eventually be data in your database.

1. 2. EXAMPLE

This is the begining of a small example, which will be
continued in the later steps. Suppose you have read the
explanation, and want to choose your entity sets. Starting
at the menu of operations for step one, the terminal would
look like this:

Step 1: Choose entity sets

Select operation:
0 =print explanation 1 =define entity set(s)
2 =delete entity set(s) 3 =change name of entity set(s)
4 =list entity sets

operation? 1 <DEFINE>

Define entity set(s):

entity set? employees
entity set? managers
entity set? buildings
entity set? departments
entity set? < At this point, you realize

that you don't really want
'managers' to be a seperate
entity set; they will be
part of the employees
entity set instead. So you
press return without typing
anything (not even a space)



—Page 5—

Select operation:
0 =print explanation 1 =define entity set(s)
2 =delete entity set(s) 3 =change name of entity set(s)
4 =list entity sets

operation? 2 <DELETE>

Delete entity set(s):

entity set? managers < You correct the mistake, and
entity set? < you press return.

Select operation:

0 =print explanation 1 =define entity set(s)
2 =delete entity set(s) 3 ^change name of entity set(s)
4 =list entity sets

operation? 1 <DEFINE>

Define entity set(s):

entity set? job

entity set? < You realize that you left off
the 's', so you press return.

Select operation:

0 =print explanation 1 =define entity set(s)
2 ^delete entity set(s) 3 =change name of entity set(s)
4 «list entity sets

operation? 3 <CHANGE>

Change name of entity set(s):

old entity-set-name? job
new entity-set-name? jobs
old entity-set-name? < You have fixed the mistake.

Select operation:
0 =print explanation 1 =define entity set(s)
2 =delete entity set(s) 3 =change name of entity set(s)
4 =list entity sets

operation? 4 <LIST>



List of entity sets

entlist relation

enm

buildings
departments
employees
jobs

Select operation:
0 =print explanation
2 ^delete entity set(s)
4 =list entity sets

operation?

—Page 6—

< INGRES prints these
headings;

< please ignore them.

1 ^define entity set(s)
3 =change name of entity set(s)

< You are satisfied with your
choices, so you press return.

You would then return to the menu of steps* and
continue with step 2.



—Page 7—

STEP 2: CHOOSE RELATIONSHIPS

2. i. INTRODUCTION

The second step is to identify the ways in which your
entity sets are related; this leads to choosing the
relationships for your intermediate design. Suppose
employees are assigned to jobs; then you want to choose a
relationship 'assignment'* which relates entity sets
'employees' and 'jobs'. If employees can be qualified for
different jobs, independent of what the current assignments
avet then you will choose 'qualified' to be another
relationship between these two entity sets.

Please do not confuse relationships with relations. A
relationship is part of your intermediate design; it
indicates how certain entity sets are related. A relation
is a table of data in an INGRES database.

TAGS: Sometimes an entity set plays more than one role
in a relationship. For example* in the relationship
'manager', you must distinguish between the two roles that
the 'employees' entity set takes on: the role of the
manager/supervisor and that of the employee being
supervised. As you will see in the example* the design-aid
prompts you to choose a three letter 'tag' to identify each
role. Thus 'manager '•involves 'employees' (tag-'sup') for
the supervisory role and 'employess' (tag='emp') for the
supervised role.

2. 2. EXAMPLE

Step 2: Choose relationships

Select operation:
0 sprint explanation
1 =define relationship(s) or 2 ^delete relationship(s) or

add entity set(s) to rel. remove entity set(s) from rel
3 =change name of relationship 4 =list relationships
5 =list relationships that 6 =list entity sets

entity set appears in

operation? 1 <DEFINE>

Define relationship(s) or add entity set(s) to relationship:

relationship? assignment



—Page 8—

Add entity set(s) to relationship 'assignment'

entity set? employees
entity set? jobs
entity set?

relationship? qualified

Add entity set(s) to relationship 'qualified':

entity set? employees
entity set? jobs
entity set?

relationship? manager

Add entity set(s) to relationship 'manager':

entity set? employees
entity set? employees

Entity set 'employees' already appears once in
relationship 'manager'.
Do you want it to appear twice?
y or n? y

Each usage will need a .tag of 3 or fewer characters*
to distinguish it from the other,
tagl? sup
tag2? emp

entity set?

relationship? works_in

Add entity set(s) to relationship 'works_in':

entity set? employees
entity set? jobs
entity set? < You realize that you really want

'departments' instead of 'jobs',
relationship?

Select operation:
0 =print explanation
1 sdefine relationship(s) or 2 sdelete relationship(s) or

add entity set(s) to rel. remove entity set(s) from rel
3 =change name of relationship 4 siist relationships
5 siist relationships that 6 =list entity sets

entity set appears in



—Page 9.—

operation? 2 <DELETE>

Delete relationship(s) or remove entity set(s) from relationship:

relationship? works_in

Do you want to delete the whole of relationship 'works—in'?
y or n? n < You only want to remove 'jobs'.

Remove entity set(s) from relationship 'works—in':
entity set? jobs
tag (press return if no tag)?
entity set?

relationship?

Select operation:
0 sprint explanation
1 sdefine relationship(s) or 2 =delete relationship(s) or

add entity set(s) to rel. remove entity set(s) from rel
3 schange name of relationship 4 siist relationships
5 siist relationships that 6 siist entity sets

entity set appears in

operation? 1 <DEFINE>

Define relationship(s) or add entity set(s) to relationship:

relationship? works_in

Note that relationship 'works_in' is already defined.
Add entity set(s) to relationship 'works_in':

entity set? departments
entity set? <——Now you have fixed the mistake.

relationship? depthead

Add entity set(s) to relationship 'depthead':

entity set? departments
entity set? employees
entity set?

relationship? allocation

Add entity set(s) to relationship 'allocation':

entity set? departments
entity set? jobs
entity set?



—Page 10—

relationship? location

Add entity set(s) to relationship 'location'

entity set? departments
entity set? buildings
entity set?

relationship?

Select operation:
0 sprint explanation
1 srjefine relationsh ip (s) or

add entity set(s) to rel.
3 schange name of relationship
5 siist relationships that

entity set appears in

operation? 4

List of relationships:
Relationship Entity set

rellist relation

relnm entnm

allocation 'departments
allocation {jobs
assignment {employees
assignment Ijobs
depthead {departments
depthead 'employees
location {buildings
location {departments
manager {employees
manager {employees
qualified {employees
qualified {jobs
works_in {departments
works__in {employees

Tag

tag

emp

sup

Select operation:
0 sprint explanation
1 sdefine relationship(s) or

add entity set(s) to rel.
3 schange name of relationship
5 siist relationships that

entity set appears in

2 sdelete relationship(s) or
remove entity set(s) from rel

4 siist relationships
6 siist entity sets

<LIST>

< INGRES prints these
headings;

<- please ignore them.

2 sdelete relationship(s) or
remove entity set(s) from rel

4 siist relationships
6 siist entity sets



—Page 11—

operation?

You would then return to the menu of steps.

2.3. FURTHER COMMENTS

Two or more entity sets may . participate in a
relationship. An entity set must be defined before you add
it to a relationship; if you try to add an undefined entity
set, the design aid will print a message and allow you to
define it (without going back to step 1). You must go back
to step 1 to delete an entity set* and first you must delete
any relationships that it participates in (or change the
relationships so they no longer involve that entity set); if
you forget to do this* the design-aid will remind you.

ASSUMPTION:

normalized* the

'independent' and
true without any
here. An independ
not represented by
relationships) in
fact that employ
represented in any
is one which you
without loosing in
down any further.

In order for the

relationships
'indecomposable'.
fuss* so only a

ent relationship
any other relati

your design; 'ass
ees are assigne
other way. An i

cannot break down

formation. You c

resulting
you choo
Usually

brief defin

represents
onship (or
ignment' r
d to jobs
ndecompsabl
into other

annot break

schema to be

se must be

this will be

ition is given
a fact that is

combination of

epresents the
* which is not

e relationship
relationships
'assignment'



—Page 12—

STEP 3: CHOOSE SUBSCHEMAS

3. i. INTRODUCTION

In step 3 you may partition your design into
subschemas. A subschema is a group of entity sets and
relationships that you feel belong together in some way. If
you have a large intermediate design* choosing subschemas
will help you keep its meaning clear. Subschemas may also
be used in physical design to improve performance.

If you decide to have subschemas* you must put each
entity set and each relationship into exactly one subschema.
Furthermore* the subschemas must fulfill a closure property:
if all the entity sets participating in one relationship are
in one subschema* you must put that relationship in the same
subschema. The 'check closure' operation will check this
property* and your design must pass this check before you
can do the analysis in step 5. If a relationship involves
entity sets from two or more subschemas* you may put it in
any one of those subschemas.

3.2. EXAMPLE

If the entity sets and relationships defined so far
were the only ones in'the design* there would be no reason
for choosing subshemas. However* if they were part of a
larger design* you might have a subschema having to do with
employees:

Step 3: Choose subschemas

Do you want to partition your entity sets and relationships
into subschemas? (For explanation* press return. )
y* n or return? y

Please remember that in this step you are only partitioning
(grouping) the entity sets and relationships—nothing you do
in this step will define new entity sets or relationships* or
delete old ones from your design.

Select operation:
0 sprint explanation
1 sSet up or add to 2 seliminate or remove from

subschema(s) subschema(s)
3 schange name of subschema(s) 4 siist (all/some) subschemas
5 scheck closure 6 siist relationships
7 siist entity sets



—Page 13—

operation? 1 <SET UP SUBSCHEMA}

Set up subschema(s) and/or add entity sets and/or add
relationships:

subschema? emps

Do you want to add entity sets or relationships first?
e or r (press return if neither)? e

<ADD ENTITY SETS>

Add entity set(s) to subschema 'emps':

entity set? employees
entity set? departments
entity set? jobs
entity set?

Do you want to add entity sets or relationships next?
e or r (press return if neither)? r

<ADD RELATIONSHIPS>

Add relationship(s) to subschema 'emps':

relationship? assignment
relationship? qualified
relationship? manager
relationship? works_in
relationship? depthead
relationship? allocation
relationship? location
relationship?

Do you want to add entity sets or relationships next?
e or r (press return if neither)?

subschema?

Select operation:
0 sprint explanation
1 =set up or add to 2 =cancel or remove from

subschema(s) subschema(s)
3 schange name of subschema(s) 4 siist (all/some) subschemas
5 scheck closure 6 siist relationships
7 siist entity sets

operation? 4 <LIST>

Please choose one of four list-subschema options:
1 siist just the names of all subschemas
2 siist all subschemas

3 =iist individual subschema(s)

4 siist those entity sets and relationships not in a subschema
Return takes you back to the menu of subschema operations
1* 2* 3 or 4? 3



—Page 14—

List individual subschema(s):

subschema? emps

Entity sets in subschema 'emps':

entlist relation

enm

departments
employees
jobs

Relationships in subschema 'emps
Relationship Entity set Tag

rellist relation

relnm •entnm !tag

allocation 'departments
allocation jobs
assignment employees '
assignment jobs
depthead departments
depthead employees•
location buildings
location departments
manager iemployees iemp

manager !employees !sup
qualified !employees
qualified !jobs
works_in Sdepartments
works_in !employees

subschema? < Pressing return 'backs you up'

Please choose one of four list-subschema options:
1 siist just the names of all subschemas
2 siist all subschemas

3 siist individual subschema(s)
4 siist those entity sets and relationships not in a subschema
Return takes you back to the menu of subschema operations
1* 2, 3 or 4?



—Page 15—

Select operation:
0 =print explanation
1 sSet up or add to 2 sCancel or remove from

subschema(s) subschema(s)
3 schange name of subschema(s) 4 siist (all/some) subschemas
5 scheck closure 6 siist relationships
7 =iist entity sets

operation?

At this point you would choose the other subschemas in
your design, and then do operation 5 (scheck closure).



—Page 16—

STEP 4: CHOOSE CONSTRAINTS

4. i. INTRODUCTION

Suppose you know that each employee is assigned to
exactly one job at any given time. You can put this
information into your intermediate design by specifying that
each 'employees' entity must participate at least once and
at most once in the 'assignment' relationship* thereby being
assigned to exactly one job.

You can choose to place either one or both of these two
constraints (AT LEAST ONCE or AT MOST ONCE) on the role of

any entity set in a relationship. However, you may not
place the AT LEAST ONCE constraint on more than one entity
set in a relationship, for a reason which will be explained
in section 4. 3.

When you list your relationships with the constraints,
you will see that 't' and 's' appear in the heading printed
by INGRES* underneath the AT LEAST ONCE and AT MOST ONCE
column titles. The AT LEAST ONCE constraint is also called

'total'* because all entities in the constrained entity set
must appear in the relationship. The AT MOST ONCE
constraint is also called 'single-valued'* because each
entity in the constrained entity set has at most a single
appearance in the relationship.

4. 2. EXAMPLE

Suppose you know that:
1) each employee is assigned to exactly one job at all times
2) only one employee can be assigned to a job
3) each employee works in exactly one department at all times
4) each employee has exactly one manager
5) there is only one department head for a department
6) each department must be located in at least one building

You could chose operation 1* which would prompt you for
the constraints on each entity set in each relationship.
However* suppose you decide to use operation 2. (All
constraints start as 'no'* so you can just modify the ones
you want to make 'yes'). Step 4 might look like this:



—Page 17—

Step 4: Choose constraints

Select operation:
0 sprint explanation
1 ssequence through

relationships* choosing
constraints

3 siist relationships (with
constraints)

operation? 2

2 sfnodify constraints on
selected relationship(s)

4 siist relationships that
selected entity set
appears in (with cons.)

<MODIFY>

Modify constraints for selected relationship(s):

relationship? assignment

Modify constraints on entity set(s) in relationship 'assignment'
entity set? employees
tag (press return if no tag)?

Must each 'employees' (tags'') entity
participate AT LEAST ONCE in the 'assignment' relationship?
y or n? y < From (1).

May each 'employees' (tags'') entity
participate AT MOST ONCE in the 'assignment' relationship?
y or n? y < From (1).

entity set? jobs
tag (press return if no tag)?

Must each 'jobs' (tag=//) entity
participate AT LEAST ONCE in the 'assignment' relationship?
y or n? n

May each 'jobs' (tags'') entity
participate AT MOST ONCE in the 'assignment' relationship?
y or n? y <——From .(2).

entity set?

relationship? works_in

Modify constraints on entity set(s) in relationship 'works_in':
entity set? employees
tag (press return if no tag)?

Must each 'employees' (tag='') entity
participate AT LEAST ONCE in the 'works_in' relationship?
y or n? y < From (3).



—Facie 18—

May each 'employees' (tag=//) entity
participate AT MOST ONCE in the 'works_in' relationship?
y or n? y < From (3).

entity set?

relationship? manager

Modify constraints on entity set(s) in relationship 'manager':
entity set? employees
tag (press return if no tag)? emp

Must each 'employees' (tag='emp') entity
participate AT LEAST ONCE in the 'manager' relationship?
y or n? y < From (4).

May each 'employees' (tag='emp') entity
participate AT MOST ONCE in the 'manager' relationship?
y or n? y < From (4).

entity set?

relationship? depthead

Modify constraints on entity set(s) in relationship 'depthead':
entity set? departments
tag (press return if no tag)?

Must each 'departments' (tags'') entity
participate AT LEAST ONCE in the 'depthead' relationship?
y or n? n

May each 'departments' (tags'') entity
participate AT MOST ONCE in the 'depthead' relationship?
y or n? y <——From (5).

entity set?

relationship? location

Modify constraints on entity set(s) in relationship 'location'
entity set? departments
tag (press return if no tag)?

Must each 'departments' (tags'') entity
participate AT LEAST ONCE in the 'location' relationship?
y or n? y <—From (6).

May each 'departments' (tags'') entity
participate AT MOST ONCE in the 'location' relationship?
y or n? n

entity set?



—Page 1<?—

relationship?

Select operation:
0 sprint explanation
1 ssequence through

relationships* choosing
constraints

3 siist relationships (with
constraints)

operation? 3

2 smodify constraints on
selected relationship(s)

4 siist relationships that
selected entity set
appears in (with cons. )

<LIST>

List of relationships with constraints:
Relationship Entity set Tag At

Least

Once

At

Most

Once

rellist relation

relnm 'entnm tag !t s

allocation departments " Jn n

allocation jobs !n n

assignment employees < !y y
assignment jobs Sn y
depthead departments < In y
depthead employees 'n n

location buildings i Sn n

location departments *y n

manager employees emp :y y
manager employees sup in n

qualified employees In n

qualified jobs !n n

works—in departments !n n

works_in employees :y y

Select operation:
0 sprint explanation
1 ssequence through

relationships* choosing
constraints

3 siist relationships (with
constraints)

operation?

2 =modify constraints on
selected relationship(s)

4 siist relationships that
selected entity set
appears in (with cons. )



—Page 20—

This would then return you to the menu of steps.

4.3. FURTHER COMMENTS

The constraints you choose for your intermediate design
will have consequences when you come to insert and delete
data from the resulting database (presuming you enforce the
constraints).

The AT MOST ONCE constraints affect inserting data
about the relationships. . In the above example* when you
want to make Peter Rabbit the head of the accounting
department, you must make sure that 'accounting' doesn't
already appear in 'depthead'. Similarly* when you want to
assign an employee to a job* you must check that neither the
employee nor the job appears in 'assignment'.

The AT LEAST ONCE constraints affect inserting and
deleting entities. In the above example* consider inserting
a new employee* Peter Rabbit. Since each employee must
appear AT LEAST ONCE in 'assignment'* you must link Peter
Rabbit to some job via this relationship. If the job
exists* fine* if not* you must insert the new job before you
insert the new employee—this is an insert side-effect.

To hire Peter Rabbit* you must also link him to a
department via the- 'works_in' relationship. This
illustrates how the side- effects can ripple: if the
department doesn't yet exist* you must insert it before
inserting Peter Rabbit* but to insert a department you must
link it to a building via 'location'. This seems
reasonable* since the building and the department should
exist when you hire a new employee.

The AT MOST ONCE and AT LEAST ONCE constraints affect

deleting entities. The delete side-effects are essentially
the opposite of the insert side-effects* except that they
are divided into two cases. In CASE 1* BOTH constraints

apply (to an entity set in a relationship)* and there WILL
be delete side-effects. In CASE 2* only the AT LEAST ONCE
constraint applies, and there MAY be delete side-effects.
In the example* an employee must be assigned to exactly one
job (case 1). If you delete a job* you will have to delete
the employee currently assigned to that job. (You may* of
course* move the employee to a different job before you do
the the delete). Case 2 is similar* but a 'check' is
involved. A department must be located in at least one
building (case 2). If you delete a building* you may have
to delete (or move) some of the departments currently
located in it; for each such department* you must check
whether this is the only building it is located in* and if
so you must delete (or move) that department. Delete side-



—Page 21—

effects can also ripple. If deleting a building causes you
to delete a department, you must also delete (or move) all
employees working in that department.

In this example* the insert and delete side-effects
adequately represent the real-world behavior of the
application. Sometimes* however* you can choose constraints
that seem to fit your data* and later discover from the
consequences that you made a poor choice. In step 5* the
insert and delete side-effects are analyzed for you* so that
you can see the consequences of the constraints you chose*
if they do not represent your application correctly* you can
return to this step and modify them.

LOOPS: The analysis will also point out any loops in
the insertion order. Suppose you had decided that each
building must have at least one department located in it* as
well as each department being located in some building.
Then* to insert a building youwould have to link it to a
department; but to insert a department you would have to
link it to a building.- You couldn't begin to enter your
data, and therefore loops are illegal. This is why only one
entity set can be constrained to participate AT LEAST ONCE
in a given relationship.

TAGS: One further caution: when you put constraints on
a tagged entity set* you are actually putting the
constraints on the whole-entity set. Thus* in the example*
placing both constraints on the 'employees' (tag='emp')
entity set in 'manager' means that EVERY employee entity
must participate exactly once in 'manager' (in the 'emp'
role); this is just what you want* since every employee must
have exactly one manager. Suppose* however* that you wanted
instead to put constraints indicating that 'every manager
must supervise some employee'. You could not do this
without creating a seperate entity set for managers* since
placing the AT LEAST ONCE constraint on 'employees'
(tags'sup') in 'manager' would mean that EVERY EMPLOYEE must
manage someone.



—Page 22—

STEP 5: ANALYZE AND DISPLAY

5•I- INTRODUCTION

At this step* the design aid analyzes the insert and
delete side-effects for your intermediate design. You can
then display the results of this analysis and decide whether
they faithfully reflect the real-world consequences of the
inserts and deletes.

The analysis also finds those entity sets not used in
any relationship and those which form a subset pattern (see
example below). These situations are not illegal (unlike
loops)* but you should check to make sure that they are
meaningful.

If you chose subschemas* the display will be arranged
by subschema and will point out which side-effects go
outside the subschema. You may want to balance your choice
of constraints and subschemas so as to minimize the side-

effects which go outside a subschema.

5. 2. EXAMPLE

In the display* the '[Trace of column tells you which
entity set began the ripple of side-effects* and 'Ripple'
tells you the ripple number* i. e. how far from the original
insert or delete the ripple has gone. Refer back to the
earlier explanation (4.3) for an English description of the
side-effects displayed here. Begining at the step 5 menu:

Select operation: -
0 sprint explanation 1 sdisplay whole analysis
2 sdisplay for selected 3 sdisplay for insert/delete

subschema(s) of selected entity (entities)
4 sdisplay entity sets

not used

operation? 1 <DISPLAY WHOLE ANALYSIS>
<SEE 4. 3>

Display whole analysis:

Entity sets not used in any relationship:

notused relation

enm



—Page 23—

<SUSSET>

Subset pattern—when one entity set is constrained, to
participate exactly once (AT LEAST ONCE and AT MOST ONCE) in
a relationship, and another entity set is constrained to
participate AT MOST ONCE, the first set is essentially a subset
of the second. The following entity sets show this pattern.

Entity set (Tag) Relationship Entity set (Tag)

subset relation

doment idomtalrel irangent irangt

employees ! {assignment Sjobs S

Display of insert side-effects (ordering) <INSERTS>

Trace of Ripple To add (Tag) Must link to (Tag) Via

projinsert relation

traceof SripnumS toadd ladtag!linkto !Intag{via

departments •
employees !
employees S
employees i
employees S

1! departments
I!employees
1{employees
1{employees
2! departments

{buildings
{departments
!employees
Sjobs
ibuildings

Ilocation

!works_in
sup {manager

{assignment
!location

Display of delete side-effects (further deletes) <DELETES>

Trace of Ripple To delete (Tag) Will/may delete (Tag) Via

projdel relation

traceof •ripnum!todel idltag !"u_m iw_mdel »wltag'via

buildings
buildings
departments
employees
jobs

lSbuildings !
2i departments!
I *departments S
1{employees {sup
II jobs {

!may {departments
Swill{employees
iwill!employees
iwill!employees
Swill!employees

!location

!works_in
!works—in
•manager

•assignment



—Page 24—

Select operation:
0 sprint explanation 1 sdisplay whole analysis
2 sdisplay for selected 3 sdisplay for insert or delete

subschema(s) of selected entity (entities)
4 sdisplay entity sets

not used

operation?

You would then return to the menu of steps* and go back
to step 4 (if you weren't satisfied) or on to step 6.



—Page 25—

STEP 6: CHOOSE ATTRIBUTES

6. 1. INTRODUCTION

When you decide that your choice of entity sets*
relationships and constraints faithfully reflects the
meaning of your data* you are almost ready to produce the
design. All that is needed is to choose the attributes of
your entity sets* that is* the domain-name and format for
each piece of data you want to record for each entity set.
(See 'The INGRES Reference Manual'* under QUEL* for a
description of the allowable formats). Each entity set must
have one attribute—its key or identifying attribute—which
will have a unique value for every entity.

You can also choose attributes for relationships* but
not the key attributes. The key of a relationship will be
made up of the key attributes from the participating entity
sets.

6. 2. EXAMPLE

Step 6: Choose attributes

Select operation:
0 sprint explanation
1 ssequence through entity 2 sdefine attribute(s) for

sets* defining attribute(s) entity set or relationship
3 sdelete attribute(s) of 4 siist entity sets that have

entity set or relationship attributes
5 siist relationships that have 6 sCheck keys (will list

attributes entity sets without keys)

operation? 1 <SEQUENCE THROUGH >

Sequence through entity sets* defining attributes:

Warning: the key attributes are used (together) as a surrogate
for an entity* so it is strongly suggested that you use only
one attribute as a key (instead of two or more). Note that you
must designate at least one attribute as a key* the 'check keys'
operation on the menu checks that each entity set has a key
attribute* and this check must be passed before the design will
be produced..

The allowable formats for attributes are: cl to c255, il* i2*
i4* f4 or f8.

See the INGRES Reference Manual for more details.



—Page 26—

Define key or non-key attributes for entity set 'employees':

attribute? empno
format? i2

Is 'empno' a key (identifying) attribute for entity set 'employees'?
y or n? y

attribute? name

format? cl5

Is 'name' a key (identifying) attribute for entity set 'employees'?
y or* n? n

attribute? salary
format? f4

Is 'salary' a key (identifying) attribute for entity set 'employees'?
y or n? n

attribute?

continue (y or n)? y <—:—This question allows you to stop
the sequence if you want to.

Define key or non-key attributes for entity set 'buildings':

attribute? siteno

format? i2

Is 'siteno' a key (identifying) attribute for entity set 'buildings'?
y or n? y

attribute? capacity
format? i2
Is 'capacity' a key (identifying) attribute for entity set 'buildings'?
y or n? n

attribute? address

format? c30
Is 'address' a key (identifying) attribute for entity set 'buildings'?
y or n? n

attribute?

continue (y or n)? y

Define key or non-key attributes for entity set 'departments':

attribute? deptno
format? i2
Is 'deptno' a key (identifying) attribute for entity set 'departments'?
y or n? y



—Page 27—

attribute? name

format? clO
Is 'name' a key (identifying) attribute for entity set 'departments'?
y or n? n

attribute?

continue (y or n)? y

Define key or non-key attributes for entity set 'jobs':

attribute? jobno
format? i2

Is 'jobno' a key (identifying) attribute for entity set 'jobs'?
y or n? y

attribute? position
format? cl5

Is 'position' a key (identifying) attribute for entity set 'jobs'?
y or n? n

attribute? hours

format? clO

Is 'hours' a key (identifying) attribute for entity set 'jobs'?
y or n? n

attribute?

< You have completed the sequence.

Select operation:
0 sprint explanation
1 ssequence through entity 2 sdefine attribute(s) for

sets* defining attribute(s) entity
set or relationship

3 sdelete attribute(s) of 4 siist entity sets that have
entity set or relationship attributes

5 siist relationships that have 6 scheck keys (will list
attributes entity sets without keys)

operation? 4 <LIST>



—Page 28—

List of entity sets that have attributes
Entity set Attribute Format Key

entatlist relation

!esetnm !eatnm 1eatfor 1key

!buildings (address !c30 In

{buildings 'capacity 12 'n

•buildings siteno 1i2 y
!departments deptno i2 y
!departments name clO n

!employees empno i2 v
Semployees name cl5 h
!employees salary f4 n

•jobs hours clO n

•jobs jobno i2 y
!jobs position cl5 n

Select operation:
0 sprint explanation
1 ssequence through entity

sets* defining attribute(s)
3 sdelete attribute(s) of

entity set or relationship
5 siist relationships that have

attributes

2 sdefine attribute(s) for

entity set or relationship
4 siist entity sets that have

attributes

6 sCheck keys (will list
entity sets without keys)

Pressing return key within an operation will return you to
this menu. Pressing return key now will return you to the
menu of steps,
operation? 2 <DEFINE>

Define attribute(s) for selected entity sets and/or relationships:

The allowable formats for attributes are: cl to c255* il, i2*

i4. f4 or f8.

See the INGRES Reference Manual for more details.

Do you want to define attributes for entity sets or relationships first?
e or r (press return if neither)? r <FOR RELATIONSHIPS>

Define attributes for relationship(s):



—Page 29.—

relationship? depthead

Define attributes for relationship 'depthead':

rellist relation

relnm Sentnm Stag

depthead
depthead

{departments i
{employees i

< This reminds you which
entity sets are involved
in 'depthead'.

attribute? years
format? il

attribute?

< Note that you cannot choose keys.

relationship?

Do you want to define attributes for entity sets or relationships next?
e or r (press return if neither)?

Select operation:
0 sprint explanation
1 ssequence through entity 2

sets* defining attrib'ute(s)
3 sdelete attribute(s) of 4

entity set or relationship
5 siist relationships that have 6

attributes

sdefine attribute(s) for

entity set or relationship
siist entity sets that have
attributes

scheck keys (will list
entity sets without keys)

<CHECK KEY>.operation? 6

Check keys:

Key check succeeds* all entity sets have key attributes.

Checking for compound keys...
< You have no compound keys.

Select operation:
0 sprint explanation
1 ssequence through entity 2

sets* defining attribute(s)
3 sdelete attribute(s) of 4

entity set or relationship
5 siist relationships that have 6

attributes

operation?

sdefine attribute(s) for

entity set or relationship
siist entity sets that have
attributes

scheck keys (will list
entity sets without keys)



—Page 30-—

Now you would be ready to produce the design



—Page 31 —

STEP 7: PRODUCE DESIGN AND QUIT

7. 1. INTRODUCTION

When you are satisfied with your intermediate design*
select this step to terminate the design and produce two
files: one with a listing of your intermediate design and
the resulting schema* and one with 'create' statements for
the relations in the schema. To use the second file* create

your database using the Unix commands 'createdb' and
'sysmod'. Then call INGRES, giving it this database name.
After the asterisk prompt appears, type 'i filename' with
the name of the create-statements file. This will cause

INGRES to create the relations. You can then enter and

modify your data.

In the schema* you will see a heading 'Foreign Key (of
Relationship)'. 'Foreign key'means that an attribute which
is a key in one relation is being used in a different
relation (forming a connection between the two). In the
example below* the key attribute of 'jobs' is 'jobno'.
'Employees' has an attribute 'assignment' which matches
'jobno' in format. The 'Foreign Key' column tells you that*
for each tuple in the 'employees' relation* the value in the
domain 'assignment' should be a job number which relates
this tuple to a tuple in the jobs relation. Thus you could
run the following Quel query on your database to get a list
of your employees with their current jobs.

range of e is employees
range of j is jobs
retrieve into emplist (e.empno* e.name, currentjob = j.position)

where (e.assignment = j. jobno)

2 1- EXAMPLE

This is how the design/schema file appears for the
example of the other steps:

Intermediate Design

Entity sets:

employees
buildings
departments
jobs



—Page 32—

Relationships (with constraints):

Relationship Entity set (Tag)

assignment
assignment
qualified
qualified
depthead
depthead
works_in
works_in
manager

manager

allocation

allocation

location

location

employees
jobs
employees
jobs

departments
employees

employees
departments
employees
employees
departments
jobs
departments
buildings

emp

sup

At At

Least Most

Once Once

y
n

n

n

n

n

y
n

y
n

n

n

y
n

y

y
n

n

y
n

y

n

y
n

n

n

n

n

Schema

Relation: emp
Domain

empno

name

salary
assignment
manager_sup

works_in

loyees
Format

i2

cl5

f4

i2

i2

i2

Key
yes

no

no

no

no

no

Foreign

jobno
empno

deptno

Key (of Relation)

jobs <—
employees
departments

—See

note

above

Relation:

Domain

siteno

capacity
address

b ui ldings
Format

i2

i2

c30

Key
yes

no

no

Foreign Key (of Relation)

Relation:

Domain

deptno
name

d epartmenti
Format

i2

clO

Key
yes

no

Foreign Key (of Relation)

Relation:

Domain

jobno
position
hours

J ob s

Format

i2

cl5

clO

Key
yes

no

no

Foreign Key (of Relation)



—Page 33—

Relation:

Doma in

empno

jobno

Relation:

Domain

deptno

empno

quali fied
Format Key

i2 yes

i2 yes

depthead
Format Key

i2 yes

i2 yes

depthe_years i no

Relation:

Domain

deptno
jobno

Relation:

Domain

deptno
siteno

allocation

Format Key

i2 yes

i2 yes

location

Format Key

i2 yes

i2 yes

7. 3. FURTHER COMMENTS

WARNING: Occasionally duplicate domain
generated in a single relation. For example,
each employee was assigned to an office as well

names are

suppose that
as a job;

then you might see the following in the schema file:

Relation:

Domain

empno

name

salary
assignment
ass ignment
manager_sup

works in

employees
Format Key
i2

CIS

f4

i2

i2

i2

i2

yes

no

no

no

no

no

no

Foreign Key (of Relation)

jobno
rmno

empno

deptno

jobs
offices

employees

departments

Duplicate domain names within a single relation are illegal
in INGRES, so please check for them in the schema file and
change one of the names. (Remember to change the names in
the file of 'create' statements also).

Also note that any entity set with a compound key (more
than one key attribute) requires multiple domains to
represent it in a relation—this may be awkward and is not

r ecommend ed,



—Page 34—

ec-iliCthe VctlZ an" <reateHueT*PLl'Sr^'lA«ith the de.ign. then yoU are readj to creator databasecreate your relations using the Create' fi!e. and e"^


	Copyright notice 1982
	ERL-82-23

