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Abstract

In this paper we present a characterization of those Wiener

functionals that are the likelihood ratio for a "signal plus independent

noise" model. The characterization is expressed in terms of the

representation of such functionals in a series of multiple Wiener

integrals.
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Introduction

Let {y , 0 < s <_ T} be a random process with measurable sample

functions satisfying |yg| <Ka.s. Let {Ws, 0<s<T} be aWiener

process which is independent of the {y , 0 ± s < T} process. Let

>t

A. = exp{ ysdws -^
o

y^ds}

Then A. is the unique solution to the integral equation

At=l + Ac yc dWc
s s s

and admits the series representation

N

A. = lim in q.m. £ u (t)
N^oo n=0

where uQ(t) =1 and

un(t) = un-1(s) ys dW£

Let F? denote the a-field generated by {We, 0 <6 <t}. Since
convergence on quadratic mean commutes with conditional expectation, we

have (as was observed in [1] and [3])

(1)

w

E(At|F )

where

w

I E(un(t)|F )
n=0 n t

e° ft r n

I ( (
n=0 JO JO

r*2
Vn^T •••» tJ dWt ••'•)dWt )dWt

n ' n n Vl *n

(2) vn(tr ••••, tn) =Etyftj) y(t2) •••• y(tn)) .
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and the integrals are iterated Ito integrals. The functional

g(W) =E(Aj|FT) is a nonnegative functional of the Brownian motion, its

Wiener-Ito representation is given by (1) with the kernels v (•••)

satisfying (2); that is, the n-th order kernel vn(t-j, ••••t ) is the

n-th order moment of a process which is independent of W. In this note

we consider the converse problem: Let g(W) be a square integrable

functional of the Wiener process W with the Wiener-Ito representation

T n 9

(3) g(W) =C+I f (( ( f hn(t,, ••••,tn)dWf *...)dWt )dw.
n h Jo Jo n ' n n Vl *n

where the integrals are iterated Ito integrals. This representation will

be abbreviated by

(3)' g(W) =C+IhnnWn
n

with h"«=> Wn denoting the n-th order iterated stochastic integral. The

problem that we consider is the following: given a square integrable

functional of the Brownian motion with representation (3) or (3)1, what

conditions would ensure the existence of a process {yt, 0 ±t <.T},

independent of W, such that

(4)° hn(tl, ••••,tn) =E(y(t1) y(t2) y(tn))

for all n and all 0 < t^ < t« ••• < tn £ T? Another way to state the

problem is the following: the functional (1) is the likelihood ratio of

a "signal plus independent noise" with respect to the "noise only"

hypothesis and the problem is to characterize the nonnegative functionals

of the Brownian motion that represent the likelihood ratio of a "signal

plus independent noise" with respect to the "noise only" hypothesis.
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Let g(X,W) denote

(5) g(X,W) =C+ I Xn h n Wn
n

It will be shown that g(W) has the "signal plus independent noise"

representation, i.e., h satisfy (4) if and only if g(X,W) as defined

by (5) is a nonnegative random variable for every nonnegative X.

Notation: For the representation of g(W), h (ti, ••"•>0 has to be

defined for ordered n-tuples only (cf. (3)), namely for t,, •••, t

satisfying 0 £ tj < t2 < ••• <t <T. Define hn(tj, •••>tn) for

unordered n-tuples of distinct times by

(6) hn(tlf ....,tn) =hn(ti , .....t, )
i n

where (t. , ••••,t. ) is the rearrangement of (tn, •••,t ) which yields
In

an increasing sequence. We will not distinguish between two kernels

hn(t-j, *''»tn) and h (t-j, •••>tn) which are equal almost everywhere

(Lebesgue) on [0,T]n, Note that (6) leaves hn(t-j, •••>tn) undefined
on a Lebesgue set of measure zero in [0,T]n.

Let IT ' J denote a multinomial of degree m in n variables

XT —• xn

n(n,m)= j cPVP2-'PnxV2,,,,Pn
|p|<m ] 2 n

where p^, i = 1, •••, n are integers and |p| = £. p., A multinomial

nv ' ; is said to be nonnegative if it is nonnegative for all values

of its arguments x-j, •••, x . Let Wbe a Wiener process and t" an
n-tuple of real numbers satisfying 0<t^ <T, i =1, •••,n, n^n,m'(W,tn)
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will denote the multinomial ir"*"1^ evaluated at x. - W(t.)» i= 1» •••9n:

n^>(w,t") = I cPi'P2'',"P"x^x2P2...xnP"

where p., i =1, •••, n are integers and |p| = I. p^. A multinomial

jjCn,m) ^s sai-cj tQ be nonnegative if it is nonnegative for all values of

its arguments x,, ••• x , Let Wbe a Wiener process and tn an n-tuple of

real numbers satisfying 0£t1 £T, i =1, •••, n. n^n'm^(W,tn)
will denote the multinomial i^n'm^ evaluated at x.. =W(t.j), 1=1. ••• n:

n(n'm>(w,tn) = I cPl9",,Pn(w(t1))Pl (w(tn))Pn
|P|Sn

H (tn) is defined as
n —

t1 tn
(7) Hn(tn) =Hn(tp...,tn) =jo .... (Q hn(er...,en) de1 -

Finally, n(n9m)(H,tn) is defined as

n(n'm)(H,tn) = I cPl''",Pn H.^t,,^,...,^,^,^, ,t ,...,t )
|p|£m |p| y l j c c " •

Pi Pn

Theorem. Let g(W) =C+ Eh a Wn be the Wiener Ito representation of a

square integrable functional of the Wiener process over [0,T]. Assume

that for all n and all n-tuples tn, |hn(tn)| £ K. Then the following
are equivalent.

(a) g(X,W) is a nonnegative square integrable random variable for every

positive real X.

-5-

de
n



(b) There exists a sequence of positive real numbers X such that

X -»• ~ as r -»• * and g(W) and g(X ,W) are nonnegative random variables.

(c) For every nonnegative multinomial Tl^'^ it holds that n^n'̂ (H,tn)
is nonnegative.

(d) There exists a random process {ycJ<s<T} such that |y | £ K and

EMt^yUg) ••• y(tn)) =hn(tr....,tn)

for almost all (Lebesgue) points (ti»,,#>tn) ™ [0J]n (tne probability
space on which the y process is defined is unrelated to the probability

space on which the Wiener process W is defined).

(e) Let Pw denote the probability measure on the space of continuous

functions induced by W. Let {zt, 0£ t£ T} be a random process with
y

measurable sample paths on [0,T]. Let Pz+W denote the probability measure
ft

induced by X. = ze ds + W^. on the space of continuous functions. ThereZ Jq s z

exists a process {zg, 0£ s£ T} such that |z |£ K a.s. and {zg, 0£ s£ T}
Xis independent of the Wiener process W such that Pz+W is equivalent to

X XXPw and the Radon-Nikodym derivative of Pz+W with respect to Pw satisfies

dP^
-^ (W) =ig(H)

Proof. Obviously (a) implies (b). We turn now to the proof that (b)

implies (c). Recall first that for a deterministic square integrable

function <!>(•) we have (cf. equation (3.4) of [2]):

4>(e)dwj ( Melf---,ejdwa dwfl )
1 en

n-1

0 0

" 'o •- \] *(ei} hn(e2'--en+i)dwe1 d\+1 +%\° wq
(8)



the exact form of ip will not interest us. It follows by repeated

applications of this result that

w(t1) w(t2) .... w(tn) =
rT fT

VelU2(e2>"'Xtn(VdVA

n"2
+ I ijj a Wq

for some deterministic i|> , 0 £ q £ n-2 where x+(9) denotes the characteristic
q t

function (x+(9) =1 for 9 £ t and zero otherwise). Note that equation (8)

and the last equation the integrals over [0,T]n are multiple Wiener-Ito

integrals. Rewriting h «=» Wn as a multiple Wiener-Ito integral we have

n m

fT hn(91,...,e2)dwei -. dWg^

with h extended to [0,T]n by (6). Consequently, by the orthogonality

properties of the Wiener-Ito integrals

(9) E{W(t1)W(t2)..-W(tn) (hn = Wn)}

gXt/9!) - xtn(en) h^.— .e,,)*! .... den

=Hn<V"»V

Now, let ipn'm' be a nonnegative multinomial, that is,

Pr"'jPn Pi ..-n
? Cp]<m

Pr
xl ••• xn > 0

for all values of x,, •••, xn, then, replacing x^ by x^/X it follows that
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pf<m
Pi.—.P„ P]

xl
xm-|p| cpl

V i o

for all X > 0. Therefore, for all values of X for which (b) is satisfied

we have

E(g(xr,w) 7 x^"IpI cPl'''#,Pn(w(t1))Pl (w(tn))Pn> >o .
Ipllm

p1,p2>",»pn , ,
Denoting by t ' c " the |p|-tuple

P-( »•••• ,Pn
t = (t^tp...,^,^,

v ;
•V"*^ '

we can rewrite the last equation as

E{0+I^°Wq)( I f PcPl,",,,Pn
q H |pi£m

J J p^ ,•••,pn p-j ,••• ,Pn)
Xt (-e-

0 -

dW,
p i<m

The result will be a polynomial of order m in X . Note that terms of

the form

E{(xjh aW^X^.aW1"2)}

will contribute to the coefficient of xU" but not to the coefficient of
r

m >mXr. The coefficient of (A ) will, therefore, be

|pj<m
P19--*»Pn Pi»#"»Pn^C1 H|p|(i )
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Since this is the coefficient of the highest term of a nonnegative

polynomial, it must be nonnegative and this proves (c). The proof that

(c) implies (d) is based on an infinite dimensional extension of the

fundamental result on the existence of a solution to the moment problem

(theorem 1.1 of [4]). L. A. Shepp, in an unpublished memorandum, extended

theorem 1.1 of [4] and derived conditions for the existence of a

probability measure on function space with given moments. His arguments

will be repeated here. Let X = {X(t)} denote the space of real valued
ft

functions on [0,T] satisfying X(t) = xeds where xe is measurable on
JO s

[0,T] and ess-sup |xt| £ K(the ess. is with respect to the Lebesgue

measure). Let r = {y} be the collection of bounded continuous functions

on X with the norm

|Y| = sup |y(X)|
X^X

For a multinomial irm,nJ and n-tuple t° set

yJU - I cPr''''Pn(x(t1))Pl (x(tn))Pn
|p|£m ' n

Let r denote the collection of functions on X which are of the form y .
IT TT

note that this is a linear collection of bounded and continuous functions

on X. To each y_ in r associate the functional
'TT TT

f(yw} =n(m'n)(H,tn)

This functional is linear and continuous hence bounded, Therefore, by the

Hahn-Banach theorem', there exists a bounded linear extension of F(-) to

all functions y in r and this extension is nonnegative since irra,n'(H,t. )
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was assumed to be nonnegative. By the Riesz representation theorem there

exists a nonnegative measure y on X such that

F(Y) = Y(X) du(X) .

Since u(-) is nonnegative with u(X) = 1, u is a probability measure on =,

the space offunctions which are differentiable with a derivative essentially

bounded by K. The measure u(») therefore defines a process (Y(t), 0 £ t £ T}

such that

EMt,) -.. Y(tn)) = Hn(tr....,tn)

and this measure induces a measure on the space of bounded measurable

functions {ys, 0£ s£ T}, |yj £ Kand

E(y(t1)-...y(tn)) = hn(tr....,tn)

which completes the proof of (d), The proof that (d) implies (e) is

given in the introduction and (a) follows by replacing the "signal"
ft rt

ysds + Wt by A Agds + Wr

Remarks(a) The questions arises whether every "reasonable" nonnegative

functional of the Brownian motion satisfies condition (a) or (b) of the

theorem. The answer is negative as the following two simple examples

show. The first example, due to L. A, Shepp is as follows: Let

g(w) =}w2(T)

=1+f dW dWQ
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In this case hn =0 for n >2 and therefore part (d) of the theorem can-
1 2not be true for this g(W). Note that g(W) = j W (T) is a continuous

nonnegative functional on the space of continuous functions and

1 2j(XW(T)) is also nonnegative, however, in this case

g(X-W) f g(X,W)

(the representation (3) is not a continuous functional on the space

of continuous functions). The second example is due to B. Hajek: Condition

(e) of the theorem implies that

T
2 2E^WCnr =E0(.j ysds +WT)

T

(10) =E(f y ds)2 +EQW2(T) >EQW2(T)
Jo

where EQ denotes expectation with respect to the Pw measure and E-j

denotes expectation with respect to Py+W. On the other hand, if P-j is

the measure induced by dXt = -aXt dt + dWt, a > 0, XQ = 0; then, by Ito's

formula

E(X(T))2 =-a2E( X2 ds +T
JO s

hence E(X(T))2 <EW2(T) which contradicts (10). Therefore dP1/dPw does
not satisfy condition (e) of the theorem.

(b) The extension of the results of this note to the case of multiparameter

Wiener processes W(t-.,...jt ) is straightforward and therefore omitted

(cf. [1] and [2]).
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