

Copyright © 1982, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

USING THE PEARL AI PACKAGE

(Package for Efficient Access to Representation in Lisp)

by

M. Deering, J. Faletti and R. Wilensky

Memorandum No. UCB/ERL M82/19

31 March 1982

(Revised 27 May 1983)

Using the PEARL AI Package

(Package for /Efficient Access to
Representations in lisp)*

Michael Deering
Joseph Faletti

Robert Wilensky

Computer Science Division
Department of EECS

University of California. Berkeley
Berkeley, California 94720

February 19B2

ABSTRACT

This document is a tutorial and manual for PEARL
(Package for Efficient Access to Representations in Lisp),
an AI language developed with space and time efficiencies
in mind. PEARL provides a set of functions for creating
hierarchically-defined slot-filler representations and for
efficiently and flexibly inserting and fetching them from a
forest of associative data bases. In addition to providing
the usual facilities such as demons and matching, PEARL
introduces stronger typing on slots and user-assisted
hashing mechanisms.

♦ This research was sponsored in part by the Office of Naval Itesearchi^er contract
N00014-80-C-0732 and the National Science Foundation under grant HCS7B-08543.

Table of Contents

1. Introduction *
2. Running PEARL «

2.1. Under FY-anz lisp *
^2. Under UCI lisp 3

3. Creating Simple Objects *
3.1. Defining Symbols *
3.2. Defining Structures jj

4. Creating Individual Instances of Defined Structures 6
5. Accessing Slots of Structures 8
6. Storing In and Retrieving From the Data Base - The Simplest Way 11

6.1 Storing In the Data Base: Insertdb andRemovedb 11
6.2 Retrieving Hash Buckets From the Data Base: Fetch 12
6.3 Accessing the Results of Fetch: Nextitem 13

7. The DefaultValues for Unspecified Slots 14
B. Using Patterns For More Flexible and Powerful Retrieval 15
9. Marking Structures During Creation For More Efficient Retrieval 17
10. Printing Structures, Symbols and Other PEARL Objects 20
11. Error Messages, Bugs, and Error Handling Abilities 21
12. Short-Circuiting andRedirecting Create Using !, I andAtoms 22
13. More Flexible Hash Selection 23
14. Using Predicates to Constrain Fetching 27
15. More Useful Slot Types 30
16. Attaching Hooks to Structures (If-Added Demons) 32
17. Creating and Manipulating Multiple Data Bases 38
IB. Creating a Forest of Data Bases 39
19. Creating Expanded Subtypes of Previously Defined Objects 40
20. Fetching Expanded Structures 42
21. How Two Objects Match 43

21.1 When Is a Pattern not a Pattern? 43
21.2 The Matching Process 44

22. Binding Blocks of Structures Together Via Common Variables 47
23. Controlling the Unbinding of Variables by Match 48
24. Function Structures 49
25. More About the PEARL Top Level Loop and History Mechanism 51
26. Looping and Copying Functions 54
27. MiscellaneousVariations and Abbreviations 55
28. LowLevel Access Functions 57
29. Appendix ofUCI lisp functions added to Franz PEARL 58
30. Appendix ofFranz lisp functions added to UCI lisp PEARL 62
31. Bibliography 33
32. Index of Global Variables and Functions With Their Arguments 64
33. Concept Index 71

Update of Changes
Through

PEARL3.8
April 1983

Table of Contents

1. Introduction 76
2. Running PEARL 76

2.1. Under Franz lisp 76
5. Accessing Slots of Structures 76
10. Printing Structures, Symbols and Other PEARLObjects 76

10.1. Abbreviations 77
11. Error Messages, Bugs, and Error Handling Abilities 78
12. Short-Circuiting and Redirecting Create Using !, $ and Atoms 78
13. More Flexible Hash Selection 78
16. Attaching Hooks to Structures (If-Added Demons) 79
17. Creating and Manipulating Multiple Data Bases 80
19. Creating Expanded Subtypes of Previously Defined Objects 80
20. Fetching Expanded Structures 80
21.2 The Matching Process 80
26. Looping and Copying Functions 81
29. Appendix of UCI Lisp functions added to Franz PEARL 81
32. Index of Global Variables and Functions With Their Arguments 81
34. Compiling lisp+PEARL Files 82

Using the PEARL AI Package

(Package for Efficient Access to
Representations in Lisp)*

Michael Deering
Joseph Faletti

Robert Wilensky

Computer Science Division
Department of EECS

University of California, Berkeley
Berkeley, California 94720

February 1982

1. Introduction

PEARL (Package for Efficient Access to Representations in lisp)
is a set of functions for creating hierarchically-defined slot-filler
representations and for efficiently and flexibly inserting and fetching
them from a forest of data bases. Its intended use is in AI program
ming and it has been used at Berkeley in the development of several
AI programs including PAM [7] and PANDORA [8].

PEARL has the expressive power found in other AI knowledge
representation languages, but is extremely time-space efficient. For
example, using a data base of 4000 entries, PEARL takes only about
4.2 CPU milliseconds for an average unsuccessful query and 7.3 CPU
milliseconds of an average successful query on a PDP-10.

This document describes PEARL's use and is intended for the
beginning user. (A description of the implementation of PEARL will be
available shortly.) The best way to approach PEARL is to read this
document up through section 11 and then to take it to a terminal and
reread it, typing in the examples and observing their effects.

PEARL was implemented by Michael Deering and Joseph Faletti.
It was originally developed on a DEC PDP-10 under UCI lisp and was
subsequently moved to a DEC VAX 11/7B0 under Franz Lisp with help
from Douglas Lanam and Margaret Butler. Both PEARL and its docu
mentation are still being developed, improved, and debugged. Any
comments or suggestions will be appreciated. Send them to Joe
Faletti via Arpanet or Unix mail (Kim.FalettidBerkeley or
ucbvax!kim.faletti).

• This research was sponsored in part by the Office of Naval Research under contract
N00014-BO-C-0732 and the NationalScience Foundationunder grant UCS79-0«54S.

PEARL Documentation Page 2

2. Running PEARL

PEARL is implemented as a set of functions compiled and loaded
into lisp. Thus the full power of lisp is available in addition to the
added power of PEARL.

Since PEARL runs under two different lisps on two different
machines, there are a few differences between versions. Most of these
differences are in the method of starting PEARL up and in the names
of external files accessed by PEARL. The two parts of this section
describe how to start up PEARL either under Franz lisp or under UCI
lisp. You need only read the section which is applicable to your lisp.

2.1. Under Franz lisp

To access PEARL, simply run the core version of lisp containing
PEARL. On Berkeley Unix, this is available by typing the command:

% ~bair/bin/pearl

or, if ~bair/bin is in your search path, simply:

% pearl

During the startup process, PEARL will read in two files, .init.pearl
and .start.pearl, if they exist. These files are designed for purposes
similar to those of .lisprc. However, they split these functions into
two groups. In your .init.pearl file you should include any expressions
which change the user-settable parameters to PEARL. (For example,
methods for setting the size of data bases, the print function, and the
prompt are described below.)

When you wish to have other files read in at startup time, this
usually needs to be done after PEARL's parameters are set. PEARL is
set up so that after the reading of .init.pearl, it sets any necessary
parameters which you have not set in your .init.pearl and then reads
in the file .start.pearl if you have one. This is where any processing
which requires the attention of PEARL (such as the existence of its
data bases) should be placed. Thus .init.pearl is primarily for initial
izing PEARL and .start.pearl is for starting up your use of PEARL.
Note: unlike most Unix programs which look for startup files only in
your home directory, thereby limitting you to only one environment
for each program, PEARL looks for each file first in the current direc
tory and if there is none, then it looks in your home directory. This
allows you to tailor invocations of PEARL to the kind of work you do in
a particular directory.

PEARL Documentation Page 3

After reading in these two files, PEARL will then place you in a
modified prompt-read-eval-print loop, with a default prompt of
MPEARL> M. This can be changed by setting the special variable
•peariprompt* to the desired value. If you want the standard lisp
prompt "-> " to be used by PEARL, you must set •peariprom.pt• to nil
in your .init.pearl and PEARLwill do the right thing.

The primary feature of the PEARL prompt-read-eval-print loop is
that it uses a different print function. The default function is

(lambda (*printval*)
(valprint •printval* 4))

but this can be changed to whatever you desire by giving a new func
tion definition to pearlprintfn. The PEARL prompt-read-eval-print
loop also contains a number offeatures to improve upon the standard
Lisp top level. These include a history mechanism and are described
in chapter 25.

There are quite a few functions from UCI lisp which have been
added to PEARL to make it easier to move programs to Franz lisp. A
list of these with brief documentation of differences is included in an
appendix.

2.2. Under UCI lisp

To access PEARL, simply run the core version of lisp containing
PEARL. On the Berkeley KL-10 system, this is available by typing the
system call

RU PEARL[5500.504,PEARL]

During the startup process, PEARL will read in two files, 1N1T.PRL and
START.PRL, if they exist. The file IN1T.PRL is designed for purposes
similar to those of INIT.LSP. In this file you should include any
expressions which change the user-settable parameters to PEARL.
(For example, methods for setting the size of data bases, the print
function, and the prompt are described below.) If you wish to use the
REALLOC function to enlarge your memory space, this call should be
the last call in your INIT.PRL file.

When you wish to have other files read in at startup time, this
usually needs to be done after the REALLOC. The common kludge with
UCI lisp to solve this is to define an IN1TFN (initialization function)
which does this and then to reset the IN1TFN to nil which returns you
to the standard Lisp prompt-read-eval-print loop. However, PEARL
sets the 1NITFN for its own purposes so that this common "solution"
will not work. Instead, PEARL is set up so that after the reading of
INIT.PRL, it sets any necessary parameters which you have not set in
your INIT.PRL and then reads in the file START.PRL if you have one.
This is where any processing which requires the attention of PEARL
should be placed. Thus INIT.PRL is primarily for initializing PEARL
and START.PRLis for starting up your use of PEARL.

After reading in these two files, PEARL will then place you in a
modified prompt-read-eval-print loop, with a default prompt of
"PEARL> ". The M>" portion is the (modified) lisp prompt which is
printed whenever read is invoked and can be changed with the UCI
lisp function INITPROMPT. The "PEARL" is PEARL's addition and can
be set by setting the special variable •pearlprompt* to the desired

PEARL Documentation Pa*e *

value. If you do not want any prompt added byPEARL other than the
lisp prompt you must set •pearlprompt* to nil in your INIT.PRL and
PEARL will do the right thing.

The main feature of the PEARL prompt-read-eval-print loop is
that it uses a different print function. The default function is

(lambda (*printval*)
(valprint *printval* 4))

but this can be changed to whatever you desire by giving the function
pearlprintfn a new definition. Note that dskin and the break package
have been changed slightly to also use of this print function. Also,
although the functions names and examples below are in lower case,
PEARL in UCI lisp expects them all in upper case, just as the rest of
the UCI Lisp functions.

3. Creating Simple Objects.
PEARL allows four basic types of objects. The first two are

integers and arbitrary lisp objects and are created in the usual lisp
fashion. The second two are structured types provided by PEARL, and
are stored in an internal form as blocks of memory. These latter
types are called symbols and structures.

3.1. Defining Symbols
Symbols are PEARL's internal atomic symbols. SemanticaUy

they are like lisp atoms, but are represented and used differently to
make PEARL more efficient. Before they are used, symbols must be
declared (and thus defined to PEARL) by a call to the function symbol.
which takes as arguments any number of atoms whose names will be
used to create symbols. For example,

(symbol John)

creates one symbol called John and

(symbol Bob Carol Ted Alice Home
Office School Healthy NewYork)

creates several symbols at one time. Symbol is an nlambda (fexpr)
and returns a list containing the names of the symbols it created. A
one-argument lambda (expr) version is available as symbole.

There are two ways to get at the actual (unique) symbol: you can
use the function getsymboi or you can evaluate the atom whose name
is built out of the symbol name with the characters s: on the front.
The function symatom will build this atom for you when given a sym
bol name. For example, to set Bto the symbolBob use any of:

(setq B (getsymboi 'Bob))
(setq B s:Bob)
(setq B (eval (symatom *Bob))

Given an internal symbol, you canfind out its print name by passing it
to the function pname (which also will return the print name ofother
types of PEARL objects).

PEARL Documentation Pa8e 5

3.2. Defining Structures
Structures in PEARL provide the ability to define and manipulate

logical groupings of heterogeneous data and are essentially objects
with slots and slot fillers. As such, they act more like "records" m
Pascal or "structures" in C than Lisp lists. In reality they are more
than both, but for the moment the reader should keep records in
mind.

Just as you must define the form of a record in Pascal before
defining the value of a variable whose type is that kind of record, it is
necessary to define each particular form of structure you wish to use
in PEARL before creating an object with that form. PEARL provides
one function called create which is used both to define kinds of struc
tures and to create individual instances of these structures. (One
function is provided for both because a special individual is created
as a side effect of each definition. More on this is provided in section
7 on defaults.) The first argument to create distinguishes between a
call which defines and one which creates an individual. There are
three kinds of defining calls (base, expanded and function) and two
kinds of instance-creating calls (individual, pattern) to create. Only
one of each (base and individual) is described in this section. The
rest are left for later.

To start off with an example, let us suppose that you wish to
represent the conceptual act "PTrans" from the Conceptual Depen
dency (CD) notation of Schank. (The examples in this documentation
assume a passing familiarity with CD but lack of this should not hurt
you too badly and PEARL itself does not restrict you in any way to CD.
PTrans stands for Physical Transfer which has four "cases": actor
doing the transfer, object being transferred, original location and
final location.) First we must define the form which PTrans structures
will take. In C this would be a type definition for the type PTrans as
follows (assuming a system-provided definition of the type symbol):

struct PTrans {
symbol Actor,*
symbol Object;
symbol From;
symbol To;

!;
In Pascal this would be

type PTrans = record
Actor : symbol;
Object : symbol;
From : symbol;
To : symbol

end;

In PEARL,

(create base PTrans
(Actor symbol)
(Object symbol)
(From symbol)
(To symbol))

PEARL Documentation Page 6

does the job. Note first of all that in order to define a new form of
structure, the first argument to create must be base. Note also that
the second argument to create is the name of the structure form to
be created. Following this is a list of (<slotname> <type» pairs.
Structures are currently allowed to have up to 32 slots in Franz
PEARL or IB in UCI lisp PEARL as long as all slots within a particular
structure have mutually distinct names. Different structures may
have slots of the same name. Thus in applications of PEARL to CD
twenty different structure types might all have an Actor slot.

Five types are allowed for slots: symbol, struct int lisp, and
•etof <type>. Symbol and struct are the types just described. Int is
a normal Lisp integer value. The type lisp allows arbitrary non-
atomic Lisp values. Finally, setof <type> allows you to define sets
consisting of all symbols (setof symbol) or all structures (setof
struct) and can be done recursively (setof setof struct).

4. Creating Individual Instances of Defined Structures
Once you have defined a specific form of structure like PTrans,

you can create an individual PTrans using individual as the first argu
ment to create and the name of the base structure you want an indivi
dual instance of as the second argument. The rest of the arguments
are (<slotname> <value>) pairs in which the <value> must be of the
type that the slot was declared to be. The slots may be listed in any
order and need not be in the same order as denned. For example, to
create an instance of John going home from the office (i.e.. John
PTransing himself from the office to home) you would use this call to
create:

(create individual PTrans
(Actor John)
(Object John)
(From Office)
(To Home))

Create will return an object of type PTrans. with the slots filled in as
indicated. The object returned has been created and stored as a
hunk of memory in Franz Lisp or a block of memory in Binary Pro
gram Space in the UCI lisp (rather than Free Storage where most
Lisp objects are stored). Since you are using the PEARL prompt-
read-eval-print loop, the object returned by create will be printed in
an external list form, something like the above. However, if you print
a structure using the standard lisp print functions (as for example
some break packages will do), it will be printed by Franz lisp m the
normal way it prints hunks. (Warning: Since the structure actually
contains a circular reference to another hunk, this will cause prob
lems with programs which do not set prinlevel in Franz Lisp so gen
eral packages which you wish to add to PEARL should be modified to
use some PEARL print function.) With UCI lisp's normal prmt func
tion, it will show up as an address in Binary Program Space, looking
something like "#31534".

As with any lisp function that returns an object, we must store (a
pointer to) the result of create somewhere (for example, in the atom
Trip) if we wish to reference it in the future. Otherwise, the created
object will be inaccessible. (This point is clearer if you consider that
Pascal would insist that you do something with the result of the

PEARL Documentation **&e 7

function call, although PEARL and many languages like lisp and Cin
which every subprogram is a value-returning function allow you to
construct a value and then blithelygo on your way without usingit)

To store (a pointer to) the instance returned by create in the
atom Trip, you could do the following:

(setq Trip (create individual PTrans
(Actor John)
(Object John)
(From Office)
(To Home)))

Since this is a common operation, create provides the option of hav
ing (a pointer to) the newly created instance automatically assigned
to a lisp atom. This is accomplished by including the name of the
atom as the third argument to creaie. If the third argument to create
is an atom rather than a (<siotname> <value>) pair, create stores the
new object in this atom Thus the effect of the previous example can
be achieved by:

(create individual PTrans Trip
(Actor John)
(Object John)
(From Office)
(To Home))

(In addition, when create base PTrans is used, an assignment is
automatically made to the atom PTrans. thus making the defaultin-
stance of a structure easily available. To preserve this, calls to
create of the form (create individual PTrans PTrans ...) are disal
lowed (that is, ignored). In case you should actually wish to use the
atom PTrans for other purposes, evaluating the atom built by
prepending i: onto the structure name will give you the default
instance of a base structure and evaluating the atom built by
prepending d: will give you the actual definition. Changing the value
of these atoms is very dangerous. Given the name of a structure, the
functions instatom and defatom will construct these atoms for you.
For more information about the item assigned to PTrans and
i:PTrans, see the section 7 on defaults.)

PTrans is an example of a structure whose slots are all of the
type symbol. Amore complex example is that of MTrans (Mental
Transfer: an actor transfering a concept (Mental Object) from one
place to another (usually from himself to someone else). The MObject
slot is some other act and so would be of type struct resulting in the
following definition:

(create base MTrans
(Actor symbol)
(MObject struct)
(From symbol)
(To symbol))

A sample instance of MTrans is John told Carol that he was going
home from the office and would be created with

PEARL Documentation Pa8e 8

(create individual MTrans InformLeaving
(Actor John)
(MObject (PTrans Leaving

(Actor John)
!Object John)
From Office)

* (To Home)))
(From John)
(To Carol))

Note that to fill a slot of type struct with a structure value within a
create one just embeds the appropriate arguments for a recursive
call to create, except that you may leave out individual since it would
just be repetitive. If you should want to create an object of another
type within an individual or base structure, you must include the
alternative argument (individual, base, pattern, expanded, or func
tion) before the type name. This is particularlyusefulwhen you wish
to create a pattern with an individual instance in one of its slots.

The optional third argument of an atom name for storing in may
be included at each level if you wish. In the example above, create
actually will create two new instances, an MTrans which will be stored
in InformLeaving. and a PTrans which is pointed to by the MObject slot
of the MTrans and is also pointed to by Leaving. In this case, neither
InformLeaving nor Leaving is required. If Leaving were left out, then
one would still have a way to get at the PTrans via the MObject slot of
the MTrans that InformLeaving points to. However, if InformLeaving
were left out and the result of the call to create were not stored any
other way. there is one more way that the MTrans would be accessi
ble. The value of the most recently created object is always stored in
the special variable «lastcreated* by create so the value ofthe MTrans
would remain accessible until the next call to create. Note that if
there are recursive calls to create during this time in order to pro
cess structure values in slots, the value of Hastcreated* is continually
changing to the most recent one and the setting of •Jostcreated* is
the last thing create does. There is also a special variable called
•currenttopcreated* which is set by create at the top level call as
soon as the space for an individual or default instance is allocated.
Since it is sometimes handy for a piece of user code which runs dur
ing create (see the sections on !, $. predicates and demons) to be able
to access the topmost object, •currenttopcreated* is sometimes quite
useful.

As in C and Pascal, one can embed to any level Create does not
have facilities for more complex networks of structures, as there are
other functions in PEARL which allow their construction. Q-eate is
mainly used to create objectsfor other functions to manipulate.

5. Accessing Sots of Structures
In C and Pascal one can access the slots of a record or structure

by using dot notation. For example, in Pascal the To slot of the MOb
ject slot of the MTrans pointed to by InformLeaving would be accessed
with the expression lnformLeaving.MObject.To (or perhaps more accu
rately InformLeaving-.MObject-.To since slots really contain pointers
to objects). In Pascal and C, there are essentially only two things that
one can do to a slot of a record or structure: access it (get its value)

PEARL Documentation Page 9

and assign to it (give it a new value). In PEARL the macro path pro
vides a large number of ways to access and/or change the values in
slots of individual structures. (In the UCI lisp version this is called
ppath to distinguish it from the system function path.) Acall to path
is of the following general form:

(path <Selector> <Structure> <Slot-Name-or-list> <Value>)
<Selector> determines the action to be performed and is not
evaluated. <Structure> should evaluate to the object in which the
slot occurs (or in whose depths the object occurs). <Slot-Name-or-
list> should evaluate either to the atom name of the slot desired in
<Structure> or a list of the slot names which one must follow to get
down to the slot. <Value> (which is only needed when it makes sense)
should evaluate to the value to be put into the slot (or otherwise used
in performing the function). At this point, we will only describe the
two <Selector>s corresponding to accessing and assigning. These are
getand putrespectively. Thus to access the value of aslot, you would
use

(path get <Structure> <Slot-Name-or-Iist>)
(No value is needed; the purpose of this call is to get the value.) To
assign a value to a slot, you would use

(path put <Structure> <Slot-Name-or-list> <Value>)
For example, to access the Actor slot of the PTrans in Trip, either of
the following is appropriate:

(path get Trip 'Actor)
(path get Trip '(Actor))

This is essentiallyequivalent to a reference to 7"rip~.j4ctor in Pascal.
To access a slot within a structure in a slot of type struct, add

the slot names to the <Slot-Name-or-List>, just as we access embed
ded fields within fields in Pascal by adding more slots to the accessing
expression. For example, to access the place John told Carol he was
going inour MTrans example above, we want theTo slot of theMObject
slot of the Mlrans stored in InformLeaving:

(path get InformLeaving '(MObject To))
This is essentially equivalent to a reference to
InformLeaving*.MObject*. To in Pascal. PEARL will check each slot
reference, andwill indicate if a slot name is not found (perhaps due to
a misspellingor an unbound slot).

Similarly, to change the Actor ofour PTrans inTrip to be Bob:
(path put Trip '(Actor) (getsymboi 'Bob))

and to change the To slot within the MObject of the MTrans:
(path put InformLeaving '(MObject To) (getsymboi 'School))

which is essentially equivalent to assigning a value to
JnformLeaving~.MObject~.7b in Pascal. Note that the order of the
arguments to these functions is in not like the argument ordering of
prutprop.

CAUTION: Path does* not check values to ensure that they are of
the correct type before putting them in a slot Also, a change in a

PEARL Documentation Pa8e 10

structure with path does not cause it to be reinserted in the data
base (see the next section). Thus, before changing a structure, one
should remove it from the data base and then reinsert it after the
change.

These functions were gathered under the macro path because of
their similarity. However, if you prefer to have the action being per
formed lead off the function name in keeping with putprop, get, put*,
getd, etc., these two functions are also available a* putpath and get-
path with similar names also provided for all the other forms of path
described below. Thus the name "path" may be tacked onto the end
of one of the action selectors to path but the rest of the arguments to
these functions remain the same.

There are quite a few other operations which are allowed through
path which you will not need or understand until you have read the
rest of this documentation. We describe them here for completeness
but suggest you skip to the next section during your first reading. If
you feel there is one missing, feel free to suggest it since they are
easy to add.

path clear or clearpath - sets the selected path to the standard
default value for its type (nilsym, nilstruct, zero or nil). Note
that this is only the standard default and does not inherit a
default from above. See section 7 for more on default values.
path addset or addsetpath - add the specified value to aslot of
type setof.
path delset or delsetpath - delete the specified value from aslot
of type setof.
path getpred or getpredpath - get the list of predicates on the
slot.

path addpred or addpredpath - add the specified predicate to
the predicates on the slot.
path delpred or delpredpath - delete the specified predicate
from the predicates on the slot.
path gethook or gethookpath - get the assoc-list of hooks
(demons) on the slot.
path apply or applypath - arguments to this function are a
<Function-or-Lambda-Body>. followed by the <Structure>. and
<Slot-Name-or-Ust>. The <Function-or-Lambda-Body> is applied
to the value of the slot. (In the UCI Lisp version. apply# uuMd
so that macros will work. In the Franz lisp version, a PE^L-
supplied version of apply called apply* is used which also handles
macros "right".)
(Skip this next paragraph until you have read about hashing and

the data bases.) The method of processing the path in path functions
allows a form of indirection through the data base that is sometimes
helpful when you use symbols in slots as unique pomters to other
structures. Suppose you had the following definitions:

(create base Person
!* Identity symbol)

Name lisp))

PEARL Documentation Page 11

(dbcreate individual Person
!Identity John)
Name (John Zappa))

and you want to ask "what is the Name of the Person in the Actor slot
of Trip (above/' which you might normally write as:

(getpath (fetch (create pattern Person
(Identity ! (getpath Trip 'Actor))))

'Name)

This is very hard to understand. Ashorthand for this is the following:
(getpath Trip '(Actor Person Name))

which behaves like this: when path gets to the symbol in the Actor
slot of Trip, it notices that there is still more path to follow. It then
interprets the next symbol inthe path as the name of a type and does
a quick equivalent of fetch of a Person with itsfirst slot set toJohn. It
then continues to follow the path specified in this new structure,
finishing up with the value of the Name slot of the structure. (Note
that this depends on Person structures being hashed by the relevant
slot and will fail otherwise. Also note that the tendency of most users
of PEARL has been away from the use of symbols as indirections to
larger structures and toward actually putting the larger structure in
the slot. In this case this would imply putting the Person structure in
the Actor slot of PTrans and eliminate the need for "Person" in the
path list.)

6. Storing InandRetrieving From the DataBase-The Simplest Way
So far we have shown how to create structures and have treated

them pretty much like C structures or Pascal records. However,
PEARL's most important departures from these languages involve its
data base facilities. PEARL's data base can be thought of as one large
bag into which any structure can be placed. The data base can hold
hundreds, even thousands of separate objects. There are two basic
operations that can be performed upon the data base, inserting with
the function insertdb and retrieving with a combination of the func
tions fetch and nextitem.

6.1. Storing In the Data Base: Insertdb and Removedb
While the simplest forms of these actions are relatively straight

forward, the power and efficiency ofPEARL derives from the nuances
and controls available with these functions which take up much of the
rest of this document. Much of the power develops from knowledge
provided by the user about how each kind of structure is likely to be
retrieved (and therefore how it should be stored). Thus, the data
base benefits from knowing as much as possible in advance about the
objects that will be placed within it. This information is provided by
using a large variety of extra flags during definition calls to create. It
is used by insertdb to hash objects into a specific hash bucket in the
data base, by fetch to retrieve the correct hash bucket from the data
base, andby nextitem to filter the desired objects from thisbucket.

PEARL allows the construction and use of multiple data bases
which are described in detail later. Without exerting any effort, a
data base is automatically created called «maindb* and pointed to by

PEARL Documentation Pa«e 12

the special variable •db*. In general, all PEARL functions which deal
with a data base have an optional last argument which specifies which
data base to use. If it is missing, then the default data base pointed
to by *db* is assumed. Thus you can change the default data base
simply by assigning the desired data base to *db*. For simplicity, this
optional data base argument is notmentioned in the following discus
sion.

The function insertdb takes a single structure argument and
inserts it into the data base. In its simplest form insertdb requires no
user flags onthe definitions of structures. In this case, insertdb sim
ply bashes on the type of the structure regardless of its specific con
tents so that each entry ends up in a bucket with all other entries of
that type. For example, to insert into the data base the PTrans which
was saved in the lisp variable Trip above, you simply provide it as an
argument to insertdb:

(insertdb Trip)
We could also put the PTrans (saved in Leaving whose To slot was
changed to School) which was the MObject of the MTrans above in the
data base with:

(insertdb Leaving)
Since no information has been provided by the user about how to
efficiently distinguish PTranses in general, these two will be stored in
the same bucket (as will all PTranses). When inserting an item into a
bucket, insertdb will check to ensure that this specific item is not
already in that bucket (using eg) and will only insert it if it is not
already there, thus avoiding duplicates.

The function removedb takes a single structure argument and
removes it from any place in the data base where it has been put
using eg to determine equality.

Since one often wants to create an individual and then insert it
into the data base, there is a macro dbcreate provided whose argu
ments are precisely like create. Thus, (dbcreate individual PTrans
....)expands into (insertdb (create individual PTrans)).

6.2. Retrieving HashBuckets from the Data Base: Fetch
The simplest case of fetching from the data base is equivalent to

asking if a particular, completely defined object is in the data base.
This is performed by a combination of the functions flfetch and nex
titem. The first step is to retrieve the hash bucket(s) for the object.
For example, to determine whether the object stored in Trip is in the
data base, the first step is to call the function retch and store what it
returns (the form ofwhat is returned is described below):

(setq PotentialTrips (fetch Trip))

The function fetch takes a single structure argument which is
called the pattern. What fetch returns includes this pattern and the
hash bucket(s) from the data base which contain those structures
which are most likely to "match". The rules of "matching" are fairly
complex and are described in detail in section 20, but for the moment
it is enough to know that two structures match if their respective
slots contain equal values. Thus matching is closer to lisp's equal

PEARL Documentation Page 13

than to eg.

6.3. Accessing the Results of a Fetch: Nextitem.
Conceptually, what fetch returns is a restricted type of stream.

A stream is a "virtual" list, whose items are computed only as needed.
When a fetch from the data base is performed, the pattern provided is
only used to construct a stream containing that pattern and the ap
propriate hash bucket from the data base; no matching (comparing)
between the pattern and objects in the data base occurs. Thus the
stream contains pointers to all data base items in the same hash
bucket, regardless of their likelihood of matching the pattern. There
fore, the stream or "virtual list" returned by fetch is in fact bigger
than the list of actual items which match. (For this reason, the de
fault PEARL print function only prints how many potential items are
in the stream.)

For our purposes, you should regard the object that fetch re
turns to be a funny sort of black box, whose only,use is as an argu
ment to the function nextitem. Nextitem will compute the next ele
ment to be removed from the stream. When elements are extracted
from the stream with the function nextitem, the pattern is "matched"
against successive items from the hash bucket until one matches
(and is returned) or until the potential items run out (and nil is re
turned).

Nextitem is very much like the function pop in lisp because it
updates the status of the streamto reflect the extraction of the "top
most element" similar to the way pop replaces its list argument with
its caV. Nextitem does this by destructively modifying the stream
(but not the hash bucket); once the top item has come off it is no
longer a part of the stream, like pop, nextitem returns nil if the
stream is empty.

A stream, as returned by fetch in PotentialTrips, willnever be nil
but instead will be a list. In all cases, the first element will be the
atom •Stream*. In most cases, the second element (cadr) is the pat
tern (object being fetched) and the rest (cddr) is the hash bucket
that the object hashes to. However, it is entirely possible for the hash
bucket to either fail to contain any instances of the object, or to con
tain multiple instances of the object. The form that is printed by
PEARL's default print function is: the atom •stream:*, the object be
ing fetched, and the number of potential items in the stream, avoid
ing the prining of a lengthy result. (If the pattern is actually a func
tion structure, then the atom used is •function-stream:*.)

Thus, to actually determine whether the object in Trip is in the
data base, it is necessary to ask for the nextitem in the bucket of the
stream PotentialTrips (that is, in the cddr) which matches the object
being fetched (that is, the cadr of PotentialTrips):

(setq FirstResult (nextitem PotentialTrips))
(setq SecondResult (nextitem PotentialTrips))

If nothing matching Trip occurred in the data base, FirstResult would
contain nil; otherwise, it would contain an object in the data base
which matches Trip. If you have typed in all the examples we have
shown you above, then FirstResult will contain the same value asTrip.
SecondResult will be nil. (The only other object in the same bucket is

PEARL Documentation Pa8e 14

the value of Leaving, but that does not match because its To slot con
tains School after the path put above.) If the two structures m Trip
and Leaving both contained the same slot fillers, they would both
match Trip and each would be returned by nextitem on successive
calls.

This is essentially the only type of fetching that is useful with the
information presented so far. but more powerful types will be
described shortly.

Since the functions create, fetch, and nextitem are often used in
combination, several macros combining them are provided by PEARL:

When you wish to create a pattern only long enough to use it as
an argument to fetch, you can use the macro fetchcreate which
is defined in such a way that (fetchcreate blah) is equivalent to
(fetch (create blah))).
If you want to do a fetchcreate in a function definition and you
wish the pattern to be created only once but used each time this
function is called (a potential savings in space and time), the
macro inlinefetchcreate will call create when it expands and
then expand to a call to fetch with this pattern.
If you want to do a create in a function definition and you wish
the object to be created only once, the macro inlinecreate will
call create when it expands and effectively replace itself with the
result.

When you wish to fetch but only need the resulting stream long
enough to use it as an argument to nextitem, you can use the
macro firstfetch which is defined in such a way that (firstfetch
blah) is equivalent to (nextitem (fetch blah))).
If your only goal in fetching some fully-specified object is to test
for its existence in the data base, the function indb which ex
pects a single structure argument will return nil if it is notthere,
and non-nii if it is. (Note that indb uses streguot rather than
match.)
It is sometimes convenient to have a list of all the items which
would be returned by successive calls to nextitem on a stream.
The function streamtolist expects a stream argument and re
turns a list of the items whichthe stream would produce.

7. The DefaultValues for Unspecified Slots
When creating an instance of a given type, one may not always

wish to fill in all the slots of the structure, either because the slot
value is unknown or immaterial. PEARL has a mechanism for filling
unfilled slots with default values. The simplest form of defaulting in
volves two predefined objects, nilsym and nilstruct Ndsym is asym
bol and roughly corresponds to lisp's nil when nil is viewed as an
atom. Nilstruct is a structurewithout anyslots, and corresponds to a
null structure. In the absence of a specified value. PEARL will fill in
slots of an individual instance of a structure being created with wtf-
symif the slot type is symbol, nilstruct if the slot type is struct, zero
if the slot is of type int, and Usp nil if the slot is of type lisp or setof
<any type>. Note that it is upto the user to decide upon the meaning
ofnilsym and nilstruct during further processing. For example, you
must decide for your own application whether a nilstruct filling the

PEARL Documentation Pa8e l

MObject slot of a MTrans indicates that nothing was said or that what
was said is unknown.

Often you may desire closer control over the default values of a
particular slot within individual instances. For example, suppose you
had a definition ofPerson that includes several pieces of information
about a person:

(create base Person
(Identity symbol)
(Age int)
(Salary int)
(Health symbol))

The Identity slot would be filled inwith a unique symbol for that per
son (such as the symbol John), the Age slot would contain the age in
years, the Salary slot would get the person's monthy salary mdollars,
and the Health slot would contain a symbol indicating their state of
health. Now in creating an individual instance ofa Person the Identity
slot should be always filled in, but we may desire the other slots to be
defaulted to 30 (years), 20000 (dollars) and Healthy. However, under
the default system described so far, these would be defaulted to zero,
zero and nilsym. PEARL provides the ability to specify individual de
faults for eachslotofa particular structure type. This is done at base
creation time by following the type within a slot with the new default
value. Thus our definition of Person would be:

(create base Person
(Identity symbol)
(Age int 30)
(Salary int 20000)
(Health symbol Healthy))

Although the main purpose of a call to create base is to define at struc
ture, it also creates a special individual of the type being defined
which has its slots filled with the default values. For this reason this
individual is called the default instance of that type. It is a structure
instance like any other, only a pointer to it is kept with the type
definition, and it is consulted whenever an instance of that type is
constructed. Thus the default values (either the user-defined defaults
or the standard defaults) will always be used whenever the user de
clines to fill in a slot of a structure instance. For more on defaults,
see the discussion of inheriting in section 19 on creating expanded
structures.

& Using Patterns For More Flexible and Powerful Retrieval
If the fetching mechanisms described so far were the only sort of

fetching thatwe could do. fetch (and PEARL) would not be very useful.
What is needed is a way to only partially specify the values m the
structure to be fetched. Note that the default mechanism does not
accompUsh this, since all slots are specified at creation time, even if
they get nilsym, nilstruct, or nil for a value. What is needed is the
ability to specify a dbnt care value for slots whose values should not
affect the matching process during retrieval. The easiest way to ac
complish this in PEARL is to create a type of object called a pattern,
Apattern is similar to an individual instance of a structure except
that a special pattern-matching variable called ?*any* which means

PEARL Documentation Pa8e 16

dbnl care or match anything is used as the default value for
unspecified slots. (The reason for its name will be clear after the
description of pattern-matching variables later in this section. Even
more detail on pattern-matching variables and more powerful pat
terns is provided in sections 21-23 on the matching process, blocks,
lexically scoped variables, and the unbinding ofvariables.)

Patterns are created with'create using pattern as the first argu
ment. Other thanthis, their syntax is exactly the same as individuals.
An example of a. pattern creation is:

(create pattern PTrans JohnWentSomewhere
(Actor John)
(Object John))

This pattern would match any instance of PTrans in which John was
both the actor and the objectbeing moved. (Note that this pattern is
stored in the lisp variable JohnWentSomewhere in the same way as
other individuals.) The main use of patterns is as arguments to fetch,
as in:

(setq PotentialGoings (fetch JohnWentSomewhere))
Fetch will return a stream containing all PTranses in the data base in
which John was the actor and object, regardless what the From and lo
slots contain. More complex examples can be created. Patterns can
be embedded as in:

(create pattern MTrans InformJohnGoingSomewhere
(MObject (PTrans (Actor John)

(Object John))))

Since all unspecified slots are filled with ?-any*. this pattern will re
turn any MTranses concerning any of John's PTranses when passed to
fetch. Thus, ifwe insert InformLeaving from above in the data base:

(insertdb InformLeaving)
then the following will fetch that object:

(nextitem (fetch InformJohnGoingSomewhere))
Usually one is interested in amore specific piece ofinformation.

For example, if you knew that John told Carol something and wanted
to find out what it was, then you could do this two ways. One is to
create apattern, fetch it and look atthe MObject slot of theresult:

(create pattern MTrans WhatDidJohnTellCarol
(Actor John)
(From John)
(To Carol))

(setq Result (firstfetch WhatDidJohnTellCarol))
(path get Result 'MObject)

However, you might prefer to use a pattern which explicitly shows
that you want that value and gives you a slightly easier way to get at
it In this case, you can specify a pattern-matching variable m the
MObject slot of the pattern. A pattern-matching variable is created
by preceding an atom with a question mark ? as in?What. The ques
tion mark is a read macro character which reads the next atom and
builds the list pvar* What) out of it (or ('global* What) if What has

PEARL Documentation PaSe 17

previously been declared global to PEARL; see below for more on glo
bal variables.). During matching, this variable will get bound to the
value of the slot it gets matched against:

(create individual MTrans WhatDidJohnTellCarol
(Actor John)
(MObject ?What)
(From John)
(To Carol))

(firstfetch WhatDidJohnTellCarol)
To access the value of a pattern-matching variable in a structure, one
uses either the function valueof (which is an expr) or the fexpr var-
value. Both functions have two arguments: the name of the pattern-
matching variable whose value you want and the structure it occurs in
(which is evaluated internally by varvalue). Thus both of the following
are equivalent:

(valueof "What WhatDidJohnTellCarol)
(varvalue What WhatDidJohnTellCarol)

0. w»rtriwe Structures During Creation For More Efficient Retrieval
Besides specifying what type each structure is, the simplest

piece of information that insertdb would like the user to give it
through create concerns which slot(s) of a type would be most likely
to contain unique information about a particular instance of that
type. This information is used to differentiate instances of the type
from each other, so that they will be hashed into different hash buck
ets. This is similar to the "keys" that many data base systems ask
for For PTrans, the Actor slot is often the best choice for this role.
For Person, the Identity slot would be the best choice for this role.
Such unique slots are indicated to create when defining a type by
placing an asterisk '•' before the slotname in a (<slotname> <type»
pair. For example, our new definitions of PTrans and Person to take
advantage of this would look like:

(create base PTrans
(•Actor symbol)
(Object symbol)
(JYom symbol)
(To symbol))

(create base Person
(•Identity symbol)
(Age int 30)
(Salary int 20000)
(Health symbol Healthy))

If you execute this when you have already executed the other exam
ples in this document. PEARL will warn you that you are redefining the
base structures PTrans and Person. This is all right, since that is pre
cisely what we want to happen. However, the previous instances of
PTrans will remain hashed in the more inefficient way and will not
match any later PTrans structures that are defined. If you find these
warnings annoying when redefining structures, they may be turned off
by setting the special variable •warn* to nil instead of the initial t.
(Note that the lisp scanner requires a space (or other white space) to

PEARL Documentation Pa8e 1B

separate the asterisk from the slotname. Otherwise one would have
the slotname *A:tor).

Any number of starred slots may be provided within a structure
definition, but usually only one or two are necessary. How one de
cides which slots should be starred is an art, and depends
significantly on your application and the nature of your data. The
basic rule of thumb is to choose those slots whose values vary the
most widely from instance to instance. Abad choice will not usually
cause the system to bomb or operate incorrectly in any way. but
when it comes time to fetch an object back out of the data base the
systemmay have to take the time to scan a large amount of the data
base rather than finding the desired objectvery rapidly. Thus execu
tion time is usually the only penalty one pays for an improper choice
of slots to star.

However, there is one type of use of a slot which can cause prob
lems in combination with hashing information. It involves the use of
pattern-matching variables and will serve as a useful example of how
to use variables and of how insertdb and fetch use the hashing infor
mation to insert and find objects. The problem situation occurs when
you wish to insert items into the data base which contain avariable in
the starred slot (representing general knowledge) andthen use. as a
pattern, a structure with that slot filled. Thus, the following sequence
will fail to find Thing in the data base and instead will returnnil:

(create base Thing
(• One int))

(dbcreate individual Thing DBThing
(One ?0)
(Two 2))

(nextitem (fetchcreate individual Thing PatThing
(One 1)
(Two 2))

This fails simply because of the hashing. Let us see why. When in
sertdb is asked to put something into the data base, it seeks to put it
as many places as the hashing information indicates are good places
to want to look for it. With no hashing information at all. the only
thing insertdb can do is to put the object with all other objects of its
type. Thus, with no hashing information, all Things are put together
in the same hash bucket. With the hashing information, insertdb
would like to put DBThing ina second place based on the fact that it is
a Thing and on the value of its One slot. Unfortunately, its One slot
has an unbound variable in it and does not provide any information
which is useful. Thus the hashing process puts DBThing mto the data
base in only one place. However, when/etc/i indexes PatThing. it uses
the hashing information to determine that it should lookin the data
base under the combination of Thing and 1. Since DBThing is not
there, it is not found. If we remove the asterisk, this sequence will re
turn DBThing with ?0 bound to 1because both DBThing and PatThing
will getindexed into the same spot (along with all other Things). Thus
you should be very careful when determining how to hash types of
structures when you intend to insert them into the data base with
variables in them.

PEARL Documentation Pa*e 19

After more of the system has been described and examples of
fetching and inserting have been given the user will have a better
understanding of this process.

As another example, let us now create and insert an instance of
our new PTrans which has the Actor slot starred:

(dbcreate individual PTrans Trip
(Actor John)
(Object John)
(From Office)
(To Home))

This would insert Trip with all other PTranses and. because of the
starred slotActor, also with any otherPTranses with avalue of John in
the Actor slot. Next we redefine and recreate the MTrans:

(create base MTrans
(• Actor symbol)
(MObject struct)
(From symbol)
(To symbol))

(create individual MTrans InformLeaving
(Actor John)
(MObject (PTrans Leaving

(From John)
(To Carol))

(Actor John)
(Object John)
(From Office)
(To Home)))

reinsert the PTrans from the MTrans:

(insertdb Leaving)
and finally create and insert two other instances ofaPTrans. one with
different values in the From and To slots and one with different values
in the Actor and Object slot:

(create individual PTrans Trip
(Actor John)
SObject John)
From Home)

(To School))

(create individual PTrans
(Actor Ted)
(Object Ted)
!From Office)
To Home))

Note that this last PTrans will be indexed under the combination of
PTrans andTed andthus will not be in the same hash bucket we look
inwhen fetching Trip (which is indexed by PTrans and John):

PEARL Documentation Pa8e 20

(setq PotentialTrips (fetch Trip))
(setq Result (nextitem PotentialTrips)
PotentialTrips

Notice the form of the stream PotentialTrips at this point.

10. Printing Structures. Symbols and Other PEARL Objects
As mentioned in the beginning, PEARL stores symbols and struc

tures (and their definitions) in hunks of memory that are circularly
linked, lisp cannot print out the contents of these blocks in a useful
way. Franz Lisp sometimes goes into an infinite loop trying to print
them and the best UCI lisp can do is tell you its address, like #2934,
which is not very informative. As mentioned above, the PEARL
prompt-read-eval-print loop knows how to print these in symbolic
form. However, when you want your own programs to print them,
PEARL provides you with two pairs of functions to convert these
blocks into more readable form. The first we will discuss is the func
tion valform. Valform takes a struct, a symbol orany other type of
PEARL or lisp object as an argument and returns a lisp S-expression
describing the object. Thus if one calls valform on ourPTrans in Trip:

(setq TripAslist (valform Trip))
the Lisp variable TripAslist will contain the S-expression:

(PTrans (Actor John) (Object John) (From Home) (To School))
Note that valform does not cause the PTrans to be printed out at the
user's terminal, it is merely a function that returns an S-expression
(just as the lisp function list does.) PEARL functions will operate upon
structures and symbols only when they are in their internal form, so
the primary reason for converting structures to S-expressions is to
print them (or to modify them for use as new input to create). So
PEARL provides a more useful function valprint that is effectively
(sprint (valform <argument>)). (Sprint is a function provided by
UCI lisp or Franz PEARL which prints a lisp expression in a nicely in
dented form. There are more details on sprint in the appendix on UCI
lisp functions added to PEARL.) Valprint is normally used within a
lisp program to print out any PEARL construct onto the user's termi
nal and it is also used by the default print function in the PEARL
prompt-read-eval-print loop. Try typing the following and notice that
they are the same except that thesecond value is slightly indented.

(valprint Trip)
Trip

like sprint, valprint will accept a second integer argument telling it
which column to start printing in. The default pearlprintfn uses a
value of 4 for this argument to make the items typed by the user
more distinguisabie from the results typed byPEARL.

There is one other form of each of these two functions. The func
tions fullform and fuUprint are like valform and valprint but they
print more complete information. If you type

(fuUprint Trip)
you wiU notice that the result has two mysterious nits in each slot.
These represent other forms ofinformation (predicates and hooks or

PEARL Documentation Page 21

demons) which can be added to structures and which will be
described later. At the moment therefore, valform and valprint are
all that the user need remember.

Note also from above that when a pattern with ?*any* is printed,
only the name of that variable is printed, and not its value. (Try typ
ing JohnWentSomewhere and InformJohnGoingSomewhere if you do
not remember what this looked like.) If a PEARL pattern-matching
variable has not been bound. PEARL indicates this by printing no
value. If a variable is bound, both the variable name and its value are
printed. Later when you learn how to put your own variables in slots,
this will become more useful.

When given a data base, these functions assume that the user
does not really want the complete contents of the data base printed
out and so simply print (database: <databasename>). To actually
have the complete contents of a data base printed out, use the func
tion printdb. With no argument, it prints the default data base. Oth
erwise, it expects its argument to evaluate to a data base. A print
function which prints all the internal information contained in a
structure or its definition is debugprint.

11. Error Messages, Bugs, and Error Handling AbOities
Due to the complex implemention of PEARLand the lack of facili

ties in Lisp for easily distinguishing between types of input, a user's
error in using PEARL will not show up as soon as it occurs, but may in
stead cause some unfathomable part of PEARL to bomb out sometime
later. If this should happen, the user might try using the lisp trace
facilities, but wiU often find little useful information. This sad state of
affairs is currently unavoidable due to the difficulty of catching user
errors where they first occur. This is partly due to our inability to
predict what kinds of errors users are most likely to make.

PEARL checks as much as it can, but many features are impossi
ble or prohibitively expensive to check. The best strategy for the
user to foUow is to examine his last interaction with PEARL If the er
ror occurred in the bowels of create, then there is a good chance that
the user did something wrong in the details of a slot description in
the call to create, since gross structural errors in such calls are
checked for. Inspect your call closely.

Other errors can be even more difficult, since a function call may
blow up or fail to produce the desired result due to bad data passed
to create several calls ago. A general rule of thumb to use in tracking
down mystifying errors is to check out the definitions of the struc
tures involved in the function that failed. Thus if path blows up, one
should determine the type of the structure passed to path, and then
check the create call that denned that type.

Sometimes PEARL may appear to the user to be doing the wrong
thing, but due to PEARL's complex semantics, the user is really at
fault. To make matters worse, there is of course always the chance
that the error reaUy is in PEARL. Every effort has been made to
minimize this chance, and at the moment there are no known major
errors (except those indicated in this documentation), but as with
any complex evolving software system there is always the chance of
obscure errors. It has been our experience that most errors are due
to the user (including the implementors) not completely understand-

PEARL Documentation Page 22

ing the semantics of some PEARL feature. This documentation is an
effort to minimize this type of error. For any error whichyou commit
in which PEARL gives what you consider an unreasonable response,
feel free to report it and we will consider trying to catch it. These or
any other complaints, bugs or suggestions should be mailed to Joe
Faletti via Arpanet or Unix maU (Kim.Faletti@Berkeley or
ucbvax!kim.faletti).

12. Short-Circuiting and Redirecting Create Using !, S and Atoms
Sometimes, when creating an individual structure, one may want

to fill a slot with an already created structure that is pointed to by
some atom or returned by some function (or with whatever type of
value the slot requires). In this case, one does not wish to (or cannot)
describe the value for a slot as a list of atoms. To handle this situa
tion, PEARL allows you to Ust a Lisp expression which evaluates to the
desired internal form (that is, a form which needs no processing by
create), preceding it with an exclamation point "!". The structure (or
other object) resulting from evaluating the lisp expression will be
tested to ensure it is the. right type of value and, if it is, inserted in
the newly created structure as the value of that slot. (The mnemonic
idea of this symbol is as a sort of "barrier" meaning Stop processing
here.'!! and take this (almost) literally!!!) For example, after using

(create individual PTrans Ptrans23
!Actor John)
Object John)

(To Home))

to create an individual PTrans, leaving it in internal form in the atom
Ptrans23, you can then insert this PTrans into a new MTrans with:

(create individual MTrans
(Actor Bob)
(MObject » Ptrans23)
(To Carol))

At other times the user may want to take the result of evaluating
some Lisp code and splice it into the lisp expression describing the
structure being created at the point where the description of the
value of a slot would occur. In this case, you wish some Lisp code to
be evaluated and then you wish create to build a value for this slot by
further processing (scanning) the result of this evaluation. To this
end, PEARL will evaluate any slot value preceded by a "S' and insert
its result into the create call, proceeding to process it just as if the
user had typed it in directly. So if one stores the atom Alice in Name
with

(setq Name 'AUce); the atom Alice, not the symbol Alice
; (or the value of s:Alice).

or possibly

(setq Name (read))

with the user having typed Alice, then $ Name in

PEARL Documentation Page 23

(create individual PTrans
(Actor $ Name)
(Object $ Name)
(From Home)
(To NewYork))

is equivalent to having Alice .typed as the Actor and Object values:
create evaluates Name and then processes its value Mice as input.
Thus, the PTrans will be equivalent to

(create individual PTrans
(Actor Alice)
(Object Alice)
(From Home)
(To NewYork))

The power of this construct occurs when Name is a atom whose value
changes at run time (as when it is read above) or the create call is
within a loop in which Name takes on many different values.

In summary, both ! and $ cause the evaluation of the lisp expres
sion following them. However, ! stops the usual processing and ex
pects an internal value, whereas $ continues the usual processing and
expects a lisp description of the value. When you need either ! or $.
you will know it! Until then, do not worry if you do not understand
them very well!

There is currently one type of slot which allows the effect of !
without requiring that the ! be typed. In int slots, if PEARL finds an
atom which evaluates to an integer, rather than an actual integer, it
will evaluate the atom and store the result as the value of the slot.
(PEARL will eventually be modified to try this in other cases also.)

13. More flexible Hash Selection

The use of stars (asterisks •) to indicate useful slots for hashing
described earlier is only one of many hashing schemes that PEARL al
lows. This section describes the others, and how the user can control
them. The first point to note is that even with the star hashing a sin
gle structure can be hashed in several different ways. Thus if one
thinks that in a particular program PTrans will be frequently fetched
from the data base given only the Actor or only the Object (that is.
the program might only know the Actor and desire the whole PTrans,
or know only the Object and desire the whole PTrans) the user should
star both the Actor and Object slots within the definition of PTrans.
When PEARL stores a PTrans into the data base, it will index it under
both (PTrans + Actor) and (PTrans + Object) in addition to the usual
indexing with all other PTranses. In general, any number of slots can
be starred.

Another type of hashing does not use the type of the structure in
creating a hash index. If the symbol colon (:) is used before the name
of a slot, objects of that type will be hashed under that slot value only.
Thus if the Actor slot of the PTrans definition was preceded by a colon
instead of a star, then instances of PTrans would be hashed under the
value of the Actor slot alone rather the value of the (PTrans + Actor).
Ibis would be useful in the case in which one were interested in fetch
ing any structure in which a particular value, say the symbol John,
appered in a coloned slot. For example all structures in which John

PEARL Documentation Page 24

appeared in the Actor slot could be fetched at once (and very
efficiently).

A third type of hashing is star-star or double-star (**) hAahiwg if
a double star is used instead of a single star, PEARL will use triple
hashing. Only one triple hashing is allowed per structure. Triple
hashing requires that two, and only two slots be double starred. If
PTrans were to be defined in the following way:

(create base PTrans
(•• Actor symbol)
(•• Object symbol)
(From symbol)
(To symbol))

then when an instance of a PTrans is created, it will be hashed into
the data base under a combination of the three values (PTrans + Ac
tor 4- Object). As with all hashing, if a slot is necessary to a particular
type of hashing but is unfilled (or filled with nilsym or nilstruct) the
hashing will not occur. Triple hashing is used when one wants fast ac
cess to all individuals of a particular type with two slots likely to have
fairly unique values. In the case of PTrans. this would allow one fast
access to all PTranses in which John PTranses Mary somewhere. Dis
tinctions this fine are not usually necessary, and as it is slightly more
expensive at creation and fetching time, it should only be used when
the user is sure of the need for it.

A fourth type of hashing is colon-colon or double colon (::) hash
ing. It has the same relation to colon hashing as double star hashing
has to star hashing. If the **'s in the above are replaced with ::, the
hashing will be on (Actor + Object) ignoring the fact that the struc
ture is a PTrans. This might be useful in fetching all structures in
volving John and Mary. As with double star hashing, double colon
hashing should be used sparingly and only one such hashing pair may
be used in a type.

However, it is possible to combine the use of any of these hashing
methods in a single structure. Thus one could have both double colon
hashing and double star hashing, as well as several • and : bashings as
well. Given several ways, PEARL uses the one which the most complex
one is used during fetching, since that should provide the greatest de
gree of discrimination between items (that is, most likely to narrow
down the choices). If the value in a slot intended to take part in hash
ing is unbound or otherwise not useful, then the next most specific
method it used. Given the values which are considered useful and the
hashing information for the type of structure, the hierarchy of buck
ets to be chosen is as follows:

•* hashing
:: hashing
• hashing
: hashing

In addition to these four methods of hashing, there are several hash
ing labels which are modifiers on these methods and affect what
values are used to compute the index.

The remaining hashing flags do not introduce any new types of
hashing, but rather modify the way the existing types work. To

PEARL Documentation Page 25

motivate these, consider the implementation of Goal withing CD. In
early versions of CD, there were several different types of goals, in
cluding Delta-Prox (goal of being near something), Delta-Poss (goal of
possessing something), and so on. In general these delta goals were
of the form (Delta-<some CD primitive> (Actor ...) (Objective ...)).
This lead to an explosion of Delta-goals (e.g. Delta-Move-Fingers-
Within-Telephone-Dial), and a new way of handling goals was esta
blished. This was simply that all Goals were to have the form:

(create base Goal
(Planner symbol)
(Objective struct))

where the Objective would be filled with the appropriate structure,
whether it was a simple Poss or the $DialPhone script. This change
makes CD much cleaner, but poses somewhat of a problem for hash
ing. One of the major uses of hashing within some AI programs writ
ten in PEARL is to associate plans with goals. So it is best if this pro
cess is efficient.

As an example of this problem (using the early form of Delta-
goals):

; Declaration of PlanFor rules.
(create base PlanFor

!• Objective struct)
• Plan struct))

(create base Delta-Prox
(Planner symbol)
(Location symbol))

(create base Walk-Plan
(Planner symbol)
!From symbol)
To symbol))

; Store in the data base the fact that walking is a way of accomplishing
; a Delta-Prox goal.
(dbcreate individual PlanFor

(Goal (Delta-Prox (Planner ?X)
(Location ?Y)))

(Plan (Walk-Plan (Planner ?X)
(From nilsym)
(To ?Y))))

This structure simply says the fact that if one has a goal of being
somewhere, then one plan for doing this is to walk. Or, using the rule
in reverse, if you note that someone is walking to some location, then
you might infer that they had a goal of being at that location. Note
that after being put into the data base, the rule can be easily fetched
by presenting either half of it as a pattern.

Thus if a planning program has a goal of doing the action in the
atom GoalAct. then it can query the data base for any direct plans for
doing Act by:

PEARL Documentation Page 26

(fetchcreate individual PlanFor
(Goal ! GoalAct)
(Plan ?»any*))

So if GoalAct happened to be a Delta-Prox goal, then the rule above
would be fetched. However the revised form of goals hides the unique
nature of the Delta-goal, and the best one could do is fetch all PlanFor
rules that have a structure of type Goal in their Goal slot. This is a
serious loss smce all PlanFors have a Goal in their Goal slot; thus the
system would have to look through all PlanFors whenever it was trying
to fetch one. What is needed is a way of telling PEARL that when hash
ing on Goals, never hash the structure type Goal, but rather use the
item that fills the Objective slot of the Goal. This would solve our
problem nicely, as now all PlanFors would be hashed on the name of
the Objective (Prox, Dial-Phone, etc.), and a list of all PlanFors would
not have to be searched to find a particular one, rather the system
could just hash directly to it.

To indicate to PEARL that this hash aliasing is desired, place an
ampersand '&' before the slot name to be substituted for the struc
ture name when defining the structure. Thus Goal would be declared:

(create base Goal
(Planner symbol)
(& Objective struct))

Naturally only one slot can be selected for hash aliasing.
In this way. Goals change the way in which other structures use

them to index but the way in which Goals themselves are indexed will
not be affected. Since many other types of structures are likely to
contain Goals, we must be careful about how this affects the hashing
of all of them. It might be the case that PlanFor was the only struc
ture indexed based on Goals which would benefit from hash aliasing
and that some structures would actually be hurt by this because they
expected Goals to be only one of many types of values. In this case,
putting the control of how Goals get used by other structures into the
definition of Goal is a bad idea. Instead, the control can be moved up
into only the problematic structures. These structures can simply
add the ">" hash label to a starred slot, causing PEARL to use the first
starred slot of the slot-filling structure instead of its type. For exam
ple, when we put a both "•" and ">M on the Goal slot ofPlanFor then it
will always use the first starred slot of the Goal in its Goal slot:

(create base Goal
Planner

Objective struct))
! Planner symbol)

(create base PlanFor
(• > Goal struct)
(Plan struct))

Thus, the use of ">M hashing is called forced aliasing since the struc
ture filling a slot has very little control over it.

However, there is one way for a structure to affect how forced
aliasing happens. If the user wanted to also star the Planner slot of
Goal but wanted the Objective slot to be used in cases of forced alias
ing, then the use ofan "-*" on the Objective slot will allow that:

PEARL Documentation Page 27

(create base Goal
!• Planner symbol)
• ~ Objective struct))

thus allowing Goals inserted directly into the data base to be indexed
by the combinations Goal + Plannerand Goal + Objective while other
objects containing Goals would use the Objective slot rather than Goal
OtherObject + Objective.

On the other hand, if most structures containing Goals would
benefit from the use of the hash aliasing label "&" in Goal, but only
one or two are hurt by it, the use of "&" in Goal can be overridden by
the structures which will contain Goals by adding the "<" hash label to
the starred slot to produce anti-aliasing. This gives the controlling
structure the last word over how it is hashed.

(create base Goal
(Planner symbol)
(k Objective struct))

(create base OffendedStructure
(* < Slot struct))

Thus, the anti-aliasing "<" means jfust for this hashing, turn off hash
aliasing (if any) of any structure filling this slot.

The proper use of hash aliasing and anti-aliasing, like all the
hashing specifiers is an art that must be learned by applying them to
real systems, and the correct hash directives for a particular system
rely critically upon the statistics of that particular system operating
upon a particular set of data. The hashing mechanism was designed
to give the user benefit in proportion to the effort expended in deter
mining hash labels. With no effort, the structure type provides some
help. With the addition of each label or pair of labels, an item to be
inserted into the data base is indexed into another location in the
hash table. Thus the cost of extra labels is simply the time to find
another hash bucket (a few adds and multiplies), and add the item to
the front of the list implying the time and space incurred by one
cons-cell.

14. Using Predicates to Constrain Fetching
Sometimes when you are creating a pattern to fetch a structure,

giving the overall form of the structure is not specific enough. In par
ticular, it is often desirable to restrict the value of a slot to a
subrange. For example, using the structure Health:

(create base Health
(Actor symbol)
(Level int))

one might want to find out who is sick by creating a pattern that only
matches those Health structures in which the Level is less than -1 (on
a scale from -10 to 10 perhaps). This can be done by simply writing a
predicate (say Sick) which expects to be given the value of the slot
being matched against as its one argument:

(de Sick (Num)
(lessp Num -1))

PEARL Documentation Page 28

Then you simply add its name after the value within the <slotname
filler> pair of the pattern:

(create pattern Health HealthPattern
(Actor ?Person)
(Level ?Level Sick))

Given these definitions, a (fetch HealthPattern) would pass the Level
slotfiller of each Health structure it found in the data base to the
predicate Sick. If Sick returned true (non-nit) then it would consider
the slot to have matched whereas a nil from Sick would be considered
a mismatch. There are no standard predicates for users to use for
these purposes, but they are relatively easy to create as needed.

However, one often has a predicate which has more than one ar
gument only one (or none) of which are the slot value. For example,
one might want to include a special variable or the value of some oth
er slot of the structure or the structure itself. To make this easy
PEARL allows predicates to be arbitrary s-expressions which may con
tain any of several special forms for which PEARL substitutes the
current slot or structure.

If a predicate includes an asterisk +, this is replaced by the value
of the current slot (in the structure being matched against). If it in
cludes a double asterisk +•, this is replaced by the whole structure
being matched against. If you want the value of another slot in the
current structure, precede its name with an equal sign (as in =Slot-
Name to have the value of the slot named SlotName inserted). There
is a readmacro "=" which converts =5 into (*slctm S), just as the read-
macro "?" converts ?X into (*var* X) (or pglobal* X)) for pattern-
matching variables. While processing predicates before executing
them, PEARL will look for these three constructs and replace any of
them with the appropriate value, so pattern-matching variables can
also be used in predicates.

If there are several predicates on a slot, they are run in succes
sion until one returns nil or they have all been run. Thus, a list of
predicates provides the effect of a conditional and Thus, although
PEARL knows nothing special about logical connectives like or and
and, the effect of a the usual lisp and is automatically implied and
the conditional or of Lisp can be had by using the s-expression type of
predicate. If you wish things to run regardless of their results, pro
viding the effect of unconditional and, use hooks (demons).

The above was one of two types of predicates available. To
motivate the other type, consider the case of wanting to fetch all
MTranses about the occurence of a PTrans. This could be accom
plished in one of two ways. The first is:

; Jn this pattern example, all slots are automatically filled
; with ?*any* except the MObject which must be a PTrans.
(create pattern MTrans

(MObject (PTrans)))

Since this method actually results in ?*any* being matched against
the fillers in each of the PTrans's slots, it is a bit inefficient.

The second way uses structure predicates to avoid this matching
by specifying merely that the filler of the MObject slot must be a
PTrans structure. This is done by listing the name of a previously

PEARL Documentation Page 29

defined structure after a pattern-matching variable:
(create pattern MTrans

(MObject ?Obj PTrans))
PEARL will then bind Obj to any structure that is a PTrans (or expand
ed PTrans) and match successfully without examining any of the slots
of that PTrans. PEARL can tell the difference between these two types
of predicates since one will have some sort of function declaration
and the other will be the name of a defined structure. In the case of a
function with the same name as a structure (which the user should
never do as it invites errors) the name's structure role takes pre
cedence.

Since a similar effect is sometimes desired on slots of type sym
bol, a similar but more complex mechanism is provided with symbols
and with structures which failed the above test. If the name of a
predicate on a slot of type symbol or structure is the name of a type
of structure, PEARL will assume that what you want to know about the
value in this slot is whether there is anything in the database of the
type specified by the structure predicate with the slot value in its
first slot. Thus, if the data base contains anitem saying that the sym
bol John represents a person:

(symbol John)
(dbcreate individual Person

(Identity John))

then fetching a pattern with a symbol slot which has a Person predi
cate on it:

(fetchcreate pattern Thing
(Slot 7X Person))

will cause the equivalent of a fetch from the (default) database of the
pattern (Person (Identity John)). Note that this implies that the first
slot of a structure enjoys somewhat of a pre-eminence and that this
means that one should carefully choose which slot to put first. For
efficiency however, fetch is not actually used. The function actually
used is disguisedas which expects the slot filler, the structure
definition (not default instance) and an optional data base to look in.
Slot filler may be either a symbol or structure.

This second type of predicate can also result in a kind of
inefficiency which you might like to avoid. By putting a variable in
the MObject slot of the MTrans along with a PTrans structure predi
cate, we preclude PEARL from hashing the object in any useful way,
forcing it to look through all MTranses instead of only MTranses with
PTranses in their MObject slot. Since patterns are most often less
specific than the objects in the data base, this can make a big
difference. Another problem with a variable plus a structure predi
cate is that the structure predicate is either based on fetches and the
first slot or it is limitted to matching the type only. We might some
times want a more complicated structure to be used as a predicate.
However, if we opt instead for the more efficient fetching and match
ing by putting a structure in the slot, we have lost the ability to have
a variable bound during the match.

To allow you both to help improve the hashing and matching of a
structure and also to bind a variable as a side effect, PEARL provides

PEARL Documentation Page 30

a mechanism to attach an adjunct variable to the slot. This adjunct
variable in a slot is bound as a side effect whenever the values in the
slot of the two structures were already bound, have already been
matched successfully and all predicates and slot hooks have been
run. Adjunct variables may be local, lexically scoped or global, just as
any other variable. To use an adjunct variable, include the variable
after the value preceded by a colon and preceding any predicates or
slot hooks. For example.

(create pattern MTrans
(MObject (PTrans (Actor John)) : ?0bj))

would match any MTrans about John PTransing something, and also
bind the adjunct variable ?0bj to the actual PTrans structure that ap
plied.

Since PEARL uses hunks to create so many types of values of its
own, it also provides a set of predicates to test an item to see what
type it is. Many of them are quite definitely kludges since they
depend upon certain bizarre structures existing only in PEARL-
created items and not in user-created items and thus should not be

depended upon totally. These functions are streamp. databasep,
blockp, definitionp, psymbolp (to distinguish from Franz lisp sym-
bolp), structurep, symbolnamep, and structurenamep.

15. More Useful Slot Types

These last few examples begin to show the restricted nature of
basic integer values and of labelling slots as being of type struct. If
the values in an integer slot will range between -10 and 10. then you
would like to say that. If the values which will fill a slot of type struc
ture will be Events or Acts or States, you would like to specify that.
PEARL provides mechanisms to fill both of these needs.

In the case of an integer slot to be filled with values from a range
of -10 to 10, these integer values do not represent "levels of health"
very well either. Rather than saying that a person's "health level" is
-2, you might like to say it was "Sick". In fact, you would probably
like to say that the values of the slot will be one from among the set
of values "Dead, Critical, Sick, OK, Healthy and InThePink". Moreover,
you might like to specify that these values are to be associated with
integer values in such a way that the ordering you specified holds and
you may or may not want to specify precisely what integer values
should be associated with these atoms. In other words, you would like
a type which consists of a set of values with a linear ordering on them,
similar to the Pascal scalar or enumeration type.

Such a type exists in PEARL and is created by a call to the func
tion ordinal. For example, to create an ordered set of values to
represent levels of various states when you want the actual integer
values to be created by PEARL, you would say:

(ordinal Levels (Low Middle High))

which would associate the numbers 1. 2, and 3 with Low, Middle and
High respectively. If you want to specify the values to be associated
with each name, you simply list the value after each name. Thus, to
create a set of values for use in the integer Level slot of Health above,
you might say the following (the values need not be listed in order):

PEARL Documentation Page 31

(ordinal HealthLevels (Dead-10 Critical-6 Sick-2 OK 2
Healthy 6 InThePink 10))

Among the actions that ordinal performs are the following:
1. The assoc-list of names and values for the ordinal type can be ac

cessed by evaluating the atom built by prepending o: to the
name of the ordinal type. Given the name of an ordinal type, the
function ordatom builds this atom. Thus o:Levels contains (and
(eval (ordatom 'Levels)) returns) the value ((Low . I) (Middle . 2)
(High. 3)).

2. Atoms consisting of the name of the ordinal type concatenated
with a colon and the value name are created and set to the value
they represent. Thus Levels.Low is set to 1, Levels.Middle is set
to 2, etc.

3. Two atoms with :min and :max concatenated to the name of the
ordinal type are created and set to the lowest and highest in
teger values in the type. Thus HealthLeveJs.-min is -10, and
HealthLevels.-max is 10.

4. The name of the ordinal type is added the list of all ordinal type
names kept in the special variable •brdinalnames*.

5. The name of the ordinal type is stored with the slot so that the
print functions can convert from the integer value back into the
name. Since the default value for integers is zero but most ordi
nals will not have a zero value, the print functions will print
•zero-ordinal-value* instead of zero.

Having created an ordinal type, it is then possible to declare in a
structure definition that a slot will contain values of that type. The
use of values from this type is not enforced by PEARL but allows the
definitions of integer slots to be more readable, allows the use of the
names of values instead of their associated integers when creating in
dividuals and allows PEARL to print the more readable information
when printing an integer slot. The special atoms created allow predi
cates, hooks (demons) and other functions to refer to these values
without knowing their associated integers. We can now redefine
Health to use HealthLevels:

(create base Health
!Actor symbol)
Level HealthLevels))

and create an individual which says that John is in the pink of health:

(create individual Health
!Actor John)
Level InThePink))

Declaring a slot to be of type struct is similarly unenlightening,
so PEARL will accept the name of a structure type in its place. For
example, we can make the following definitions:

PEARL Documentation Page 32

(create base Person
(* Identity symbol))

(create base Health
(Actor Person)
(Level HealthLevels))

and the Actor slot of Health will be of type struct. However, there is
currently no extra type checking implied by this declaration
(although it is being considered), but again it improves the readabili
ty of declarations tremendously.

16. Attaching Hooks to Structures (If-Added Demons)
A fairly old construct within AI is that of demons. In their pure

form they could be thought of as asynchronous parallel processes
that watch everything going on within a system, lying in wait for a
particular set of conditions to occur. These conditions might be a
block-manipulating program stacking some blocks too high to be
stable, or a data base program violating a consistency constraint.
The main problem with classical demons was that in their most flexi
ble form they gobble up far too much system time, as well as being
very hard to program as it was hard to see just when they might pop
up during the execution of a program.

In an attempt to control the implementation of demons and at
the same time provide the user with increased control over the built-
in PEARL functions. PEARL allows the user to attach pieces of code to
structures that will be run when specific PEARL (or user) functions
access particular types of data or pieces of data at particular places
in the code. Thus, PEARL provides a general but restricted and fairly
efficient ability to control the operation of specific functions on
specific pieces of data by providing hooks in the PEARL functions
which check for requests within structures that certain functions be
run when they are accessed in certain ways. Thus PEARL has two use
ful sub-breeds of hooks which watch over either

a. the value of a particular slot of a particular individual structure,
referred to as slot hooks.

b. operations upon all individuals of a particular base structure
type referred to as base hooks.
like predicates, hooks can either be the name of a function to

run or a lisp s-expression to be evaluated. If an s-expression, they
can include the special forms ++ representing the current structure
or * representing the value of the current slot on slot hooks and of
the current structure on base hooks. Variables or slot names preced
ed by = are also allowed Oust as in predicates), referring to variables
or slots in the current structure. If hooks are run by functions which
take two items as arguments, like match, then the special form >**
may be used to represent the other structure (which > is meant to
suggest) and >• may be used for the value in this slot of the other
structure. (In the case of functions of only one argument. >• and >••
are the same as ** and *.) In functions which take two arguments, the
special form ? may be used to represent the result that the function
intends to return. (This will be *pearlunbound* in hooks which run
before the function has done its job.)

PEARLDocumentation Page 33

When hooks run in the context of a call to path, two special vari
ables are available: *paLthbap* which is the topmost structure passed
to path and •pathlocal* which is the current innermost structure
whose slot is being accessed. When hooks are run in the context of a
call to a function which deals with a data base, then the special vari
able db will contain the data base currently being used.

The functions used to fill in the special forms like *, **, =slot, and
variables before evaluation come in two flavors and are called fillinl

and fillin2. Fillinl is designed for hooks which run on single struc
tures and expects as arguments:

a. the function (s-expression) to fill in,
b. the slot value (or item if a base hook) to use for *,
c. the structure to use for **, and

d. the definition for the item provided as the third argument (for in
terpretation of =slot forms).
FUlinS is designed for hooks which run on two structures and

produce a result and expects as arguments:

a. the function (s-expression) to fill in,
b-c. the slot values (or structures if a base hook) to use for * and >*,
d-e. the structures to use for •• and >•*.

f. the definition for the structure provided as the fourth argument,
and

g. the result the function intends to return to use for ?.
Four functions for running hooks are provided for the user, two

for running slot hooks and base hooks for single items and two for
running slot hooks and base hooks for pairs of items. Runslothooksl
expects to be given the invoking function's name, the structure and
name of the slot on which to run the slot hooks, and the value to be
used for *. Runslothooks2 expects to be given the invoking function's
name, the two structures and name of the slot in them on which to
run the slot hooks, and the values to be used for • and >*. Run-
basehooksl expects to be given the invoking function's name and the
structure whose base hooks are to be run. Runbasehooks2 expects
the invoking function's name, the two structures whose base hooks
are to be run and the result the calling function plans to return.

If present, base hooks are run by most major PEARL functions. If
a base hook is labelled with <foo then the function foo will execute
the hook just after entry and whatever initialization is necessary. If a
base hook is labelled with >foo then the function foo will execute the
hook just before exitting. Slot hooks are run by most major PEARL
functions which look through the slots of a structure. If a slot hook is
labelled with <foo then the function foo will execute the hook just be
fore processing the slot. If a slot hook is labelled with >foo then the
function foo will execute the hook just after processing the slot.

However, hooks can be turned off selectively or completely. By
setting the atoms *ninallslothooks* and n-unallbasehooks* to nil you
can completely disable the running of all hooks. This is useful for de
bugging and also helps improve efficiency a bit if you do not use
hooks at all. There is also an atom to go with each PEARL function (of
the form •run...hooks*) which can be used to disable hooks for select-

PEARL Documentation Page 34

ed functions. The following is a complete table of what PEARL func
tions run hooks and the names of the labels that invoke them and the
atoms that control their running:

Base hooks are run by: invoked by hooks labelled:
create expanded <.expanded or >expanded
create individual . <individual or >individual
create pattern <pattern or >pattern
smerge <smerge or >smerge
nextitem <nextitem or >nextitem
standardfetch * <fetch or >fetch
expandedfetch * <fetch or >fetch
insertdb <insertdb or >insertdb
removedb <removedb or >removedb
nextequal <nextequal or >nextequal
indb <indb or >indb
standardmatch <match or >match

basicmatch <match or >match
strequal <strequal or >strequal

* fetch does not run hooks on function structures.

Slot hooks are run by: invoked by hooks labelled:
standardmatch <match or >match
basicmatch <match or >match
strequal <strequal or >strequal
path put <put or >put
path clear <clear or >clear
path addset <addset or >addset
path delset <delset or >delset
path addpred <addpred or >addpred
path delpred <delpred or >delpred
path get <get or >get
path getpred <getpred or >getpred
path gethook <gethook or >gethook
path apply <apply or >apply

Hooks of both kinds are controlled by these atoms, initially t:
runallslothooks — controls all slot hooks.
runallbasehooks — controls all base hooks,
•runputhooks* •runclearhooks*
•runaddsethooks* •rundelsethooks*
•runaddpredhooks* *rundelpredhooks*
•rungethooks* *rungetpredhooks*
•rungethookhooks* *runapplyhooks*
runmatchhooks *runsmergehooks*
Tunindividualhooks *runexpandedhooks*
•runpatternhooks* *runnextitemhooks*
•runfetchhooks* *runinsertdbhooks*
•runremovedbhooks* •runindbhooks*
runnextequalhooks *runstrequalhooks*

It is likely that hooks attached to a particular function would like
to run the same function in such a way that hooks will not be invoked.
Orin general, it is possible that you will want to run some PEARL func-

PEARL Documentation Page 35

tion in such a waythat it is "hidden" from hooks. To make this easy, a
macro is provided called bidden which temporarily sets the atom
run...hooks to nil, runs a command and then restores the former
value of that atom. J\>r this to work correctly, you must invoke the
function you wish hidden with the name corresponding to its
run...hooks atom. Thus, you can hide the creation of an individual
from hooks by executing:

(hidden (individual PTrans....))

(see Section 27 for the macro individual) butnotbyexecuting:
(hidden (create individual PTrans))

A parallel function visible temporarily sets the associated atom to t
before evaluating the function.

One of the reasons that hooks are checked for both before and
after a PEARL function does its job is to provide the user with the op
portunity to affect the result of the particular task. In the simplest
case, a hook simply executes a piece of code and does not directly
affect the function it is labelled with. However, if the value returned
by a hook is a list whose car is either *done*. fall*, and *use*, then
the action of that function will be modified. If the result of a hook
which runs before the task starts with *done*, then the hook is
presumed to have accomplished what the PEARL function was sup
posed to have done and the function will return immediately with the
cadr of the hook's result if there is one, or else with the structure be
ing operated on (for base hooks) or the value in the slot (for slot
hooks). If the result of a hook which runs after the task starts with
done, then the function will return immediately with the cadr of the
hook's result if there is one, or else with the result that was going to
be return anyway.

If the result of a hook which runs before the task starts with
•/ait* then the hook is presumed to have determined that the PEARL
function should quit and the function will return immediately with the
cadr of the hook's result if there is one, or else with the atom *fail*.
If the result of a hook which runs after the task starts with *fail*,
then the function will return immediately with the cadr of the hook's
result (which may be nil).

If the result of a hook which runs before the task starts with
•use* then the hook is presumed to have determined that the PEARL
function should use a different value instead of the originally provided
one and the function will use the cadr of the hook's result for the rest
of the task. If the result of a hook which runs after the task starts
with •use* then the function will replace its intended result with the
cadr of the hook's result (which may be nil). Thus, for example, a slot
hook labelled with <match can short-circuit the matching of a slot
and one labelled with <match can reverse the decision made by
matching of a slot. Similarly, a base hook labelled with <match can
use its own matching algorithm and one labelled with >match can
modify the result of the whole match.

Obviously, these all should be used with great care. Note that re
turn immediately means without even running any other slot hooks
on that slot for slot hooks or without running any other base hooks on
that structure for base hooks.

PEARL Documentation Page 36

For example consider the case of a structure representing
someone's order in a Chinese restaurant. As items are added to the
order, it would be nice if there was a magical slot TotalBill that con
tained the current running total of the cost of the items ordered.
Demons, being such magical creatures, fill the bill nicely. However,
we only wish to have our demon-like hooks activated when particular
slots are filled (added to or accessed). First consider the simple case
in which an order consists of three items only, the name of the soup
and one or two entrees:

(create base Chinese-Food-Entree
(Name lisp)
(Price int))

(create base Chinese-Dinner-Order
(Soup Chinese-Food-Entree)
(Entree1 Chinese-Food-Entree)
!Entree2 Chinese-Food-Entree)
TotalBill int))

(create individual Chinese-Food-Entree
(Name (Hot And Sour Soup))
(Price 323))

(create individual Chinese-Food-Entree
(Name (Sizzling Rice Soup))
(Price 349))

(create individual Chinese-Food-Entree
(Name (Lingnan Beef))
(Price 399))

(create individual Chinese-Food-Entree
(Name (Mandarin Chicken))
(Price 367))

(create individual Chinese-Food-Entree
(Name (Shrimp Cantonese))
(Price 479))

; an undetermined meal is created.
(create individual Chinese-Dinner-Order Meal

(Soup ~ if >put (Maintain-Total * ** =TotalBill))
(Entreel - if >put (Maintain-Total * ** =TotalBill))
(Entree2 ~ if >put (Maintain-Total * ** =TotalBill))
(TotalBill 0))

Note that a slot hook is put after the value in a slot by using the word
if (or hook) followed by the appropriate label for the invoking func
tion followed by the function name or s-expression to be evaluated.
Note also that when you want to put hooks on slots of an individual
but do not want to specify a value, the use of "~" will instruct create
to copy the default value instead. If the Maintain-Total function is
properly specified, whenever one replaces one of the food slots with a
real dish using the putpath function, the Maintain-Total function

PEARL Documentation Page 37

would be activated and would add the price of that meal to the run
ning total in the TotalBill slot. If one changed one's mind a lot, it
would be necessary to include another hook Remove-Price which
would be activated by a clearpath. This would require adding the if'
cleared hook "if >clear Remove-Price" after the if-put hook:

(create individual Chinese-Dinner-Order ChangingMeal
(Soup ~ if >put (Maintain-Total * ** =TotalBill)

if >clear (Remove-Price • •• =TotalBiU))
(Entree 1 ~ if >put (Maintain-Total * •* =TotalBill)

if >clear (Remove-Price * ** =TotalBill))
(Entree2 ~ if >put (Maintain-Total * ** =TotalBill)

if >clear (Remove-Price • •* =TotalBill))
(TotalBill 0))

The code for the two hooks follows:

(de Maintain-Total (Food Meal CurrentMealTotal)
(putpath Meal '(TotalBill)

(•plus CurrentTotal
(getpath Food '(Price)))))

(de Remove-Price (Food Meal CurrentMealTotal)
(putpath Meal '(TotalBill)

(•plus CurrentTotal
(getpath Food '(Price)))))

A more flexible meal order structure would not have three slots
for food, but rather a single slot of type setof struct. Then entries
would be added by the addsetpath functions, and the if-prut hook
would be an if-addset hook but the code would essentially be the
same.

To attach a base hook to a structure, the first "slot" in its
definition must start with one of the atoms if or hook. The rest of the
slot must then contain a sequence of labels for invoking functions and
function names or s-expressions to be evaluated. For example, to in
voke valprint before and a user function called verify afterwards
whenever a PTrans is inserted into the data base, you would define
PTrans as follows:

(create base PTrans
(if <insertdb (valprint * 5)

>insertdb (verify *))
(•Actor symbol)
(Object symbol)
(From symbol)
(To symbol))

Recall that PEARL provides a print function called fuUprint which
for most structures seen so far printed two extra nils in each slot. If
a slot has predicates, the first nil will be replaced by a list of them. If
the slot has hooks, the second nil will be replaced by a list of cons-
cells with the invoking function in the car and the hook in the car.

The invocation of hooks labelled with other forms of path are
similar except for apply. If (path <apply Fen ...) or (path >apply Fen
...) is executed, then any hooks which are labelled with Fen will be

PEARL Documentation Page 38

run.

At this point the syntax of a slot in a definition or individual has
become quite complicated, so we summarize with the following BNF
grammar: ^*

(a b c } means select one of a, b, or c.
XXX] means optionally XXX.

XXX * means zero or more XXX's
* Iy means x or y

<BaseSlot> ::= (
<HashLabels>
<SlotName>
<SlotType>
<InheritOrValue>
<AdjunctVariable>
<PredicatesAndHooks>
)

<IndividualSlot> ::= (
<SlotName>
<InheritOrValue>
<AdjunctVariable>
<PredicatesAndHooks>

<ExpandedSlot> ::= <BaseSlot> | <IndividualSlot>

<HashLabels> ::= J "&" "**•" "*'* "**" °jm ••«•• ••>•• ••<•• i •
<SlotType> ::= \ "struct" "symbol" "int" "lisp" J |

"setof" <SlotType> | <OrdinalName> |
<StructureName>

<InheritOrValue> ::= <Value> | "~" | "nil" |
"=="<Value> | ":=" <Value>

<Value> ::= <integer> | <atom> | <list> | <Variable>
<AdjunctVariable> ::= [":M <Variable> 1
<Variabie> ::= ?<atom>
<PredicatesAndHooks> ::= (<Predicate> | <Hook> | •
<Predicate> ::= <StructureName> | <S-Expression>
<Hook> ::= "if' <atom> <HookFunction>
<HookFunction> ::= <atom> | <S-Expression>

17. Creating and Manipulating Multiple Data Bases
Without any effort on the user's part, a single data base of a de-

falt size is created by PEARL as it starts up. It is called •maindb* and
is pointed to bythe special variable Mb* which is assumed byall func
tions which use a data base to point to the default data base (that is,
the data base to be used when an expected data base argument is
missing).

To build another data base, choose a name for it and call the
function builddb which is an nlambda (fexpr) expecting the name of
the new data base. You may build as many as you wish and store
whichever one you want in •db*. If *db* is already bound after your
.init.prl file has been read in, then *maindb* will not be built.

Sometimes one may wish to clear out the data base and start out

PEARL Documentation Page 39

with a clean slate. To make this easy, there is a special function
cleardb which expects either zero or one data bases as arguments
and does the job. If it receives no arguments, then the default data
base is cleared. Cleardb removes everything from the data base, but
does not actually delete (or reclaim the storage space of) the objects
within the data base. But if the objects inside are not pointed to by
any program variables, they ape gone for good.

Data bases contain two parts, referred to as dbl and db2. Dbl
contains items which are indexed under only their type or using
single-colon hashing. Its default size is 29. Db2 contains items which
are indexed under two or three values. Its default size is 127. These
sizes are chosen to be prime numbers which are just barely smaller
than a power of two. (This choice was made to take full advantage of
hunks in Franz lisp are always allocated to be a power of two.) The ra
tio between the two sizes is approximately 1 to 4. The size for data
bases may be chosen by specifying the power of two that you wish db2
to close to.

The function setdbsize expects an integer between 2 and 13
representing the power to which two should be raised. The default
data base size is thus the result of calling setdbsize with an argument
of 7. To change the default size, you must call setdbsize in your
.init.prl file. The data base size may be set only once and if it is not
changed by the .init.prl file, it is set to the default. (In the Franz Lisp
version, although this full range of values is accepted, the largest a
data base in the 1 to 4 ratio can be is 29 + 127 since hunks are limit-
ted to 128 words. However, an argument of 9 to setdbsize will set the
sizes of both data bases to 127.) Related relevant special variables are
•tiblsize* and *tib2size* which are set by setdbsize and •availa-
blesizes* which contains the assoc-list used to associate the power of
two to a size.

IB. Creating a Forest of Data Bases

Although having multiple data bases which are unconnected is
often enough, it is sometimes convenient to build onto an already ex
isting data base in a tree-like fashion. For example, in a story under
standing program, one might want to have the default data base con
taining long-term knowledge and then add a data base to contain the
knowledge specific to a particular story being processed. In large ap
plications, it can also help to split up special kinds of knowledge to
improve efficiency even more than PEARL'S hashing already does.
With only the ability to build separate data bases, searching for a fact
which might be either general knowledge or specific knowledge
learned from the story would require two fetches, one from each data
base. However, if the story data base is built on top of the main data
base then simply fetching an item from the story data base will also
include fetching from the main data base. To build another data base
upon an existing one, use the function builddb with two arguments,
the name of the new data base and the name of the old one to build

onto:

(builddb *story* *maindb*)
(builddb *future* *maindb*)

These two statements will build two data bases on top of the main one
such that fetching from *story* will look both in it and in *maindb*

PEARL Documentation Page 40

but not in "future*. You can then build further upon any of these if
you wish. Note however, that the second argument must, be the name
of the data base to build upon and cannot be •do* to build upon the
default data base. Also, if the second argument is missing, then the
new data base is isolated, not built on top of the default data base.

If your program builds many data bases, it is likely that some of
them will be temporary ones. If this is so, it is possible to release a
data base so that the space can be garbage collected or reused for a
later data base. To release a data base, pass the actual data base
(not its name) to the function releasedb. If the data base is not a leaf
of the data base tree, then the space will not actually be released un
til all its children are released also but PEARL will no longer accept it
as a data base argument.

A list of the names of the currently active data bases is main
tained by PEARL in the special variable •activedhnames*.

19. Creating Expanded Subtypes of Previously Denned Objects
Within CD, as in many applications, you may have many different

structures with some slots with the same name. PEARL allows this, as
it can always tell which type of structure you are using, and thus it
behaves just as if you had used unique names for all slots. But some
times the fact that two different structure types have slots with the
same names is more than a coincidence: there may be various seman
tic similarities between the similar parts of the two structures.
PEARL has a mechanism for creating such structures using the ex
panded selector to create. Basically, you must first define a base
structure that contains all the identical parts of two or more struc
tures, and then you must define the structures themselves as the
base plus the differences. A good example of this from CD involves
Acts. All Acts within CD have an Actor slot, and all of these slots have
the same meaning. That is, whatever is going on, the person in the
actor slot is the motivating force. So we may first define this common
part as a normal base structure:

(create base Act
(• Actor symbol))

and then we can define the various acts as expansions upon this base:

(create expanded Act PTrans
(Object symbol)
(From symbol)
(To symbol))

(create expanded Act MTrans
iMObject struct)
(From symbol)
(To symbol))

(create expanded Act ATrans
{Object symbol)
(From symbol)
(To symbol))

PEARL Documentation ?*&* 41

(create expanded Act Jnjest
iObject symbol)
Through symbol))

Note that we did not have to list the Actor slot, it was inherited from
the base structure Act. The structure to be expanded need not be a
base structure, but could itself be an expanded structure. Thus we
can capture the similarities of the various Transfers with:

(create expanded Act Trans
SFrom symbol)
To symbol))

followed by

(create expanded Trans PTrans
(Object symbol))

(create expanded Trans MTrans
(MObject symbol))

(create expanded Trans ATrans
(Object symbol))

In expanded definitions as in base definitions one can specify hashing
and default information in the usualway. However one can selectively
inherit some of this information from the structure being expanded.
Thus in our first Act example, since we specified star hashing on the
Actor slot, all the structures that we denned in terms of Act have star
hashing on their Actor slot by default. If we had not wanted this for
ATrans, we could have specified this simply by listing the Actor slot
over again without the asterisk. However, since PEARL requires old
slots in expanded structures to also provide a new value, we need
some way to say inherit the same old value. This is done by putting
anup-arrow "-" where PEARL expects to find a value, justaswhen you
want to inherit the default value but add hooks or predicates when
creating individuals.

(create expanded Act ATrans
(Actor ~)
(From symbol))

We also could have added colon hashing to the Actor slot by Usting it
above as normal. However, we cannot change the type ofa slot and
including a type name after Actor will cause PEARL to try to interpret
that type name asa value, (resulting in any of several errors, depend
ing on the type). Thus, the hashing information for any slot is inherit
ed from above, unless it the slot appears in the expanded structure.

Default values are inherited in almost the same way. The excep
tion is that if in the original structure the default is preceded by the
symbol ":=" (rather than being preceded by either nothing or the
symbol "=="). expansions of that structure will not inherit this value,
but instead will get the standard default for that type. So if one
defines:

(symbol Pandora)

PEARL Documentation Page 42

(create base Act
(Actor symbol Pandora))

or

(create base Act
(Actor symbol -== Pandora))

(create expanded Act PTrans
(From symbol))

then all PTranses will have Pandora as their default Actor, whereas
with:

(create base Act
(Actor symbol := Pandora))

(create expanded Act PTrans
(From symbol))

only the default instance of Act will have Pandora in its Actor slot and
the default Actor of PTrans will just be the usual default for symbol-
valued slots which is nilsym. Which type of default inheritance to use
depends upon the application, and must be decided on a case by case
basis.

Given this hierarchy, it is oftenuseful to checkwhetheran object
is of a certain type or an expanded version of it. Two functions pro
vide this ability with slightly different arguments. Isaexpects an item
and the name of the type you want to check for. Isanexpanded ex
pects two instances. Thus the following are always true for any struc
ture X:

(isa X (pnameX))
(isanexpanded X X)

Two related functions are nullstruct and nullsym which are functions
for testing for nilstruct and nilsym (similar tonull for nil).

20. Fetching Expanded Structures
To make the extra information that expanded structures provide

more useful, a special version of fetch called expandedfetch isprovid
ed which takes the hierarchy of structures defined into accpunt when
fetching. For example, using the above hierarchical definitions of Act.
Trans, PTrans. MTrans. and ATrans, you can insert three different
Transes into the data base:

(dbcreate individual PTrans
!Actor Pandora)
Object Pandora))

(dbcreate individual MTrans
!Actor Pandora)
To Pandora))

PEARL Documentation Page 43

(dbcreate individual ATrans
!Actor Pandora)
from Pandora))

and then to fetch all Transes performed by Pandora, you could use:

(create pattern Trans TransPattern
(Actor Pandora))

(expandedfetch TransPattern)
Once you start using expanded structures, you usually want to be able
to use the function name fetch and mean expandedfetch. To this end,
the standard fetch function is actually called standardfetch. This
leaves the function fetch to be bound to whichever fetch function you
wish. It is normally given the same function definition as standard-
fetch.

21. How Two Objects Hatch
When a fetch from the data base is performed, the pattern pro

vided is only used to construct a stream containing that pattern and
the appropriate hash bucket from the data base; no matching (com
paring) between the pattern and objects in the data base occurs.
Thus the stream contains pointers to all data base items in the same
hash bucket, regardless of their likelihood of matching the pattern.
When elements are extracted from the stream with the function nex-
titem, the pattern is "matched" against successive items from the
hash bucket until one matches (and is returned) or until the potential
items run out (and nil is returned).

21.1. When Is a Pattern Not a Pattern?
To understand the process withwhich two objects are matched,

it is necessary to understand what is meant by a pattern in the con
text of matching. The term pattern has been used in two ways in
PEARL. It has been used previously in this documentation in a spe
cialized sense which is only relevant in the context of creating a pat
tern. The use of the pattern selector to create is simply a variation
on create individual which uses the match-anything variable ?*any*
as the default for unspecified slots instead of the usual defaultvalues
(either the one inherited from the base definition or the default for
the type of slot). It is called creating &pattern because the change of
default is usually only useful for constructing a pattern.

However, the use of the function create with object selector pat
tern is not the only way to create a patternwhich can be matched; in
fact, it is only useful for forming simple patterns. Any individual
structure in PEARL can be used as a pattern. If a fully specified
structure (that is. one with an actual value in all of its slots) is used
as a pattern for fetching, it will only match objects which are equal to
it in a manner similar to equal (versus eg) in Usp. (An exception to
this occurs when patterns with pattern-matching variables are stored
in the data base.) Thus a fully specified pattern is only useful for
determining whether a particular fact (object) is in the data base.
Any object is a pattern but the interesting patterns will not be fully
specified; rather, they will have unspecified slots which contain
pattern-matching variables instead of values. The details of the

PEARL Documentation Page 44

matching process will now be described.

21.2. The Hatching Process
In general, the matching procedure takes two structures and ei

ther, neither or both may contain pattern-matching variables. So
conceptually, both are patterns. If the structures are not
definitionally the same type then the match fails automatically. Oth
erwise, each structure is viewed as a sequence of slots which are suc
cessively "matched" between the two structures. Two structures of
the same type match if and only if each of their slots "matches" the
corresponding slot of the other structure. Each slot is ofone of four
types (struct, symbol int, or lisp), or is a setof one of these types.
Regardless of its type, each slot is filled in one offour ways:
(1) The slot may contain an actual value of its type (for example, a

slot oftype struct maycontaina PTrans).
(2) The slot may contain a variable which is local to the structure

(pattern-matching variables are local unless otherwise specified).
(3) The slot may contain a global variable, declared previously by a

call to the function global with the variable's name as argument.
(4) The slot may contain the special match-anything variable ?*any*.
If the slot contains a variable (other than ?*any*) which has not been
bound then it maybecome bound as a sideeffect of the matching pro
cess. All local pattern-matching variables are unbound at the start of
the matching process. When a local variable is bound to a real value
during the matching process (it will never be bound to a variable), it
will not be unbound again but for the purposes of matching will be
treated as if the slot were filled with that value.

Let us now examine each of the pairings of slot values which may
occur and how they are matched. If either of the two slots being
matched contains the special variable ?*any*. then the slots match by
definition, regardless of the contents of the other slot. If both slots
contain variables that are unbound, the slots do not normally match,
(even if the two variables are textuaUy the same name). (Since some
users want two unbound variables to match, the value to be returned
in this case is stored in the special variable •matchunboundsresult*
whose initial value is nil. Setting this variable to non-nil will cause
two unbound variables to match immediately but will not cause ttieir
predicates to be run.) If one slot contains an unbound variable (and
the other a bound variable or a value), then the predicates and res
trictions of the slot with the unbound variable are tested, and hooks
onthat slot labelled with match are run to see if the unbound variable
should be bound to the bound value. If so. then the unbound variable
is bound to the value of the other slot, and the two slots match. Note
that only the predicates and hooks on the structure containing the
unbound variable are run while the symbols *. •*. and =<slotname>
refer to the other structure (with the bound value in it). If the predi
cates or restrictions return nil the two slots do not match, the vari
able is not bound, and the entire match fails.

If both slots contain either bound variables or values, then the
values of the two slots are compared. If the slot is of type struct,
then the entire matching algorithm is recursively applied. If the slot
is of types int or lisp, then eguaZ is used. If the type is symbol, than

PEARL Documentation Pafie 45

the two values must be the same symbol. Regardless of the type, res
trictions associated with the slot are until one fails or there are no
more to run. All must succeed for the match to succeed. If the
match succeeds, then any hooks with the label match are run.

The difference between the two types of variables is one of scope.
Normal variables (for PEARL) do not need to be declared, and may be
used in any structure by typing in ?<var> during a create (note that
putpath is incapable of installing variables). The scope of these vari
ables is only over the structure in which they are typed. Thus the
variable ?Vtyped into two different creations of structures are in no
way connected (in the same manner as two local variables V in
different Pascal subroutines are unrelated.) If one becomes bound,
the other is unaffected. On the other hand, if a variable name is pre
viously declared as global:

(global G)
then all instances of the variable name ?G are the same (similar to
global variables in Pascal). The list of global variables is kept in the
special variable •globallist*.

As mentioned before, when two structures are matched, all nor
mal (local) variables in both structures are unbound (bound to the
value •pearlunbound*) before any slots are compared. This is to en
sure that any bindings induced by a previous unsuccessful (or suc
cessful for that matter) match are removed. This rule is useful be
cause the type of matching that early PEARL users have needed is in
matching most patterns against, fully-specified values (that is. cases
in which one slot is always bound and the other either bound or un
bound). Global variables are not unbound before each match, so they
can be used to reflect global contexts. They are given the value
•pearlunbound'* at the time they are declared and remain bound
thereafter unless explicitly unbound by the user. To unbind a global
variable, you may use use the function unbind a fexpr which requires
the name of a (previously declared) global variable:

(unbind G)
or use setq and the function punboundwhich simply returns the atom
•pearlunbound*:

(setq G (punbound))
The function pboundp will test the value of aLisp (not PEARL) variable
to see if it is •pearlunbound9. The function globalp will determine
whether the variable passed to it has been declared global.

Global variables should be used with care so that they are not set
by unsuccessful matches. Generally this is achieved by first collect
ing the value desired into alocal variable via aseries ofmatches (only
the last ofwhich succeed), and then using the result of this successto
cause a further action which is guaranteed to correctly bind the value
of the global variable. (These actions may be hooks which rebind the
global variable every time the local one is bound Effectively, this is a
way to say always unbind this particular global variable before
matches. The action also could be performed by the user's program
when the right value is found.)

Each structure or tree of structures built by a call to create con-

PEARL Documentation Pa8e 46

structs an individual assoc(association)-list of all the localvariables in
that structure. This assoc-list is stored with the root of the tree, thus
achieving local uniqueness of variables within a structure. Global
variables are bound values of the lisp atom of the same name and are
accessed in the usual way. To access the value of a localvariable in a
structure, one uses either the function valueof (which is an expr) or
the fexpr varvalue both ofwhich have two arguments: the name of the
variable whose value you want and the structure it occurs in (evaluat
ed internally by varvalue). For example, to get the value of ?G in X,
use either of:

(valueof 'G X)
(varvalue G X)

Thus PEARLuses both deep and shallow binding.
The match algorithm is available to the user as a separate func

tion by the name standardmatch. This function unbinds all local vari
ables before proceeding with the match (using the macro unbindvars)
and again afterwards if the match failed. A function which assumes
that all local variables have been unbound already and proceeds just
as standardmatch would is basicmatch. The function name used to
access the matching function by nextitem and all other built-in
PEARL functions is match which is normally given the same function
definition as standardmatch but can be bound to whichever match
function you wish. A function which compares two structures for
equality without affecting the values of their variables is available as
strequal. Since it does not bind variables, it also does not execute
predicates although it does run base hooks and slot hooks labelled
with strequal. Afunction parallel to nextitem which uses strequal in
stead of match is available as nextequal.

This rest of this section covers other ways to access and affect
the values of variables. It will make more sense after reading the
next section on blocks but fits in better here so you should probably
leave it for your second reading.

Recall that the question mark read macro expands into either
(+var* <vamame>) or (•global* <vamame>). These two forms are
not normally meant to be evaluated. However, for convenience, there
are two functions •?ai* and «]global* which return the value of the
variable whose name is their argument. That is. if IX expands into
(•global* X), executing it will returned the value of the atom X. Thus
Xand ** are equivalent for a global variable. For a local or lexically
scoped variable, in which ?X expands into (*var* X), the function
•var* looks in three places for avariable with the name X.
1 First it looks to see if the special variable •eurrentstructure*has

been bound to a structure by the user, and if so, looks in its vari
able list.

2. If this fails, it looks in the special variable •feurrentpearlstruc-
ture* for a structure. This variable is set by various PEARL func
tions like create, fetch, path, and nextitem to the top level struc
ture they last operated on.

3. If this fails, it looks in the currently open block on top of •block-
stack* if there is one.

PEARL Documentation Page 47

4. If this fails, it returns nil.
Note that the atom •currentstructure* is there simply for the use of
the user and is never set by PEARL.

Arelated function is set? which takes a question-mark variable, a
value and an optional environment and sets that variable in that en
vironment or else in the default environment described above to that
value. The environment can be either a structure or a block. This
stops with an error message if it fails to find a variable by that name
in the specified or default environment.

22. Binding Blocksof StructuresTogetherViaCommonVariables
It is sometimes the case that you wish to create a group of struc

tures which are closely related in some way and which you wish to tie
together via pattern-matching variables. For example, &frame might
be considered such a loosely connected group of structures. In this
case what is desired is for the pattern-matching variables to actually
be the same. Normally however, if you create several structures in
PEARL with variables having the same name, each has its own local
variable with that name and they are totally unrelated. If on the oth
er hand, you declared them to be global, then all structures having
variables with that name would refer to the same variable and it
would no be unbound before matching. For this purpose. PEARL pro
vides variables of an intermediate nature which are local to only a
small group of structures and which are all unbound before any one of
the structures takes parting in matching.

These variables are called lexically scoped (although if the relat
ed functions block and endblock are called dynamically, they also pro
vide a breed ofdynamic scoping). To declare a set of lexically-scoped
variables, thus opening a (nested) scope for them, use the function
block, so named because of the similarity to the concept of a blockin
Algol-like languages. The function block is a fexpr which in its sim
plest form expects one argument which should be a list of new vari
ables:

(block (A B C))
Such a call to block creates an unnamed block containing these vari
ables andany occurrences ofvariables with these names in anystruc
tures created after this call will refer to these lexically-scoped vari
ables. Thus, no structure created after the above call to block can
contain a local variable called A. B, or C. (However, if a variable has
been previously declared to be global this overrides all future de
clarations with block. Once again, global pattern-matching variables
are to be used with extreme caution.)

Ifyou use several blocks, especially nested blocks, it is helpful to
give them names. For this purpose, block will accept two arguments,
the first an atom to name the block and the second the list of new
variables. For example:

(block Name (A B C))

To end the most recent block, use the fexpr endblock. This func
tion accepts any of three types of arguments. If last block was un
named, simply use:

PEARL Documentation Page 4B

(endblock)
If the last block was named you must provide endblock with this
name:

(endblock Name)
This is provided as a protection against unbalanced calls to block and
endblock. If you wish to end the most recent block, regardless of
what its name is, use

(endblock •)
To end several blocks at once, you can use the fexpr endanybiocks
which ends all blocks back through the one whose name matches its
argument. Again no argument (nil) means the last unnamed block.
An argument of "•" causes PEARL to end all currently open blocks. A
shorthand for (endanybiocks *) is (endallblocks).

The function block builds an assoc-list of the variables listed. If
the block is nested, the assoc-list of the enclosing* block is hooked to
the end of its assoc-list, thus providing a complete assoc-list of all the
variables available in the block. A side effect of block is that this
assoc-list is bound to the name of the block. The block itself (the
block's name plus this assoc-list) is available as b:<blockname> so
that the above call to block binds Name to

((A . •pearlunbound*) (B . •pearlunbound*) (C . •pearlunbound*))
and b:Name to

(Name (A . •pearlunbound*) (B . *peariunbound*)
(C . *pearlunbound*))

If a block is unnamed. PEARL calls it unnamedblock and the
corresponding variables are set. The special variable •blockstack*
contains a stack of all the currently active blocks. The effect of end
ing a block is to pop it off this stack. Once a block is closed, it is still
accessible through the Lisp variable b:<blockname>. Given the name
of a block, the function Wockatom will build this atom for you.

It is possible to return to the scope of an earlier block with the
fexpr setblock which expects the name of a named block. This will
have the effect of ending all currently open blocks and setting the
current block stack to contain this block. Note that this block will
contain all the variables of any blocks it is nested in but that it is not
possible to close off these block selectively. Tnus, the block stackwill
contain only one block with all the variables in its complete assoc-list.

23. Controllingthe Unbinding of Variables by Match
It is sometimes desireable to use the filled-in result pattern of a

fetch ormatch as a pattern for a further fetch (or match) orto other
wise store and restore the current values ofvariables (for example, to
allow backtracking algorithms and/or hypothetical assertions). Since
all bound local variables would normally be unbound during this furth
er fetching or matching, this would not be possible given the mechan
ism described so far. To accomplish this action, which can be con
sidered as "pushing" the context ofthe current assoc-list, you should
use one of several functions provided for this purpose. The function
freezebindings takes a structure as argument and moves all bound

PEARL Documentation Pa8e 49

variables from its normal assoc-list to a backup so that fetch will not
unbind them. The function thawbindings takes a structure as argu
ment and will undo this action, restoring the assoc-list to its complete
state. These two functions affect the structure plus any bound vari
ables in all enclosing blocks. To freeze or thaw only a single struc
ture, use freezestruct and thawstrucL To freeze or thawonly a single
block, use freezeblock and thawblock which expect the name of a
block as an argument.

Above it was mentioned that two structures will match if and only
if they both are of the same type. Actually the system has been ex
tended to allow the matching of a structure of one type with another
of a type derived from the first via a create expanded. The extra slots
ofthe larger (expanded) structure are ignored during the match.

Lastly it should be mentioned that the matching rules are an
evolving system, and may be amended as experience with theiruse is
accumulated. The rules may seem a bit complex at first, but in use
they are fairly natural. The rules are biased towards efficiency (like
much of PEARL). The designers felt that hiding exponential time-
complexity processing within the language would lead users to con
struct inefficient programs without realizing it. Thus several
"features" of other complex AI matchers are not built in. The user
must implement these individually at a higher level. It has been our
experience that this leadsto much cleaner designs.

24. Function Structures

In using PEARL, it is sometimes handy to escape into Usp in a
,'structured,, way. Although PEARL allows ad hoc escapes by way of its
hooks and the ! and $ evaluation operators defined above, the philoso
phy in PEARL function structures is to allow structured escapes that
restrict the generality of the escape to the minimum necessary for
the task. At times you may wish to equate Lisp functions with their
expected arguments with PEARL structures with their associated
slots. For example while you maywish to describe an action in a pro
gram as fetching anitemfrom the database, you may actually be un
able to describe the item as a structure and/or be unable or unwilling
toactually store it in the data base. Instead, you will sometimes want
the value to be provided by a function called at fetching time instead
of a structure in the data base.

Take as an example the case ofkeeping track ofwhether anytwo
objects are near each other. One possible way to do this is to keep
structures in the data base which record for each pair of objects that
are near each other the fact that they are near each other:

(create base Near
SObjectl struct)
Objects struct))

Then determining whether two objects are near each other would re
quire a simple fetch. However, ifyou are dealing with a large number
of objects which are moving around quite a bit but only want to know
about nearness once in a while, it might be easier or more efficient to
compute whether two objects arenear each other only on demand. In
this case, you might like towrite a function called Near which expects
two arguments. However, for consistency, you may notwant to design

PEARL Documentation Pa8e 50

your program so that it knows what things can be fetched and what
things need computing. So you would like to define astructure which
looks like our definition of Near above but which actually invokes the
function Near.

To do this, one may create the function Near (which must be an
expr) and also a structure of typeJunction named Near:

(de Near (x y)
... mechanism to actually determine nearness ...)

(create function Near
(Object1 struct)
(0bject2 struct))

and then can create an individual of it for fetching:

(create individual Near IsNear
(Objectl John)
(0bject2 Office))

(fetch IsNear)
Note that the format of function structures within PEARL is the same
as that of structures. However, the name of the actual Usp function
to be called must match the type name ofthe function structure, and
the arguments must occur in the same order and be of the same
types as the slots which will contain the actual arguments to the func
tion.

As another simple example, to define a function structure to
correspond to the function getpath, we would use the following:

(create function getpath
(Item struct)
(Path Usp))

and then an actual instance:

(create individual getpath Minst
(Item ! Mtransl)
(Path '(MObject)))

This example is not too useful. As a more realistic use, consider a
program to return all the MObjects of ail MTranses that are m the
data base:

(create function nextitem
(Stream lisp))

(create pattern MTrans MPatl
(MObject ?X))

(global MStream)
(setq MStream (fetch MPatl))

(create individual getpath Minst2
(Item (nextitem (Stream ?MStream)))
(Path '(MObject))

PEARL Documentation Pa*e 51

(setq Streaml (fetch Minst2))
Note the recursive use of the data base: the fetch of Minst2 will cause
a getpath to be executed. But PEARL must first get the two argu
ments to pass on to getpath which causes the function nextitem to be
evaluated, getting the next MTrans in MStream to pass to getpath.

Thus, function structures provide a way to describe a function
and its arguments through a PEARL structure and then to include, in
a pattern to fetch or in a structure slot, a function callwhich will pro
vide the desired value at fetching time. However, this only works dur
ing fetching.

The function used by PEARL to execute a function structure is
evalfcn. It takes an item as its argument and returns the result of
applying the associated expr to its slot values ifthe itemis a function
structure. If the item is a single structure it returns the item un
touched. If the item is a list of structures, it applies itself recursively
with mapcar. No other PEARL functions currently know about func
tion structures as being any different than othe*r individual struc
tures.

25. More About the PEARL Top Level Loop and History Mechanism
The PEARL prompt-read-eval-print loop includes two features

which make PEARL easier to work with than the usual top level of Usp.
Both features were designed in imitation of the Berkeley Unix shell
program csh.

The first is an aliasing mechanism which provides the ability to
use various atoms as aliases for commonly executed s-expressions. If
you type an atom to the top level and it has the property alias, the
value of its altos property will be evaluatedinstead. Thus, if you do a

(putprop 'dir '(dir) 'alias) ;inUCILisp
or

(putprop 'Is '(exec Is) 'alias) ; in Franz Lisp
then if you type the atom dir or Is repectively to the top level, you will
get the contents of your directory printed out. Two such built-in
atoms are history which will run the function history and print out
your last 64 commands (see below) and h which will print the last 22
commands (one crt screenful). The aliasing mechanism can be
turned off (saving a get for each atom you use at the top level) byset
ting the special variable •usealiases+to nil.

PEARL's top level also includes a simplified command-history
mechanism. As you type in expressions to the top level of PEARL,
they are stored away for future reference. The results of evaluating
each expression are also kept. The commands and their results are
kept in two hunks whose default size is 64. The hunk containing the
commands is kept in the special variable •history* and the hunk con
taining the results is kept in the special variable •histval* To change
the number of commands remembered, set the special variable niis-
torysize* to something other than 64 in your .init.prl. It cannot be
changed later. (If you are a novice user of PEARL, we recommend
that you not change it to be smaller, since the history command can
sometimes be helpful to someone helping you to debug something
after you havefiddled withit a while.)

PEARL Documentation Pa8e 52

The commands you type are squirrelled away so that you can ask
PEARL to re-execute them, thus saving the pain of retyping a compli
cated expression. To access the previous commands, the readmacro
"!" is provided. To access the results of the previous commands, the
readmacro "9' is provided. (The exclamation point is in imitation of
the cshell; the dollar sign is meant to suggest "value".) These read-
macros peek at the next character to determine what to do. We dis
cuss the variations available on these two readmacros in parallel,
since many of them coincide.

The simplest and most useful forms are "!!" and "W which
effectively re-execute and reprint the last command or its result. Ac
tually, both forms are executed, but the dollard signmacro always re
turns its value quoted so that its effect is usually to just reprint the
result of the previous command. Note that since these are readmac
ros which simply return the last s-expression typed or its value, you
can use them to build up more complex commands. For example:

pearl> (fetch Item)
(•stream:* . . .)

pearl> (nextitem !!)
will cause the fetch to be repeated and then do a nextitem on it.
However, it is much more efficient to use the SS form in this case,
since what you really want is to do a nextitem on the result of the
fetch in the last command:

pearl> (fetch Item)
(•stream:* .. .)

pearl> (nextitem $$)

The commands are numbered as you type them, starting with
zero. Although the values wrap around in the hunks, the history
number continues to climb. The current history number is available
in the special variable •historynumber*. To access a particular com
mand or its value, you may type you may follow an exclamation point
or dollar sign with the number of the command. Thus !23 and J23 are
the 23rd command and its result. If you don't remember the
command's number you can use the function name or a prefix of it.
Thus Ifetch and Sfetch will access the last fetch or its value. Or !fe
and Sfe will access the last command starting with fe or its value. If
there was a reference to an atom (instead of a list) with that name or
with that as a prefix somewhere, then the atom will be evaluated
again. For exclamation point, this is awaste of typing except for long
atom names. For dollar sign, it provides you a way of recovering the
value of a variable that has since changed: (As a side effect of imple
menting this, PEARL contains a function prefix which expects two lists
and determines whether the first is a prefix of the second, considered
as a list of atoms. Thus. PEARL just calls prefix on the results of ex-
plodemg two atoms.)

Here the parallel between the two macros ends.
There are five forms which work only with exclamation point and

refer only to the last s-expression typed. They are essentially ways to
pickindividual top-level elements out ofthe last command:

PEARL Documentation Page 53

r* the first argument
!S the last argument
!• the complete set of arguments
1:0 the function name
!:n the nth argument

Both macros are splicing macros so that their values may be spliced
into the current s-expression. Vis designed so that the following will
work:

pearl> (add 12 3 4)
10

pearl> (times !•)
(times 12 3 4)

24

To see the last 64 commands you gave printed out, use the func
tion history (or type the atom history). If you don't want all 64 com
mands, history will accept an integer argument telling how many you
want. Thus the aliases on history and h are:

(putprop 'history '(history) 'alias)
(putprop 'h '(history 22) 'alias)

If you use the command numbers often, you might like to have the
history number printed out before each command. To have the histo
ry number printed just before the PEARL prompt, set the special vari
able •printhistorynumber* to a non-niZ value. The default value is
flnilfR.

Whenever you use the ! or $ history mechanisms, the line you
type in will be reprinted in its expanded form on the next line using
the current pearlprintfn. If youwish to modify your own read macros
so that they also will cause this reprinting, simply have them set the
specialvariable •readlinechanged* to a non-nilvalue.

It is sometimes useful to have a function return no value. That
is. you often do not want the value of the function to be printed by the
top level loop. In particular, functions which printvalues often return
ugly values afterward. To get around this problem, the PEARL top lev
el disables printing of the value returned by a function if it returns
the atom ♦invisible^ All of the PEARL print functions return this
value.

It is sometimes useful to be able to save the current state of a
PEARL run for later. There are two functions to allowthis. If you wish
to save a version which will continue exactly where you left off (at the
top level), use the function savecontinuewhich expects zero, one or
two arguments. If you wish to save a version which will read in the
.start.prl file when it starts up. use savefresh. (If you also want
.init.prl read in, change the value of the special variable •nrststart-
up* to t beforehand but be careful not to put functions which may
only be run once in it.) Note however that you cannot save Franz
PEARL on top of the file you are running; trying to will result in the
Dumplisp failed error message from Franz Usp. Note also that a
saved PEARL uses about 1500 blocks or 750kbytes on the disk so this
shouldbe used sparingly. (Exceeding the disk quotawill result in the
same error message.) In the Franz Usp version, if the number of ar
guments to either of these functions is:

PEARL Documentation Pa6e w

0: It will be saved as pearl in the current directory.
I: The argument is assumed to be a (relative) file name to save

under.

2: The result of concatenating the two arguments together with a /
between them will be the file name used. (This is for UCI Usp
compatibility.)

In the UCI Usp version, if the number of arguments is:
0: It will be saved as pearl in the current directory.
1: The argument is assumed to be a file name for the current direc

tory.

2: They must be a directory and a file name to save in.

26. Looping and Copying Functions
PEARL includes several loop macros. The first two were included

simply for use by the implementation but might be useful to the user.
They are the for and while macros which both expand into a prog
wrapped around aprogn A call to the while macro should be of the
form:

(while <test>
EXPR1
EXPR2

EXPRn)

The <test> is evaluated before each execution of the loop. If it is
non-ni!, the EXPRi are evaluated in sequence. This continues until
<test> return nil in which case the last value returned by EXPRn is
returned. Since the while expands into a prog, any of the EXPRi may
call the function return, terminating the loop prematurely and re
turning the value given to return.

A call to the for macro should be of the form:

(for <var> <initial> <final>
EXPRI
EXPR2

• ••

EXPRn)

<initial> and <final> should evaluate to integers. The EXPRi are re
peatedly evaluated in sequence with <var> being set to the values as
cending from <initial> to <final>. If <initial> is greater than <final>,
nothing is done. <var> is a prog variable which disappears after the
for executes. The value returned is the last value of EXPRn and re
turn provides a premature exit with avalue as in while.

The fexpr foreach expects a stream and a function (or macro)
and applies the function to each element returned by successive calls
to nextitem on the stream Unfortunately it only returns nil at this
time. Eventually, other usefullooping structures may be provided.

Since PEARL provides several new types of values, it provides a
few functions to copy them In particular, the standard Usp function
copy has been redefined to avoid trying to copy anything that isnota
cons-celL There are several ways to copy structures, described
below. The rest of PEARL values either are too complicated to copy

PEARL Documentation PaSe 55

(data bases), can be copied with copy (streams) or else make no
sense to copy (symbols, blocks).

For copying structures, there are currently two functions. The
one you are most likely to want is scopy which expects a single struc
ture argument and returns anew structure with the same values init.
However, the new structure will differ from the old in several impor
tant ways. First of all, copying a bound variable will result in the ac
tual value being inserted in the new copy. When copying an unbound
variable, the new structure will receive a local variable with the same
name and this variable will be installed in the slot. All variables so in
stalled will be installed in the top level structure regardless of where
they came from in the original. The only exception to this is
lexically-scoped variables. When the new structure is built, it will be
built within any currently open blocks and any of its unbound vari
ables whose names match variables from the current block(s) will be
identified with those block variables. Global variables are similarly
reinstalled only if they are unbound. Adjunct variables are also in
stalled only if they are unbound, since if they are bound their pur
pose will already have been served and their bound values installed m
other slots referring to them.

A variation on scopy which replaces all unbound variables from
the original with l*any* is called patternize. After (and during) the
running of these copying functions, the resulting top-level structure
is kept in the special variable •currenttopcopy*.

The situation sometimes arises where you have already built a
structure and have a new structure with information that should be
merged into the old one. Rather than use path to copy each relevant
slot you can use smerge which expects as arguments the old struc
ture to merge into and the new structure from which to take values.
All unfrozen variables in the old structure are unbound first and then
any unbound variable whose counterpart in the new structure is
bound gets replaced (not set) with this value. The old structure being
merged into must be of the same type or an expanded version of the
new structure.

27. Miscellaneous Variations and Abbreviations
People very quickly get tired of typing the relatively long func

tion names that PEARL uses. As a result, a large number of abbrevia
tions and macros have been included in PEARL We recommend that
the shortest ones be used primarily at the top level, since they are
easily subject to typographic errors. Most the abbreviations are m
create and are summarized by the following table:

The function or atom May be abbreviated:
create pr
individual ind
pattern pat
expanded exp
function fn

Thus, (crpat^isequivalent to (create pattern).
In addition, a large number of macros for popular combinations

of functions are included:

PEARL Documentation

The s-expression:
(create base ...)

(create individual...)

(create expanded...)

(create pattern...)

(create function...)

Page 56

Is expanded into by the macro:
fob ...)
(base ...)
(ci ...)
(individual ...)
find ...)
(ce ...)
(expanded ...)
(pexp ...)
(cp ...)
(pattern ...)
(pat ...)
(cf ...)
(pfunction ...)
(fn ...)

(insertdb (create ...) nil) (dbcreate ...)
(dbcr ...)
(inlineereate ...)
ffetchcreate ...)
(inlinefetchcreate ...)
(firstfetch ...)

(vp ...)
(fp ...)

'(quote .(create ...))
(fetch (create ...) nil)
•(fetch (quote .(create ...)) nil)
(nextitem (fetch ...))

!valprint ...)
fullprint ...)

(pexp andpfunction are so named to avoid conflict with the exponen
tial function exp and the function quoting function function.)

The automatic setq feature of create that causes an atom to be
bound to the item created is available throughout create. In all cases,
the special variable «lastcreated* is set to the item. In addition:

This combination:
(create base X...
(create base XY ...
(create expanded XY...
(create expanded XY Z ...
!create individual X ...
create individual X Y ...

!create individual X X ...
create pattern X...

!create pattern X Y ...
create pattern XX ...

Causes this atom to be set:
X

Y
Y

Z
(none)
Y
(none, the second Xis ignored)
(none)
Y
(none, the second Xis ignored)

When creating an object, wherever a recursive call to create is
implied by a structure in a slot of type structure, you may start with
one of the types individual, pattern, base, expanded, function to
change the type ofobject being created. Whenever it isn't given, the
type of the toplevel create, which is kept in the special variable
•currentcreatetype* is used. For example, in

(create pattern x
(a (individual y))
(b (base z (si ...) ...))
(c (w)))

PEARL Documentation Page 57

where a, b, and c are all slots of type structure, slot a will contain an
individual y which the attendant defaults filled in, slot b will contain
the default instance of a newly created type z, and slot c will contain
a pattern w with ?•any* as defaults.

Since each Usp stores its functions in a different place, PEARL
includes a macro aliasdef which expects the names of an new and a
old function name and copies the function definition of the old one to
the new one. In the case of Usps which store the function definition
on the property list, aliasdef requires a third argument which is the
name of the property that the definition is kept under.

28. Low Level Access Functions.

There are a large number of functions for setting and accessing
the various part ofstructures, symbols, and data bases which are pri
marily intended for the use of PEARL. In general, the access func
tions are called get... where "..." is the name ofthe information about
the structure. The functions which change information are called
put... It is not generally safe to use the put... functions but theget...
functions can sometimes be useful to the user. For a complete list of
the functions, see the index. If you don't recognize the function by
name, you don't need it so we don't bother to further document
them. Since most of them expect a slot number, it is useful to know
about the macro numberofslot which requires the name of a slot and
the definition of a structure (which can be accessed with defatom or
d:<structurename>.) and returns the corresponding slot number.

PEARL Documentation Page 58

29. Appendixof UCI lisp functions added to fYanz PEARL
Since PEARL was originally written in UCI Usp, there are many

functions from UCI Lisp that it needed. We also wrote others to move
our other programs. The number is too great to document each one.
If the function is described with an equal sign, as in ' fn = other" then
the function definition of the Franz Usp function other has been put
under fn. Thus it might not behave quite the same as in UCI Lisp. If
no equivalence is given, it was written from scratch which is slightly
more likely to mimic UCI Usp. In this case, see the UCI Lisp manual
for details.

The functions used for the PEARL top level loop in the Franz Usp
version plus changes to the fixit debugger and the trace package are
briefly described here also.

The Franz Usp version of PEARL is normally loaded with both the
fixit debugger and the trace package already loaded. This is done to
avoid getting the versions which do not know how to print PEARL ob
jects. In addition, the Fixit debugger is attached to all available
hooks for going into the break package, since it is much more similar
to the UCI Usp break package than the standard Franz Lisp break
package is. Both the debugger and trace package use the function
breakprintfn to print values. The msg function uses the function
msgprintfnto print values. Either canbe bound to whatever function
you wish. To disengage the Fixit debugger, read the Franz manual
chapter on exception handling. See Note 4 below for more on
features added to the Fixit debugger.

Atoms and Variables:
•dskin* —special variable —initial value: t. See Note 1 below.
•file* —special variable —initial value: nil. Usedby dskin

and function definition functions,
•invisible* —special atom - not printed by dskin if returned

by a value when it is evaluated.

Functions:
•append = append
(breakprintfnvalue lmar rmar) - used by trace and debug.
•dif =diff
•eval = eval
•great = greaterp
•less = lessp
•max= max
(msgprintfn value lmar rmar) —used by msg.
•nconc = nconc

•plus = plus
•times = times
iaddprop 'id 'value 'prop)
allsymitemorpair) - fexpr .,«,,. .

(apply* 'fen 'ergs) —macro - This is provided to act like UCI usp s
applytf. The asterisk is usedbecause of the special meaning
of§ in Franz Usp. Unlike FranzUsp'sfuncall and
apply, this doeswhat you would expectwith macros!

atcat = concat
(boundp 'item)
clrbfi = drain

PEARL Documentation Page 59

consp = dtpr
!de fcnname arglist. &rest body) - macro - See Note 2 below,
debug-replace-function-name 'cmd 'frame) —Used by the modified

Fixit debugger to handle the "> newfcnname" facility,
(defp 'to 'from [prop]) - macro - Ignores prop and just

copies the function definition.
(defv var val) - fexpr
!df fcnname arglist fcrest body) - macro —See Note 2 below,
dm fcnname arglist &rest body) —macro - See Note 2 below,

(dremove 'elmt *1)
(drm char lambda) - macro —See Note 2 below,
(dskin filenamel filename2) - See Note 1below,
(dskinl '•file*)
(dskin2 'port)
(dsm char lambda) —macro —See Note 2 below,
(enter 'v '1)
(every 'fen 'args) - macro —Potential problemwhencompiled,
expandmacro = macroexpand
!funl torest body) - macro- Expands into (function (lambda ...)).
ge *x) —macro

(gensyml 'ident 'val)
gt=>
(initsym atomorpairl...) —fexpr
!intersection 'setl 'set2) %
islambda *fcn) - Is fen a lambda (expr)?

(le *x) —macro
(length **u*)
lineread = readl (below)
(litatom *x) - macro
lt=<

mapcl = mapcar
memb = member
(msg ...) —macro —Some features may be missing. The function

used to print is msgprintfn, initially bound to
(or (eq **invisible*...)

(patom (valform...)))
(nconcl 'l'elmt)
(nequal 'argl *arg2)
(newsym atom) —fexpr
noduples = union (below)
(nth '1 'num)
(oldsym atomorpair) —fexpr
(pearl-break-err-handler) - Should be tied to ER%tpl if you want the

standard Franz Usp break (not much of a) package.
Same as standard Franz Usp break-err-handler except
that it uses the function breakprintfn,

(pearl-top-level) - The PEARL top level loop,
(pearl-top-level-init) - The initial function called when PEARL starts up.

This is the code that reads in the init files and sets any unset
PEARL parameters,

peekc = tyipeek
(pop q) —macro
(push var 'val) —macro
(readl ['flag]) - fexpr

PEARL Documentation Pa8e 60

(readJl 'flag)
remove = delete
(remprops 'item 'proplist)
(remsym atomorpairlist) —fexpr
(save fcnname) - fexpr - Saves function or macro definition under

the property olddef. Savesmacro character definitions
under oldmacro.

(selectq...) —macro
(some 'fen'list)- macro - Potential problem when compiled,
(sprint 'item ['lmar ['rmar]]) - See Note 3below,
(subset 'fen 'list) - macro
(timer (defun timer fexpr (request)!?
(unbound) —macro
(union 'listl ['Ust2 ...])
(unsave fcnname) —fexpr —See save.

Note 1: Asimplified but extended imitation of the UCI Usp func
tion dskin is provided in PEARL. It is an nlambda which requires the
file extensions to be provided. There is a special variable ♦dskin*
which controls whether the expression read in is printed and/or
whether the result of evaluating it is printed.

•dskin* = nil means neither
•dskin* as t means result only
•dskin* = 'name means the name of the variable in setq or the name

of the function in de, df, dm, dsm, drm, defmacro,
defun, or def or the name of the type in create.

•dskin* = 'both means both t and 'name.

The default value of *dskin* is t.
File names are always printed before they are opened. The print

function used for values is the current function definition of
dskprintfn. The default function definition inPEARL is:

(de dskprintfn (*printval*)
(cond ((atom *printval*) (patom *printval*))

(t (print (valform *printval*)))))

Note 2: For better compatibility with UCI Lisp, PEARL contains
macros for the function and read macro definition functions de. df.
dm. dsm. anddrm. They have been defined to save the old definitions
automatically and to return (fcnname Redefined) when this is the
case. De, df, and dm save the old definition under the property 'old
def. Dsm and drm save the old definition under the property 'oldmac-
ro. (The current definition of a readmacro is kept byFranz under the
property 'macro.) If the function definition is read in by dskin, then
the current file name which is in the special variable •file* is put
under the property 'sourcefile.

Note 3: Afunction similar to the UCI Usp sprint is included, in
cluding the printmacro facility and the optional second argument
saying which column to start in. In addition, there is an optional third
argument saying which column totry not togo beyond (that is a right
margin). Aslight addition has been made to the printmacro feature
(feature 1 below). During sprinting, if the atom in the function posi
tion in a list has the printmacro property one of four things will hap
pen during sprinting:

PEARL Documentation Page 61

1. If the printmacro property value is a string and the item to be
printed has a nil car, then the string will be printed instead of
the item.

2. If the printmacro property value is a string and the item to be
printed has two items in it, then the string will be printed fol
lowed immediately by the cadr of the item.

3. If the printmacro property value is a string but the item to be
printed is longer than two elements, then it will be sprinted in
the normal fashion (i.e., the printmacro will be ignored).

4. Otherwise, the printmacro property value will be applied to the
rest of the arguments. It should be a function which expects
three arguments, the item to be printed, a left column to start in
and a right column to try not to go beyond. Agood default value
for the right column argument seems to be zero. If the function
under the printmacro property returns nil, then sprint assumes
that it decided not to print the item and prints it in the usual
way.

Note 4: The Fixit debugger now accepts a command of the form
> newname whenever either an undefined function or unbound vari
able error occurs. As in UCI Usp, newname is not evaluated in the
case of an undefined function but is evaluated in the case of an un
bound variable. Note that the blank is required (unlike UCI Lisp).
This is not guaranteed to work if you move around the stack first.

PEARL Documentation Page 62

30. Appendix of Franz lisp functions addedto UCI lisp PEARL
The following is a summary of the functions added to the UCI Usp

version of PEARL to make it compatible with Franz Usp. Where the
details are not obvious, see the Franz Usp manual. Note: Most mac
ros listed in the index which are labelled with asterisks are not avail
able in UCI Usp PEARL, since the implementor must specifically re
quest that they stick around. *

Dskin, the break package, and msg have been changed to use the
functions dskprintfn. breakprintfn. msgprintfnfor printing.
(addtoaddress 'n 'address) - expr - Used by cxr and

rplacx. Written in LAP code,
(apply* 'fen 'args) —macro - Equivalent to apply#.
(buildalist...) — expr — Used by defmacro.
fcombineskels ...) - expr - Used byquasiquote.
(convert...) — expr — Used by defmacro.
(cxr 'index 'hunk) - expr - Ahunk is a block of memory. Provides

random access to a single cell of a hunk. (Uses
addtoaddress and even.)

(defmacro macroname arglist body) —macro —Defmacro provides
a slightly more intelligent macro facility. Body is
processed to look for occurrences of the arguments in
arglist which are replaced with the appropriate form
of ca..r. If an argument is preceded by Screst,
then it gets the list of the rest of the arguments.
The Franz Lisp version has many more features not included
in the PEARL version,

(even 'x) —expr —Is * even? Used by cxr and
rplacx to determine which half of a cons-cell to use.

(isconst...) —expr - Used by quasiquote.
(makhunk 'size) - expr - Calls the UCI Lisp function getblk,

requesting a block of memory which is half of size, since
each piece of a UCI Usp block of core is a cons-cell,

(msg ...) —fexpr - Modified to use msgprintfn to print
values of evaluated elements of the print list,

(pearl-top-level) - the PEARL top level loop.
(pearl-top-level-init) - The initial function called when PEARL starts up.
(rplacx 'index 'hunk 'val) - expr - Provides random access storage into

a block ofmemory. (Uses addtoaddress and even.)
(quasiquote 'skel) —expr - called by the quasi-quote readmacro

character backquote '. Equivalent to the quasiquote
functions defined in Charniak[2] with different invoking
characters to match those of Franz Usp.
Unquote is comma ",M and splice-unquote is ",©".
Uses combineskels and isconst.

PEARL Documentation Page 63

31. Bibliography
[1] Bobrow, D., and Winograd. T. "An Overview of KRL, a Knowledge

Representation Language." Cognitive Science 1:1 (1977).
12J Charniak, E.. Riesbeck, CL, and McDermott, D. Artificixil Intelli

gence Programming. Hillsdale, New Jersey: Lawrence Erlbaum
Associates, 1980.

[3] Faletti, J., and Wilensky, R. "The Implementation of PEARL- A
Package for Efficient Access to Representations In lisp", forth
coming ERLtechnical report, UCB.

[4] Greiner, R.. andLenat, D. "A Representation Language Language.,,
In Proc. First NCAI. Stanford, CA, August. 1980, 165-169.

[5] Roberts, I., and Goldstein, R. "NUDGE, A Knowledge-Based
Scheduling Program." In Proc. IJCAI-77. Cambridge, MA, August.
1977. 257-263.

[6] Schank, R. Conceptual Information Processing. Amsterdam:
North Holland. 1975.

[7] Wilensky, R. "Understanding Goal-Based Stories". Technical Re
port 140, Computer Science Department, Yale University, New
Haven, CT. September 1978.

[8] Wilensky, R. "Meta-Planning: Representing and Using Knowledge
about Planning in Problem Solving and Natural Language Under
standing." Cognitive Science 5:3 (1981).

PEARL Documentation Page 64

32. Index of Global Variables and Functions With Their Arguments
All functions are exprs (or lexprs) unless otherwise listed. Functions

with one or more asterisks for a page number are not documented other than
in this index because they were not actually intended for use by the PEARL
user. A single asterisk * means it is primarily intended for use by PEARL but
might be useful and will generally work right. A double asterisk •• means it
will generally only work within PEARL's code, since it expects certain external
prog variables to exist and be set correctly. A triple asterisk ••• means it is
dangerous to use. Note that it is dangerous to redefine any functions in this
list, although it should be all right to redefine any macros.
♦activedbnames* - special variable - initial value: nil 40
9any9conscell9 - special variable - value: '(•any* . ^pearlunbound*) ♦
9availablesi2eB9—special variable —value: 39

((-1. .1.)(0..1.)(1..1.)(2..3.)(3..7.)
(4. . 13.) (5. . 29.) (8. . 61.) (7.. 127.)

Franz Lisp:... (8.. 127.) (9.. 127.) (10.. 127.)
(11. . 127.) (12. . 127.) (13. . 127.))

UCI lisp: ... (8. . 251.) (9.. 509.) (10. . 1021.)
(11. . 2039.) (12. . 4093.) (13.. 8191.))

♦blockstack* - special variable - initial value: nil 48
•currentcreatetype* - special variable - initial value: base 56
9currentpearlstructure9 —special variable —initial value: nil 46
•currentstructure9 — special variable - initial value: nil 46
•currenttopcopy* - special variable - initial value: <UNB0UND> 55
9currenttopcreated9 - special variable - initial value: (nilstruct) 8

db - special variable - default initial value: <UKB0UKD> 33
•db» — special variable - default value: the •meindb» database 12
•dbladze* - special variable - default initial value: 29 39
9db2sdze9—special variable - default initial value: 127 39
•done* —special atom 35

•fail* - special atom 35
•file* —special variable —initial value: nil 60
•flrstartup9 —special variable - initial value: t 53
•function-stream:9 —special atom 13
•globallist* —special variable - initial value: nil 45

•history* - special variable - value: command history hunk 51
•historynumber* —special variable - initial value: 0 52
•historysize* - special variable - default value: 64 51
•histval* —special variable - value: value history hunk 51
•invisible9 — special atom 53

•lastcreated* —special variable - initial value: (nilstruct) 8
9lastsymbolnum9 - special variable - initial value: -1 •
•maindb* —special variable —default value: the main data base 11
•matchunboundsresult9 —special variable - initial value: nil 44
ordinalnames —special variable - initial value: nil 31

•pathlocal9 - special variable - initial value: <UNB0UND> 33
•pathtop* - special variable - initial value: <UNB0UND> 33
^earlprompt* —special variable —default value: "pearl> " 3, 4
•pearlunbound9 —special atom 45
•printhistorynumber9 - special variable - initial value: nil 53

•readlinechanged9 —special variable —initial value: nil 53
•runaddpredhooks9 - special variable - initial value: t 34
•runaddsethooks* - special variable - initial value: t 34
•runallbasehooks9 —special variable —initial value: t 33
•runallslothooks9 — special variable - initial value: t 33

•runapplyhooks9 - special variable - initial value: t 34
•runclearhooks9 —special variable —initial value: t 34

PEARL Documentation

•rundelpredhooks* - specialvariable - initial value: t
•rundelsethooks* —special variable —initial value: t
•runexpandedhooks9 —specialvariable —initial value: t
9runfetchhooks9 —special variable —initial value: t
•rungethookhooks* - special variable - initial value: t
•rungethooks* —specialvariable - initialvalue: t
•mngetpredhooks* —special variable —initial value: t
•runindbhooks9 - special variable - initial value: t
•mnindividualhooks9 - special variable - initial value: t
•runinsertdbhooks9 - special variable - initial value:t
•ronmatchhooks9 - special variable - initial value: t
•runnextequalhooks9 - specialvariable —initialvalue: t
•mnnextitemhooks* —special variable - initial value: t
•runpatternhooks* - special variable - initial value: t
•ronputhooks9 - special variable - initial value: t
9runremovedbhooks9—special variable - initial value:t
•runsmergehooks9 - special variable - initial value: t
^unstrequalhooka9 - special variable - initial value: t

9stream9 —special atom
♦stream:*—special atom
•toplevelp* - special variable - initial value: <UNBOUND>
•unhashablevalues*- special variable —initial value:

(0unbound •pearlunbound* nilsym (nilstruct))
•use9 —special atom
•usealiases* —specialvariable —initial value: t
♦warn* —special variable- initial value: t
•zero-ordinal-value* - special variable - initial value: 0

I — splicing macro
S — splicing macro
= — read macro

? — read macro

(addalist 'var 'inst) - macro
(addbasehook 'ccnscell 'item) - macro
(addhistory 'line)
(addpredpath 'item 'path 'pred)
(addsetpath "item 'path 'value)

(addtoexpanadonlists) - macro
(adjvarset 'var 'val) —macro
(allocdef numofslots) —macro
(allocval numofslots) —macro
(applypath 'fen 'item 'path)

(base name [storage] slotl...) - macro
(basicmatch 'iteml 'item2)
(block [blockname] varlist) - fexpr
(blockatom 'symbol)
(blockp 'potblock)

(breakprintfn '•printval*)
(builddbnewdb [olddb]) - fexpr
(buildintvalue 'intval 'bppset) - macro
(buildalot) —macro
(buildstructvalue 'structdesc) - macro
(buildsymbolvalue 'symname) —macro
(buildvalue 'value 'typenum 'ppset)

(cb name [storage] slotl...) - macro
(ce basename newname [storage] slotl...) —macro
(cf name [storage] slotl...) - macro
(chcckandrunbasehooks2 'fen 'iteml 'item2)- macro
(checkandrunslothooks2 'fen 'hooks 'vail Val2 'iteml *item2)

34

34

34

34

34

34

34

34

34

34

34

34

34

34

34

34

34

34

13
13

35

51

17

31

52

52

28

16

•

10

10

••

10

56

46

47

46

30

Page 65

58,59
38

56
56

56

— macro

PEARL Documentation

(checkrunhandlebasehooksl fen 'runhooksatom) - macro
(checkrunhandleslothooksl 'fen 'runhooksatom) - macro
(ci basename [storage] slotl ...) - macro

(cleardb ['db])
(cleardb 1 'db)
(cleardbactive 'db) - macro
(clearhashandformat 'slotnum 'defblock) - macro
(clearpath 'item 'path)

(compatible 'slotnum 'iteml 'item2) - macro
(connectdb 'newdb 'olddb)
(consistentvalue 'val "predlist 'typenum 'item)- macro
(constructvalue) —macro
(convertpreds 'pred)
(copy 'list)
(copypatternslot) —macro
(copyslice) —macro
(copyslot 'nameblock) —macro

(cp basename [storage] slotl...) —macro
(cr selector ...) —fexpr
(create selector ...) - fexpr
(createbase 'newname 'slots)
(createexpanded 'oldname 'newname 'slots)
(createfunction 'fcnname 'slots)
(createindividual 'basename 'slots)
(createpattern 'basename 'slots)

(databasep 'potdb)
(dbcr selector ...) —macro
(dbcreate selector ...) —macro
(debugprint 'item)
(defatom 'symbol)

(defaultfortype 'typenum) - macro
(definitionp 'potdef)
(delpredpath 'item 'path 'pred)
(delsetpath 'item 'path 'value)
(disguisedas 'filler 'struct ['db])
(disguisedasl 'filler 'struct 'db)

(dobasehooks2< fen 'runhookatom) - macro
(dobasehooks2> fen 'runhookatom) - macro
(doslothooks2< fen 'runhookatom) - macro
(doslothooks2> fen 'runhookatom) - macro
(dskprintfn '•printval*)

(endallblocks)
(endanybiocks blockname) - fexpr
(endblock [blockname]) - fexpr
(enforcetype 'value 'typenum)
(equalvalue 'xval 'yval 'typenum) - macro
(evalfcn 'item)

(exccutehookl fen value item defblock) - macro
(exccutehook2 fen vailval2 iteml item2 defblock result) - macro
(expanded basename newname [storage] slotl...) - macro
(expandedfetch 'item [*db])
(expandedfetchl 'item 'db)

(fcnslot) - macro
(fetch 'item ['db])
(fetchl ftem 'db)
(fetchcreate selector .) —macro

♦•

•♦

56

39

39
•

10

t

•

54
••

•♦

••

56

55

5

Page 66

30

56

12,56
21

7

•

30

10

10

29

29

••

•♦

••

60

48

4B

47
•

51

••

••

56

42

42

•♦

12,43
12,43
14.56

PEARL Documentation Page 67

(fillbaseslot) - macro ••
(flllinl fen 'value 'item 'defblock) 33
(flllin2 fen 'vail 'val2 'iteml 'item2 'defblock 'result) 33
(fillindivslot) —macro ••

(findnextblockstart) —macro "
(findslotnum) - macro "
(flndstructsymbolpair 'defblock 'symbol) —macro "
(nrstfetch pattern) —macro 14, 56
(fn name [storage] slotl...) - macro 56

(followpath 'item 'path) •
(for val 'init 'final Aorest 'body) —macro 54
(foreach 'stream fen) — fexpr 54
(fp 'item ['lmar ['rmar]]) 56
(freezebindings 'struct) 48
(freezeblock 'blockname) 49
(freezestruct 'struct) 49

(fullform Item) 20
(fullprint 'item ['lmar ['rmar]]) 20, 37
(fullprintl 'item 'lmar 'rmar) 20, 37
(fullalotform) —macro "

(getalist 'inst) —macro 57
(getalistcp 'inst) —macro 57
(getbasehooks 'defblock) —macro 57
(getdbl 'db) - macro 57
(getdb2 'db) - macro 57
(getdbactive 'db) —macro 57
(getdbchildren 'db) —macro 57
(getdbname 'db) —macro 57
(getdbparent 'db) —macro 57
(getdefaultinst 'defblock) 57
(getdefinition 'valblock) 57
(getenforce 'slotnum 'defblock) —macro 57
(getexpansionlist 'defblock) —macro 57
(getformatinfo 'slotnum 'defblock) —macro 57
(gethash9 'slotnum 'defblock) —macro 57
(gethash99 'slotnum 'defblock) —macro 57
(gethashl 'numl 'dbl) —macro 57
(gethash2 'numl 'num2 'db2) - macro 57
(gethash3 'numl 'num2 'num3 'db2) - macro 57
(gethash: 'slotnum 'defblock) —macro 57
(gethash:: 'slotnum 'defblock) - macro 57
(gethash< 'slotnum 'defblock) —macro 57
(gethash> 'slotnum 'defblock) —macro 57
(gethashalias 'defblock) —macro 57
(gethashinfo 'slotnum 'defblock) - macro 57
(gethashvalue 'slotnum 'item 'defblock) 9

(gethookpath 'item 'path) 10
(getisa 'valblock) —macro 57
(getpath 'item 'path) 10
(getpname 'defblock) —macro 57
(getppset 'slotnum 'defblock) - macro 57
(getpred 'slotnum 'inst) —macro 57
(getpredpath 'item 'path) 10

(getsinglevalue 'slotnum 'item) *
(getslot 'slotnum Inst) - macro 57
(getslothooks 'slotnum 'inst) - macro 57
(getslotname 'slotnum 'defblock) - macro 57
(getslottype 'slotnum 'defblock) - macro 57
(getstructlength 'defblock) - macro 57

PEARLDocumentation P«g« 68

(getstructorsymnum 'strsym) —macro 57

(getsymbol 'symname) 4
(getsymbolpname 'symbolitem) —macro 57
(getuniquenum 'defblock) —macro 57
(getvalue 'slotnum 'inst) 57
(getvarandvalue 'slotnum 'inst 'var) 57
(getvarval 'slotnum Inst) —macro 57

(•global9 varname) —fexpr 46
(global variable) —fexpr 45
(globalp 'variable) 45
(handlehookresult 'oldval 'newval) - macro "
(haahablevalue 'slotnum 'item 'defblock) - macro "
(hashslot) — macro "

(hidden 'command) —macro 35
(higheroreq 'iteml *item2) —macro •
(history ['num]) 53
(ind basename [storage] slotl...) - macro 56
(indb 'item ['db]) 14
(indbl 'item 'db) 14
(individual basename [storage] slotl...) —macro 56

(inheritvalue 'structdef) —macro "
(inlinecreate selector ...) —macro 14, 56
(mlinefetchcreate selector ...) —macro 14, 56
(insertdb 'item ['db]) 12
(insertdbl 'item 'db) 12

(insidecreate selector ...) — fexpr "
(inatidefetch patdef expdefs) — macro "
(insidefetcheverywhere patdef expdefs) —macro "
(insidepattemize 'item) "
(jnstidescopy 'item) ••
(installadjunct 'adjunctvar) ~ macro
(installglobal 'globalvar) —macro
(installvar 'varname) - macro

(instatom 'symbol) 7
(isa 'iteml 'name) 42
(isanexpanded 'iteml 'item2) 42
(islambda fcnname) 9

(match 'iteml 'item2) 46
(msgprintfn ,9printval9) 58. 62
(newnum) —macro •
(nextequal 'stream) 46
(nextitem 'stream) 13
(noalias) —macro ••

(nullstruct 'item) 42
(nullsym 'item) 42
(numberofslot 'slotname 'defblock) —macro 57
(onesymbol) —macro "
(ordetom 'symbol) 31
(ordinal name vallist) —fexpr 30

(pat basename [storage] slotl...) —macro 56
(path fen 'item 'pathlist ['val]) - macro 9
(pattern basename [storage] slotl...) —macro 56
(patternize 'item) —macro 55
(patternizeslot) —macro "
(pboundp 'a) 45

PEARL Documentation Pege 69

(pearlprintfn ,9printval9) 3, 4
(pexp basename newname [storage] slotl...) —macro 56
(pfunction name [storage] slotl ...) —macro 56
(pname 'item) 4
(ppsetform 'slotval 'ppsetname) 9

(prefix 'iteml 'item2) 52
(prefixcommandhistory) 9
(prefixcommandvalue) 9
(printdb ['db]) 21
(printdb 1 'db) 21
(psymbolp 'potsymbol) 30
(punbound) 45

(punboundatomp 'yyy) 9
(putalist 'alist 'inst) —macro 9
(putalistcp 'alist 'inst) —macro *
(putbasehooks 'booklist 'defblock) —macro *
(putdbl 'dbl 'db) - macro •••
(putdb2 'db2 *db) - macro •••
(putdbchildren 'childlist 'db) - macro 9"
(putdbname 'name 'db) —macro 9
(putdbparent 'parent 'db) —macro 9"
(putdef 'defblock 'valblock) —macro 9"
(putdefaultinst 'valblock 'defblock) - macro 9"
(putenforce 'slotnum 'defblock) —macro *"
(putexpansionlist 'explist 'defblock) —macro 9"
(putformatinfo 'slotnum 'hashnum 'defblock) —macro 9"
(puthash* 'slotnum 'defblock) —macro ***
(puthash** 'slotnum 'defblock) —macro *"
(puthash 1 'numl 'dbl 'item) —macro 9
(puthash2 'numl 'num2 'db2 'item) —macro *
(puthash3 'numl 'num2 'numS 'db2 'item) - macro *
(puthash: 'slotnum 'defblock) —macro 9"
(puthash:: 'slotnum 'defblock) —macro "♦

(puthash< 'slotnum 'defblock) —macro 9"
(puthash> 'slotnum 'defblock) — macro 9"
(puthashalias 'hashnum 'defblock) —macro •••
(puthashinfo 'slotnum 'hashnum 'defblock) —macro •••
(putisa 'isa 'valblock) — macro •••

(putpath 'item 'path 'value) 10
(putpname 'name 'defblock) —macro ♦••

(putppset 'slotnum 'setname 'defblock) —macro *
(putpred 'slotnum 'value 'inst) - macro *
(putslot 'slotnum 'value 'inst) —macro *"
(putslothooks 'slotnum 'slothooklist 'inst) —macro *
(putslotname 'slotnum 'slotname 'defblock) —macro "•
(putslottype 'slotnum 'typenum 'defblock) —macro 9"
(putstructlength 'size 'defblock) —macro •"
(putsymbolpname 'name 'block) —macro 9"
(putuniquenum 'num 'defblock) —macro •••
(putvarval 'slotnum 'value 'inst) —macro *"
(reallitatom 'potatom) 9

(releasedb 'db) 38
(removedb 'item ['db]) 12
(removedbl 'item 'db) 12
(removeslot) — macro "
(revassq 'value 'alist) 9
(runbasehooksl fen 'item) 33
(runbasehooks2 fen 'iteml 'item2 'result) 33
(runslothooksl fen 'item 'slotname 'value) 33
(runslothooks2 fen 'iteml *item2 'slotname 'vail 'val2) 33

PEARL Documentation Pft*e TO

(savecontinue 'directory 'name) S3
(savefresh 'directory 'name) 63
(savepearl) #
(scopy 'item) —macro 5^
(scopyslot) —macro •t

(setblock blockname) —fexpr 48

(setdbactive 'db) - macro •••
(setdbsize 'poweroftwo) 39
(setv var 'val 'environment) —fexpr 47
(slotequal 'slotnum 'iteml *item2) 9
(slotnametonumber 'slotname 'defblock) —macro "
(smerge 'build 'from) 85

(standardfetch 'Hem ['db]) 43
(standardfetchl 'item 'db) 43
(standardmatch 'iteml *item2) 46
(streamp 'potstream) 30
(streamtolist 'stream) 14

(strequal 'iteml 1tem2) 46
(structurenamep 'potname) 30
(structure? 'potstruct) 30
(symatom 'symbol) 4
(symbol name 1 name2 ...) —fexpr 4
(symbole 'symname) 4
(symbomamep 'potname) 30

(thawbindings 'struct) 49
(thawblock 'blockname) 49
(thawstruct 'struct) 49
(unbind globalvar) —fexpr 45
(unbindvars 'structure) —macro 48
(unboundatomp 'yyy) •

(valform 'item) 20
(valprint 'item ['lmar ['rmar]]) 20
(valprintl 'item 'lmar) 20
(valslotform) - macro ••

(valueof 'var 'struct) 17

(^ar9 varname) - fexpr 46
(varset 'var 'val) —macro #
(varvalue var 'val) —fexpr IV
(visible 'command) —macro 35
(vp 'item ['lmar ['rmar]]) 56
(while 'val Merest 'body) - macro 54

PEARL Documentation

33. Concept Index

abbreviations
accessing slots of structures
accessing structure default instances
accessing structure definitions
accessing symbols

adding slots to structures
adding to the data base
adjunct variables
affecting forced aliasing (~)
ako's (expanded structures)

aliasing of commands
aliasing in hashing
ampersand (&) hashing
and, in predicates
anti-aliasing in hashing (<)
•any*
automatic storing of structures

base hooks
bases
blocks
building structures
building upon data bases

changing slots of structures
clearing data bases
colon (:) hashing
colon-colon (::) hashing

command aliasing
command history
command history, printing
compatibility functions (UCI, Franz)

controlling running of hooks
controlling results with hooks
controlling unbinding of variables
converting from internal form
copy redefined
copying structures

creating data bases
creating patterns
creating base structures
creating individual structures
creating symbols

data bases
data bases,
data bases,
data bases,
data bases,
data bases,
data bases,
data bases,
data bases,
data bases,
data bases,

building upon
clearing
creating
fetching from
freeing
inserting into
printing
releasing
removing from
setting size of

debugging
debugging print
declaring global variables

55-56

8-10

7

7

4

40

12
30

27

40-42

51

27

26

28

27

15

6,56

32-37
5

47-46

5

3B, 39

8

39

23

24

51

51-53

53

58-62

33-34

35

48-49

20

54

55

38,39
15-16

5

6

4

11

39

30

30
12, 19, 25, 42. 43, 46
40

12

21
40

12

39

21

21

45

Page 71

PEARL Documentation

default fetch function 43

default instance for a structure 15

default instance, accessing 7

default match function 46

default printing functions 20, 56, 60-61, 62

default values for slots 14-15

defaults, inherited 41-42

defining structures 5

defining symbols 4

definitions of structures, accessing 7

deleting from the data base 12

demons (hooks) 32-37

disguising in path 10-11

disguising in predicates 29

don't-care matching variable 15

double-colon (::) hashing 24

double-star (") hashing 24

dumping PEARLfor later 53

efficiency despite variables 30

enumerated (ordinal) types 30

environment for variable evaluation 46-47

environment, top level 51-53

environments, in hooks 33

equality of structures 46

equivalences of functions (UCI-Franz) 58-62

error messages 21

evaluating function structures 51

evaluating in create 22

expanded structures 40

expanded structures, fetching 42

feedback, sending 21

fetch, standard 46

fetching expanded structures 42

fetching from the data base 12, 19, 25, 42, 43. 46

fetching with equality (not matching) 46

filling in special forms (in hooks) 33

for loop 54

forced aliasing (>) 26

forest of data bases 39-40

freeing data bases 40

freezing variables 48-49

function equivalences (UCI-Franz) 56-62

function structures 49-51

function structures, evaluating 51

getting symbols 4

global variables 45

greater-than (>) hashing 20

hash aliasing (&) 26

hash marking 17,23-27

hashing problems 18

hnphing with variables 30

hiding functions from hooks 35

hierarchy of structures 40

history mechanism 51-3

history number, printing in prompt
hooks

53

32-37

Page 72

PEARL Documentation

hooks, affecting result with 35

hooks, controlling running of 33-34

hooks, hiding functions from 35

hooks, making functions visible to 35

hooks, multi-argument 28

hooks, running 33-34

if-added functions (hooka) 32-37

indirection in path 10-11

individuals 6

inheritance in structures 41-42

(.)init.prl file 2-3

inserting in the data base 12

instances 6

integer slots 30

internal access functions 57

internal form printing 21

invisible functions to hooks 35

invisible results from functions 53

isa's (expanded structures) 40-42

less-than (<) hashing 27

lexically scoped variables 47-48

looping functions 54

low level access functions 57

macros, special 56

main data base 11

marking structures for hashing 17,23-27

match, standard 46

match, without unbinding variables 46

match-anything variable 15

matching process 44

matching two structures 43

matching unbound variables 44

matching-variables 16-17

merging structures 55

modified input line, printing 53

multi-argument matching predicates 28,32

next item in a stream 13

nilstruct(ure) 14

nilsym(bol) 14

or, in predicates 26

ordinal types 30-31

path functions 10

path indirection 10-11

pattern-matching variables 16-17

patterns 12, 15, 43

patterns in matching 43

predicates for object types 30

predicates in matching 27-29

predicates in matching, when run 44

predicates in matching, multi-argument 28

print names 4

printing PEARL objects 20

printing command history 53

printing data bases 21

printing functions 20

nrintins functions, standard 3-4, 58, 60-61. 62

Page 73

PEARL Documentation

printing history number in prompt
printing modified input line
printing warnings

processing a stream
prompt
prompt-re ad-eval-print loop
read-eval-print loop
redirecting in create (! and S)
releasing data bases
removing from the data base

reporting bugs
retrieving from the data base
returning invisible results
running hooks
running under Franz Lisp
running under UCI Lisp

saving PEARLfor later
scalar types
short-circuiting in create
side effect setting of adjunct variables
size of data bases

slot hooks
•lot names to numbers
slot types
slot types, more specific
slot values
•lot values in hooks
•lot values in predicates

special forms in hooks
special forms in predicates
special forms, filling in
special macros
standard fetch function
standard match function

star (♦) hashing
star-star (") hashing
(.)start.prl file
startup files
storing structures in the data base
storing of structures in atoms
streams

structure equality
structure matching
structure predicates
structure slots, further typing
structured escapes to Lisp
structures

structures, copying
structures, expanded
structures, function
structures, merging

symbols
testing for nilstruct
testing for nilsym
testing for object types
thawing variables

53

53

17

13

3-4

2-3, 51
2-3,51
22

40

12

21

12

53

33-34

2

3

53

30

22

30

39

32-37

57

6

30

6-10

32

28

32
28

33

58

43
46

17,23
24

2-3

2-3

12

8, 56
13

46

44-45

28-29

30

49-51

5

55

40

49-51

55

4

42

42

30

48-49

Page 74

PEARL Documentation

top level loop
top level loop functions
triple (") hashing
type tests for objects
types in structure slots

2-3, 51
59,62
24

30

31-2

unbinding global variables by match (lack of) 45
unbinding global variables by user 45
unbinding local variables by match 45-6
unbinding local variables by user 46
unbinding of variables, controlling 46-49
up-arrow (**) hashing 27

values of variables 17,46

values of variables, setting 47

variables in hooks 32

variables in predicates 28

variables with hashing 30

variable, accessing values 17,46
variables, adjunct 30

variables, controlling unbinding 48-49

variables, freezing 48-49

variables, global 45

variables, lexically scoped 47-48

variable, setting values 47

variables, side effects 30

variables, thawing 48-49

variables, unbinding 46

visible functions to hooks 35

warnings 17

while loop 54

Page 75

PEARL Documentation Update Page 76

Update of Changes
Through

PEARL3.8
April 1983

1. Introduction

otaJ*"8- aPPendbc describes the changes that have been made to
MSAKL since the original manual was produced. It is designed to
parallel the sections of the manual so that the original index can be
used to find changes.

no ci?1^ te now dktobuted with Franz lisp (starting with Opus
wim - earliest version of PEARL distributed (with 38.58) was
PEARL 3.6. The current update corresponds to version 3.8. The
current major and minor version numbers for PEARL are stored in the
special variables pearlmajorversion and peartminorversion respec-

With the change in mail protocols and addition of new machines
at Berkeley, the form of addresses for bugs and suggestions have
been simplified. Bugs, suggestions or queries should be sent to
Pearl-Bugs&Berkeley orucbvaxfpearl-bugs.

2. Running PEARL

PEARL is currently only maintained under Franz lisp The
current version could be moved back to UCI lisp (or to other Lisps)
fairly easily but has not been for lack of need, lisp Machine lisp is
the most likely lisp that PEARL will be moved to next but it has not
been done, mostly because of conflicts in the use of the colon charac
ter and lack of access to a lisp Machine.

2.1 Under Franz Usp
Since PEARL is now part of Franz lisp, it should be available as

Aisr/ucb /pearl or wherever you find lisp onyour system.
The .start.pearl and .init.pearl files are actually called start.prl

and init.prl and may optionally be prefixed with a dot "." and/or
suffixed with either ".o" or ".1" just as in Franz. The use of the dot
prefix and of the ".o" or ".1" is preferred and fastest. Thus PEARL will
read the first file found in the following sequence: .init.prl o,
.init.prl.I, .init.prl, xnit.prl.o, init.prll, or init.prl and similarly for
start.prl. Franz's special variable Sldprint is lambda-bound to nil
during the reading of these two files to disable the printing of "[load
•ixut.prlj".

6. Accessing Slots of Structures

Doing a "path put" on a slot containing a variable will not set the
variable. Rather it replaces the variable with the value provided.

10. Printing Structures. Symbols andOther PEARL Objects
The various printing functions still exist but all call a single for

matting function with various options controlled by special atoms.
The principle functions are aliform which does the building of a print
able list form for internal PEARL structures and allprint which calls
aliform. Aliform uses the following global variables to determine

PEARL Documentation Update Page 77

what form to build:

1. •abbrevprint* - a non-ntf value causes abbreviations to be used
whenever possible for any structure except the top level struc
ture passed to a print function. Abbreviations are described at
the end of this section. The new funcUons abbrevform and
abbrevpnnt lambda-bind this to t and then call aliform.
fuUform binds this to nil.

2. nul^print* - anon-ntf value causes complete information includ
ing hooks and predicates to be given when present. FuUform
(and thus fuUprint) lambda-binds this to t and calls aliform,
Abbrevform binds this to nil.

Itolform lambda-binds both to nil. The default value of both is are
also nil so that the default action ofaliform when used by itself will
be like valform unless these special variables are changed. All the
default print functions automatically use aUprint so that they can all
be changed by changes to the default values of •abbrevprint* and
•fuUprint*. r

Two other special atoms which affect the behavior of all the printing
functions are:

3. niniqueprint* - a non-ntf value causes a structure which is
encountered more than once during the same top-level call to a
print function to be translated into exactly the same cons-cells.
This saves on cons-cells and also makes it possible for the
—form functions to handle circular structures, although sprint
and thus the —print functions cannot handle the result. Since
most people seldom have duplications within a structure, the
default is nil (off). The assoc-list of already translated struc
tures is stored in the special atom •uniqueprintlist*

4. "quiet* - a non-ntf value disables all printing by any of PEARL's
print functions, providing an easy way to disable printing all at
once. There is also a function called quiet which behaves like
progn, except that it lambda-binds •quiet• to t during the evalua
tion ofits arguments, providing alocal island of"quiet".
The standard print functions are designed to handle any lisp

structure. Thus, they spend asignificant amount oftime determining
what kind of object they have been passed. For situations in which
you know exactly what type of object you want printed, the functions
structureform/structureprint symbolform/symbolprint and
streamform/streamprint are provided. They assume you know what
you are doing and do not ensure that you give them the right type of
value. ^ 'r

Adapting PEARL to fit an improvement in Franz, the atoms
showstack-printer and trac*printer are bound to the functions
pearlshowstackprintfn and pearitraceprintfn. Note the addition of
pearl" to the beginning of these. The name of breakprintfn was also

changed to pearlbreakprintfn but it is not currently lambda-bindable.

10.1. Abbreviations

As people build larger deeper structures it becomes useful to
have some of them abbreviated during printing if they are internal to
the structure being printed. When an individual (including default
instance) structure is created, an abbreviation atom is stored in it

PEARL Documentation Update Page 7B

Ibis abbreviation is chosen as follows:

1. If the option in create of having a structure automatically stored
in an atom is used, then that atom is the one used as an abbrevi
ation. Thus the structure created by (create individual x Pete)
will be given the abbreviation Pete.

2. If that option is not used, then default instances will be given the
abbreviation i:x (where x is the structure type name) and indivi
duals at the top level will be given a name newsym-ed from the
name of their type. Thus (create base x) will make a default
instance abbreviated i:x and the first structure created with
(create individual x) willbe abbreviated xO.

3. Scopy and related functions that create new structures from old
ones gensym the new structure's abbreviation from that of the
old structure.

11. ErrorMessages. Bugs, andErrorHandling Abilities
Bugs, complaints and suggestions of useful features (to be added

to the current list of 30 or so things on the wish list) should be mailed
by electronic mail to Pearl-Bugs@Berkeley or ucbvaxfpeari-bugs.

12. Short-Circuiting and RedirectingCreate Using !. S and Atoms
If an atom is encountered where a value-description was

expected in any type of slot, and it is bound to a value of the right
type, its value is inserted into the slot. For symbols, this is done if
the atom is not a symbol name. For structures, the atom must evalu
ate to a structure. For Usp slots, it must simply be bound. For setof
slots, its value is checked for being of the appropriate type, including
depth of nesting.

Note also that a change in the internal representation has made
it possible to allow even atoms in slots of type lisp.

13. More Flexible Hash Selection

Because we have never gotten around to adding fetch functions
to take advantage of colon and colon-colon hashing and these two
methods really are not useful in normal fetching, they are currently
ignored.

For situations in which you wish to create an expanded structure
and add newhashing marks to an old slot (rather than replace them),
preceding new hash marks with a plus("+") will cause the old hashing
information to be copied before processing the newhashing.

Thus, the sequence

fcb x (• a int))
ice x y (a ~))
fee x z (+ : a ~))
(cexw(: + a -)) ; anomalous use of +

will result in:

PEARL Documentation Update Page 79

* hashing in x,
no hashing in y,
both * and : hashing in z, and
only*hashing in w(because of misplacement of +).

Several new hashing methods have been added to PEARL.
A hashing mechanism using the label •*• has been added called

"triple-star hashing". If slots are labeled with ••• and all slots so
marked are filled with useful values, then the item is hashed under
the type of structure plus the values of all these slots. During fetch
ing, this is considered the most useful (that is. specific) hash method.

A hashing mechanism using the label && has been added called
"hash focusing". It is designed for people using a data base all of
whose entries are of the same type (not required, just common for
this application) and enables the contents of a single slot to be used
to better discriminate them. Examples ofsuch structures are "plan-
fors", inference rules, or almost any other such extremely-common
binary predicates. If a slot labeled && is found when inserting into
the database then the item is hashed as if it were the item in the slot
so labeled. At fetching time, && is considered less useful than *** or
•* and more useful than * or nothing.

This differs from &(hash aliasing) in that hash focusing affects
how a structure itself is inserted and fetched, while &simply affects
how structures containing this type of structure are treated. For
example, suppose the unique numbers of A, B, and Crespectively are
1, 2, and 3. Cis a symbol. Ahas one slot Xwith *and && hashing. B
has one slotYof type symbol with • hashing. Then a structure like (A
(X (B (Y C)))) will be indexed the following ways and fetcheverywhere
(see below) will find it in the following order: the && method will be
used first which uses the 2 and 3 from B and its C. (ignoring the 1 of
A), and also simply 2from B; the • on Auses the type of Bthus using 1
and 2; it is also looked for under the 1 of Awithout using 2 or 3. If B
had an &in its slot then the * on Ais affected by &on Bthus using 1
and 3 (ignoring the 2 of B).

Thus, if you consider A. B. and C to be three levels of information
in the structure, an item can be hashed under any combinationof two
ofthose levels. The normal • method uses levels 1 and 2, the aliasing
Sc method ignores level 2 and uses levels 1 and 3, and the new focuss
ing && method ignores level 1 and uses levels 2 and 3. In addition,
the item can be put under 1. 2 or 3 individually by various combina
tions of marks (l = none, 2 = :, 3 = :+&). The only unavailable combi
nation of the three is all of them.

16. AttachingHooks to Structures (If-Added Demons)
Slot hooks are now always inherited and added to, rather than

replaced. If the hooks and predicates of a slot are preceded by
instead then inheriting does not happen and hooks and predicates are
replaced.

The atoms for path hooks were misnamed in such away that you
could not use hidden and visible. Instead of *rungethooksm, and other
*run...hooks9 forms, they are now *ningetpathhook8* and other
nin...pathhookB. Note that they must be called as (XXXpath ...) and
not (path XXX...) when used with hidden and visible.

PEARL Documentation Update Page 80

17. Creating and Manipulating Multiple Data Bases
The function setdbsize can now be done at any time and will

remove all current databases before changing the size, warn the user
(if •warn* is set) and recreate *maindb* with the special variable
•db* pointing to it.

The function cleardb is now a local database clearer and its
effects do not extend up the database hierarchy.

10. Creating Expanded Subtypes of Previously Defined Objects
Hashing in old slots inherited by new expanded structures can

now be added to by preceding the new hash marks with plus ("+").
See section 13 above.

The name of an old slot inherited by a new expanded structure
may be changed by following the new name by the old slotname pre
ceded with an equal sign. Thus for example:

pearl> (create base X (A struct))
(X (A (nilstruct)))

pearl> (create expanded X Y (B =A) (C))
(Y (B (nilstruct)) (C)))

Note that there may not be a space between the equal sign and the
slot name since = is a read macro which expands =4 into (*slot* A)
but leaves a single space-surrounded equal sign alone. The actual
effect is to add another name to the slot so that it can be later refer
enced with either name.

20. Fetching Expanded Structures
A fetching function called fetcheverywhere exists which gathers

all the buckets the object could have been hashed into and builds a
stream out of all of them (potentially five buckets). There is
currently no "expanded" counterpart, since it has the potential of
returning 5 times the-depth-of-the-hierarchy buckets.

21.2 The Matching Process

During matching, if an unbound global variable is set and the
match later fails, the value is restored to *pearlunbound*. The names
of variables that are set are saved in the special variable *global-
savestack*

Formerly, there was only one match function which was used by
both standardfetch and expandedfetch and which therefore would
match two structures if they were hierarchically related. This is
really inappropriate for the standard fetching, so there are now two
regular match functions, standardmatch and basicmatch, which will
only match two structures of the same type, and two expanded match
functions, standardexpandedmatch and basicexpandedmatch, which
will match two structures which are related hierarchically (one above
the other) on the slots they have in common. Streams built by stan
dordfetch use the regular versions and and streams built by expan
dedfetch use the expanded versions.

There are now two functions memmatch and memstrequal which
are like memq except that they use match and strequal respectively
instead of eg.

PEARL Documentation Update Page 81

As of version 3.8. PEARL will now do unification of variables in
pattern matching. To turn it on, call the function useunification.
(Ihe current implementation precludes turning it off once it is on but
this may be remedied in later versions if we can figure out what it
means to stop unifying.)

28. Looping and Copying Functions
The function scopy no longer deletes bound adjunct variables.
The standard Franz function copy is no longer redefined since the

Btandard version now avoids the copying of hunks.

The functions scopy and pattemize are now exprs rather than
macros.

The new function varreplace permanently "freezes" the values of
slots containing bound variables by replacing all bound variables in an
item with their values.

A variation on scopy called intscopy ("internal scopy") is
designed to do the copying as if the copied item were internal to
another outer item, thus sharing its local and block variables. Its
arguments are the item to be copied and the outer item in whose
scopy the copying should be done.

20. Appendix of UCI lisp functions added to Franz PEARL
The definitions of de, df, dm, drm and dsm have been modified so

that if the special variable *savedefs* is nil then old definitions of
functions are not saved. This is especially useful in compiling (and as
a result, assembly and loading) since it will speed them up quite a bit.
This also disables the saving of the name of the file that the definition
was in. The variable *savedefs* is normally t which causes these mac
ros to act as before, saving the definition, etc. If •savedefs* is nil,
then they simply expand into the appropriate defun or setsyntax.
The following lines should be included in a file to have this effect only
at compile time:

(eval-when (compile)
!declare (special *savedefs*))
setq *savedefs* nil))

If you also want to permanently disable this feature in a lisp, that
loads ucisubset.l, simply put a (setq •savedefs* nil) in your .lisprc file
AFTER the loading of ucisubset.l.

The function remove is no longer made equivalent to Franz's
delete so that Franz's remove can be used. Ihe functions nth, push
and pop are no longer defined by PEARL, since the new Franz versions
are better. (UCI lisp users note: This switches the arguments to
push.)

32. Index of Global Variables and Functions with Their Arguments
All special variables in PEARL are now defined with defuar so that

fasVing in pearl,o at compile time will automatically declare them
special again.

All the exprs whose names were of the form XXXXl where XXXX
was the name of a lexpr which was a principle function of PEARL were
eliminated (i.e„ absorbed by the other form).

"^

PEARL Documentation Update Page 82

34. Compiling Iisp+PEARL Files.

To compile a file of mixed lisp and PEARL functions with liszt,
you must first load in the function definitions and special declarations
of PEARL by loading the object code. This is the file pearl.o which is
normally kept in the AisrAibAisp directory and will found automati
cally by load.

Thus, the foUowing should normally be included at the beginning
of a PEARL file you wish to compile:

(eval-when (compile)
(declare (special defmacro-for-compiling))
fsetq defmacro-for-compiling t)
(load 'pearl,o))

(declare (macros t))

	Copyright notice 1982
	ERL-82-19 (1 of 2)
	ERL-82-19 (2 of 2)

