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1. Introduction

We give algorithms which find a minimum capacity s-t cut and there

fore the value of a maximum s-t flow in a planar network with n nodes in

0((logn)^ time on a parallel computer with a polynomial number of pro

cessors which share a common memory. One algorithm solves the prob

lem on undirected networks; the other solves it on directed networks,

using pol5niomially more processors. An alternative algorithm solves the

problem on directed networks using no more processors as)nnptotically

than in the undirected case but at the expense of an additional log factor

in time. We also show how to find a maximum flow itself in 0(71 (logn)^)

parallel time for each case, imdirected and directed planar networks, and

again in the directed case exhibit a tradeoff of a log factor in time against

a pol5momial factor in number of processors. When networks are (s-f)-

planar, a running time of 0((logn)2) can be achieved.

These results are relevant by themselves and in the context of paral

lel algorithms for general combinatorial optimization problems. They are

more interesting, however, in view of the result by Goldschlager et oL [7]

^This research partially sij^jported by the National Science Foundation under grants HCS-
60Q26B4 and UCS-ei05217.

^Computer Science Division, 573 Evans Hall, Berkeley, OA 94720
^Computer Science Department, WHtmore Laboratory, University Park, PA 16B02
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where it is shown that finding the value of a maximum flow In a general
network is log space complete for P. It is therefore unlikely, in the light
of [6], that an algorithm for general networks can be found that runs in
C?((log7i)'') parallel time for any given constant k.

Our results employ the model of unbounded parallelism where it is

assumed, among other things, that

(1) an unbounded number of processors is available,
(2) memory is common to all processors, and

(3) a memory location can be read from, but not written into,

simultaneously by more than one processor.

The best serial algorithms known for planar networks (i) finds a
minimum (s,f)-cut in a directed (s,f)-planar network in O(nlogn) time
[4,5], (ii) finds a maximum flow in a directed (s.O-planar network in
0(n}ogn) time [9], and (ii) finds a minimum (s,f)-cut in an undirected
planar network in 0(n(logn)^ time [17]. There is aparallel algorithm by
Shiloach and Vishkin [19] which computes maximum flows in general net
works in 0(n^(logn)/p) time withp^n processors. When capacities are
polynomial in n, the flow problem in a general network can be reduced to

the solution of O(logn) perfect matching problems, using a construction
to be found in [13]. The results in [2,15,10] imply a nonuniform algorithm
which solves the perfect matching problem in <9((logn)2) parallel time.

2. Preliminaries

Let G=(V,^) be either an undirected or a directed graph. The net
work N=(G,c) has a capaxsityfunction c :£'-»R+. The capacity of an edge
seiXQE is the sum of the capacities of its edges. The distinguished ver

tices s and t are the source and sink, respectively, A set A'c.E' is a

disconnecting set if the undirected version of (V,E-X) has no path from
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s to The set A'c£' is an (s,f)-cuf if no proper subset of X is discon

necting. Let and be the weakly connected subgraphs of

for some (s,f)-cut X. Then is a minimum (s,0"cut if

c{e \e-{v,w)^X and j is minimized over all (s,f)-cuts where

(u.iy) is taken either as directed or undirected as the case may be. A
flow / in a directed network is a fimction / : E-^R which satisfies conser

vation at each vertex except s and t and for which 0^/(e)^c(e) for

each e&E. The value v{f) of a flow / is the sum of /(e) for edges e

incident from s. To consider flows in xmdirected networks, replace

undirected edge (u.zo) by a pair of directed edges <v,w> and <xy,T;>,

and call the resulting directed graph G'=(V,A). If / is a flow function for

G\ the flow in the undirected edge (v,w) is obtained as

|/(<u,7x;>)-/(<u;,t;>)|, with proper orientation. For additional

definitions and terminology in graph and network flow theory, see [1,13].

PROPOSITION 1 [4]. The value of a maximum flow is equal to the

capacity of a minimum (s,f )-cut in any network. •

For a plajie network 11, that is, a plane embedding of a planar net

work N, let -^(n) be the dual plane network of 11 and be a network

consistent with the plane network /?(n). Let the dual edge D(e) have the

same cost as e for each edge D(e)E,D(N). To capture (s,f)-cuts in terms

of cycles (which throughout this paper mean vertex-simple closed paths)
in a directed planar network, let D(N) be D{N) augmented with edge

e^{w,v) of cost c(e) =0 for each edge e^{v,w) in D{N). For

undirected plane networks, simply define 5(Ar) =i?(j\r). Clearly DiN)
corresponds to a plane network /?(n) in each case. Acycle q in ^(11) is a
cut'̂ ycle when the region of the plane bounded by q includes exactly one
of s or f. In the case of directed networks, q is e, forward cut-cycle if q
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is directed clockwise when g encloses s and is directed anticlockwise

when g encloses t. Cut-cycles with opposite orientation are called

reverse cut-cycles. Using the terminology of Reif [17], we have the follow

ing additional definitions. A cut-cycle or forward cut-cycle g in ^(11) is

jF-minimum if g is incident on dual vertex F (i.e. face F of 11) and has the

smallest cost c(g) of all cut cycles incident on F. While cut-cycles are

defined in terms of plane networks, we apply the terminology to the

corresponding cycles in the underlying planar networks.

PROPOSITION 2 [11]. The cost of a minimum-cost (s,f)-cut in N

is equal to the cost of a minimum (forward) cut-cycle in S{N). •

Continuing the definitions, a ,t)-path, fjrpath or for short, is a

path of minimum cost in D(N) from any vertex of D(N) adjoining s to

any vertex of D(N) adjoining t. Avertex of S(N) is said to adjoin a ver

tex V of jV if v is on the perimeter of the face in IT corresponding to F in

.D(n). Let fjL traverse the vertices Fi,F2, • • • in D{N), and let g^ be an

-minimum cut-cycle (forward cut-cycle in the directed case) of D{N)

for i=l, • • • ,ci. Let iq satisfy c (giQ)^c (g^) for i =l, • ♦ • ,cZ.

PROPOSITION 3 [11]. is a minimum (s,f)-cut of N. •

For a given plane embedding H, if is traversed in the order

(F'l, • • • ,7^^), then every edge incident on fi enters fi from the left or

from the right. In our case, since the undirected version of N is tricon-

nected, no self-loops exist in .6(11). If indeed N is not triconnected, it can

be made so as follows. Find the triconnected components, which can be

done in 0((logTi)^ parallel time using 0(n^) processors [12], and then

add dummy edges of zero capacity to triconnect the original network.
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In the undirected case, the following construction is known. Given

D(N), a pleinar dual of N, let fi' be a copy of jti and let Fi, lying on jj.', be

the corresponding copies of Fi, i=l, ♦ • ♦ .d. Reconnect to Fi all edges

incident on Fi from the left on a traversal of fi from F^ to F^, Call the

resulting undirected network D\ A pathp' in D' corresponds to a pathp

\ii D{N) by replacing every vertex of with the corresponding vertex on

M-

PROPOSITION 4 [11]. Let jd' be a minimum cost simple path

between Fi and Fl in undirected D\ Then p is an /i-minimum

cut-cycle of D{N),

Proof: Every subpath of ^ is of minimum cost since fi is minimum. So if a

subpath of an -minimum cut-cycle contains two or more vertex-disjoint

subpaths from fi, the lowest and highest numbered vertices from all of

these subpaths being F^ and Fyy respectively, then the subpath from F,^

to Fy in the -minimum cut-cycle can be replaced by the subpath of fj,

from F^ to Fy. Hence a simple pathp' in D' from Fi to Fi is minimum if

and only if p is a minimum cost .Fi-cut-cycle in D(N). •

3. Computing a Minimum Capacity Cut in an Undirected Network

The strategy of the algorithm should be clear from the results just

given, namely, to search the space of -minimal cut cycles for a globally

minimal cut cycle. To realize this strategy efficiently in parallel compu

tation we must obtain efficiently a representation for a plane dual D{N).

Then we must find a /z-path, split it to yield D' defined above, and search

the path space induced by this construction for a shortest path.

The first step in obtaining a plane dual of iV = (G,c) is to obtain a

plane mesh for G. A cycU basis for G is a set of cycles with the property
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that any cycle of G can be expressed as the the symmetric difference of

cycles in the cycle basis. A cycle C ispBriphsrai if the number of bridges

in G relative to C is 1, Let C be a peripheral cycle basis of G. Then

if = C u ( S5rmmetric difference of all C e C j is called a plane mesh of G if

every edge of G appears in exactly two cycles of if. It has been shown by

McLane [16] that G is planar if and only if G has a plane mesh.

Ja'Ja' and Simon [12] define a combinatorial object which they call a

pseudo-embedding of G. They show a construction which yields a plane

mesh for G, given its pseudo-embedding, whenever G is planar. The con

struction must, by McLane's result, fail when G is nonplanar. Their con

struction gives us the following lemma.

LEMMA 1 [12]. A plane mesh can be constructed for any planar

graph in G((logn)^) parallel time using G(n^) processors. •

The set of cycles of the plane mesh is output as a set of 0—1 vectors

over the edge set of G; the presence or absence of an edge in a cycle is

denoted by a 1 or a 0 in the corresponding vector. Because of this

representation, the following result is immediate.

LEMMA 2. A planar dual D{N) can be constructed from a plane

mesh for N in G(logn) parallel time using 0{n^) processors. •

A construction given later describes an G((logn)^ parallel time shor

test path algorithm. We use this algorithm to identify a ^-path. To con

struct D', the left or right incidence of dual edge edges to the /A-path in

an embedding of D(N) must be determined. To do this efficiently a

clockwise ordering of edges around every face / of 11 is obtained

independently for each face. Note that this ordering corresponds exactly
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to the clockwise ordering of the dual edges around the vertex of -O(n)

that stands for /.

LEMMA 3. Clockwise ordering of primal edges aroimd each face

of n can be obtained in O(logn) parallel time using 0{n) pro

cessors.

Proof: Split each vertex v on the face into two nodes [v,l] and [v»2] and

arbitrarily assign these two nodes to the two edges of the face incident on

V. Let CL[v] =[zi;] if [w,y'\ follows [I'.x] in a clockwise ordering of
the edges, where x,y€(l,2j. Similarly, let ACL[iu,i/] =[v,a;]. See Figure

1. The algorithm that computes CL and ACL is in essence similar to the

one in [14] for canonical edge coloring of 2-way graphs, CL and ACL play
ing almost identical roles to the colors in [14]. The details of the algo

rithm will be omitted. See also [10]. •

Let edge (®,y) be common to faces and .^igin 11. Then going from

a; to y must be clockwise on one of and F^^ and anticlockwise in the

other; if not, the ordering of either F^^ or F^^ must be reversed to be con

sistent. For the ordering of the entire graph to be consistent, con

sistency must exist for every pair of adjacent faces. However, it may be

seen that, for our purposes, consistency needs to exist only for the faces

on the /i-path.

LEMMA 4. A consistent clockwise ordering of the enclosing

edges in 11 for each face corresponding to a vertex Fi on the

//.-path in f?(n) can be obtained in C?((log7i)^) parallel time using

0(nlog7L) processors.

Proof. At step i of each of flogd] steps, consistent sets of 2* faces are

obtained from pairs of consistent sets of size 2*"^, where this operation is
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performed in parallel on each interval of size 2* in a partition of the fjr

path. If the two subsets of size 2*""^ in some interval of size 2* are already

consistent, nothing is done. Otherwise, the orientations of all the faces in

the second subset of the pair are reversed. Although propagating rever

sals when necessary to each of the 2*""^ faces involved in one subset of a

pair takes i-1 steps, these steps can occur in parallel with further

adjustments, the adjustments from successive steps being pipelined

through the levels of a binary tree constructed with the faces of fjL as

leaves. We omit further details except to note that d=(7(n). •

When consistency along the ^-path is obtained, it is known exactly

which one of the following is true for each face : either CL represents

correctly a clockwise ordering or CL must be reversed to be consistent.

Finally, the following lemma is needed.

LEMMA 5. The dual edges of which enter face Fi from the

left can be computed from a consistent clockwise ordering for

fi in C?(logn) parallel time using 0(n^ processors.

Proof: Let the dual vertex Fi be defined by the primal cycle

Ci^(y ,x, ' ' ' yX',y', • ' ' y), where we denote Q in clockwise order, and let

the dual edges (Fi^i,Fi) and be defined by the primal edges

ix,y) and respectively. Without loss of generality let ACL[x]=2/

and CL[x'] =y in the consistent ordering (We condense our previous nota

tion.). See Figure 2. The primal edges on the path (x, • • • ,x') (not going

through either y or y) define dual edges entering Fi from the left.

Disconnect the cyclic ordering at y and y', set the index of x or x' to be

the lowest around Fi\ and run a component-finding algorithm on Q. This

step takes O(logn) parallel time. If an edge belongs to the lowest num-
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bered component in Fi, then its dual enters Fi from the left. This at once

defines edges incident on the path fi', (For Fi and F^, s and t act as

and Fi+i, respectively.) •

THEOREM 1. A minimum capacity cut and the maximum flow

value in an undirected planar network can be computed in

0((logn)^ parallel time using 0{n^) processors.

Proof: Execute the following algorithm. Given a network, find a plane

mesh for it (if none exists, the network is non-planar); this can be done in

C7((logn)2) time with 0(n^) processors [12]. Find the planar dual; this

takes 0(log7i) time and at most O(n^) processors, since there are at

most 0{ri^ pairs of faces, each made up of 0(n) edges. Compute a fi-

path; this is done in 0((logTi)^) time with processors as described

in Section 5. Compute clockwise orderings for all faces in O(logn) time

with 0{n^ processors. Obtain consistency in the clockwise orderings on

the ju-path and, from this, the left-incidence of the dual edges to the /x-

path; this needs at most 0((logn)^) time and 0(n^ processors. Con

struct network D' and compute a minimum cut-cycle using the shortest

path algorithm of Section 5 in (^((logn)^) time with O(n^) processors.

The cost of the minimum cut-cycle yields the maximum flow value. The

proofs of correctness of the individual steps can be found in the previous

propositions and lemmas. The algorithm takes 0{(logn)^) time and 0(n^)

processors. •

4. Computing a Minimum Capacity Cut in a Directed Network

Proposition 3 allows us to use the same strategy as in the undirected

case, namely to search the space of -minimal forward cut-cycles for a

globally minimiun cycle. However, the analogue of Proposition 4 does not

hold if Z? is directed. A more difficult construction is required to force a
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path-finding algorithm to find forward cut-cycles.

Let 9 be a path of the plane network X?(n) which begins at some /it-
vertex Fi and ends at a ^-vertex. Any such q has a canonical representa-
tion q —(pj, • • ,p^), where =(/j, *••)» in. which each pi begins and
ends on p, and is extremal in a sense to be described shortly. When g is a
closed path, we require that Fi of the denotation be chosen so that q
intersects p at no vertex Fi,i<l. In this case, vertex Fi is called the ear-
Liest intersection with p. If earliest intersection Fi appears exactly once
in closed path q, then q is admissiJble,

When a subpath Pi of the canonical representation with no internal

vertices on p leaves p from one side, say the left, and returns to p on the

other, say the right, then p^ is enclosing. An enclosing subpath is left
enclosing or right enclosing if it leaves p on the left or on the right,
respectively. If a subpath pi leaves and reenters on the same side and

contains no enclosing subpath, it is nonenclo^ng. A subpath is coin'
cident if it is nonenclosing and has all its internal vertices on p. Any sub-

path that is not coincident (and therefore has at least one edge) is non-
coincident. Each coincident subpath in the canonical representation

9 =(Pi. • • • is required to be maximal while each noncoincident sub-

path in the canonical representation must be minimal. These conditions

are sufficient to uniquely define the canonical representation. Since we

admit the trivial single-vertex coincident subpath, coincident and non-

coincident subpaths alternate on the canonical representation, and in

particular Pi is coincident.

Let the number of right enclosing subpaths minus the number of left

enclosing subpaths in the canonical representation of a path g be the

excess of g. which can be written excess (g). We observe that the closed



Parallel Computation of Blow H

curve in the plane, constructed by connecting the undirected version of

any noncoincident in a canonical representation with the undirected

version of the segment of (m joining the endpoints of separates s and t

if and only if is enclosing, as just defined. We extend this observation

to coincident subpaths (which may not be simple and therefore may

induce many regions in the plane) by noticing that no region so induced

can enclose exactly one of s and t.

A closed path 5 =(vi, • • • in a plane digraph is ps2udljosi7npl2 if

every intersection of q with itself is noncrossing in the following sense.

For every pair of maximal subpaths and

for which either =^^,+1 . 1=0, • • • .A, or 1=0. • • • ,/i,

edge enters on the same side of (vio-i.Vio, • •• ,Vi^^.h,yio4-h+i) as

the side from which edge ('y;-o+;i,'yio+'i+i) leaves

(^<0- It is clear that a pseudosimple closed path is
topologically eqmvalent to a Jordan curve in the plane. Because of this

equivalence, we may extend the definitions offorward cut, backward cut,

and TioTicut directly to pseudosimple closed paths. We call a pseudosim

ple closed path fiat if each of its canonical subpaths is either coincident

or enclosing.

LEMMA 6. If 9 is a pseudosimple closed path in plane graph

i?(n), then excess(gr) e j—l.O. +lj. Furthermore, 9 is a forward

cut exactly when excess (9) =+1, 9 is a backward cut exactly

when excess(9) =—1, and 9 is not a cut exactly when

excess(9) = 0.

Proof: Let 9 be pseudosimple and have canonicEil representation

(Pi» • *• may without loss of generality assume that 9 is fiat, for
if it is not there will be some noncoincident, nonenclosing subpath of 9
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for which the Jordan curve It induces with /i properly encloses no vertex

of q. This subpath may therefore be replaced by a subpath which follows

fi, either forward or backward, without changing the excess or the cut

properties of q. Furthermore, the edges of the subpath left unused by

this replacement can be deleted from i?(n). Asequence of such transfor

mations yields a digraph, and a flat pseudosimple closed path within it,

which have the same properties relevant to the lemma as do the given q

and ^(11).

When there is exactly one enclosing subpath it is clear that the

lemma holds. Thus the lemma holds for k^2. Assume that the lemma

holds for all digraphs and for all pseudosimple closed paths q for which

k^kQ, Jfco>2, in the canonical representation. Let q' be given for which

fc' = A:o+l. and let g' have more than one enclosing subpath.

If we assume that the (multiple) enclosing subpaths of g' are either

all right enclosing or all left enclosing we obtain a contradiction as fol

lows. Consider the case where all are assumed to be right enclosing and,

in particular, p2 is right enclosing. We picture the main cases in Figure 3.

It may be seen that for g' to be a pseudosimple closed path there must

appear in g' at some time a left enclosing subpath from the segment of /x

labeled to the segment labeled /x^, and this subpath cannot cross

either P2 orp4. The left enclosing case yields a similar contradiction.

Thus we may assume that there are two enclosing subpaths Pi and

m =£+2, where if pi is right enclosing thenp^ is left enclosing, and

vice versa, and if Pi = • ♦ • ,Fj^) and p^ = • • • ,Fj^) then no por

tion of the Jordan curve for g is contained within the Jordan curve

defined by (PtJ>i+i.Pn. " ••''ii) *here the last segment (Fj^, • • • .F,,)

is coincident. It is clear that the excess and the cut properties of g'
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remain unaltered if (PiiPi+1,^771) is replaced by the coincident segment

adding edges as required. But this derived pseudosimple

closed path has fewer than fco+1 subpaths, and therefore the lemma

holds for it. It follows that the lemma holds for the given graph and path,

and therefore by induction the lemma holds for any given graph and

admissible pseudosimple closed path. •

We now derive from D(N) a network S in which every path has an

image in D(N). In particular, the images of a sufficient set of shortest

paths will be Fj-minlmum forward cut-cycles for vertices Fi on fi. The

construction involves many copies of S{N). For a given integer i, copies

and are formed by deleting all edges entering or leaving fj,

on the left in J9(n) to form and deleting all edges entering or leav

ing II on the right in the case of The superscript "L" stands for

"Left incidence diverted." The superscript "R" has an analogous meaning.

See Figure 4.

A unU Ui of D is then constructed from D*\N) and and

additional vertices as follows. For

every edge (u.Fj) in i?(n), with Fj on fi, construct the following edges:

if {u,Fj) enters fji on the left construct and

if (u.Fj) enters fi on the right construct

Then, for every vertex Fj on in .6(11), identify vertices Fj^and giv

ing the resulting vertex the name Fj. As may be seen, the unit £7^ con

tains vertices • • • .dj as well as all vertices not on the

M-path from both copies and 6*®(A7). In general, there are edges

from both of the copies, as well as the new edges.

The network S is formed as the union of £/< for all i, the union being
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obtained by identifying vertices with identical names. (These vertices are

exactly the vertices Fj which appear in C/^, and £7^+1 for all i and j.)

The network D is therefore an infinite network with the property that the

superscript i will be equal to the excess of any path in .5(11) which is the

image of a path • • • ,Fj) in D. This completes the construction of B.

Let be any set of simple paths in D which con

tains no path with an internal vertex from the set \Fj\ i^j^l and allij

and, subject to this restriction on internal vertices, contains but is not

restricted to all simple paths (Fj®, • • • in B with n or fewer vertices.

(A set ^iCn) may be described alternatively in terms of

^ or(j=Z andi?sO,l)i.) If we let A(p) be the extension to

paths of the homomorphism h (ix*) = u for any superscript "x", then

TiCi'jCn)) is a set of admissible paths in i?(n) with earliest intersection Fi.

Our algorithm will require paths p, from some set ^i(n), for which h(p)

is simple.

LEMMA 7. Let jD be a path in any ^j(7i) which is shortest subject

to the constraint that /i(p) is simple. Then h(p) is an Fr

minimum cut-cycle in 5(11).

Proof: For any 4^1(71), let p' be any path in >Fi(n) for which h(p') is sim

ple. The pathp' is of the form (pj, • • • ,Pk) where fi(p{} is either maximal

nonenclosing or enclosing, for i = •••,&. Let subpath p/ be enclosing

exactly when h.{p{) is enclosing. It may be shown by induction on the

traversal of p' over the edges introduced in the construction of B that

flip') has excess equal to 1. Thus, by Lemma 6, flip') is a forward cut-

cycle.

Since every edge in i?(n) is the image of one or more edges in B, it

may be shown by induction on the subpaths p^ that any forward cut-cycle
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9 ' ' ' t^i) in i?(n) is the image of some path p which is in every
It follows that if jD is of minimum length in any ^i(n), subject to

the restriction that h,(p) is simple, then fi(p) is of minimum length

among all forward cut-cycles with earliest intersection Fi. This in turn

implies -Fj-minimality. •

The preceding lemma does not as yet yield our result because, while

it is relatively easy to find shortest paths over some the require

ment that the image h,(p) be simple is difficult to enforce. If this condi

tion is not enforced, then a shortest path we find at Fi may be of lower

cost than an -minimum cut-cycle. We attack this problem globally over

alH = l, • ♦ • ,d by means of the next lemma.

For any closed path q denoted as • • • .v^), we define

an initial cycle qj to be any closed path (vi, • • • which is simple and

is a subgraph of g. For example, one initial cycle is the path generated

by a traversal of g from vertex where, at each i-th path vertex at

which g intersects itself, the edge is taken, where j is the larg

est index for which Vi-Vj- in the vertex set of the graph. It is clear that

the closed path g/ = (vi, • • so generated is simple. Thus at

least one initial cycle g/ exists for any g. We note that the definition of

initial cycle depends on the initial vertex in the denotation of the path

and, consequently, different initial cycles of the same path may have

different start vertices. However, the initial cycles of an admissible path

denoted as such all have the same start vertex.

LEMMA 8. Let p be any closed path in 5(11) in which some ver

tex Vi of the graph appears more than once. For any partition

oip into closed paths py = and jdj = (vi, • • • ,1;^),
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excess (p) = excess (py) + excess (pj).

Proof: We observe that p = (Pj,Pi) and that p^ and pi are of the form

Pjf — »*' " *' ' *^3z* ' * and Pi — ' ' Fjji • *• tPi^t

where Fj^ is the first /lA-vertex onpy, Fj^ is the last yLA-vertex onpy, and

similarly for Fi^ and Fi^ on pj. When, for example, the subpath

(^/a' • • • subpath (FJg, • • • ,Vi, • • • ,^1^) ofpj are
both nonenclosing, then if excess (Fj^, • • • • • • ^Fi^ = 1 it must be that

excess(Fjg, • • • ,i;^, • • • ,Fj^ = -]. (where these last two subpaths are on

p), and the result follows in this case. The remaining seven cases can be

demonstrated similarly. •

LEMIilA 9. For any let p be a shortest path in If

/i(p) is not simple, then one of two cases occurs:

(i) All initial cycles g/ of h(p) are forward cut-cycles, or

(ii) There exists an index h>l and a path p' which

belongs to every and which is no longer than

p.

Proof: When some initial cycle g/ of /i.(p) is not a forward cut-cycle, then

by Lemma 6 it has excess equal to 0 or —1. It follows by induction on the

result in Lemma 0 that the sum of the excesses of the paths in /i(p) —g/,

which is a collection of directed closed paths, is greater than or equal to

1. Therefore at least one closed path in the collection has a strictly posi

tive excess. Repeated application of this construction to such a closed

path, choosing any initial cycle at each step, will eventually yield a closed

path ql with excess equal to 1. Since all edge lengths are nonnegative and

a simple path can have no more than n vertices, it follows that fi(qj)

satisfies the conditions set forth in (ii). •
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LEMMA 10. Let pi be shortest in some for each

1= 1, • • • let Q be any set containing one arbitrary initial

cycle from each path in the set fjoj I^=lt' • • .d j, and let Q

be the forward cut-cycles in Q. Any cycle of minimum length in

Qc corresponds to a minimum cut in N.

Proof: Since all edge weights are nonnegative, subpaths are never longer

than the paths in which they are contained. Thus Lemmas 7 and 9

guarantee that the minimum cycle is a minimiim forward cut-cycle for

i?(n), which in turn by Propositions 2 and 3 gives our result. •

Lemma 10 establishes the correctness of the following algorithm for

our problem.

ALGORITHM DIRECTED-MIN-CUT

1. Construct a unit Ui of S.

2. For each 1 = 1, • • • ,d, find a shortest path in some ^'((n).

3. In each path obtained in Step 2, find an initial cycle. Find

the shortest cut-cycle among the subset Qc of these ini

tial cycles which happen to be forward cut-cycles.

THEOREM 2. Algorithm DIRECTED-MIN-CUT can be implemented

to run in C?((logn)^) parallel time using 0(7i®) processors, and in

C?((logn)^) time using O(n^) processors.

Proof: We may use the results of the previous section to construct Ui in

C?((logn)^ parallel time using 0(n^) processors. Given the results of

Step 2, it is possible to implement Step 3 in t?((log7i)^ time and 0(n^)

processors. To do this, in each of d paths it is necessary to find an initial

cycle and test if it is a forward cut-cycle.
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Let p' ' ' *Vyf^) be a closed path where for

i = 2, • • • ,m—1. To find an Initial cycle in p, we proceed as follows. Let

the last mate of a vertex v* in p be the vertex defined as

lastmate{v{)^V2, for i = 2, • • • ,m —1 lastmate{vi)^Vj where

j =max(i + l,£ =vij. Given p, last mates for all vertices i<m, inp

can be found in 0(log7i) parallel time and 0{mn) processors, when there

are no more than n distinct vertices in p (which is the case in our appli

cation). The graph induced on fvi, • • • ,Vjnl by directed edges

ivi,lastmate (vi)) has exactly one path p/ of the form (vi, • • • and

this path p/ is an initial cycle of p. This initial cycle p/ may be found in

an additional O(logn) parallel time using 0(m) processors.

To find one initial cycle for each of d paths pj in 0(log7i) parallel

time using O(n^) processors we must therefore guarantee that

m = 0{n^. As will be seen, we may only be able to guarantee in our appli

cation that m = 0(71^), but when m = w(n®) we will be able to apply the

lastmaie reduction twice, first to paths with 0(71^) vertices, reducing the

number of vertices on these paths to 0(71), then expanding these paths

again to 0{n^) vertices, and applying the lastmate reduction once more.

Any initial cycle of any closed subgraph (ui, • • • of some closed path

P -{y\, ' ' ' ,'̂ m) is also an initial cycle of p.

We now show how to implement Step 2. For a given i, let us take Si

to be D • ,l and allij. Let Aj be the matrix of shortest dis

tances in Si between vertices in the set \Ff^• ••,(ij.
By the shortest path results in Section 5 we can in C?((log7i)2) time and

0(71^) processors construct distance matrices Ai (of dimensions

lx4(d—£)) and Bi (of dimensions 4((i—1) and evaluate the "plus-min"

matrix product Ai^Bi which yields (by the bookkeeping of Section 5) a
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shortest path (Fi°, • • • with no internal vertices from the set

iFj Ii^j^L and all i j. We now show how to obtain from asingle unit C/^
of£',.

Let Ml be a matrix of numbers on SxS, where

5= +1, • •. and all j}, a subset of the vertices of Si. Let S be
ordered so that Fi precedes F^ when i<k, and Fi precedes F] '̂ when
3<m. With this ordering, square submatrices if? of Mi are induced by

^•^+1' * ' These (d—£)x(d—£) submatrices are
blocks of Ml, and we may represent Mi as a block matrix, the elements of

which are not numbers but (d—Z)x(d—f) matrices of numbers. Ablock

Mi^ is on the main block diagonal when 1=7, and is on the same minor

block diagonal whenever i-j =c, for a fixed constant c ;^0. We determine

the elements of Mi by assigning to blocks M}'̂ ^~^\ Mp, and the

shortest distances in unit C/^ of Di (which are over paths with at most n

vertices). Any M} '̂ not so assigned for some i is set to «. The resulting
matrix Mi does notrepresent the edges in Si. Rather it is an edge-length

matrix of a network on the vertex set S for which intervertex distances

on the set S are identical with those in We observe that Mi is block

tridiagonal, with identical blocks throughout each of the diagonals. Since

^(^)» the results of Section 5therefore show that we may obtain Aj
in C>((logn)2) time using 0{n^) processors or in 0((logn)^) time using
0(n^) processors. For all f=1, •••,71, computations of A(, Ai, Bi, and
then of Ai^iBi, are done in parallel, yielding one shortest path

(Fi^, ••• ,Fi^) for each I. Each of these paths is on Mi, and by the results
in Section 5 contains 0{n^ vertices. As indicated previously, we may
therefore apply the homomorphism h to each path and then apply the
lastmatc construction, yielding paths of vertex-length 0(n). Then these
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paths can be expanded by replacing the edges of Mi with the shortest

paths of from which Mi was obtained. This gives paths of with vertex-

length 0(jL^ from which one more application of the lastmate construc

tion yields an initial cycle for the true shortest paths in 5'j. •

5. Shortest Paths

As is indicated in [3], shortest paths between all pairs of vertices in a

network, directed or undirected, can be computed in C?((log7i)^) parallel

time by straightforward parallelization of the C?(n^logn) serial-time shor

test path algorithm which is based on repeated joius-min multiplication of

the edge-length matrix [13]. To do so, initialize the matrix to zero,

and to the edge cost matrix and compute as follows,

for fc =2 top =[log(n-1)1 do

>= mm„(+ t/P?-')}

if C/jf>< then

set Ki^^=Tn for m satisfying

else

endfor

When there are no cycles of negative length, may be interpreted

as the length of a shortest path from i to j such that the path contains

no more than 2^ edges. Thus the construction below can be used to iden

tify all the edges in a path from i to j.
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IDENTIFY

Let m =

if m=0 then edge (i,i) is in the shortest path

else IDENTIFY (i,m and IDENTIFY (m j
END-IDENTIFY

Shortest paths between all pairs of vertices in a general directed

graph with n vertices can be found in C?((logn)^) parallel time using

0{n^) processors by means of the above procedures.

It is convenient to observe that plus-min multiplication may be

extended to block matrices, matrices in which each element is a square

matrix, say, mxm. In the extension, plus is plus-min multiplication on

the blocks, and min is element-wise minimization. When two matrices

which are arguments for plus-min multiphcation can be viewed as block

matrices, the product is the same whether it is foimd by plus-min multi

plication on the matrices or by extended plus-min multiphcation on the

block matrices.

Now, let a shortest path problem be posed as a nonnegative edge-

length matrix M of infinite dimensions which is block tridiagonal on

771X771 blocks, and all blocks within any single block diagonal are identi

cal. The problem is to find some C7n xc77i block, for positive integer c , in

the distance matrix which is the fc-fold plus-min multiple of M for some

fcSTTi—1. For example, solving this problem for c =4 and m -n—l on Mi

for the network Di of the previous section will yield the matrix Aj.

To compute by squaring , h a nonnegative power of two, we

proceed as follows. It may be shown by induction that has 2/i + 1 dis

tinct blocks which are not «». Therefore, producing the 4/i + 1 blocks

sufficient to describe M^^ can be done by 4/i +1 inner product
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computations, each one requiring inner products over vectors of

length m(2/i + l). Producing from therefore takes C?(logm)
parallel time and uses 0{hrrihnh)-0{m^) processors. Since log(m-l)
such multiplications suffice to solve the problem, the overall parallel run

ning time is C?((logm)^) with 0(m®) processors. We observe that paths

represented in the A:-fold product have at most fc +1 vertices.

A second approach to this problem produces a cmxcm block which

is an element-wise lower bound on the answer, taking O((logm)^) parallel

time but using only 0{m^) processors. Each element produced in this

second approach corresponds to some path length in the given network,

so the bounds we obtain are siifficient for the shortest path computations

in the min-cut algorithm of the preceding section.

For this second method we consider finite submatrices of M, where

the matrix containing blocks with indices (i,j) for and is

denoted I'-jz)- (If i=ii=i2 or j-jy=j2, we condense the notation,

for example writing when all these equalities hold.) Our considera

tion of finite submatrices is motivated by the following result.

LEMMA 11. For any positive integer A,

= M(ia-.it .Jo:J6(i.J).

where ia =Ja = r(i+j —/i)/2] andij =j(, = [(i+j+h)/Z\.

Proof: Since the lemma holds immediately for A=l, we proceed by induc

tion. For any matrix X, X^ - XX^"^ - X^~^X for A^l. Let X be block tri-

diagonal. Then

= X''-'^X(i.i)

=mini.j "0.3rO'-l.j).J)X(i ,J),X'^-\i,j +l)X(j +l.j)! .
By hypothesis,
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=Af(ra:rj,Sa:st)''"'(r,s),
forallr,=s,sf(r+s-(/i-i))/2l. ri=s»sl(r+s+(;i-l))/2j. Thus

.s) = Af (r;:r;.s;;s»')''-»(r ,s)
where

rj =SjsF(i+y-l-(/i-i))/2l = f(i+j-ft)/2l .

r| =s|&l(i+j +l+(/i-i))/2j = l(i+j+/i)/2j
for + which gives our result. •

Our first objective is to compute for k a power of two for

which A:^m—1. To this end, for any h a positive power of two let

a(/i) =i—/i/2, b{h)-i-¥h/Z (these values are compatible with the

definitions of and % of the preceding lemma) and let t{h) be the least

power of two for which + Define the 3x3 block matrix

= Af (i —l:i +l,i—l:i +l). Then define Q^h, as follows.

92ft(i.2) =

^2/1(1.3) = =>,

«2fc(2.1) = 9A"''(3.1).

«2a(2.2) = min(94('')(3,3).«4W(l.l)i,

9a,(2.3) = 94^(1.3),

^2/1(3.1) = =0,

<?2h(3.2) =

92ft (3,3) = 9i(''>(3,3).

where minimization over matrices is element-wise.

LEMMA 12. For A a positive power of two and all s {h)^t (/i),

il/(a(ft):6(h).a(A):6(A))»('')(a(/i),a(A))a

JSf(a(/i);6(;i).u(/i):6(/i))«W(6(A).a(/i)) a 9i(''>(3.l).
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itf(o(fc):6(A).o(/i):6(/i))®('')(o(/i).6(/i)) &

]iiia(,h):b(h)Mh):b{h)y^''Hb(h),b(h)) a $^('̂ >(3.3).

and furthermore every entry in represents a path length

in the graph for which ^(a(/i):6 (/i),a(/i):6 (h)) is the edge

length matrix. •

Proof: Since ilf(a(2):6 (2),a(2):6 (2)) = ^2, the lemma is true for /i.=2.

Assume the lemma holds for some k=hQ^2. By the properties of plus-min

multiplication we may view the matrix Af(a(ho):6 (/io),a(ho):6 as

containing shortest distances among all paths with no more than s(/io)

edges in the directed graph for which if(a(ho):6 (ho),a(ho):6 (/iq)) is the

edge length matrix. By hypothesis we may assert that the relevant sub-

matrices in contain shortest distances among a set of paths which

contains all paths with s (ho) or fewer edges.

The key observation for the induction step is that

if(a(2hQ):6(2/io),a(2ho):6(2ho)) has no more than f(2ho) vertices, and

therefore every shortest distance is over a path with no more than

^(2ho)-l edges. Thus the f(2ho)-fold product of Qzh^ must also satisfy

the lemma, as a case analysis on each mxm block shows. We omit

further details. •

It follows from the above that we may generate the sequence

^2«^4»^8» • • * hi C?((logm)^) parallel time using O(m^) proces

sors. Lemmas 11 and 12then allow us to boimd by Qb^*^(2,2).

Our computation of if'^Ciii+c-l,i:i+c-1) is completed as follows.

Define the infinite block tridiagonal matrix E as follows for all i.
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R{i,j) = «» fory>i+l orj<i—1 .

LEMMA 13.

if*'(i:i+c -l,i:i+c -1) a: i?(i:i+c -l,i:i+c -1)*,

and furthermore every entry in i?(i:i+c —l,i:i+c —is a path

length in M,

Proof: The k-fold multiple of i?(i:i+c —l,i:i+c —1)'' represents shortest

paths in a set of paths which contains all paths of vertex length fc + 1,

which is sufficient for the result. •

6. Computing a Maximum Flow in Any Planar Network

The computation involves 0(n) serial executions of the maximum

flow value algorithms of the earlier sections, using the appropriate algo

rithms for the cases of undirected and of directed networks.

LEMMA 14. Let e be an edge of the network N, Let v be the

maximum flow value in N. Let V be the maximum flow value in

the network (AT-e) obtained by removing the edge e from N,

Then,

(i) for any maximiim flowf in N, f {e)^v—v', and

(ii) there exists a maximum flow / for which / (e) = v -i?'.

Proof: (i) Assume there exists a maximum flow / in iV, for which

f (e) <i; —v. Since / is of value v, there is a flow f of value v = v—/ (e)

for which / (e)=0. Then v'<v, and V cannot be the maximum flow value

in iV-e , a contradiction.

(ii) Let /' realize a flow of value V such that / (e)=0. Clearly , such a
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flow exists in N, since v is the maximum flow value in (N—e). Augment

/' in iV to obtain a maximum flow /. The total amoimt of augmentation

over (s-f) paths cannot exceed v—v'. Therefore, f (e)—/' (e)^v—v\

From (i), we then get / (e) sv-i;'. •

Let e, V, and u' be as in the lemma above. Let N' be obtained from

N by assigning a capacity of (v—v') to edge e. Then the above lemma

implies the following:

COROLLARY 1. The value of a maximum flow in N' is equal to v.

COROLLARY 2. The edge e is saturated in every maximum flow

in N'.

LEMMA 15. Let edge e be saturated for every maximum flow /

in N. Then the direction of / (e) is the same for all f.

Proof: Assume in the undirected case that two maximum flows / and /'

have opposite directions for /(e) and /'(e). Then //2+/'/2 is a max

imum flow with zero flow in edge e, a contradiction. •

For any i, let the networks - ,Ni be deflned as follows:

(i) Ni=N.

(ii) Let Vi be the maximum flow value in Ni.

Let vi be the maximum flow value in the network

for some

Ni+i is obtained from Ni by assigning a capacity of (vi-vi)

to edge ey^.

(iii) Let /^ be a maximum flow in Ni.

Using these deflnitions we obtain the following.

LEMMA 16.
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(i) t»j='y2= • • • =^1, and

(ii)

Proof: (i) Follows from Corollary 1.

(ii) For A: >i, f is also a maxlmiim flow in since capacities have only

been reduced in going from to ^fc. The rest follows from Corollary 2

and Lemma 15. •

LEMMA 17. Let e, u, and V be as in Lemma 14. Let (v—v) >0.

Let and be obtained from N by assigning positive capaci

ties c (e) =v—v' and c (e) Kv-v' respectively, to edge e. Then

the direction of / (e) in a maximum flow / in can be com

puted in £?((log7i)^^ parallel time using 0(7ilogn) processors.
Proof: The result is trivied in the directed case, so let JV be undirected.

The value of a min-cut in is less than v. Otherwise, a flow of value

greater than V can be obtained in (iV-e). Since all (s-f)-cuts which do

not involve edge e in have value not less than v, a mlnlrmiTn cut in

must involve edge e. Thus we may compute as follows. As described in

Section 3, obtain consistency in a clockwise ordering of all faces on the

minimum cut-cycle, which corresponds to a shortest path Pi from some

face Fi on the /^-path to Fi in the network D'. Let pi cross edge e from

face Fj. to face Fg. If e=(p,g) and going from p to q is clockwise in Fg,

then the direction of flow in edge e in AT' is from p to q. Otherwise, it is

from q to jD. •

THEOREM 3. A maximum flow in a planar network can be con

structed in O(n(logn)^) parallel time using a number of proces

sors proportional to the number required to find a cut of

minimum capacity.

Proof: Let ej eg, • • • ,e |^| be the edges of the given network N. Let
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for l2Si^I I in Lemma 16. Construct Ni^.i from Ni, |, by applica

tion of the flow value algorithm. This can be done in C?((logn)®) parallel

time. Then obtain the direction of a maximum flow in edge is

obtained as described in Lemma 17 (in the case of undirected networks).

This takes O((logn)^ extra time. So by Lemmas 15 and 16, /|^|+i
saturates every edge in and is a maximum flow in N. The overall

running time is 0(n(log7i)2). •

In [9], Hassin shows a new method of computing a maximum flow

function in (s,f)-planar networks. This method does not appear to gen

eralize to planar networks in general. For an (s,f)-planar network, we

can flnd a /^-path of zero length, consisting of just one face Fj. Ashortest

path tree rooted at Fi or F'i in network I?' defines not only the value of a

maximum flow but also, by an elegant transformation, a maximum flow

itself. Hence we can obtain the following lemma.

LEMMA 18. A maximum flow can be computed in either an

undirected or a directed (s,f)-planar network in t?((log7i)^)

parallel time using O(n^) processors. •
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A face In 11

Cvo.2]

Cv3»i 3

Cv„.23

Each vartex spilt

vertex CL ACL

[Wfl] - Cv2.2]
tvv23 Cv^.23 -

Cwj.n t''3'2]
CVg^j Cvvl] -

tva.i ] - C-*' •3
tw3.2] tvg.l] -

[Vk-I ••3 -

- t«i^3

30

C*'2'̂ 3

Cvi.2]

Figure 1. Example of the ordering of edges in a face (vi, • • - .'Wfc.Vi) in
terms of CL and ACL.
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these edges enter on the left

1+1

primal edges

dual edges

Figure 2. IdenUfylng left-entering dual edges. The dual edges that enter
dual vertex Fi on the left of the /x-path (• • •
defined by precisely those edges m the primal lace(x, ' ' ' ,x\y', ' ' ' ,y,x) containing Fi which are m the segment
(x, . • • .x').
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6cn) U.

,0-1) ,0-1) ,,0-1) ,0-1)
iz '3 M

•S. ^
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V
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C' c c c

33

F,0-1) F,0-O F.O-O F,0-1)
M h h M

.(•♦I) p(ki) -(ki) pO*i)
n k h U

Figure 4. Tlie construction of unit Ui of D from j9(n). In the first step, D
is replicated, the edges shown as dashed are removed, and new edges are
introduced which connect to new copies of the /^-vertices. The construc
tion is completed by identifying the /^-vertices (but no others) in the
replicas.
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