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ABSTRACT

The paper reports on the development of an efficient solution method

and computer program for the evaluation of multi-area reliability. An

interconnected power system is modeled as a capacitated network with prob

abilistic arc capacities. The proposed solution method consists of an

analytic state space decomposition phase and a Monte Carolo simulation

phase. An optimization problem is solved to minimize the total computa

tional time for the two phases. The solution of the optimal mix problem

determines the termination of the decomposition phase and the size of

sample for the Monte Carlo phase. A new reliability index, the indadequate

transfer capability, is introduced. This measure indicates the relative

effectiveness of either increasing existing capacities or opening new

interconnections between two areas. The proposed method has been imple

mented into a computationally efficient production grade software package,

called REMAIN (Reliability Eyaluation of M^ulti-Area INterconnections).

The application of REMAIN to a seven area example for planning system

enhancement is given. Data on computational times are also presented.



I. INTRODUCTION

This paper reports on the development of an efficient computational

tool for the evaluation of multi-area reliability in generation planning

studies. An area refers to a utility company or a geographic region

within a utility. A single area representation of the power system is

commonly used in the reliability evaluation of generation resource plans.

In such representations, it is assumed that the transmission system is

capable of carrying power flows from generation sources to load points

within an area whenever needed. The loss-of-load probability or LOLP

method is generally used for single area reliability evaluation [1].

Quite often resource planners are interested in assessing the benefits

of interconnection. The power transfer between two areas is limited by the

capacities of the tie lines that connect the areas. The objectives of

reliability studies of such multi-area power systems are to evaluate the

enhancement of reliability due to interconnection and to identify inter

connections whose improvement is most effective in increasing the system

reliability.

In order to evaluate the reliability enhancement due to inter

connection, comparisons-are made in terms of the following quantities:

. the probability that the total system demand cannot

be met (system loss-of-load probability or system LOLP),

. the expected load demand that the system fails to serve

(expected unserved demand or EUD),

. the probability that the area load cannot be met (area

LOLP).

The area LOLP index depends on the interconnection policy which

determines how the power is routed in case of a loss-of-load. In this



paper, the following interconnection policies are considered:

. Load loss sharing (LLS) policy: Whenever loss of load

occurs in the system, areas must share the unserved

demand to the extent possible.

. No load loss sharing (NLLS) policy: Each area attempts

to meet its own demand. If there is excess power, it is

supplied to the neighboring areas according to the order

specified by a priority list.

, In addition, for purposes of comparison, wo consider

the case where no power exchange exists between any of

the areas of the system and refer to this as the isolation

policy.

One important objective of multi-area reliability studies is to

identify weak links in the interconnection, i.e., tie lines whose

improvement is most effective in increasing the system reliability.

Therefore, we introduce a new reliability index, the inadequate transfer

capability from area i to area j. It is the probability that a lack of

power transfer capability from area i to area j contributes to the loss

of load. It can be evaluated for any two areas whether or not they are

directly connected. This measure indicates the relative effectiveness

of either increasing existing capacities or opening new interconnections

between two areas.

In multi-area reliability evaluation a simplified model of the

power system is used. Under the assumptions that the bus voltages are

constant and the losses in the tie lines are negligible, the real power

flows in the multi-area power system can be modeled as flows in a



capacitated network with probabilistic arc capacities. Doulliez and

Jamoulle in 1972 developed a state space decomposition method for prob

abilistic flow-network reliability evaluation [2] which was later used

for transmission system reliability studies [3]. A decomposition approach

was also used for reliability evaluation of composite systems including

unconventional energy sources [4]. Pang and Wood [5] developed a compu

ter program for multi-area reliability based on the inclusion and

exclusion formula for evaluating the probability of the union of non-

disjoint sets. In this paper, we present a composite state space

decomposition and Monte Carlo method for multi-area reliability calcu

lations.

Our method provides an estimate of each reliability index. Each

estimate is obtained in such a way that its standard deviation is smaller

than a specified quantity. This is accomplished by selecting the stopping

criterion of the decomposition phase and the number of states in random

samples of the Monte Carlo phase using the solution of an optimization

problem. The optimization problem is to minimize the total computation

time subject to the constraint that the standard deviations of the esti

mates be smaller than a specified quantity.

We have implemented the combined decomposition-Monte Carlo method

into a computationally efficient production grade software package,

called REMAIN (Reliability Evaluation of Multi-Area INterconnections).

Applications of REMAIN include the study of transmission bottlenecks

between regions of a large utility and the investigation of the reliability

of power pools. The results of our computational experience with a seven

area model of a power pool are presented. The use of the results to plan

system enhancements for improving reliability is also described.



The paper discusses in detail the proposed approach and the REMAIN

program. The flow-network model of the multi-area power system is dis

cussed in Section II. The next four sections present the composite

decomposition-Monte Carlo approach. Section III outlines the proposed

scheme. The details of the decomposition phase, Monte Carlo simulation

phase, and the selection of the optimal mix of the two phases are given

in Sections IV, V, and VI, respectively. Section VII summarizes the

implementation of the proposed method in the REMAIN software. Section

VIII presents the numerical results.

The notation used in the paper is standard. Vectors are denoted

by an underbar, e.g. x. The ith component of the (row) vector

(x^ ,X2,... ,x^) is x^.. We write x and only if x^. ^ y. for

i =l,2,...,n. The notation x = A represents that x is defined by the

expression A. The set {^:A} is the collection of vectors >1 with the

property A. Random variables are indicated by underlining with a tilde,

e.g., c. We write P{x:A} for the probability of the set of events x

characterized by property A. P{A|B} is the conditional probability of

event A given that event B has occurred.

II. FLOW-NETWORK MODEL FOR MULTI-AREA RELIABILITY

II.1 Multi-Area Power System

In multi-area reliability evaluation, each area represents a com

pany, a geographic region within a company or jointly owned generation.

The total generation capacity in megawatts (MW) within an area is expressed

as a discrete random variable to represent the possible forced outages of

the generators. The probability distribution of the area generation

capacity can be obtained by the convolution formula using forced outage/



partial forced outage rates of individual generators. Between two areas

that are directly connected, there is a maximum power in MW that can be

transferred due to the limitations on the power carrying capability of

the tie lines. Again, because of the possible forced outages of the

tie lines, the maximum power transfer capability between two areas can

be represented by a discrete random variable.. We assume that all these

random variables are statistically independent.

For each area, there may be a load demand in MW which is assumed to

be a deterministic quantity. When the sum of the area generation and

the net power received from all other areas is less than the area load

demand, we say the area experiences a loss of load. When there is a

loss of load in any area of the system, we say there is a loss of load in

the system.

11.2 Probabilistic Flow-Network Model

. Power flows from each area's generation to meet its own load and

through the tie lines to the other areas. The power flows are limited

only by the (random) generation and transfer capacities in the system.

We use a flow-network with probabilistic arc capacities to model the

multi-area power system. Each area is represented by a node. Two

additional nodes are introduced: a generation source node s and a demand

sink node t. A directed arc from the source node to each area node is

introduced to represent the area generation capacity. A directed arc

from each area node to the sink node is introduced to represent the area

load demand. The capacity of this arc is the area load demand. Bidir

ectional arcs between area nodes are used to represent the tie lines be^

tween areas. The capacity of each such arc is the random variable of

the maximum power transfer capability between the two areas. The power



network is assumed to be connected since the subject under study is the

multi-area power system interconnections.

Let the number of arcs in the network be n. Let c^. denote the ran

dom variable representing the capacity of arc i. It takes values

Ci = c.j with probability p.j, j =1,2,...

where il. is the number of distinct capacity levels for arc i. For each

arc a(k) that joins area node k to the sink node, |̂̂ =1 so that

becomes a deterministic variable. In this case, equals the area k

demand Dj^ with probability 1. As previously mentioned, we assume that

the random variables c^., i =l,2,...,n, are independent.

When each random variable c. takes a value, say c. , we have a

capacitated flow-network. This corresponds to a system state which we

denote by the vector x= (x^,X2J...»x^). The collection of these sytem

states forms the state space X of the multi-area power system model.

Based on the definitions and assumptions made, it follows that:
n

(i) there are n A. states in X;
i=l ^

(ii) there exists a maximum state M= (t-i and a

minimum state m= (1,...,1) in X such that

and m£x for all x in X;

(iii) the probability associated with each state x in X is

n

P{x} = n p. . (1)
1=1 ^"i

II.3 Maximal Flow and Minimal Cut

For a particular system state x, a maximal flow from the source to

the sink can be found by the Ford-Fulkerson algorithm [6]. Let the

resulting flows in the network be denoted by £(x) =[f-j()^),f2Cx), fp(x)3i

where f^{x) is the flow through the ith arc. The total amount of flow



from the source to the sink is called the value of the maximal flow,

V[f()()]. There may be more than one maximal flow through the network;

however, all maximal flows have the same value. We use priority lists

that order the arcs leaving each node to select a particular maximal

flow. When no additional flow can be routed in the network from the

source to the sink, there is always a set of arcs whose capacities limit

the flow. In other words, associated with each maximal flow £ there is

a minimal cut set of arcs C[f(x)]. A minimal cut partitions the nodes

in the network into two disjoint sets. We denote these two sets by:

~ {nodes on the source side of the cut} (2)

M^{C[f()<)]} = {nodes on the sink side of the cut} (3)

It can be shown [6, p. 13, Corollary 5.4J that if Wg{C^[f^(x)]}
and WglC^Cf^Cx)]} .(we will write and for short) are defined by

12two minimal cuts C and C of the network associated with the system

1 2state X, the arcs joining their intersection and its complement

"1 1 2Wg^Ws form a minimal cut. Similarly the arcs joining and
—Z * *

^ minimal cut. We now define the sets WgCx) and W^(x)
as follows:

W*(x) = n W{C[f(x)J}
^ all C of X ^

M*(x) = n W.{C[f(x)]}
^ all C of X ^

Note that W(x) itself is one of ^^{CCfCx.)}, therefore W*()() is the set
i ^ s

'ic

having the least number of nodes among all A/ {C[f()<)]}. Similarly W.(_x)

is the set having the least number of nodes among all W|.{C[f(x)]}. The

application of Ford-Fulkerson algorithm starting from node s yields

Wg{2c), whereas the application of Ford-Fulkerson algorithm backward from
•k

node t yields N^(x).



II.4 Reliability Indices

For D. being the local demand of area i,

D = I D.

is the total load demand of the system. A power system is said to be

experiencing loss of load whenever there is load that the system fails

to supply. The following reliability indices are defined for multi-area

systems:

System Loss-of-Load Probability (LOLP). For a particular system

state X, if V[f(x)] is less than the total demand V, there is loss of

load in the system. System LOLP is defined to be the probability that

there is loss of load in the system.

System LOLP = P{x : V[f(x)]< D} (4)

Expected Unserved Demand (EUD). EUD is the expected value of the

amount of load demand that the system is unable to meet.

EUD ^ I {D-V[f(2(.)]}P{x}
)^{x:V[f(x)]<D}

= E{D-V[f(x)]|V[f(x)]<D}P{x:V[f(x)]<D} (5)

Area LOLP. Area LOLP is the probability that the area fails to meet

its load demand. The value of the area LOLP depends on the interconnec

tion policy adopted. Under the NLLS policy, the area LOLP can be cal

culated as follows:

Area i LOLP|j^jj_ls ^ ^^(i) (6)

Here a(i) denotes the arc which connects the area node i to the sink

node. Under the LLS policy, the area LOLP can be calculated as follows.

Area i LOLPLj^^ ^ ^^^t



Inadequate Transfer Capability (ITC). For a particular system state

X, suppose there is a loss of load In the system; then an increase in the

transfer capability from node i to node j reduces the amount of unserved
it * ,

demand if and only if node i is in W^(x) and node j is in W^(x). This

is true because of the fact that Wg(2i) sets having the
least number of nodes among all Wg{C[f(2()} and N^{C[£(><)]}, respectively.
It should be noted that the foregoing statement is not true if the condi

tion is simply that node i is in Ng{C[f(x)]} and node j is in N^{C[f()()]}
for some minimal cut C of x. In other words, when there is a loss of

it it

load in the system, node i is in W-(x) and node j is in N^(x), the lack

of power transfer capability from node i to node j is a contributing

factor to the loss of load. If node i is the source node and node j is

an area node, the situation described above indicates that the area gen

eration is inadequate. If both node i and node j are area nodes, the

situation indicates that the tie line capacity is inadequate. We define

the inadequate transfer capability (ITC) for each ordered pair of nodes

(node i, node j) as the probability that increasing the capacity from

node i to node j reduces the amount of unserved demand. The value of

ITC.^ can be computed as follows:
' J

ITC.. = P{x:V[f(x)] <D, node iew (x) and node jew.(x)} (8)1j —- 5 u

The inadequate transfer capability can be interpreted as the prob

ability that a lack of power transfer capability from node i to node j

contributes to the loss-of-load. The inadequate transfer capability

provides a measure of the inadequacy of area generation or transfer

capabilities in various parts of the system. Increases in the capacity

of tie lines or area generation with higher ITC values are more effec

tive in improving reliability. The inadequate transfer capability from
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each area 1 to the system can be defined as follows:

ITCi^system " •V[f(x)] <Dand node iew*(x)} (9)
Attempts have been made in the past [2] to use the probability that

the arc from node i to node j is in a minimal cut as a measure of in

adequacy of transfer capability. Because of the fact that there may be

more than one minimal cut in the network, increasing the transfer cap

ability of an arc in the minimal cut does not necessarily imply that the

amount of loss-of-load will be reduced. The new inadequate transfer

capability index that we introduced has the desired interpretation.

Moreover, since it is defined for any pair of nodes, regardless of whether

they are or are not directly connected, the ITC index can be used for

comparing the relative effectiveness of increasing existing tie line

capacity or building new interconnections.

III. OVERVIEW OF THE DECOMPOSITION-MONTE CARLO APPROACH

The basic idea in the evaluation of each reliability index is to

identify the appropriate set of states and to compute its probability.

The algorithm we have developed has two phases. The first phase is an

analytical state space decomposition and the second phase is a Monte

Carlo simulation. The allocation of the time between the two phases is

determined by the solution of an optimization problem.

The state space decomposition phase of the algorithm is an exten

sion of the method developed by Doulliez-Jamoulle [2]. It is an itera

tive process to classify the states in the state space. Initially, all

the states in the state space are unclassified. At each iteration, by

application of the maximal flow algorithm, the set of unclassified states

is decomposed into subsets of states having the same reliability



n

characteristics and subsets of unclassified states. Upper and lower

bounds for each reliability index are computed. As the number of itera

tions increases, the number of states that are classified by each itera

tion decreases, i.e., the efficiency of the method decreases. Because of

this, we switch to a Monte Carlo method in the second phase of our

approach. From each subset of unclassified states, a random sample of

states is selected. The maximal flow algorithm is applied to each of

the sample states. Finally, an estimate of the contribution of the un

classified states to each reliability index is obtained.

The uncertainty in the estimate of each reliability index is measured

in terms of its standard deviations. The standard deviation of an esti

mate depends on the computation time in the two phases of the algorithm.

Consider the optimization problem of minimizing the total computation

time subject to the condition that the standard deviation does not exceed

a specified quantity. Under some reasonable assumptions, we have derived

certain relations which must be satisfied by the optimal solution. From

these relations, we can determine the stopping criterion for the decom

position phase and the number of states in each random sample for the

Monte Carlo phase.

A detailed description of the proposed solution method is given in

the next three sections.

IV. STATE-SPACE DECOMPOSITION PHASE

An analytic decomposition schem is used to avoid carrying out a
n

separate maximal flow computation for each of the ( II Jl.) states in the
i=l ••

State space. The state space is decomposed in such a way that from each

maximal flow computation carried out on one state, information concern

ing the reliability of some other states may be derived.
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The iterative decomposition scheme makes use of two basic pro

perties of the model. These are:

(i) Let the maximal flow corresponding to state x be V[f(x)].

For any state X 121' V[f(y^)] > V[f(x)]. In other words

the system model is coherent in the sense of reliability

theory [9, p. 6]

(ii) Let Mand m be two states in the state space X, M^m

For the set of states lying between M and m is defined as

S = {)<: m£ 211 » no)

we have

?{S} = n I p (11)
i=l m.<x.<M^.

We refer to M and m as the maximum and minimum state

of the set S, respectively.

The coherency property (i) enables us to derive from a single maxi

mal flow computation the reliability characteristics of a subset of the

states without having to carry out maximal flow calculations for each of

these states. Properties (i) and (ii) form the basis in the development

of a recursive scheme of decomposing the state space into subsets.

There are two stages in the decomposition phase. The first stage

decomposition is for the calculation of system LOLP and the second stage

decomposition is for the calculation of the area LOLP, EUD and ITC indices.

IV.1 Recursive Decomposition for System LOLP

The initial set of the decomposition phase is the state space. The

state space Xhas a maximum state M= (M.j .Mg,... ,M^) and a minimum state

m= (m.| .mgj... ,m^) and is in the form of the set in Eq. (10). We decompose

X into subsets of three categories (see Fig. 1).
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a) Subset of acceptable states A.

Suppose that the value of the maximal flow for the state Mis

V[f(M)] = D, i.e., the state Mcan satisfy the total load demand D of the

multi-area system. Based on the flows in the network for the state M

and the coherency property (i) we are going to determine a collection A

of states Xfor which the maximal flow will also be V[f(x)] = D. Let fj^

denote the flow through arc k. For each arc k, let Uj^ be the index

corresponding to the smallest capacity level Cj^^^ of the arc which is not
k

less than fj^, i.e.,
Uj^ =min{Xj^:Cj^^ > f,^} (12)

k
By the coherency property of the flow-network model, whenever the capacity

Cj^ of arc k takes a value-between and Cj^j^ , k=l,2,...,n, then a
k k

flow D can be sent, i.e., the total load demand D is satisfied. Thus for

the set of states

A ={x : £ X< (13)

the demand D can be met, i.e., V[f(x)] = D. Since the set A is of the

form (10), its probability can readily be computed.

b) Subsets of system loss of load states

We next classify the collection of states x for which the total load

demand D cannot be satisfied, i.e., V[f(x)]<D. For this purpose we first

determine for each arc k the minimum capacity level c. such that a flow

D can still be sent. The following procedure is used to find the value

V|̂ (see Fig. 2). Let us start with the network corresponding to state M

with the maximal flow f(M) = [fi(M),... ,f^(M)]. Suppose that the flow fj^

in arc k is from node q to node r. We remove arc k and consider the

resulting network having flows fj^(M) in the remaining arcs, 5. k. We

then apply Ford-Fulkerson algorithm to this network to determine the



/k(M)
—>—
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v[V(M)][zi:>( s
The network with arc k removed and with flows

/, (M).- /k+,(M),-,/„(M)
t jCII>V|7(M)]

v17(M)]C=I)( s

MOCZD

k M
The network with arc k removed and with flows

/,(M),-,/k-i(M^' /k+i(M).-./n(M)

The network with arc k removed and with capacities

d:>V(Y(M)]

Fig. 2 The procedure for determining the largest decrease in flow e.
such that a maximal flow V[fJ>^)] =Dcan still be sent from
s to t.
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maximal flow from q to r that can be superimposed on the existing flow.

The value ej^ of this additional flow is the largest decrease in flow for

arc k such that the network can still send a maximal flow D from s to t.

We define Vj^ to be

j min |x,: c >VeJ if f^-e^ >0
\ 1 ^ •' (14)

1 if f^-e^ < 0

By the coherency property of the flow-network model, system loss

of load occurs for any state in the set

L= {x^: Hk^ X|̂ < V|̂ } (15)

We may further decompose L into nonintersecting subsets

having the form (10). The states in L are classified into subset if

k is the first index of x for which X|̂ < V|̂ , i.e.,

= {x: < x

06)

Note that the contribution of each subset to the system loss-of-

load probability is PU|̂ }, which is readily calculated. Since the sub

sets L-j ,l2> ••• disjoint, their contributions to system LOLP are

additive.

c) Subsets of unclassified states

The remaining states in X are unclassified. They are characterized

by

U={x:x^. >v^ V-i and 3j3Xj<Uj} (17)

This set generally does not have a maximum state. In order to be able to

continue the process of classification recursively, it is necessary to

decompose U into subsets of the form in (10). We therefore classify the

states in Uinto the subsets if k is the first index for which X|̂ <Uj^,

i.e..
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^ (M-^,...»M 1»j^"1»^k+1 (IS)

The subsets t/^,t,,,U^ ere disjoint and their union equals U.

The recursive scheme consists of replacing X by redefining the

quantities m and M and repeating the decomposition into acceptable sub

set A, loss-of-load subsets and unclassified subsets

Because all the decomposed subsets are nonintersecting their probabili

ties can simply be added.

IV.2 Recursive Decomposition for Area LOLP

Each state in the subsets I = l,2,...,n is a system loss-of-

load state. A system loss-of-load state corresponds to the situation

of one or more areas experiencing loss of load. While two states may

belong to the same subset their area loss-of-load characteristics

may be different. In order to evaluate area LOLP each subset is

recursively decomposed into subsets having identical area loss-of-load

characteristics (see Fig. 3).

The area LOLP depends on the interconnection policy. Let us consi

der first the evaluation of the area LOLP under the NLLS policy. Let

m* and M* denote the minimum and maximum state, respectively, of L^,

i.e.,

Lj^ = {x : m* < X< M*} (19)

The Ford-Fulkerson algorithm is applied to the maximum state M* to

• ^determine the set and the corresponding maximal flow. One of the

following two cases may occur:
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Case 1, There exists an area node jeW*(M*) such that the corres

ponding flow in the arc a(j) from the area node j to the sink is.

saturated, i.e., " Dj.

Case 2. For every area node iSN^(M*), "^ciCil^^i' every area
in experiences loss of load.

We consider first Case 1. Under the NILS policy no loss of load
occurs for area j. On the other hand, there exists at least one area node
1€W*(M*) for which fe,(i)<Or ^ suffers loss of load. The
subset of states of with the same area loss-of-load characteristics,
i.e., the same areas satisfy load demand and the same areas suffer loss
of load, is

B = {x : w < X < M*}

where

w^ =min{x^:c^^>f„(M*)> (21)
Next we consider Case 2. In this case we want to find the set of

states Xfor which N*Cx) = ^
area loss-of-load characteristics. Clearly if a minimal cut C(x^) of x
is identical to the minimal cut C(M*) at hand, and there is no other

minimal cut consisting of arcs in C(x) and arcs connecting W^{C[f(x)J},

then N^{C[f(x)} =W*(x) and is equal to W*(ff). Let us define in this case
rmin{x,:c. >f^} if k^C(r)I K KX^ K ^22)

"k • I if ke C(M*)
Clearly for each state x in the set

B ={x;w<x<!f} (22)

M*(x) = and every area node in N.j.(x) experiences loss of
t —" t

load.
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Note that in this case, under the NILS policy, the flow along an
*

arc connecting any two nodes in W^(J<) - {t} is zero. Therefore Wj^ in

Eq. (22) may be alternatively determined by

fmin{x.:c. > f.} if both nodes connected by arc k
I K KX|̂ K beiQng w - s.

mj^ otherwise (24)
The remaining states in can be further decomposed into disjoint

subsets ,W2»'••each of which has the form of the set in Eq. (10).

A state X in is classified into the subset if k is the first

index for which X|̂ <Wj^, i.e.,

Wj^ ~ {jci (w-^ 9•.. ' ••• ——

< (25)

The recursive scheme consists of replacing by Wj^ and repeating

the decomposition process.

We next consider the evaluation of area LOLP under the LLS policy.

The following Fact shows that the set of states in B defined by either

Eqs. (EO'-El) or Eqs. (22-23) has the same area loss-of-load characteris

tics under the LLS policy.

Fact. Each state x^ in the set B, whether constructed as in Case 1

or as in Case 2, has the property that all the area nodes in

W|.(x) =W^(M*) suffer loss of load under the LLS policy.

Proof. For Case 2, the same as under the NLLS policy, each area

node in W^(x) suffers loss of load. For Case 1, let us suppose that area
ic

node jSW^(x) and going to show that the flow in the

network can be rerouted so that area j will also experience loss of load.

Indeed, we claim that some of the flow in tt(j) rerouted
lip

from node j to the sink node t through other nodes in W^(x). In other
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Words we claim that there is a flow augmenting path [6, p. 12] with res

pect to the current flow from node j to node t through other nodes in

W^(_x). If the claim is not true, then there must be a minimal cut consist-

ing of arcs connecting nodes in W^U) = W^(M )» which contradicts the

definition of W^(M*).

IV.3 Computatation of EUD and ITC

The expected unserved demand (EUD), which measures the shortfall of

supply for the demand D, is defined by

EUD = E{D-V[f(x)]|V[f(x)]<D} P{x:V[f(x)] < D}

= D-P{x:V[f(x}]<D} - E{V[f(x)]|V[f(x)]<D} P{xiV[f(x)] < D}

(26)

Since each B obtained from the decomposition process is a subset of the

set {x:V[f(x)< D}, we can write

EUD = D . I P{8}- I E{V[f(x)]|xeB}.P{8}, (27)
8 8

where the summation is over all the subsets 8 obtained in the decomposi

tion process. Since the set 8 has the form of S in Eq. (10) the first

term in Eq. (27) can be readily computed,

n "i
P{B} = n I p.

i=l x^.=w. i

Consider the term E{V[f(2c)]|x^B}. For each state x^8 constructed as

in Case 1 the value of the maximal flow V[f(x)] is constant. Let

V[f(x)] = Q, so that

E{V[f(x)]|2^} = Q (28)

On the other hand, in Case 2, for each state x in 8, the minimal cut

C[f(x)] has the same set of arcs. Hence



E{V[f(x)] I x^B} = E{ J c.()<) I w1211 M*}

= I E{c.()() I w < 2i 1
M

"i
y p. c.

= I -!—! . (29)
1SC M?

I' Pix,
*r"i

The inadequate transfer capability between two nodes i and j is

defined by

ITCij =P{2(:V[f(x) <D, node i6W*(x) and node jeA/*(x)}
= I P{node iew*(x) and node jSA/*(x) | x^} P{B} (30)

B ^ i: - -

Note that P{node iSA/^(x) and node jsw^()() |)(eB} is either 0 or 1. The

above expression can then be readily computed.

IV.4 Bounds on Reliability Indices

Each time a subset L|̂ is identified, its contribution to the system

LOLP index is accumulated. Similarly each time a subset B is identified,

its contribution to the area LOLP, EUD and ITC indices are accumulated.

When the decomposition is completed, i.e., there is no set with unclassi

fied states, we obtain the true values of these reliability indices.

However if the decomposition is terminated earlier so that there are non

empty subsets and the cumulative value of each reliability index

is clearly a lower bound for that index. On the other hand if we add the

probabilities of the remaining unclassified subsets to the system LOLP

we obtain an upper bound of the system LOLP. Similarly if we add the

probabilities of the remaining unclassified subsets and to each of

the other reliability indices we obtain an upper bound of that index.

Thus at each stage of the recursive process a lower bound and an upper

bound for each reliability index are available.

22
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V. MQNTE-CARLO PHASE

The number of states In each subset that is classified in the process

of the state space decomposition decreases rapidly as the number of

iterations increases. When the efficiency of the decomposition phase

decreases below the level specified by the solution of the optimal mix

problem (Section VI), we switch to Monte Carlo simulation. The details of

the Monte Carlo phase of the proposed approach are described below.

Let r denote any reliability index defined in Sec. II.4 other

than the EUD. At the termination of the decomposition phase, we have a

lower bound r"' and an upper bound r^ for the true value r* of the

index r. The problem is to estimate the contribution to r* of the

remaining unclassified subsets and so as to estimate the true value

of r. The Monte-Carlo phase of the algorithm consists of picking a

12 N
random sample of N states ,x ,...,x } from the unclassified subsets

and W|̂ and estimating the contribution to r*.

Let us define

r^-r"'
P " M m

r - r

to be the fraction of states in the unclassified subsets that contribute

to the index r. Then

r* = r"' +p{r'*'-r"') (32)

We may think of p as the probability that each state in the unclassi

fied subsets makes a contribution to the index r. Thus we can define an

indicator random variable I for each state >1 in the unclassified subsets

as to its contribution to r.



{1 with probability p
(33)

0 with probability 1-p

Clearly E{n = p and var{I} = p(l-p).

Since the true value of p is not known a priori, the problem is to

determine an estimate of p. We use the following unbiased estimator of

P.

P = F I I(x^) (34)
- " 1=1 ""

The variance of this estimator is [7, pp. 228]

var{p} = (35)

which has an upper bound of (w)- Based on the estimator p in Eq. (34)

we obtain

r = r'" +p(r^ - r'") (36)

as an estimator of r. The variance of this estimator is

var{r} = (r" - r"')^ (37)

with an upper bound of

var{r} < (38)
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To estimate the value of the EUD index, let us define the conditional

expectation Q of the value of the maximal flow given that the states belong

to the family R of the remaining unclassified subsets and

. I V(x)P(x)
X^

° P(x:xeR} (39)



We use the following estimator of Q from the sample.

0 =1 I v[f(x'')] (40)
^ i=l

Let EUD'" be the value of the EUD index at the termination of the decom

position phase. We use the following estimator for EUD,

eOd = EUD"' + (D-Q) P{x:x€R} (41)

VI. THE OPTIMAL MIX

There are two outstanding issues that must be dealt with in the

composite decomposition-Monte Carlo method:

(i) When to terminate the decomposition phase

and

(ii) What size should the sample be in the Monte Carlo phase.

The resolution of these questions can be expressed in terms of the follow-

int two parameters:

a = the threshold probability of an unclassified subset for

decomposition, i.e., no further decomposition will be

carried out for any unclassified setS(a or Wj^)
whenever P{S}< a

N = the number of states in the random sample of the

Monte Carlo phase.

The selection of the parameters a and N is based on the solution of a

simple optimization problem which is described next.

Let T^jj and T^^ denote the computational time spent in the decomposi

tion phase and Monte Carlo phase, respectively, of the combined method.

Let

25



L= r" - r"" (42)

denote the uncertainty interval of the reliability index r upon the

termination of the decomposition phase. Intuitively,it is reasonable to

expect that the smaller the threshold probability a is, the shorter the

uncertainty interval L is and the longer the computation time is.

Moreover, the computation time should be proportional to the number

of states N in the random sample. Based on the experimental results

such as those shown in Fig. 4 we make the following assumptions

(i) L= aa'̂ (43)

(ii) = ca^ (44)

(iii) = hN (45)

As indicated in Fig. 4, we assume that the parameters b and d are inde

pendent of the system demand D,whereas a and c are functions of D.

While b and d are expected to be system dependent, our experience

indicates that the variation between systems is rather slight.

The variance var{r} of the estimator r is a measure of the uncer-
/s 2

tainty associated with the estimated value r. Let a be the maximum

tolerable uncertainty of the estimate, i.e., we want to impose the cons

traint

var{r} £ (46)

The objective for the selection of the parameters a and N is to minimize

the total computation time (T^j +T^). We may therefore formulate this

as the constrained optimization problem:

min (Tj + T„)
d m'

a,N

26
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subject to

J
W" "

where L, T^, are related to a, Nthrough Eqs. (43)-(45). The optimal

solution of this problem is

l/(d-2b)
(47)

\2b/(d-2b)
(48)

2a cd

a h b

In the actual implementation of the method, whenever we find an

unclassified set S such that P{S} < a we immediately proceed to the Monte

Carlo phase rather than wait until the entire collection of unclassified

subsets is obtained. Therefore, we need to know how many states y

should be selected from the unclassified subset S. We let the number of

states selected from S be proportional to the probability of the subset

S i.e.,

Y= ^ P{S} (49)

The optimal value of y can be obtained by substituting Eqs. (43), (47)

and (48) into Eq. (49):

. / . \b/(d-2b)Y= PCS} ^ {- ) (50)
4ct \ 2a'̂ cd /

28
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VII. IMPLEMENTATION

We have implemented the decomposition-Monte Carlo approach into a

production grade program REMAIN (Reliability Evaluation of Multi-Area

INterconnection The software package includes an effective implemen

tation of the Ford-Fulkerson maximal flow algorithm [6]. REMAIN is

capable of handling systems without any restrictions on the network

topology. The number of areas and the number of states in each area

generation and each tie line capacity distribution are only limited by

the burdens they impose on the computational effort. The results for

the seven area system presented in the next section give a notation of

typical computing times with this program.

REMAIN has the capability of studying multi-area reliability over

extended periods. The study period is subdivided into a'number of sub-

periods defined by the events determined by a discrete event simulator.

The events simulated include new units coming on-line, old units retiring,

the beginning and end of maintenance periods, and changes in the genera

tion and intertie capacity random variables' distributions caused by

seasonal factors or by policy decisions. In the subperiods defined by

two successive events, the probability distributions of the generation

capacity and tie line capacity random variables are fixed. These sub-

periods are further subdivided into shorter time units to account for

changing load patterns in the areas and load diversity. For each of

these time units, each area has a deterministic (fixed) load. The

solution scheme evaluates the reliability indices for this set of fixed

loads. The yearly values of the reliability indices are computed by

weighted averaging the values of these indices for each time unit with

the weights being the ratio of the duration of the time unit to the

total time duration.



A flowchart of REMAIN is presented in Fig. 5. We set the initial

-5values of a = Y=10 , b = 0.4 and d = -0.6. Our experience shows that

only for a small number of peak load demand time units, a and y need to

be recalculated. In actual implementation a depth-first search scheme

[8] is used so that the decomposition phase and Monte Carlo phase are

completed along each branch of the search tree. For simplicity we

assume that for each state the minimal cut is unique so that

Wg{C[£(x)]}, W^(x) = W^{C[f(x)]}, and the Ford-Fulkerson algorithm needs

to be run only once.

VIII. APPLICATION EXAMPLE

An important application of REMAIN is the study of existing power

pools, in particular for the planning of tie line capacity. To illus

trate the application of REMAIN to the study of interconnection enhance

ment and the performance of REMAIN, the reliability of a seven area

power system is evaluated as a function of intertie capacity.

The system configuration is found in Fig. 6. This system models

an interconnection of four utilities which are represented by areas A, B,

C, and D. The remaining three areas E, F, and G have no native load

demand. Each of these areas represents generation resources that are

jointly owned by two of the utilities. Table 1 gives the generation

levels and associated probabilities for each of the seven areas. The

interconnection data giving the tie line capacities and associated prob

abilities are presented in Table 2. In this example, for the sake of

simplicity, all unidirectional ties are represented by deterministic

variables and all bidirectional ties are represented by random variables.

In Fig. 6 the numbers on the directed branches leaving an area give the
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Fig. 6 Seven area power system configuration for the applica
tion example.
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priority associated with assiting the neighboring areas to which the

area is directly connected. The ties leaving each area are numbered in

decreasing priority order; when an area has excess capacity, the area

connected by the tie with the number 1 receives assistance first. The

assistance priority lists are needed for evaluating the area LOLP values

under the NILS policy.

Table 3 gives the area loads for the eleven hours corresponding to

the eleven largest monthly peaks of the total pool-wide load for the

planning year considered in this example. Consider the hour in which

the annual peak system load occurs. The generation data in Table 1 are

for the period to which this hour belongs. The reliability indices for

this hour are evaluated and presented in Tables 4 and 5. The dramatic

improvement in reliability brought about by interconnecting the four

utilities is seen by comparing the reliability indices for the isolation

policy with those of the interconnected systems under the LLS and NILS

policies.

It is clear from the data in Table 4 that most of the unreliability

of the interconnected system is due to the high LOLP of area D (two

orders of magnitude more severe than that of any other area). The values

of the ITC index indicate the high probability that the two tie lines

into area D restrict power flow even though excess power is available

from the other areas. We conclude that any attempt to improve the

reliability of the pool must concentrate on relief for area D. Either

additional native generation capacity must be added, or the tie line

capacity into area D must be expanded by increasing existing ties or

establishing new ties. We consider the expansion of the tie from area B

to area D from 200 MW to 600 MW with the outage probability remaining

33
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unchanged. All other system parameters remain unchanged. This results

in a considerable improvement of the reliability indices. For example,

the first line in Table 6 gives the area LOLP values under the NILS

policy and the system LOLP and EUD values with the increased tie capacity.

For comparison purposes, the last line in Table 6 gives these indices

when the bidirectional ties between areas have unlimited and completely

reliable capacity. All other system parameters remain unchanged. This

case yields the maximum benefit that the system can derive from inter

connection. Further improvements in system reliability can only come from

increases in the generation capacity of the system.

The CPU time required on an IBM 3033 system for evaluating the

reliability indices for the annual peak hour is given in Table 7. Less

than 15% of this time was spent on determining maximum flows. For pur

poses of comparison, the times for exhaustive enumeration and pure

decomposition are also presented. The computational times and accuracies

of the other ten hours studied are given in Table 3.

In our extensive testing of REMAIN, we observed that the contribu

tions of relatively few unreliable hours overshadow those of the remain

ing, generally reliable hours. This is borne out by the data presented

in Table 3. Note that the system LOLP of hour 10 is five orders of

magnitude smaller than that in the annual peak hour. Data for hour 12

are not presented since the system LOLP is effectively 0.

IX. CONCLUSION

We have presented a computationally efficient scheme for evaluating

the reliability of multi-area power system interconnections. We have

demonstrated the use of a newly defined reliability index in planning
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enhancements of the reliability of interconnections. Numerical results

illustrating the performance of this new analysis on a system of practi

cal interest were presented.
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TABLE 1

Probability densitites of area generation random variables

AREA A AREA C AREA E

Generation
capacity Probability

level in MW

Generation
capaci ty Probabi1i ty

level in mW

Generation

capacity Probability
level in MW

21,000 0.100000
20,500 0.020000
20,000 0.300000
19,500 0.200000
19,000 0.140000
18,500 0.040000
18,000 0.010000
17,500 0.006000
17,000 0.003500
16,500 0.000450
16,000 0.000045
13,500 0.000005

6,500 0.080000
6,200 0.200000
5,900 0.300000
5,600 0.230000
5,300 0.150000
5.000 0.025000
4.700 0.012500
4,400 0.002200
4,100 0.000250
3,900 0.000045
3,500 0.000005

2,200 0.722500
2,000 0.170000
1,800 0.010000
1,100 0.085000

900 0.010000
0 0.002500

AREA F

Generation.
capaci ty Probabi1i t>

level in MWAREA B AREA D

Generati on
capacity Probability

level in MW

Generati on
capaci ty Probabi1i ty

level in MW

2,500 0.600000
2,000 0.200000
1,500 0.150000
1,000 0.049500

0 0.000500

15,500 0.080000
15,000 0.150000
14,500 0.270000
14,000 0.250000
13,500 0.160000
13,000 0.050000
12,500 0.035000
12,000 0.004500
11,500 0.000450
11,000 0.000045
10,000 0.000005

3,300 0.280000
3,100 0.430000
2,900 0.250000
2,700 0.025000
2,500 0.012500
2,300 0.002200
2,100 0.000250
1,900 0.000045
1,700 0.000005

AREA G

Generati on
capacity Probability

level in MW

3,900 1.000000



TABLE 2

Intertie Capacities

Probability densities of bidirectional intertie capacity random variables

Between Areas A and B Between Areas B and C Between Areas B and D

Intertie
Capaci ty Probabi1i ty

in MW

Intertie
Capacity Probability
in MW

Intertie
Capacity Probability
in MW

2,000 0.9801

1,000 0.0198

0 0.0001

1,000 0.9999

0 0.0001

200 0.9999

0 0.001

Unidirectional intertie capacities in MW

From Area
E to B

From Area
E to D

From Area
F to B

From Area
F to C

From Area
6 to A

From Area
6 to C

1,750 450 1,500 900 2,500 1,400



TABLE 3

Area loads, system LOLP and computation times for 11 hours of the planning period

H

0

U

R

Loads in MW for Area System LOLP
Evaluation

CPU time in seconds
for evaluation of

all indices

A B C D

System
LOLP

(10-®)

Standard
Deviation

(10-®)

1 19,550 15,000 6,650 2,850 347 0.180 30.41

2 19,450 14,700 6,600 2,800 343 0.160 23.64

3 18,400 14,400 6,400 2,700 61 0.090 8.04

4 17,500 14,200 6,060 2,600 56 0.065 3.90

5 16,550 13,500 5,850 2,500 6 0.037 0.97

6 16,450 13,450 5,500 2,400 6 0.033 0.71

7 15,800 13,200 5,300 2,300 0.12 0.020 0.21

8 15,700 12,400 5,100 2,200 0.13 0.016 0.13

9 15,600 12,000 5,000 2,100 0.01 0.010 0.07

10 15,400 11,500 4,900 2,000 0.01 0.008 0.05

11 14,900 11,000 4,850 1.800 0.00 0.006 0.02
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