
 

 

 

 

 

 

 

 

 

Copyright © 1982, by the author(s). 
All rights reserved. 

 
Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 
lists, requires prior specific permission. 



EXPONENTIAL LOWER BOUNDS FOR SOME NP-COMPLETE PROBLEMS

IN RESTRICTED LINEAR DECISION TREE MODEL

by

Esko Ukkonen

Memorandum No. UCB/ERL M82/1

20 January 1982

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



Exponential lower bounds for some NF-complete problems
in restricted linear decision tree models

Esko Ukkonen

Department of Computer Science, University of Helsinki
Tukholmankatu 2, SF'00250 Helsinki 25, Finland

and

Computer Science Division - EECS, University of California
Berkeley, California 94720, USA

ABSTRACT

Let 7 be a set in consisting of finitely many hyperplanes. The

linear recognition problem given by V is to determine, using ter

nary comparisons of the form '/(^):0' where is a linear

function, whether a point is in 7. We consider lower bounds

on the number of comparisons when 7 corresponds to some NP-

complete problems. A technique is proposed for proving such

bounds. If the tests '/{x):0' are restricted such that / always

defines some hyperplane in 7. then some NP-complete problems

are shown to have exponential lower bounds in n. Examples of

larger classes of linear test functions are found such that the

exponential lower bounds are still valid.
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1. Introdactioii

The linBOT rQcognitioTi probleTn investigated in this paper is to detez*niine,

given a point in the Euclidean n-space R^, vrhether x lies in a

fixed set Vwhere 7 is a finite union of some hjrperplanes. We study lower bounds

on the complexity of linstxr decisioTi frees for solving such problems. The com

plexity measure to be used is the height of the tree, that is, the number of

three-valued linear comparisons of the form *f(x):Q' needed to solve the prob

lem with a decision tree when each f'.R^-*R is a linear function of the input x.

This model was first studied by Rabin [5] and Reingold [6].

We are mainly interested in linear recognition problems obtained from NP-

complete problems. Although discrete by nature, many NP-complete problems

can be meaningfully analyzed also as linear recognition problems. For example,

the NP-complete partition problem is to determine, given positive integers

whether the index set (1, • • • ,nj can be partitioned into nonempty

parts / and /' such that 2^ ~ ^ each x^ is thought to be a real variable,
I r

this equation defines a hyperplane in R^. For each fixed n, the union 7 of all

such hyperplanes defines a linear recognition problem in i?". A linear recogni

tion problem constructed in similar way from the NP-complete subset sum prob

lem was previously analyzed in [1.2,8] (where it was called the knapsack prob

lem; our terminology is from [3]). Similar problems are also studied in [7,9].

Each connected component in the complement of 7 is a polyhedron with

faces defined by the hjrperplanes in 7. Therefore, if the number of n—1-

dimensional faces of some component is exponential in n then the complexity of

the linear recognition problem is at least exponential if only tests *f (x):0' where

/ defines some h3rperplane in 7 are allowed. Let L(V) denote the set of all such

functions /. We show that in all our example cases including the partition, sub

set sum, hamiltonian circuit and satisfiability problems, the complement of 7
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has components with exponentiaEy many n—1-dimensional faces. This immedi

ately leads to exponential lower boimds. given in Section 3, for decision trees

with test functions limited to the set L{V). Some of our examples even have the

stronger property, called face-completeness, that the complement of 7 has a

component which has as many n—1-dimensional faces as V has hyperplanes.

For such problems we may give the exact value of the decision tree complexity

when test functions are limited to the set L{V).

It is natural to ask whether these results remain true if test functions out

side L{y) are allowed. For example, an exponential lower bound for some NP-

complete problem, when we allow all tests : 0' where the coefiGlcients

Of are integers with lengths polynomiaily bounded in n, would be of considerable

interest. In Section 4 we prove a result in this direction. For some 7 and 7

corresponding to NP-complete problems it turns out, for example, that extend

ing the claiss of test functions from L{V) to L{V)\jL{V) does not essentially help

in solving the problem given by 7. For the partition problem we give also some

other classes of test functions larger than i(7) such that the problem is still of

exponential decision tree complexity.

2. RecognitioD. problems in and the decision tree model

In this section we introduce the concepts necessary in formulating and

proving our results. Some example problems are given for later use.

Set AqR^ is affvne if it is obtained by translating a linear subspace. The

dimension of A is defined to be the dimension of that subspace. A hyperplane

HcR^ is an affine set of dimension n—1. Thus each H is the set of solutions

(^i» ' ' ' to a nontrivial linear equation Th® hyperpleuae H cuts

R" into two open half-spaces defined by ^ < &• By allowing

equality in these conditions the closed half-spaces are obtained. Kpolyhedron is
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an intersection of finitely many (open or closed) half-spaces. If such a set A is

obtained by intersecting the half-spaces defined by hyperplanes (Bi | i€/J then

for each subset I'd, the set F = is a /ace of Ai here A denotes the
V

closure of A. The dimension of F is s if the smallest affine set in containing

F has dimension s.

Let 7 be a union of finitely many hyperplanes HiZR^, Each such Vdefines

a linear recognttion problem in i?**. We call n the dimension of the problem.

The problem is to determine for each input ar=(ari, *' ' whether or not x is

in V. In other words, we must decide whether or not ar is a root of at least one of

the linear equations = 0 defining hyperplanes Hi. The number of

different hsrperplanes in 7 is called the degree of 7.

We are interested in the solution of linear recognition problems using

linear decision trees. An algorithm in this form is a ternary tree with each

internal node representing a test of the form '2aia:<-6 : 0', and each leaf con-
•i=l

taining a 'yes' or 'no' answer. Forany inputa:=(a:i, • • • ,Xn) in the algorithm

proceeds by moving down the tree, testing and branching according to the test

results (<,= or >) until a leaf is reached. At that point, the answer to the ques

tion 'Is a:€ 7?' is supplied by the leaf.

The cosf of a decision tree is the height of the tree, i.e. the maximum

number of tests made for any input. The {linear decision tree) complexity of

the problem given by 7 is the minimum cost of any linear decision tree solving

the problem, and is denoted by C(7). If S is some subclass of linear functions,

then the complexity of 7 over trees using test functions only from 5, is denoted

by Cs(V). In particular, if fK is some set of hyperplanes, the complexity of V

over trees using linear test functions / such that / defines some hyperplane in

JV, is denoted by Cf(V), too.
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Ternaiy decision tree model has the convenient property that CY{V)^m,

where m is the degree of V. In the binary decision tree model where each test

can have only two-valued result (>, ^ ) this is not true.

Many well-known computational problems can easily be formulated as linear

recognition problems. In particular, some Important discrete combinatorial

problems have more or less natural embeddings into i?" as linear recognition

problems. We now list examples of such problems to be analyzed in more detail

in Sections 3 and 4. The terminology is as in [3].

The NP-complete partition problem defined in the Introduction leads to a

linear recognition problem in i?" given by the following union of 2**"*^ hyper-

planes

^(n)=((«i. • ' • disjoint/,/' such that/u/'={l, • • • ,njj.(l)
/ r

The baZanced partition problem is the general partition problem restricted

such that the index sets / and r must be of equal size. Thus, given positive

integers a?i, • • • where n is even, we must decide whether 2^ = 2^
I r

some index sets / and /' such that /u/' = (1, • • • ,nj and |/| = |/'I. This prob

lem clearly is in NP. Its NP-hardness is seen using a polynomial time transfor

mation from the partition problem. If (icj, • • • ,ir„) is an instance of the partition

problem then (xi+l, • • • + where y< = l for i =l, • • • ,n, is an

instance of the balanced partition problem which has a solution if and only if

(xi, • • ' ,x^) has a solution as an instance of the partition problem.

For each even n, the linear recognition problem in which corresponds to

the balanced partition problem is given by

tf V, 2^ = 2^ for disjoint 1,1' such that
W(n) = K^i. ' • • •^) I / /•

/u/'=(l. •••.nj and |/| =|/'|j. (2)
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Set Vffp^n) consists of hyperplanes. Moreover. Vsp^n^cVp^n)-

Also the saHsficLbility probleTn of boolesin formulas can be embedded into a

linear recognition problem in Let C/ be a finite set of boolean variables and

C a collection of clauses (Le., sets containing some vairiables or their negations)

over U. The problem is to determine whether there is a satisfying truth assign

ment in U for C. Let ] U \=m and | C \ -k, and assume that no clause contaiins

both a variable and its negation. Then this instance of the problem is encoded

as an kxm -matrix x=(x^) over values -1, 0, 1. The rows of the matrix

correspond to the clauses. The elements of the ith row correspond to the ele

ments of the ith clause such that

Xif =

1, if clause contains the jth variable

—1. if clause Cf contains the negation of uj
0, otherwise.

Note that this transformation is a psurt of the transformation used in [4] to

establish the NP-hardness of 0-1 integer programming. If x is interpreted as a

point in E^t formula C is satisfiable if and only if x belongs to some of hyper

planes defined by equations

+ • • • + = * (3)

where Ji.y'g, • • • ,j]t are in jl. • • • .mj and (truth values) are in

l.lj. So we could associate with the satisfiability problem the linear recogni

tion problem that is given by hyperplanes in defined by equations (3). To

get a simpler formulation we prefer to replace the constant k on the right hand

side of (3) by a new free variable Xfan+i- In this way we obtain for the

satisfiability problem of k clauses over m variables an embedding into a linear

recognition problem in which is given by the set
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^SATimJk) = K^l» ' *' I + ' **+ ~

where Ji.^'g, • • • ,jb are in jl, • • • ,mj and are in Tlie degree

of VsAT{mjc) is between Zm^ and Z^m^.

The subset sum problem is, given positive integers Xi, • • • to decide

whether there is index set /Cjl, • • *,n-lj such that Also this prob-
/

lem is NP-compIete. For each n, the corresponding linear recognition problem

in is given by (c.f. [1,2,8])

Ysin) = Ka?!. • • .iCn) I for some /C{1. • • • ,71-ljj. (5)
I

Set P^(n) consists of Z^~^ hyperplanes.

Some NP-complete problems on graphs can be formulated as linear recog

nition problems. For example, the ffamiltonicm circuit problem is to decide,

given an undirected graph, whether it contains a Hamiltonian circuit. A graph

over n vertices has a natural encoding x as an upper triangular nxn matrix

over elements 0,1. Thus x can be interpreted as a point in where

m=n(n—1)/2, The graph represented by x has a hamiltonian circuit if and only

if for some index set / such that the edges specified by I form aHamil-
1

tonian circuit. We again replace the constant n by a new variable. So we obtain,

for each m=Ti.(n—1)/2 and n =l,2, • • • , a linear recognition problem in R"^*^

defined by

^(n) " I* '' ' »^m+l) I ~ ®m+lj (S)
/

where /c|l, ' • • ,771 j ranges over all index sets that specify a Hamiltonian circuit

in the complete graph over n vertices. The degree of Vff(n) is (n-l)!. Moreover,

Also note that the problem given by can be
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understood as the linear recognition problem associated with the (undirected)

traveling salesman problem. Further examples of subsets of ^^(n{n-i)/2+i) that

correspond to NP-compIete graph problems cam be obtained in a similar way

hrom, say, the clique problem smd the degree coTistrained spanning tree problem

(definitions of these problems can be found in [3]).

3. Lower bounds on Cy(V)

Let 7* be a decision tree that solves the linear recognition problem given by

yc/?**. For each leaf v of T, we denote by I{v)qR^ the set of those inputs that

reach the leaf v. Sets I{v) constitute a partition of i?**. In particular, sets I{v)

where i; is a *yes* leaf pairtition set V and sets /(ir) where i; is a 'no* lead pairti-

tion set —y, the complement of y in . Because each I{v) is a polyhedron we

get the following simple observation.

Lemma If T has a leaf v such thai the set of inputs I(v)qR^ has d different

n—l-dimensional faces then the height of T is at least d.

Proof. Immediate by contradiction. •

Thus each I{v) may have only a polynomial number of n—1-dimensional

faces if the complexity of F is a pol3moniial in n. Assume, in particular, that T

contains only tests '/(a:)>0* where / defines some hyperplame in V. For such a

tree F, if i/ is a 'no' lead, set I{v) must be equad to some component of —y. So

we arrive at the following principle of proving lower bounds on Cyiy)^ that is, on

the decision tree complexity restricted to trees that can test only those linear

functions which define the problem.

Theorem 2. If some component o/ —y Acts m different n^l-dimensixmai /txces,
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then Cy{V)^7n, m

We will now use this theorem in proving lower bounds when V is any of o\ir

example sets defined by (1), (2), {4)-(6) in Section 2. All bounds will be larger

than polynomial In the dimension of V. These results can be established using

surprisingly simple proof techniques. Assume that a point y in —7 is given. If

we can find a path in -7 from y to a point x such that x belongs to exactly one

hyperplane H of 7, then we know that the component of —7 that contains y

must have an n—1-dimensional face QH. If m different hjrperplanes H can be

found, then the number of faces must be .

First we study the structure of — where was defined by (1).

Theorem 3. (a) Set Aos- acompomnt with at Uast gj/ 2different
n—I'dimensionaZ faces.

(b) 5ef —Ii»(n) af least components such that each of them has at

different n ^1-dimensional faces.

Proof, (a) Let y=(1/2,1, • • • ,l)ei?'*. The first coordinate of y equals 1/2 and

the others equal 1. Point y is in —Vp{n) because only one coordinate value of y is

not an integer. Choose a set /cjl, • • • ,nj such that l€/ and [/|=|7i/^. We

show that for each such /, point y can be continuously transformed in

a point x=(xi, • • • .x^) satisfying equation

(7)
I -I

At y, difference e^l^als 1/2 when n is odd and —1/2 when n is even.
1 -I

Clearly, the absolute value 1/ 2 is the the smallest possible for any choice of I.
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To find a path from y to the hyperplane defined by (7), replace in y every coor

dinate yi where ie/ by value if n is odd and by if n. is even. The other

coordinates remain unchanged. Denote by y(t) the vector obtained. Thus

y(0)=y. A simple case analysis shows that as long as 0^ f <l/(2fri/^). point

y(t) is not in Point ar=y(l/(2fn/2l), however, satisfi.es (7) but no other

equations defining some hjrperplane in Vp(n)* Hence x belongs to exactly one

h3rperplane in T^(n)*

The proof is complete because set / in (7) can be chosen in at least

^^2j/2 different ways and each selection corresponds to a different hyper
plane. Each of these hyperplanes forms an Ti-l-dimensional face of the com

ponent of -^5>(n) which contains point y. Finally note that when n is even,

I/ | =I-/| =71/ 2. Therefore the hjrperplanes selected in (7) constitute T^j»(n). the

set corresponding to the balanced partition problem.

(b) Choose y={yi, • • • ,yn) such that yi=l for 2A:+1 different indexes i and

y<=0 for the rest of i. Integer k is such that 2^ +1 is the largest odd integer

which is ^71/2. Then y must be in —Vp(n) since the sum of the y<'s is an odd

number 2fc + l. There are different points y. They all belong to

different components of —P^(n) because the line segment joining any pair of such

points necessarily intersects J^(n)' partition the I's in y into two disjoint

groups of sizes ^ and A: + l. Let /i euid /g be the corresponding sets of indexes.

There are ^ different partitions. We will see that each of them

corresponds to an 7i-l-dimensional face of the component containing y. This

face is contained in the hyperplane defined by equation 2^ = where / con-
/ -/

tains 11 and all indexes i such that yt=0. The h3rperplane is accessed from y

along the path where all O's as well as the k i's whose indexes are in Ii are

simultaneously increased by f. The path intersects the chosen-hyperplane (but
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no other hyperplanes) when f=l/(fc+ib') where fc'=n—{2ib+1) is the number of

O's. •

CoroUary 4. V>(,)) a 2.

Next we consider the balanced partition problem and the associated set

as defined by (2). As noted in the proof of Theorem 3 (a), if n is even, aU

the different n-l-dimensional faces of a component of —"which were

used in proving the Lower bound are also contained in l^p(n)* But this means,

since T^p(n)CV^(n)t that -%p(n) must have a component whose faces contain all

these faces. Then we have shown:

Theorem 5. Set -t^p(n)Ci?** has a component with different n-1-

dimensional fojces, •

Set —̂ ip(n) fias a component which has as many n-l-dimensional faces as

I^P(n) has hyperplanes. This suggests the following definition.

Let K be a union of some hyperplanes. If —7 has a component A such that

A(\H is an n-i-dimensional face of A for every hyperplane HcV, then we call V

as well as the associated linear recognition problem /ace -compZefe.

Clearly, if 7 is a face-complete set of degree m., then Cy{V)^m. On the

other hand, Cv(V) is always ^m. Hence we have for face-complete 7 the

stronger resialt that Cy(7)=m. Note that this conclusion is true only for ternary

decision trees. In the binary tree model we can only conclude that m is a lower

bound on Cy(7).

Since VBp{n) is face-complete, we obtain:
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CoroUaryS. =^^2)/2. •

We also immediately obtain the following lemma:

Lemma 7. lef V and Y be unions of hyperplanes such that Vis face'complete,

VqV, and the degree of V ism'.

(a) V is face-complete.

(b)Cv(r) = m'. •

The next set to be considered is V^(n) which was defined in (5) on the basis

of the subset sum problem.

Theorem 8. Set ® componenf with 2**"^ different n-1-

dimenswnal faces. Set is f/iere/ore/ace-compiefs.

Proof. Consider the faces of the component of -"l^(n) that contains point

y=(—1, • • • ,-1,1). The last coordinate of y equals 1 while the others equal -1.

Choose a non-empty set /C(l, * • • ,7i-lj. To find a path to a point

x^(xi, • ' • ,Xn) satisfjring

^
I

we let y{t) denote a point obtained from y by replacing all elements where

ie/, by yt+f. Then y(t) is not in 75(„) as long as (Kf<l+1/|/1. However,

x=y(l+l/ |/|) satisfies exactly (8) of the equations for l^(n)*

The hyperplane corresponding to empty / is reached from y along the line

on which the last coordinate decreases from 1 to 0 ( thus we define the empty

sum to be equal to 0).
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So each of the 2""^ h3rperplanes in T^{n) borders the component ofy. •

In (6) we defined sets T^(n) on the basis of the Hamiltonian circuit problenL

Because yH{n)^ys{n{n-\)/z^i)» Lemma 7 and Theorem 8 imply that also T^(n) Is

face-complete.

CoroUaiyQ. (a) = 2»-'.

(l') C'Kj(„)(l5/{n)) = (n-1)! •

Corollary 9 (a) improves a result in [2] where it is proved, using an adversary

argument, that ^ lower bound on proof technique,

besides giving the exact value of the complexity, also clearly reveals the reasons

leading to it.

Set ~ysAT{mjiY defined in (4), also has components with many faces.

Theorem 10. Set ^ysAT{m.k)^^^*^ ®corrvponent with at least m* different

km+l-dimensionoZ faces.

Proof. Consider the faces of the component of —that contains point

y=(-l/(Aj + l),—l/(A: +l), • • • 1/(A;+l),l). According to (4), every hyperplane

in ysAT{mj6) oan be represented by an equation of the form

- Sxc = Xnk+l (9)
/ r

where /, /' are disjoint subsets of (1, • • • ^irik] such that |/| + |/'| = Jfe. Point y

cannot belong to any of such hyperplanes. In particular, ysAT{m,h) contains m*

hyperplanes for which /' is empty. Note that these hyperplanes form a subset of

every such hyperplane, replace by t the coordinates of y whose

indices are in /, Denote by y{t) the point obtained in this way. Thus



'U'

y=y(-l/(Ar + l)). Then x~y{l/k) satisfies (9) but does not belong to any other

hyperplanes in VsAT{mji)' ^hen —1/(A:+ l)^f <1/A;, point y{t) is not in VsAT{mj6)

(or in ^5(^+1) ). •

CoroUaryll. ^. •

4. More general lower bounds

So far we have considered the decision tree complexity of linear recognition

problems under the strong restriction that only testing of functions used in the

definition of the problem is allowed in the tree. Now we shall try to relax this

restriction. Most of our results will be based on the following theorem.

Theorem 12. Zef V, VcR"^ be unions of some hyperplanes. If —{V^V*) has a

coTTvponeni A vnth at least m dijferent n^l'^imensional faces such that each

face is contained in V, then Cyuv(^) ^

Proof. Suppose that a decision tree T solves the problem given by Vusing tests

functions that define only hyperplanes in KuV. Then T must have a *no' leaf v

such that the associated set of inputs I{v) contains A. Let c7 be a h)rperplane

that contains some n-l-dimensional face of A. If H does not contain also an

•Ji—1-dimensional face of /(v) then /(T/)ny"is not empty which meains that T can

not solve the problem given by V. Thus /(v) must have at least m different

n-l-dimensionai faces, which proves the theorem. •

CoroUaiy 13. Let V, VcJ?'* be unions of hyperplanes such that V is face-

complete, V*cV, and V is of degree m. Then Cy{V) - m. m
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Hence increasing the set of test functions in such a way that the increased set of

hyperplanes is face-complete, does not help in solving the original problem.

We now apply these results on our example problems.

CoroUary 14. (a) 2.

(b) = (n-1)!,

(c)i8i TTien Cv„{l's(fe„+i))ifn* ortd CK,(l's.4r(m4!)) ^

Proof, (a) Noting the proof of Theorem 3, this follows from Theorem 12.

(b) This follows from Corollary 13 because is face-complete by Theorem 8.

(c) From the proof of Theorem 10 we see that —(I^47'(m.fc)'̂ ^(mjk+i)) ^sls a com

ponent that has at least different ttiA: + 1-dimensional faces such that each

face is contained in Tlie result then follows from Theorem 12.

•

Let ViCR^ be the union of all hyperplanes that can be define using linear

homogeneous linear functions with coefficients -1, 0, 1, Le..

7j = • • • ,Xn) I for some tit€(-l,0,l{

Note that in all our example problems the hyperplanes to be recognized are in

^1.

Since we already have Corollaries 4 and 14 (a), it is natural further to ask

whether, say, Cy^{Vp^^)) or has nonpol3momial lower boimds in 7i. We

leave these questions open. Instead, we prove such results for some sets V such

that 7j9(„)CF'c7i.

Our main tool is the following lemma which generalizes the proof of

Theorem 3. If HqVi is a hyperplane, then there is exactly two linear fimctions /
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that define H and are of the form coeflficients czt in 1,0,1}.

Those functions are negations of each other. Hence we may uniquely define the

distance between a point y and H as dist(y ,i?) = | / (y) |.

Lemma 15. Let V, Vp^n^cVcVi, be an union of hyperplanes and y^R^ a point

such that for some OO and for all hyperplanes HqV*, dist{y,iy)sc. If there

exist m different hyperplanes HcVp^j^) such that dist(y,iy)=c, then

Proof. For each hjrperplane HcVp^^) such that dist(y,iy)=c we describe a path

from y to a point x such that x^H but the path does not intersect any other

hyperplanes in V. Condition dist(y,if)=c means that there is set /cjl, • • • ,nj

such that

Svi-Svi = °-
I -I

Denote by y(f) the point obtained by replacing every y< by y<—f if ie/ and by

y^+f otherwise. Hence y=y(0). As long as 0^f<c/n, point y(f) is not in V*

because 2lyi(f )-yi | = nf < c and dist(y,^')^c for all hyperplanes /f'cF*. How

ever, point y (c/n) is in i?. A simple case analysis shows that y(c/n) cannot

belong to any other hyperplanes in V. The theorem now follows from Theorem

12. •

It can be immediately seen that Lemma 15 is still true if we replace l^(n) by

yppin)'

Let now y be a subset of Vi consisting of hyperplanes

I®1Hence each hyperplane in V has a linear function /

representing it such that / has coefficients in (—1,0,1) and the first coefficient is

1.
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Theorem 16. Cv.(7p(„))i

Proof. Let y=(1/2,1, • • • ,l)€i?". Since yi=l/2 is the only coordinate of y that

is not an integer, the definition of V ensures that dist(a:,i?)fel/ 2 for every HzV.

On the other hand, dist(a:,/?)=l/2 for all HcVp^^) such that H =
I -/

where Ic\l, • • • ,n} and l€/. By Lemma 15, this completes the proof because I

can be chosen in at least 2]'̂ ^different ways. •

The result of Theorem 16 can be generalized as follows. Let A:st2 be a fixed

integer and let i4c(l, • • • ,nj be a set such that |i4|=t(l+l/A:)nJ, Furthermore,

let 7", V'cVi, denote the set of h3rperplanes (a: 12ttia:i=0, at =l if iCilJ.

Theorem 17. ^

Proof. Assume for simplicity that Ti=3A:m for some integer m. We prove the

theorem for such n; the remaining rt are left to the reader. Since n=3k7rL, we

have IAI =3(fc-l)m. Because of symmetry, we may assume that A=jl, • • • ,r|

where r =3(A: -1)m.

Let y=(yi, • • • ,yn) where y<=l+2^ for i=l, • • - ,r-l. and

y*=3(A:—1) for i>r. Then dist(y,i/)9^0 for all /f in V\ In fact, dist(y,/f) is

always S:2*^. This can be seen from the binary representation of the value

"Where / defines H and each Oj is in (-1,0,1). Let i be the largest

index such that and Oi^O. The definition of 7" ensures that such an i always

exists. Then the contribution of y^-l•¥Z^ (or yj=2~^, if i=r) to the value /(y)

cannot be cancelled, that is, the position -i has digit 1 in the binary representa

tion of dist(y,if).



- 18-

Let /cjl, • • • .nj be such that |/|=m and Ir\A is empty. Then a straight-

forweurd calculation shows that

SVi - S = -2-^*
luA -(/u^)

Thus the hyperplane H in T^(n) defined by function / such that

/(7i)=2®t" 2 Jisis the property dist{y,H)=2~^. By Lemma 15, this com-
luA -(/Ui4)

pletes the proof because I can ce chosen in different ways. •

5. Conclusion

We developed in this paper a technique for proving lower bounds on the

decision tree complexity of linear recognition problems. Tihs gave non-

polynomial lower bounds for some np-complete problems in the linear decision

tree model when the decisions are restricted to testing functions that are used

in defining the problem. Similar bounds for some larger classes of test functions

were also obtained although the problem of proving non-polynomial lower

bounds when unrestricted linear tests are allowed, still remains open.

It is also noteworthy that our results were obtained without using adverssiry

arguments. One easily sees, in fact, that all our lower bounds for problems

given by different sets V are also lower bounds on the width of coTrvplete

proo/s of V as defined by Rabin [5], if the complete proofs may contain test

functions from the same classes as our restricted linear decision trees.
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