

Copyright © 1981, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

HOW TO EXCHANGE (SECRET) KEYS

by

M. Blum

Memorandum No. UCB/ERL M81/90

13 November 1981

HOW TO EXCHANGE (SECRET) KEYS

by

Manuel Blum

Memorandum No. UCB/ERL M81/90

13 November 1981

ELECTRONICS RESEARCH LABORATORY

College of Engineerina
University of California, Berkeley

94720

Preliminary version: submitted to the 23rd Annual Symposium
on Foundations of Computer Science to be held in San Francisco, May 1981

HOW TO EXCHANGE (SECRET) KEYS .

Manuel Blum

Department of Electical Engineering and Computer Sciences
University of California at Berkeley 94720

Telephone: (415)642-1662 or 642-1024
November 13, 1981

This paper presents the "Exchange of Secrets" problem and offers a

protocol to solve it. Heuristic arguments are presented to explain the

mechanism of the protocol and to suggest why the protocol should prove

difficult to foil.

INTRODUCTION:

We show how Alice and Bob, two parties with EQUAL COMPUTING CAPA

BILITY and EQUAL KNOWLEDGE OF ALGORITHMS, can trade secrets WITHOUT THE

USE OF AN INTERMEDIARY, WITHOUT EVEN OCCASIONAL NEED FOR A JUDGE, and

with a NEGLIGIBLE PROBABILITY OF CHEATING.

Suppose Alice and Bob each have their own number, each number being

a product of two large randomly chosen primes. Each of the two parties

knows the prime factors of his or her own number. Each knows the other

person's number but not its factorization. This paper shows how Alice

and Bob can exchange their secret prime factors even when neither trusts

the other. For example, if one of the numbers has been improperly

selected, say is a product of three rather than two primes, this proto

col hollers "cheat" before any secrets are revealed. The prime factors

may be viewed as the secret keys to the RSA public-key encryption system

Research sponsored in part by NSF grant MCS 79-03767.

-1-

[10].

This scheme might be useful in signing contracts electronically and

sending certified electronic mail, ie., mail in exchange for a receipt.

In both cases, the problem is to achieve the equivalent of simultaneous

PARALLEL exchange of messages using sequential SERIAL communication.

In another paper along these lines, Blum and Rabin [3] give a dif

ferent method to send certified mail. Their scheme makes no assumption

that the two participants have equal computing capability or equal

knowledge of algorithms. It can pit the vast capabilities of Professor

D. H. Lehmer on the CRAY 1 (the largest currently available computer)

against a staff secretary on the VAX (an ordinary computer), giving nei

ther an advantage over the other. Their scheme, however, does allow a

probability of cheating of the order of 1/100. The scheme offered here,

on the other hand, can easily ensure a negligible probability of cheat

ing of order 1/2100.

This paper ASSUMES, as does the above scheme, that factoring is

hard. This means that a program cannot factor a number that is a pro

duct of two 80-(decimal)digit primes in reasonable time (not even 5

years) using the most advanced available technology (1000 CRAY-1's work

ing in parallel) except for a negligible fraction (one in Avogadro's

number) of such numbers.

Our scheme builds on and greatly extends the powerful OBLIVIOUS

TRANSFER first proposed and used by Rabin [7].

THE PROBLEM:

-2-

Alice has a number na that is a product of two primes p1a and p2a.

She keeps the two primes secret but gives their product na to Bob. Simi

larly, Bob has a number nb that is a product of two primes p1b and p2b.

He keeps the two primes secret but gives their product nb to Alice.

Alice and Bob would like to exchange their primes, p1a for p1b. Once an

exchange takes place, each can test whether or not he or she received

the other person's prime since na and nb are public.

One obvious approach to the exchange of secret primes, p1a for p1b,

would be for Alice and Bob to trade p1a for p1b bit by bit. This has

two problems:

1. A minor problem: if Alice goes first, Bob will be a bit ahead of

her. If after Bob gets all the bits of his prime, he stops communicat

ing with Alice, then Alice will be out one bit. This is minor because

Alice can always try setting the missing bit (or bits) to 0 or to 1,

testing each guess by dividing the number guessed into nb. In this way

she will easily make up the loss of a bit.

2. A serious problem: neither Alice nor Bob can test the number they

are receiving until all or most of it has been transmitted, at which

point one of them may discover that the other cheated: perhaps Alice

sent p1a to Bob, but Bob sent junk to Alice.

We show how the two can exchange their keys bit by bit in a way

that neither can defraud the other. With each bit goes a PROOF that the

bit is good.

APPLICATIONS:

-3-

This scheme might be used to sign contracts simultaneously. Alice

constructs a product na of two large primes and Bob similarly constructs

nb. Alice sends Bob her signed contract; it contains a clause asserting

that the contract is valid only if Bob knows how to factor "na." Bob

sends a copy of the same contract under his own signature to Alice; a

corresponding clause says that the contract is valid only if Alice knows

how to factor "nb." Once Alice and Bob have read each others contracts

and verified each others signatures, they exchange factors.

Alice might use this scheme to send a disclosure D to Bob and get a

receipt. Alice constructs na and sends Ena(D) to Bob, where Ena is

Alice's public-key RSA encrypter [10] based on the product na. Bob con

structs and sends nb to Alice, together with his written agreement that

if Alice can factor nb, then Bob must have factored na and therefore he

got whatever document D is locked inside Ena(D). Next they exchange fac

tors.

A PROTOCOL FOR TRADING KEYS:

The protocol below is for Alice. Bob's protocol is essentially

identical. Both Alice and Bob can test if an 80-digit number is prime

using one of the efficient algorithms for primality of Gary Miller [6J,

Strassen and Solovay [ll], or Rabin [9]. Each of them constructs his or

her number by generating two 80-digit primes at random, i.e., repeatedly

selecting 80-digit numbers at random and testing them for primality

until two primes are found, then multiplying them together to form the

number.

A1: Send na to Bob and (then) obtain nb.

-4-

Test if nb is even, prime, or a nontrivial integer power, nb = m^

for integers m,i > 1 (these conditions can easily be checked in polyno

mial time). If so, Bob has cheated: stop.

A2: Select 100 numbers a1, a2, ..., a100 at random from Znb/2 =

|1,...,[nb/2](, where [nb/2] is the largest integer less than nb/2.

In the event that one of these numbers splits nb, stop: If nb has

more than two prime factors, Bob cheated. If nb has two factors and

both are prime, Alice has the desired result, but under our assumptions,

this happens at most once in Avogadro's number.

In the event none of a1 , a2, ..., a100 splits nb, compute and send

a12 (mod nb), ..., a1002 (mod nb) to Bob. Obtain b12 (mod na), ...,
b1002 (mod na) from Bob.

A3: Compute the four square roots mod na of each number bj2 (mod na)

received from Bob: since the prime factors of na are known (by Alice),

this can be done efficiently with standard techniques, eg., see LeVeque

[5] or [footnote 1]. For each jfrom 1 to 100, order the four square

[footnote 1]: Computing the squareroots of x2 mod n for n = p*q is
particularly easy if p and q are congruent to 3 mod 4. (Alice and Bob
could agree to choose their primes this way; by a deep theorem of de la
Vallee Poisson, cf., leVeque [5], approximately half of all primes of
any given length are congruent to 3 mod 4, the other half to 1 mod 4.)
In that case, x = (xp*qv + xq*pu) mod n, where xp = (x2 mod n)(P+1"4
mod p, xq = (x^ mod n)U+1;/4 mod q> and p*u + q»v = 1# Aether or not
the prime factors of n are congruent to 3 mod 4, there is an efficient
probabilistic algorithm to compute squareroots mod n when the prime fac
torization of n is known, cf., Adleman et. al. [1] or Berlekamp [2].
Incidentally, the prime factorization of n is NECESSARY for computing
square roots mod n: any probabilistic algorithm capable of computing a
square root of x* mod n for a substantial fraction of integers x that
are relatively prime to n can be used to split n efficiently: select
random integers x relatively prime to n; for each x compute x2 mod n;
use the algorithm to try and obtain a square root y of x2 mod n such
that x f _+ y mod n; once such x,y are found, gcd (x+y,n) splits n.

-5-

roots of bj2 (mod na) by size using ordinary integer < ; delete the

largest two of the four roots. (Comment: the largest two roots are the

negatives mod na of the smallest two roots. The smallest two roots lie

in the set Zna/2.) Denote the smallest two square roots of bj2 mod na

arbitrarily by sqrtl(bj2 mod na) and sqrt2(bj2 mod na).

A4: Exchange bits of Alice's 200 (smallest) square roots for Bob's 200

square roots, starting with the least significant bits first: Alice

sends the least significant bits of her 200 square roots (the 200 she

computed) to Bob. Then Bob sends the least significant bits of his 200

square roots to Alice. Then Alice sends Bob the next-to-least signifi

cant bits of her 200 square roots, and so on. Any time the other seems

not to be responding or to be responding slowly, a subroutine called

SPLIT is invoked to try and split the other person's number.

More formally, Step A4 is done as follows:

BEGIN

FOR i = 1 to |n|, !n| = max(length (na), length (nb)}.
DO:

FOR j = 1 to 100,
DO:

Send the ith least significant bit of sqrtl(bj2 mod na)
and sqrt2(bj2 mod na).

OD

Until all 200 ith bits of sqrtl(aj2 mod nb) and sqrt2(aj<i mod nb)
are received from Bob, apply subroutine "SPLIT(nb)" below.
When the 200 bits arrive, proceed as follows:

FOR j = 1 to 100,
DO:

Check that the i least significant bits of either
sqrtl(aj2 mod nb) or sqrt2(aj2 mod nb),
coincide with the i least significant bits of aj.
If not, Bob is cheating: stop. Otherwise continue.

OD

OD

END

-6-

SPLIT(nb): Select k from il,...,|n|} at random.
Extend whichever of sqrtl(ak2) or sqrt2(ak2)
is different from ak to a number of length |n|, selecting the
missing bits at random.

Compute gcd((sqrtl(ak2)) + (sqrt2(ak2)), nb) for
each such extension. If and when this subroutine splits nb,
halt the entire protocol.

WHY THIS WORKS:

In Step A4, Alice gradually exchanges one hundred pairs of numbers

with Bob. Of the hundred pairs of numbers she obtains from Bob, Alice

knows beforehand exactly one number in each pair. To split nb, assuming

nb is a product of two distinct odd primes, Alice need only obtain the

missing number in ANY one pair. If x and y are two numbers in a pair,

i.e., x = sqrtl and y = sqrt2 are the two smallest square roots of a

quadratic residue x2 mod nb, then gcd (x+y, nb) will be a nontrivial

factor of nb. More generally, if nb = (p1b)e * (p2b)f is a product of

two odd prime powers, and if ai is relatively prime to nb, then

gcd(sqrtl(ai2)+sqrt2(ai2), nb) =(p1b)e or (p2b)f. This gives Alice

ONE prime power factor, say (P1b)© ,of nb. From knowledge of (p1b)e

she can obtain the prime p1b in polynomial time.

Bob cannot cheat Alice by taking nb to be even, a prime or a power

of a prime, else Alice will catch him cheating at the beginning of the

protocol. The number nb that Bob sends Alice must therefore be a pro

duct of two or more odd prime powers.

Suppose nb is a product of exactly two prime powers. Bob can cheat

Alice ONLY by guessing, for each of the one hundred quadratic residues

(squares mod nb) that he initially receives from her, which square root

Alice already knows (whereupon he can send that number together with a

-7-

junk number). His chances of guessing correctly are just 1/2*00 [foot

note 2].

Suppose Bob's number nb is a product of k distinct odd prime

powers. While k is supposed to be 2, Bob might try to cheat by taking k

> 2. In that case, his chances of cheating successfully will again be

at most 1/2*00: this is because Alice expects two square roots from Bob

for each quadratic residue she initially sent him, and one of these must

be the one that Alice selected to start. If k = 2, each quadratic resi

due has just two square roots in Znb/2. If k > 2, however, each qua

dratic residue has at least four square roots [footnote 3j« In that

case, Bob's chances of guessing two roots that include the square root

Alice started with, and of doing this correctly for each of the 100 qua

dratic residues, are at best 1/2*'^.

If Bob stops communicating with Alice at some point, he will have

at most one more bit of square root than Alice. The expected time for

Alice to factor nb will therefore be at most twice the expected time for

Bob to factor na. The quality of this protocol depends in part on the

standard deviation in the time to factor. Only the SPLIT subroutine

depends on current knowledge of algorithms. Assuming that both Alice

and Bob use the same SPLIT routine (not necessarily the one given here),

the EXPECTED TIME and STANDARD DEVIATION to factor the numbers will be

[footnote 2]: It would suffice to use 80 quadratic residues instead of
100 since 1/280 is less than 1 in Avogadro's number, my own personal
measure of a "virtual zero." 100 is used to distinguish from 80 in 80-
digit primes.

[footnote 3]: If nb is a product of k distinct odd primes, each raised
to some positive integer power, nb = p1e^ * ... * pke*. and if ai is re
latively prime to nb, then ai2 mod nb has exactly 2k distinct square
roots, cf. LeVeque [5j.

-8-

the same for both parties when both have the same number of bits. This

is what is meant in the introduction by the statement that both Alice

and Bob have the same knowledge of algorithms. The difference of 1 bit

makes Alice's expected time to factor Bob's number just half Bob's

expected time to factor Alice's number.

REFERENCES

1. L. Adleman, K. Manders, G. Miller, "On Taking Roots in Finite

Fields," 18th Annual IEEE Symposium on Foundations of Comp. Sci.

(1977), 175-177.

2. E.R. Berlekamp, "Factoring Polynomials over Large Finite Fields,"

Math, of comp., Vol. 24 (1970), 713-735.

3. M. Blum and M.O. Rabin, "Mail Certification by Randomization," to

appear.

4. W. Diffie and M.E. Hellman, "Privacy and Authentication: An Intro

duction to Cryptography," Proc. IEEE, vol. 67 no. 3 (March 1979),

397-427.

5. W.J. LeVeque, "Fundamentals of Number Theory," Addison-Wesley

Pub., 1977.

.6 G.L. Miller, "Riemann's Hypothesis and a Test for Primality," J.

Comput. and System Sci. vol. 13 (1976), 300-317.

7. M.O. Rabin "How to Exchange Secrets by Oblivious Transfer," Har

vard Center for Research in Computer Technology, TR-81.

-9-

8. M.O. Rabin "Transaction Protection by Beacons," Harvard Center for
Research in Computer Technology, TR-81.

9- M.O. Rabin, "Probabilistic Algorithm for Testing Privity," j.
Number Theory, vol. 12 (1980), 128-138.

1°. R.L. Rivest, A. Shamir, and L.L. Adleman, "A Method for Obtaining
Bi8ital Signatures and Public-Key Cryptosystems," Commun. ACM
vol. 21 (1978), 120-126.

«. H. Solovay and V. strassen, "A Past Monte-Carlo Test for Primal
ity," SIAM J. Comput. vol. 6(1977), 84-85.

-10-

	Copyright notice 1981
	ERL-81-90

