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Abstract

How to implement * provably secure Public Key Cryptosystem is the
most challenging task in modern Cryptography. And sending messages consist
ing of a single bit in a secure way is certainly one of the most challenging prob
lems in a Public Key Cryptosystem ! Without any special ability, an eaves
dropper has a 50% chance of guessing 1-bit messages correctly. By sending 1bit
securely we mean that no eavesdropper is able to guess correctly whether the
message is 0 or 1, 51 times out of 100.

NoPublic Key system currently exists for which we can prove that decoding
1-bit messages is computationally infeasible. Here computationally infeasible
means equivalent to a problem such as factoring, index finding or deciding qua
dratic residuosity modulus composite numbers.

In this paper we present a way of sending 1-bit messages in a Public Key
environment and prove that if an eavesdropper can guess these messages
correctly 50 + e times out ofa 100. for some t > 0, then he can decide quadratic
residuosity modulus composite numbers inRandom Polynomial Time.

Given a large composite number N, Rabin found a 4-to-l function / which is
as hard to invert as factoring. This result marks a great achievement in Cryp
tography. / can be used to build a Public Key Cryptosystem in which numbers
chosen at random from [1, N] can be encrypted in a way such that decoding is
provably as hard as factoring. However, Public Key Cryptosystems are not gen
erally used for sending random numbers between 1 and N, but to send mes
sages.

We show that if M, the set of messages, is sparse in [1, N] (e.g. let Mbe the
ASCII representation of English sentences), then inverting / on Ji (Le. decoding)
is not provably as hard as factoring.

We also show how to overcome the above difficulty by providing a Public Key
EncrypUon Function for sending messages belonging to a sparse set, for which
we can prove that decoding is as hard as deciding quadratic residuosity modulus
composite numbers.

This research was supported by
•NSF Grant HCS-79-03767 and
•• fellowship from Consaglio Nazionale deHc Ricerche - Italy and in partby the above men
tioned grant.



1. IS IT REALLY DIFFICULT TO SEND A SINGLE BIT SECURELY IN A PUBLIC KEY

CRYPTOSYSTEM?

1.1 What is a Public Key Cryptosystem

The concept of a Public Key Cryptosystem ihas been introduced by Diffie and

Hellman in their ingenious paper p{|. In short, let

M = finite message space,

A, i?,...= users,

m €M,

Ea = A's encryption function from M to M, which is ideally bijective, and DA =

A's decryption function such that DA{ EA (m))=m for all m e M. In a Public Key

Cryptosystem Ea is placed in a public file, and user A keeps Da. private. Da

should be difficult to compute knowing only Ea- Thus, to send message m to ^4,

B takes Ea from the public file, computes Ea(tti) and sends this message to A. A

easily computes Da(Ea(tii)) to obtain m.

Several implementations for a Public Key Cryptosystem have been pro

posed. Among them we would like to mention the one by Rivest, Shamir and

Adleman, the RSA scheme [>], and its particularization suggested by Rabin [6].

In this latter scheme, Rabin produces user functions Ea which are as hard to

invert, on a generic input, as factoring.

1.2 Attempts to send a single bit securely in a .Public Key Scheme.

Assume that user B wants to send a single bit message to user A in great

secrecy. B wants that no eavesdropper can have a 1% advantage in guessing

correctly his message. B knows that EA is hard to invert and tries to make use



of this fact in the following way.

Attemptl: B selects r £ U at random and sends EA(r) telling that his bit is

the ith one in the decoded message (i.e. in r).

Acan decode and thus gel the desired bit. But what can an eavesdropper do ?

Danger: let y = £^(x), where Ea is a one way function. Then, given y it

could be difficult to compute x but not a specific bit of x.

Example: let p be a large prime such that p-1 has at least one large prime

factor. Let g be a generator for Zp (Zp is cyclic if p is prime). Then gx mod p is

a well known one-way function. But, even though given gx mod p it is difficult

to compute x (the index finding problem), it is easy to get the last bit of x !

In fact, x ends in 0 if and only if y is a quadratic residue mod p (i.e. if the

equation y = z2 mod p is solvable), and for p prime we have fast random poly

nomial time algorithms to test quadratic residuosity !

We just saw that given y = f(x) , for some one-way function f, some particu

lar bits ofx are totally insecure. It could also be that, given y = ^(x), an eaves

dropper is able to guess correctly any bit of x with probability 60% and still is

not able to find x ! Thus it is easy to see that the following attempt (suggested

by Donald Johnson) to send a single bit in a Public Key System is also dangerous.

Attempt2: Bsends £^(x) to A, where x is, say, 100 digits long. The first 50

digits ofx specifya locationi (i=50,...,100). The bit Bwants to send is the ith bit

of x.

The following kind of attempt may help in clarifying the difference between



Private Key and Public Key communications.

In [B], Blum and Micali also show how two partners Aand Bcan exchange

single bits securely if they share the knowledge of a secret integer s chosen at

random in a big interval. Assuming that index finding is hard, they prove that

an eavesdropper, if he has no idea about s, cannot have a 1% advantage in guess

ing whether a given message m means 0 or 1. The following attempt was sug

gested by Andrew Yao.

Attempt3: As s needs to be chosen at random, Bcould send it securely to A

in a Public Key Cryptosystem by sending ^(s). where EA could be the Rabin's

function. Then B sends a message m like in the Blum-Micali scheme. A. who now

knows the secret s, correctly interprets it; but an eavesdropper cannot have any

advantage in guessing it.

The problem with this is that Blum and Micali show that no eavesdropper

can have an advantage in guessing m only if s is totally unknown to him. But tlhe

knowledge of EA(*)* could unable the eavesdropper to get a sUght advantage in

guessing the meaning of m! In fact any information that the eavesdropper c:an

get out of ^(s) (not enough to invert EA of course !) could help him in doing

better than guessing at random.

Conclusions

There are infinitely many ways inwhich a single bit could be "embedded" in

a binary number x. Taking the "exclusive or" of all the digits of x is just one

more example.

Given y =EA(x), being able to find out one bit embedded in x does not c<on-
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tradict the fact that it is hard to get x.

If we do not know, as it is true for the current status of the research, which

bits embedded in x are easy to discover, then what is a secure way to send a sin

gle bit ?

2. ARESULT IN NUMBER THEORY

Let Zu*-\x | l-sx-sJV-l and x and N are relatively prime J.

2.1 Background

Given q e Zjy*. is q =x2 mod N solvable ? If N is prime, then there is an

easily computed condition for the solvability of q =x2 mod N; if a solution exists,

q is said to be a quadratic residue mod N. Otherwise q is said to be a quadratic

non residue mod N. From now on let plt pg be odd primes and N = Pi P2« Then

q =arz mod Nis solvable if and only if both q =x2 modp! and q =x2 miodp2 are

solvable. If this is the case, q is said to be a quadratic residue modN , otherwise

q is said to be a quadratic non residue mod N.

The Jacobi symbol (q/N) is so defined: (q/N) = (q/pi) * (q/p2) , where for

allx e Zpt p odd prime, (x/p) = +1 if x is a quadratic residue mod p and -1 oth

erwise.

Despite the fact that the Jacobi symbol (q/N) is defined through the factori

zation of N, (q/N) is computable in polynomial time even when the factorization

of N is not known !

It is easy to see, from the definition of the Jacobi symbol and the one of a

quadratic residue, that if (q/N) =-1 then q must be a quadratic non residue mod

N. In fact, q must be a quadratic non residue either modpj or modp2« However,
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if (q/N) =+1, then either q is a quadratic residue mod N or q is a quadratic non

residue for both the prime factors of N.

Let us count how many of the q's, such that (q/N) =1, are quadratic resi

dues.

Theorem: Let p be an odd prime. Then ZP' is a cyclic group.

Theorem: Let g be a generator for Zp *, then gs mod p is a quadratic residue

iff s is even.

Corollary: Half of the numbers in Zp * are quadratic residues and half are

quadratic non residues.

Corollary: Let N = px *p2 where pt andp2 are odd primes. Then half of the

numbers in Zjj* have Jacobi symbol equal to -1 and thus are quadratic non resi

dues. The Jacobi symbol of the rest of the numbers is 1. Exactly half of these

latter ones are quadratic residues.

2.2 A difficult problem in Number Theory.

If the factorization of N is not known and (q/N) =1, then there is no known

procedure for deciding whether q is a quadratic residue mod N(i.e. if the equa

tion q =ar2 mod N is solvable). Such a decision problem is well known to be hard

in Number Theory. A polynomial solution for it would imply a polynomial solution

to other open problems in Number Theory, for example deciding whether a com

posite N, whose factorization is not known, is the product of 2 or 3 primes, see

open problems 9 and 15 in Adleman[&].
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2.3 A number theoretic result.

"We want to show that deciding whether q is a quadratic residue mod N, is

not hard in some special cases, but is hard on the average in a very strong

sense.

Let us recall the weak law of large numbers:

If ylt y2 yfc are k independent Bernoulli variables such that yi = 1 with

probability p, and Sk = yi+...+y*, then for real numbers f, 6>0,

k 2s 1/4(5^ implies that Pr(\(Sk/k) -p | ssf) &6.

Notice that k is bounded by poly(l/^,l/<5).

Set AN'=\ x | x € ZN* and {x/N)=\\.

Definition: For a composite number N, and for real e > 0, we say that we

can guess with e advantage whether q drawn at random from Ajt* is a quadratic

residue mod TV if we can guess, in polynomial(|./V|) time, quadratic residuosity

mod N correctly for at least (50 +e)% of the q € 4at#.

Theorem 1: Let g e^*. For real numbers e, 6 > 0, if we could guess, with an e

advantage whether q, drawn at random, is a quadratic residue mod N, then we

could decide quadratic residuosity of any integer mod N with probability 1 - 6 by

means of a polynomial(|A^|, 1/fi, 1/6) time probabilistic algorithm.

Proof: Let e=l. Assume to the contrary that we have a polynomial time

magic box MB which guesses correctly whether q Ci4jv* is a quadratic residue

mod N, 51 times out of 100. Let a and § be the below defined conditional proba

bilities:

a = Pr(MB answers "q is a quadratic residue" /q is a quadratic residue mod n)

fi = Pr(MB answers "q is a quadratic residue" /q is a quadratic non residue mod
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N, g eAN*).

Notice that, in order for MB to have a 1% advantage, it must be that \a - £|

fe 2/100 ! Construct a sample of k quadratic residues chosen at random in Zn ,

(the value of k will be defined later on). This can be easily done by picking

s!,...,£* at random in Z/y* "and squaring them mod N.

Prepare two counters R and NR.

Feed each s? to MB. Every time that MB answers "quadratic residue",

increment the R counter. Every time that MB answer "quadratic non residue",

increment the NR counter.

If k is chosen to be suitably large (but still "reasonably small" !) the weak

law of large numbers assures that Prfla - R/k|>2/300)< 0.5*10-6; i.e. R/k is a

very good approximation to how well MB guesses if the inputs are only quadratic

residues. Note that a need not be equal to 51/100.

Let now q, be an element of Zjf* that we want to test for quadratic residuos

ity. Generate xx,...,xk quadratic residues at random in ZN* and compute yt

sq*^ fori=l,...,k. Notice that

a) if q was a quadratic residue, then the tft's are random quadratic residues in

b) if q was a quadratic non residue in An*, then the yi's are random quadratic

non residues in A#*.

Let us postpone the proof of (a) and (b) and assume, for the time being, that

they are true. Feed MB with the sample \yt\ and increment the counter R and

NR initially set to 0.

If |a - RAI<2/300, then with probability 1-10"6 q was a quadratic residue
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mod N, otherwise, again with probability 1 -10"6, q was a quadratic non residue

modN.

What remains to be proved is (a) and (b). We will only prove (a). It will be

enough to prove that, given any quadratic residue q, any other quadratic residue

y in Zn* can be written as y =q*x where x is a quadratic residue mod N. It is a

well known theorem in algebra that Zn* = Zp* * Zp*. Thus let a and 6 be,

respectively, generators for Zp *and Zp*. Then any element of Zjv* can be writ

ten uniquely as a>b* where l^i^p^l and l^jssp2-l. Moreover q is a qua

dratic residue mod N iff it can be written as q = a^o2* where again 1 < 2i ^ pj-1

and 1 ^ 2j ^p2-l. Thus if y is any other quadratic residue, y =a2s62i; then by

setting x = a2(s_<)62('~J) part (a) is proved.

Theorem 2: Let q e A^*. Let r be a given quadratic non residue mod N, such that

r £.A#*. For real numbers e, 6 > 0, if we could guess with an s advantage

whether q, drawn at random, is a quadratic residue mod N, then we could decide

quadratic residuosity of any integer mod N with probability 1- 6 by means of a

polynomial(|N|, 1/e, 1/6) time probabilistic Algorithm.

Proof: A little care is needed for theorem 2, which is, different from

theorem 1. Here we know some extra information: namely that r is a quadratic

non residue mod N whose Jacobi symbol is 1. We must show that this extra

information cannot help us to decide quadratic residuosity mod N in polynomial

time.

Let e=l. Assume that given any r quadratic non residue mod N, r e A#*,

someone could build a polynomial time magic box MBT that has a 1% advantage

in distinguishing between quadratic residues and non residues mod N. Then we
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will show that even if one is not given such an r, he could still decide quadratic

residuosity in the following way. Construct set T consisting of 20 elements

chosen at random from An*. With probability 1- (1/ 2)20 one of the elements in T

will be a quadratic non residue mod N. For each x e T do the following:

Choose k as in theorem 1. Construct MB* and test its performance on k ran

dom quadratic residues, 5=jslf . . . ,sk], as we did in Theorem 1. Also pick

yi y20 at random from An*. Again, with very high probability, at least

one of the yi's will be a quadratic non residue. Now, construct samples

Hi={Vi s | s e SJ, and feed them into MBX.

If MBX performs on all the fy's exactly as it performed on 5, then MBX can

not decide quadratic residuosity and x was a quadratic residue. Go to the nest

element in T.

If MBZ performs clearly differently on, say Hit than on 5, then % is a qua

dratic non residue and, most importantly, we got a magic box, MBX, which dis

tinguishes between quadratic residues and non residues in polynomial time. This

will clearly happen when we build MBX, x e T, where x is a quadratic non residue

mod N. Thus we derive a contradiction with our assumption that deciding qua

dratic residuosity is hard.

In the above, we assumed that given any quadratic non residue r, r e As**

someone was able to construct a magic box MBr, having a 1% advantage in decid

ing quadratic residuosity, and we derived a contradiction.

Suppose one is able to build a IiBr, having a 1% advantage in deciding qua

dratic residuosity, only for 1% of the quadratic non residues, r,r e A^*. Then all

that has to be changed in the above proof is to increase the size of the set 7*.. so

that T will include a suitable r.
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a DO WE ALREADY HAVE AWAY TO SEND ENGUSH MESSAGES IN APUBUC KEY

CRYPTOSYSTEM? *

In what follows n is a composite number product of two large odd primes. px

andp2. The Rabin's function f, f:Zn->Zn, is so denned: f(x) =x2 mod n.

Notice that f is a 4-to-l function because of our choice of n; in fact a qua

dratic residue qmod nhas 4square roots mod n(2 if we disregard minus signs)
x. -x mod n. y. -y mod n. The following theorem shows how hard is to invert f.

Theorem (Rabin): If for 1% of the quadratic residues qmod n one could find

one square root of q, then one could factor in Random Polynomial Time.

The theorem follows from the following lemma that we state without proof.

Lemma: Let q be a quadratic residue mod n. If we knew x and y, 2 square

roots of qmod nsuch that x* y,-y mod n, then we could easily factor n. (In fact

the greatest common divisor of nand x+y is a factor of n).

Quick proof of Rabin's theorem: Assume that we have a magic box Msuch

that given q. a quadratic residue mod n. for 1% of the q's it outputs one square

root of qmod n. Then we could factor n by iterating the following step:

Pick i at random in ^f and compute q =i2 mod n. Feed the magic box M

with q. If Moutputs asquare root of qdifferent from i or -i mod n, then (by

the above lemma) factor n.

The expected number of iterations is low as, at each step, we have 0.5% chances

to factor n.

The Rabin's function can be used to build the following public key cryp

tosystem. Any user in the system publicizes a composite number product of two

• The result inthia section has been obtained incollaboration -withVijay Vazirani.
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large primes. Let n be the number relative to user A. Define ^(x) to be xz mod

n. As Aknows the factorization of n, he could compute the 4 square roots of m2

mod n and get the message m. The ambiguity in the decoding could be elim

inated, for example, by sending the first 20 digits of m in addition to m2 mod n;

notice that this extra information cannot effectively help in factoring: we could

always guess the first 20 digits of m.

The proof, so far accepted, that this public key cryptosystem is as hard to

break as factoring, can be sketched in the following way: whoever can get a mes

sage m back from its encryption m2 mod n 1% of the times, is actually realizing

the magic box of the above theorem and thus could factor n.

We would like to point out the following fact.

Claim: If M, the set of messages, is "sparse" in Zn, then the theorem of

Rabin does not imply that decoding is as hard as factoring.

By "sparse" we mean that choosing at random a: e Zn, the probability that x

is a message is virtually 0. We will see that is the case for the ASCII code

representation of English sentences.

Proof: Assume that we are able to invert the Rabin's function f only on f(M).

Then we would have a magic box MB such that, fed with m2 mod n, outputs m for

all m € M; and, fed with q, outputs nothing whenever q * m2 mod n for all

m e M (except, at most, for a negligible portion of the q's). "With the use of

such an MB we could decode but not factor ! Let us follow the above proof for

such an MB. If we pick m e M and feed MB with m2 mod n, then we get back m

and we cannot factor. If we pick i not belonging to M and we feed MB with i2

mod n, the the probability that one square root of i2 mod n, different from i,
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belongs to U is 0 and we get no answer.
oa "Hint- the average size of a word in anRemark: ASCII English is sparse. Hint, the averag

^Ush dictionary is. say. XO. There are *- iC-long strings of ietters. but
^ere are only 10* words in.an EngUsh dictionary. Thus, so far. we do not have a
scheme for sending English sentences in aprovab* secure way in aPublic Key
Cryptosystem.

Remark: The following "philosophical" objection can be raised against the
above magic box MB.

.. ft Ls impossible that amachine, given qas an input, outputs
mod nfor some ^ c^ and noting (except for anegligible number of
eases) otherwise. In fact messages have MEANING, acompletely extrane-
ous concept to a machine ".

Such a"philosophical" statement is of course complex-independent, thus it
could be rejected if we can exhibit an exponential time machine Mwhich does
th. job Let Mbe the ASCII code representaUon of EngUsh sentence, Bnd. by
n exhaustive search, the square roots of «• mod n. If one of them is the ASCII
mentation of astring of words in an EngUsh dictionary (no meaning -
involved: "runningboxhorse" would do) output it.

Nothing prevents the fact that II could have an equivaient IT which runs in
polynomial time. In other words. ASCII English, being sparse, has certain redun-

knew that it must be an ASCII EngUsh one !
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5. HOW TO SEND ENGLISH MESSAGES IN A PUBLIC KEY CRYPTOSYSTEM IN A

PROVABLY SECURE WAY

We want to show how the results in the previous sections provide a solution

for sending securely, in a Public Key Cryptosystem, messages belonging to a

sparse set in Zn. Let us consider the ASCII English case.

Send, bit by bit, an English sentence in ASCII by the method described in

section 3.

Remark: The transmission can be done 8 times faster by using an' ASCII

table for words instead of letters.

We now address the question of the security of the newly proposed Public

Key Cryptosystem. Let E{x) stand for our new encryption function and let M be

the set of all possible messages. First, note that even if an eavesdropper

guesses what a message is, he can not verify it (e.g to verify that q, the encoded

i-th bit of m E.M, represents a 0, one must exhibit x €. An* such that

x2=q mod N ). However, the possibility of understanding a message without

being able to prove what it is, is also dangerous for the security of the public

key Cryptosystem. We show that, given E(m) for to e M, if an eavesdropper can

do better than guessing m at random, then deciding quadratic residuosity of

any integer mod N, is easy.

Recall that AN*=[x e ZN*\(x/N)=l\.

Definition: Let x e An*. The signature of x, ojv(x) is defined as.

aN(x)

Let 5jyn be the set of all n-long sequences of elements from An*.

Definition: Let s e S#n, s=(xlt . . . ,a^). The n-signature of s, %n(s)> is defined

1 if a; is quadratic residue m©<* fj
0 if x is quadratic non residue Huxl M
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as, Xn(s) - °n(*i) on(x2) - • ' ffjvOO

Definition: A decision function is a function d:SNn —> (0,1J.

Let a=(ax a^), 6=(6! 6n) be n-signatures.

Definition: We say that a and b are adjacent if and only if there exists a k,

l^k^n such that <z* * bk and for all i * A: (^=0*. The distance between a

and 6 is defined as: distance(cx, fa) = the number of positions i such that

For any decision d and n-signature I, letPd(l):\0,l\n~> [0,1] be defined as

P*(l) = probability ( d(a:)=l | E#(s)= i for a: € 5jvn).

Theorem 3: If there exists a decision function d which is easy to compute and

two n-signatures u and v, such that \Pd(u) - Pd(v)\ > 1/100, then deciding qua

dratic residuosity is easy.

Proof: Suppose there exists a decision d and two n-signatures u and v such that

\Pd(u) - Pd(v)\ > 1/100. Let distance^, v) = m. and for 0£ i <m, let a+'s be

n-signatures such that a„=u. a^v and o^ is adjacent to a^j for all i. As

\Pd(u) -Pd(v)\ > 1/100, there must exist i, OsSisSrn-1, such that

ip^o.) _ Pd(oi+1)| &1/ lOOn. For convenience let s = a* and * = di+j.

Let us choose f = 1/3(1/ lOOn) and s = 0.5 10"8. By the weak law of large

numbers compute a sample size k, k <> polynomial 1/^, l/e). such that if we

choose A: elements, xt xk at random from 4=\x e SNn I S//(x)=sJ and A: ele

ments, yx yk at random from A&=\x e 5^n | 2tf(:r)=*j . then

Pr ( Pd(s)-(d(a:1)+...+d(xife))/A: > 1/^) < e and

Pr ( Pd(t)-(d(Vi)+...+d(l/fc))/fc > 1/*) < £

As s=(sj sn) and *=(*! sn) are adjacent, let us assume, without

loss ofgenerality, that for all i=l,..,r-l,r+1 n, s4 = tt andsr = 1. tr =0.
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We will now show that we can decide quadratic residuosity mod N with pro

bability greater than 1—1/ 106. Let q be an element of An* that we want to test

for residuosity. Choose k random quadratic residues in An*, x2 xk2 and

compute Yj = q Xj2 mod N for l^j^k. By theorem 1, the Yj's are all qua

dratic residues if q is a quadratic residue, and all quadratic non residues in An*,

otherwise.

In theorem 2 we showed that the knowledge of a non residue in An* does not

help in deciding quadratic residuosity. Therefore we can assume that such a

non residue, /i, is known, which allows us to pick quadratic non residues at ran

dom from An* ( compute h'x2).

We are now ready to decide whether q is a quadratic residue.

(* construct a random sample, SAMPLE, of k elements in S71 such that

SAMPLE= i (yjA, . . . ,yjtJl) e Snu I for all 1 <>i ss n, i * r, 1 <Z j «S k ffAr(y;\i)=Si

andyj-,r=Yj j of

•)

For i = 1,..., r-1, r + 1.... n do

begin

For j = lf...,Jb do

draw x € An* at random.

if si = 1 then yJ#i =x2 mod N

else if st = 0 then tyfi =h x2 mod N

end.

(* Evaluate the decision function d on each each member of the sample *)

Forj = !,...,A: do
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begin .

Xj = d(yiA Vj.r-l •Yi« V;,r+1 Vj.n )

end.

Notice that the entire sample jyJfll . . . ,yj.r-i •Yj, yj,r+i» ••*?(? .n 11 ^ J* - *i

is either a subset of ^ or a subset of At. Thus with probability 1-e one of these

two mutually exclusive events will occur

(1) '(Xi+...+Xk)/k -Pd(s)\ <l/300n

or,

(2) \{Xx+...+Xk)/k -Pd(t)\ < l/300n

If case (l) occurs we conclude with probability greater than 1—2 e = 1—10"8 that

q is a quadratic residue, else we conclude, again with probability greater than

1—10"6 that q is a quadratic non-residue.

Let us extend the notion of a discriminating function so that the function

can take on more than 2 values. For any non empty set A, let DiS^-^A. Let

a eA, then PD,a{l)= probabnity(£(s:)=a|£jv(a:)=J for x € SNn) The following

theorem is an easy extension of theorem 3 and we will state it without proof.

Theorem 4: If there exists a discriminating function D'.Sn^A, a e A and 2 n-

signatures u and v such that \Pi),a(u)-PDa{v)\>l/zt then deciding quadratic

residuosity mod N is easy.

The next theorem takes us back to messages. But first, some more notation

must be introduced. Let //* = \ mltm2, ...J be the set of messages whose length

isn,n *£p(\N\) where p is a polynomial. Set k = \Mn\. Let Mi be the set of all

possible encodings of message i. Clearly, MiQSn71 and for all i and j, \Mi\=\Mj\,

and thus \M"\= k \Mi \=\M |. Let MB be a magic box that receives as input E(m)

for m € Mnt and guesses l^i^t such that nii-m. Let ritj denote the number
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of encodings of message mjt on which MB answers i. Clearly, rw will denote the

number of times, over all possible encodings ofto*, that MB answers correctly.

Theorem 5: Let *< 1-1/A: be a non negUgible positive number. If

Eriti/kM > e + 1/A:, then deciding quadratic residuosity mod N is easy.

Proof: By assumption E riti > skM + M.

Claim: There exist two messages m*. to;- such that riA^ritj > bM.

Proof: Assume, to the contrary, that for all i*j. riti~-ri4 ^ tM. Then

WI=:ESr4Jfe?(rti+(A:-lKi-{*-l)BAf)= S(*rtit-(*-l)e#) > (by hypothesis)
J ' • '

-A: (A: -l)tM+k2sM+kM =kM+k eM>kMt Contradiction.

Let us transform MB into a discriminating function D:SNn—\#\/W- If

x<£SNn, and MB, on input a:, outputs ;, then set D(x)=ms. If y is not an encod

ing of any message, then one of 3 cases must occur:

1. MB outputs 1 ^ i ss t. Set i?(y)=TOi.

2. MB outputs i < 1 or i > t. Set D(y)=6.

3. MB does not answer within a certain time limit. Set D{y)=6.

Now, note that in the claim just proved, we showed that for such a decision

function, there exist to*, mj such that \PD.mi(™i)-P]>.mi(™j)\ >£ Thus the

hypothesis of theorem 4 holds, and deciding quadratic residuosity mod N is

easy.

Theorem 5 shows that inverting the function E on the encrypted messages

is as hard as deciding quadratic residuosity, independently of the sparseness of

Mn.
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