Copyright © 1981, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission.

AN APPROACH TO TWO-DIMENSIONAL CHANNEL ROUTING

by
Y. K. Chen

Memorandum No. UCB/ERL M81/83
6 November 1981

ELECTRONICS RESEARCH LABORATORY
 College of Engineering University of California, Berkeley 94720

Y. K. Chen**

$A B S T R A C T$

In the layout of LSI chips, ehannel routing is one of the key problems. The so-called "onedimensional channel routing" means that only the terminals on the upper and lower sides of the shannel ara specitied. But sometimes, we have a restangular spare with terminals sperified on all four sides. This oreurs, for example, when regular channel meets.

Two sperifis problems are given in this paper. Dne is called the fixed position problem, ard the other the fixed sequence problem. Attempts are made to extand the merging algorithm to twodimensional proolem provided that extratracks are availible at the two ends of a channel.

The algorithm uere coded in PASCAL and implemented on $V A X 11 / 7 E O$ computer.

[^0]Y. K. CHEN

1. Intrgduction

In the layout of LEI chipsishannel routing is one of the key problems. Tuo rows of cells are placed on two sides of a channel. Along the channel, every terminal of cells has a sertain n:anber, and terminals with the same number must be Eonnected by a net. Usually there are horizontal output leads which gu sidewards from the channel.

So-ralled "one-dimensional channel routing" means that the positions of the terminals on the upper and lower sides of the channel are sperified while the position of the horizontal output leads are arbitrary (Fig. I(a)

Generally, in a LSI chip there are several channels in the routing area as shown in Fig. $1(b)$. In Fig. $1(b)$ the routing of charinels A, B, C, and D are all one-dimensional problems. It can be routed individually without considering the othera. However when we consider shannel E, all the terminals, both on the upper and lower sides, and on the left and right Ends, have already been specified. So the problem is 7o longer one dimensional. It leaves us a two-dimensional problem.

Two kinds of tyo-dimensional problem uill be discussed in this paper. The following are the two different specifiEations:
(1) The fixed position problem: both the vertical and horizontal sutput leads are sperified in fixed position. An exanple is shown in fig(2).
(2) The ifxed sequence problem: the vertical output leads are sperified in fixed position while the horizontal output leads are sperified in fixed sequence. An example is sho:山n in Fig. (3). Compare the horizontal output leads in Fig. (2) and Fig. (3), we found that the two are not in a same position but have the same sequence. obviossly, the constraint in the fixed sequence problem is less tight than that in the fixed position problem.

Several efticient algorithms [1], [2] are available for one-dimeusional channel routing problem. Now attempts are
nade to extand tine merging algriitim [z] to two-dimensional problem. It mist be pointed uut that when ue use this approach both the heignt and width of the channel must be adjustable.

In this paper we stress emphasis on the approach for fixed seqiserise prablem. In sertion 3, two difterent approeches iur the $\hat{\text { tixed sequence problem are proposed. In }}$ addition, an effertive aigorithm for finding the longest sommon subsequence of two strings used in section 3 is introdured in segtion 4 and sertion 5.

2. Agoroarh for the fixed gosition problem

The basic idea of this approagh is to transfer the turodimensional problem to three one-dimensional problems. Suppose the axample in Fig. 2 is the problem to be solved. This appraach ineludes the following two steps:
(1) First Etap:

First, withost regard to the tixed position of the horizontal output leads, we treat the problem just as an one-dimensional problem uith horizontal output leads in an arbitrary position. The result obtained after the first stap guarantaes the vertical gutput leads plased at the specified position while the position of the horizontal outputs are arbitrary (Fig. 4(a)).
(2) Sarond Step:

Make a permutation to left and right horizontal gutput lesds respectively. After the permutation both the left and right output leads obtained from the first step are permuted to the sperifigi fixed positions. Sush a two layer permutation can be dirertly realized by means sf a one-dimensional channel routing (Fig. 4(bi).

Combining the results from the above two steps the final result is abtained (Fig. 4(E)). In Fig. 4(e), there are tiso and finree extra columns which oceur at the left and right end respectively. If the total length is stilluithin the limit ef the routing area the rauting realization in Fig. 4 (e) is areeptable. When we use merging algorithm, if we start fram a different zone the result may be different. So by selegting the starting zone at both the first and serond steps, it is possible to obtain a qualified routing reaiicatien in which the width and the length do not axeed the linit ot the routing area.

3. Aoprojehsi figr fixzd seguence oroblem

Just as in the fiesed position approash the twodimensional prablem san also be redused to a one-dimensional problem. Berause the sonstraint in fixed sequence is less stringent than that in the fixed position ue san aceamplish more in the approach. Suppose the example in fig. 3 is the problem to be sulved.
3. 1 Approarh with additional vertiral constraint

Let us iirst introduce a simpler approach. The fixed sequenea problem ean be treated equivalently as a problem with no harizontal outputs. For the sake of sinplicity we will only consider the left output leads. In Fig. 3 the spesified sequence of the left output leads is $4,1,2$. It means that net 4 should be laid on a traed above net 1 and nat 1 should be laid on a track above net 2 . In Fig. S(a) we axtend two extra columns at the lett ent of the ehannel. And we assign "4" and "i" to the upper and lower terminals on the one extra colunn, and "q" and "こ" on the other extra column. The pidrpase at doing so is not only to extend the output leads lefturards besond the original end bist more importantly to add some additional vertical constraints to the Vertiral Constraint Graph (in Fig. S(b)). Berause ot these additional vertieal constraints the sperified sequenee gf the horizontal outputs is surely guaranteed. Ey using this approarh we get Fig. S(a). If we delete the extra columns in Fig.S(a) the final result of Fig. 3 is obtained (in Fig. S(e) . Obviously, Fig. S(e) is equivalent to Fig. S(a).
3. 2 Approach uith additional permutation

Tha appraach used in the fixed position problem can also ba usad here. But now we only know the sequence of the horizontal output leads. So between the tin steps used in the fixed position problem there is another stap to be considered. That is to specify the position of the horizontal output leads. As illustrated in fig. B, this approach ineludes three steps:
(1) First Step:

It is the same as the firt step in the fixed

(え) Earond Etep: Atter the first step tuo sets of horizontal outputs with arbitrary pusition are obtained. One set goes to left and the other goes to right (Fig. 6 (aj). For example, let us diseuss the right side only. From the top to the bottom the number of these gutputs are
$1,10,7,0,8$
These are the numbers assigned to the terminals placed on the left side of the right channel. Acrording to the specification, the sequence of the terminals on the right side are specified as

1, 10,8, 7
In this step we use the following criterion to specify the position of such terminals. As shown ir Fig. $\theta(b)$, the result is

$$
1,10,8,7,0
$$

As shown in reference [3], the lower bound of the tract number is related with dmax and vmax (dmax neans the maximum density, vmax means the maximum level in V.C.G \}. So the basic idea of specifying the position is to reduce the "dmax" and "vmax" in the right ehannel. The eriterion aceepted in this step is
(a) Mateh terminals with the same number in the same column (i.e. to get straight connection) as much as possible, because straight connection does not require a track (i.e. not to increase dmax). In Fig. $G(b), q$ and 10 are matched with the same number. Here we use an efificient aigorithm, as shown in section 4 and 5 .
(b) Besause there is no vertical constraint betwesen a nonzero terminal and a zero in a same solumn, then we match nonzero terminals with zero in a same column as much as possible in order not to increase "vmax". In Fig. $b(b), 7$ is matched with zero.
(3) Third Step: After the second step the position of the horizontal output leads has been specified. In this stap the only thing we have to do is to make the permutation, just as we did in the second step in the fixed position problem (Fig. G(e)).

Combining Fig. 6 (a) and Fig. $6(c)$, we get the final result as shoun in Fig. Gid). Because in the fixed sequence problem the terminals of the horizontal output leads have matched in such a way, the extra columns on both ends of the shannel may be less than that in the fixed position problem.
Computational examples for both fixed position and
fixer sequence are shown in Fig. 7 and Fig.
respertively.
Fig \quad is the same example as Fig. B, but the other approach (with additional vertical constraint) is used. From Fig. B and Fig. 9 we can see that there is no extra row Jecurring in Fig. 8 while no extra eolumn oceurred in Fig. ?. We san select one of the two approaches deponding gn how many extra rows and solumns there are in the rosting area.
¥. An effertive algorithm for finding the longest comGon swosphuence nt two strinas with rertain sonstraints 4. 1 The problem we have mentioned in section 3.2 (ב)(a) Ean be summed up as follows:

We have two sperified seti, Set P and Set Q. In Set P there is no duplicated element exeept null. In Set \quad thera are no null elements but all tine nonnull elements that oecur in Set P. Hosever, the nonnull elements generally do not Eppear in the same sequenes as in Set P. As shown in Fig. io, now we matrh eash element in Set Q with an element in Set P. Byt after matehing, the sequence of Set Q must remain the same. All the alements matehed uith the same element are called the esmmon subsequence. The problem is how to get the longest ismmon subsequence.

In order to match each element in Sat Q to an giament in Set P, there are two constraints to be considered:

Constraint(1)------end sonstraint
When Set Q is matched with Set P no element in Set α is allowed to go beyond aither end of Set F. As an example in Fig.il(z), element M can not be matched in pairi otherwise, element A in Set G has to go beyond the right and of Set P.

Constraint(ב)------internal sonstraint
when any tuo elements in Set Q are matched idith Set P all the elements between these two elements in Set α ean find their corresponding spacing in set P. As an Example in Fig. 11 (b), if element C has been matched in pair then element E ean not be matehed in pair, sherwise alement b can not find a spaeing in Set P.

Fig. Iif(e) shous the longest common subsequence obtained by matrining Set F and Set Q.

4．コ Thamain algorithm

This alsorithm includes the following three steps：
（1）First Siep：we first delete the elemants แhich do not satisty constraint（1）．

Chesk eash of the elements in Set Q（also Set p\} respectively by matching that element dith the same in Set P ．If any element in Set Q go beyond either end of Set P then the checker element does not satisfy con－ straintcil．We just delete the checked ele－ ment from both Set Q and Set P ，instead put in a null ale：nent＂g＂．＂口＂is also treated as null element＂G＂．Atter all the elements have been Ehacked，the remaining nonnull elements sョtisfy sonstraint（i）．As an exampie
$E \in t P=\{A, O, C, E, C, B, O, F, D, D, M\}$
E Et $Q=E=C, E, E, F, D, M, A\}$

By Eharking in this uay，exeept for A and M， all the other elements satisfy constraint（1）． The result obtained is

Set $P 1=\{D, O, E, E, O, E, D, F, D, O, D\}$
Set $G 1=\leq C, B, E, F, D, D, D\}$
（2）Second Step：We disregard to constraint（2） and find the longest common subsequence

Construct a bipartite graph by connecting the same elements which are separated in Satpi and Set Q1，as shown in Fig．12（a）． Count the intersertions of each net with the ather nets．Acearding to the number of inter－ sertions，delate the net with the largest number of intersertions from both Setpl and Setal．After the deletion ot edges，a null alenent＂g＂is assigned to the vertices which define the deleted edges．Iterations are made step by step until there is no intersection betuern nets．

Fig．ic illustrates the above procedure． First，net A ，then net D is deleted． Finally，the tinal bipartite graph without edge intersection is obtained（Fig．12（c））．

It there are tuo or mare nets to be deleted and these nets have the same number of inter－ section then we will retain net k for which the condition

$$
\text { lett (kp)/left(kq) }=r i g h t(k p) / r i g h t(k q)
$$

```
is satisfiged or mearly satisified.
This is #s shown in Fig. 13, where
    & is number of the ret to be considered,
    kp is one terminal of net k in Set P1,
    kp is the other terminal of net k in Set Q1,
    left(kp: is the distanre from the left end
                to kp in Set P1, and
    right(kp) is the distance from the right end
                to kp in Set P1,
    Inft(kq} is the distanee fram the left end
                to kq in Set Q1, and
    right(ku) is the distance from the right end
                        to kq in Set Q1.
    Inglace of the above formula we would
rather use the follouing eriterion to retain
net {* which maximizes g(k)
    g{k)=sqr(left(kpi*)left(kq)} +
        sqr(right(kpi*right(kq))
    From the final bipartite graph in Fig. {Z(e)
we have
```

 Sat PZ \(=\{0, O, O, D, B, C, D, E, F, O, O\}\)
 Set GE \(=\{B, D, C, D, E, D, F\}\)
 It must be pointed out that after deleting nets in the first and second steps Set Q2 also ineludes null elements "o". For convenience, in the next two sections we will only use the symbol "O" uniformly to express the nill elements in Set PZ and Set Q2. Nonnull elements in Set 92 have the same sequence with that in Set P2. Eut not all these nonnull elements can be matched in pairs because constrain(2) has not yet been considered.
(3) Third Step: We now sonsider constraint(2) and find the longest common subsequence from Set P2 and Set Ge

This step is the key part of the whole algorithm. An attempt is made to find an optimum algarithm. Before we introduce the algorithm in section 5 , an example will be shounfirstin Fig. 14. Fig 14(a) is the result irom using the simply algorithm by just matching nets from left to right. Fig 14(b) is the resilt bu using an optimum algorithm which yields better result than that in Fig.14(a).
5. The getimidn algorithm for finding the longest comRon 3ubseauence between tun sets in whieh the nonnull alenents are in a sane sequence

Let us review this problem as follows: Exeept for null elements there is no duplicated element in both Set p2 and Set \&e. Set QZ ineludes null elements and all tha nonnuli elements in Set P2. The nonnsll elemants in Bat ge have the same sequence as that in Set P2. The problem is how to matrh Set P2 and Set Q2 to get the longest common subsequense.
5. 1 Tomake the situation prorisa, letus first introduee several definitions and theorems.

DEFINITIDU.Eㅡ․

EEF(1) "the matrhable paint" ot an original elenent

As shoun in Fig. 1S, choose any glement in Set Q2 as an original point and match that element aith the same element in Eet p2. Check the other elements whether they can be matched with the same elements or not. It one can be matched then this element is salled "the matehable point" of the original eiemant. In Fig. 15, A and F are the mateinable points of Bi C, D, and E are not matehable points of B. If B is the matehable point of A then the necessary and suffirient condition can be expressed as:
where
A, B belong to Set $P E$
A'E, belong to Set $Q 2$
numbsa o 3$\}$ means the number of null
elenent " G " betwean A and B
Doviously, if B is the matenable point of A then A is also the matchable point of B (the reciprocal property gt matchable points.

DEF(2) "the matehable paint matrix M"
As shown in Fig. LGibi, a square matrix M is defined such as to express all the information about the matehable points in Fig. 1G(a). The nuinger of column of matrix M is equal to the number of nonnull elements in set p2 (or Set Qe).

Let M［i，i］＝i，which means we use i as the ． original paint．

Let $M[i, j]=\left\{\begin{array}{l}i, j \text { is the matchable point of } i \\ 0, j \text { is not tha matehable point of } i\end{array}\right.$ From tha first rou of M in Fig．lb（b）B is the nearest matrhable point of A．We call B the first natehable point of A ，and D the second，E the third respertively．Dbvinusly，because of the reriprocal property of the matehable point，matrix Mis symatris．

LFMMA（1）
If B and C are two suceessive matehable points of A as shown in Fig．17（b）and
suppose 3 is the i th matchable point of A
C is the $(i+1)$ th matehable point of A
D is the iirst matahable point of B ，
then D is also the matehable point of A．In addi－ tion either \square coincidss with C ，or D is losated at the right side of C ．

```
[Progt]
    Because B is the matchable point of A, and D is
    the matchable point of B, then we have
        numb{A 口 B} j= numb{A'0 B'};
        numb{゙B O D} う= numb{B'O D'};
        nunb{A a B}+חumb{E o D} }>
            nu:Bb{A'O B'}+חumb{B'口 D'};
    i. e. numb{A 口 D} }>=\mathrm{ numb{A'O D'}.
    Therefore [ is the matehable point of A.
Berzusa C is the next matrhable point after B, D
san not be losated at the left side of C; other-
wise, C can not be the next matehable point.
    Therefore aither D coincides uith C, or D is
lorated at the right side of C (QED).
According to the location of D, B and C can be
divided into the following two cases:
Case{1} : C is also the first matehable point
        of B (Fig.17(a)).
Case(ב) : C is not the matehable point of B
                        (Fig. 17(b)).
```

Let us introduce some basic intuitive ideas by means of an example. In Fig. Ig(a), Set pz and Set Qe are the two sets to be matched. Fig. 18(b) is the matrix M of the sets. A is the starting paint. E and G are the ifrst and second matchable paints ot A. If B and C belong to Case(i), it means that C is also the first matehable point of B. Df course, we just match B as the matehing point. Otherisise, it we match G, one matching point B is missed.

But nos, matrix M talls. us that B and C belong to Case(2). Ey checking the elements in natarix M, as shoun in Fig. 18(b), un find that $M[A, E]=1, M[A, C]=1$, and $M[E, C]=0$. It means that B, C are the first and sacond matchable points of A, but C is mot the matehable point of B. It seems to us that now we have two choires, either B or C can be matehed as the matehing point. Fig. 1B(es and Fig. 1日(d) show the two different results. In Fig. 18(d), C is selected as a matching point uhich leads to a better result than that in Fig. 1e(e).

The reason is that, in this case, C has more satohable points than that of B. First, we start irom MEE, BJ move right, and check the elements in row B. We tind that B has only one matchabla point F ($M[B, F]=1$ \}. Then we start from M[C,CJ, by chesking the same way, we find that C has two natchable points D and F (M[C, $D]=1, M[C, F 1=1\}$. In addition, b,the first matchable point of C is nearer to the original point than that of F which is the tirst matchable point of E.

The above basic ideas san be summed up as a therrem.

THEMREM(1)

If B and C are two suceessive matehable points of A, and if E and C belong to Case(2) as shown in Fig. 17. and

```
suppose B is the ith matrhable point of A
    C is the (i+1)th matchable point of A
    O is the first matchable point of B
    E is the first matchable point of Ci then
we have
```

(1) Any matchable point of B is also the matehabla point of C, it means that the set of matchable points of B is the subset of that of C.
(only those matchable points which are at the right side of the original point are included in
the set
（2）Either E coincides mith D，or E is located at the left side of D．

［Proot］

（i）First，let D be any matchable point of B． Eecause D is the matchable point of B and C is not thus we have
numb\｛B a 0$\}=$ numb\｛B＇a D＇\};
numb\｛B a $C\} \therefore$ numb\｛B＇a C＇s；
numb\｛B O D\}-numbis $O C\} ;$
numb\｛B＇g D＇\}-numb\{E'O C'\};
i．e．numb\｛C o D\} $;$ numb\｛C＇o $\left.D^{\prime}\right\}$ ．
Therefore D is also the matchable point of c．
（2）Noy，let D be the tirst matchable point of B． From（i\}, Dis also the matchable point of C. Because E is the first matehable point of C ， then $\operatorname{sither} E$ coincides with $D, ~ o r ~ E i s$ located at the left side of D ．（GED）

5． 2 The optimum algorithm
Aceording to Theorem（i）we have our optimum algorithum as follous：

If an original point has at least tiso match－ able points，then the matching point can be found at either of the following two locations：

Loeation（1）－－－－－If the first and second matehable points B and C of an original point A belong to Case（1），as shown in Fig．ZO（a），then select B as the matching point．

Location（2）－ーーーーーIf B，C，D．．．J，K，L are the tirst，second．．（ $j-1)$ th，j th，$(j+1) t h$ matchable points of A and suppose any two suceessive points from 3 to K（i．e．EC，CD．．．JK）all belong to Case（2），only KL belong to Case（i），then select K as the matching point．

Lemma（i）and Theorem（i；are applisable to any two suecessive matchable points of an original point．gecausa BC，CD．．．．JK all belong to Case（2）， arcording to Theorem（1）we have
the set of matchable points of B is the subset ot matchable points of C，
the set of matchable points of C is the subset of matchable points of D，
the set of matshable points of J is the subset of matchable points of K ．

So sets of matrhable points of $X(X=B, C, D . . . J$ ， are all the subset of matrhable points of K． Therefore，when we select k as the matching point， it y ields the better result than that of the oth－ ミ「ラ。

If we use this algorithm step by step，we get the shole algarithm：
a1 Start from mpl，the starting point，and find mpa，the matching point from either the loca－ tion（1）or location（ב）of mp1；
a2 consider mpa as the original point，and find mp3，the matehing point from either the loea－ tion（1）or location（ב）of mpZ i
repeat this procedure step by step until the end of the set is reached．It gurantees our getting the largest number of matehing points．

5． 3 It is easy to sum up the prosedure of the optimum algorighm by using matrix M ：
al1 origin：＝starting pointi
（Start from starting point．）
al2 i：＝arigin，j：＝origini
（Start from M［origin，origin］＝I．）
a13 repeat $j:=j+1$
until M［i，J］＝£；
（Move right until the first matchable point J is found，where we have M［origin，J］＝1．，
a14 i：＝Ji
CMove dounward until rearhing the diagonal element，where we have M［i，j］＝I．Now i is the first matchable point of origin．\}

```
a15
\jmath:=\jmath+1;
    MMove right and attempt to find the first
    matchable point of i and to check the folloy-
    ing three cases.;
a16 it (M[i, j+1]=0) and (MCorigin, j+1]=0)
    then goto a15;
(In this case, j+1 is neither the first
matchable point of i, nor the second match-
able point of origin, Then keep on moving
right.}
if (M[i, j+1]=0) and (M[origin, j+1]=1)
    then i:=j+1
                            90ち0 a15;
    (In this case, j+1 is not the first matehable
point of i, but the second matchable point of
origin. It means that i and j+1 belong to
Case(Z), Then keep on ehecking the second and
the tinird matchable points of origin, to see
whether they belong to Case(2) or Case(1). ).
it MEi, J+1]=1
    then j:=i
            select i as the matehing point
        (the end of one step)
    \In this case, j+1 is the first matchable
point of i and also the second matchable
point ot origin. It means that i and j+1
belong to Case(1). Move back to M[i,i]=I,
select i as the matching point., 
a17 origin:=i
    goto al2;
    (the begining of the next step.}
An example is shaun in Fig. 21, which is the matrix
il of Fig. 14. Fig. 21 illustrated how the matehing
result, as shown in Fig. 14(b) is obtained.
    At first step, let A be the "origin". Now, B
and C belong to Case(1;. According to the pro-
cadsre mentioned above we obtain B as the first
matehing point.
    At the second step, let B be the "origin".
Now, CD as well as DE belong to Case(2), and EF
belong to Case(1). According to the proredure men-
tioned above we obtain E as the second matehing
point.
    By using the same way, se obtain F and }G\mathrm{ as
```

the third and fourth matening points.
5. 4 An axanpla is shown in Fig. 32. In Fig. 2ב(a), the simple algorithmis used. In the simple algorithm, se just seleet the first matshable point as the natching point. In Fig. 22(b), (c) the optimum algorithm is used starting from E and R respectively.

Table(1)

Tablaci: compares the results of Fig. 22. It is slearly shem that the results of the optimum algarithm is better than that of the simple algorithm. Foreover starting from the different points the rasults may be diffarent. Therefore by using this algorithm and starting from the different points we can obtain the longest common subsequence.

E. Conelusion

Tha merging algorithm san be used to solve the tuo-dimensional problem provided that extra tracks are available at the two ends of a channel.

Three algorithms were oroposed. One is for the fixed position problem. Tha other two are for the fixed sequence problem. The algorithm were coded in FASCA! and implemented on VAX $11 / 780$ computer.

REFERENCES

[1] [. N. Leutsch. C. Persky and D. G. Sehwiekert. "LTX-A System for the Direeted Automatir Design of LSI Circuits" Proc. 13th Design Asto. Conf. 1976, pp.399-
407.
[2] T. Yoshimura and E. S. Kuh "Efficiant Algorithms for Chainel Routing" UCEfERL MEOf43, Aug. 1980.
[قI Y. K. Chen and M. L. Liu "Three-layer Channel Fouting" UCB/ERL ME1/84, Nov. 1781.

(a)

(b)

Fig. 1

Fig. 2

Fig. 3

Fig. 4

(a)

Fig. 5

(a)
left side

right side

$$
\left.\begin{array}{c}
1 \\
10-1 \\
7 \\
0 \\
8
\end{array}\right]\left[\begin{array}{c}
1 \\
-10 \\
-8 \\
-7 \\
0
\end{array}\right.
$$

(b)

(c)

(d)

Fig. 6

Fig. 7

Fig. 8

Fig. 9

SET $\cdot P=\{A, O, C, E, O, B, O, F, D, O, M\}$
SET $Q=\{C, B, E, F, D, M, A\}$
(a)

SET P:A O C E O C O O C (D) OM
(b)

Fig. 10

SET P : A
SET Q

(a)
(b)

Fig. 11

Fig. 12

Fig. 13

(a)

(b)

Fig. 14

Fig. 15

SET P2 A O B C O D E O F

SET Q2 $\overline{A^{\prime}} B^{\prime} \quad 0 \quad 0 \quad C^{\prime} \quad D^{\prime} E^{\prime} \quad F^{\prime}$
(a)

Fig. 16

(A)
(B)

(A)
(B)
(C)
(D)
(a)

Fig. 17
(b)

$$
A
$$

(a)
(c)

(d)

(b)

Fig. 18

Fig. 19

(b)

Fig. 20

Fig. 21

(a)

Fig. 22

matching points-E, S, M, N, L, T, V, W, Y
(b).

Fig. 22

Fig. 22

[^0]: AResearch supported by the national Srience Foundation Grant ENG-78-24425.
 **On leave iron Tininhuz University, Eaijing, China.

