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ABSTRACT

The lower hybrid drift instability was studied with a two dimensional elec

trostatic simulation code. Simulations showed good agreement of the measured

local growth rates and frequencies with the results of local theory during the

early stage of wave growth. At later times nonlocal effects become important,

and a coherent mode structure develops. This normal mode was observed to

propagate up the density gradient.

At zero plasma beta and zero electron temperature, we found that the

lower hybrid drift instability is stabilized by the local current relaxation due to

both ion quasilinear diffusion and electron ExB trapping which causes electron

heating to occur.



I. INTRODUCTION

In the past several years the lower hybrid drift instability1 has attracted considerable

interest within the plasma physics community, since it is likely that this mode limits plasma

confinement in theta pinches and field- reversed configurations. This instability was simulated

by two of the authors previously in the low drift velocity regime ( vd« vti ) by using an one-

dimensional, electrostatic particle hybrid code2. v=« V&— vdi is the difference between the elec

tron and ion cross-field velocities, and vti*=(Tjmyh is the ion thermal velocity. It was found

that if the relative electron-ion drift velocity is kept constant in time, which models a finite beta

plasma3 , ion trapping causes saturation of the instability. If this drift is allowed to decrease

consistent with momentum balance, which is related to the zero beta plasma case, then satura

tion is due to current relaxation4,5 . Two dimensional particle simulations of this instability

with a finite plasma beta value for large drift velocities ( vd» va ) were performed by Winske

and Liewer6 . Ion trapping was also the saturation mechanism in their simulations. Our object

in this paper is to study the lower hybrid drift instability at zero plasma beta in the low drift

velocity regime with both a two dimensional electrostatic simulation code and a nonlocal theory.

A slab configuration is used with a density gradient in x (Fig. 1). In the initial Vlasov

equilibrium, the ion pressure gradient balances the zeroth order ambipolar electric force on the

ions. Since the characteristic frequency of the lower hybrid drift instability is much greater than

the ion cyclotron frequency, the ions may be treated as unmagnetized particles.

Simulations show good agreement of the measured local growth rates and frequencies

with the results of local theory4 during the early stage of wave growth when the wave energy is

mostly localized at the region jto where electrons have the largest Ex B drift velocity. After a

transit time, i.e., the time for the wave pocket traveling at the group velocity to across the

whole system along the density gradient. Nonlocal effects become important and a coherent

mode structure develops. This normal mode is observed to propagate from x0 across the zeroth

order density gradient to regions where the electron drift velocity vE equals the wave phase

velocity (to/ky) , and to be damped by these resonant electrons. vE is electron ExB drift velo-



city due to the ambipolar electric field.

At zero plasma beta and zero electron temperature, we found that the lower hybrid drift

instability is stabilized by current relaxation due to both ion quasilinear diffusion4-5 and electron

ExB trapping7. According to Drake and Huba7, electrons with adrift velocity (including both

the zeroth order and the perturbed ExB drift velocity in the y direction) which is greater than

or equal to the wave phase velocity, are in resonance with the wave, and can become trapped.

This electron ExB trapping was observed in the simulation. The trapping caused local current

relaxation by modificating of the electron density profile. The neighborhood of the point where

the electrons have the greatest relative drift velocities is the most unstable region according to

local theory. In this region, we found that the current relaxes by modification of the ion velo

city distribution function as well.

In Sec. II, a description of the simulation model and initial equilibrium is presented.

Comparisons of observed linear, local properties of the lower hybrid drift instability with linear

local theory are made and given in Sec. IIIA. Section IIIB is devoted to nonlocal effects of the

lower hybrid drift instability. Anonlocal theory is presented. Current relaxation caused by ion

quasilinear diffusion and electron ExB trapping is discussed in Sec. IV. Conclusions are given

in Sec. V.

II. SIMULATION MODEL AND INITIAL EQUILIBRIUM

In our simulations, a slab configuration was assumed and the Vlasov equilibria are func

tions of xonly. All the zeroth order drift velocities are in the ydirection and the uniform mag

netic field is in the zdirection. The simulations were carried out in the x-y plane by using the

two-dimensional electrostatic, fully nonlinear particle code, EZOHAR8-9 . In EZOHAR, the

boundary conditions along x are inversion symmetry9 at the high density side and a reflecting

boundary at the low density side. The simulation system is periodic in the ydirection.

Since the mode frequency of the lower hybrid drift instability is much higher than the ion

cyclotron frequency, ions are assumed to be unmagnetized. In the equilibrium, it was assumed



that the ion pressure force is balanced by the zeroth order ambipolar electric force. From the

Vlasov equation, the ion distribution function is then only a function of energy H{ where

///» mtv2/2+e<j>(x) . (1)
Let the ion distribution function /,(//,) be exponential, as

//W-CexpK-m^^+^CxM/rj . (2)
Rewrite Eq. (2) as a product,

/,(#,) - «,(*)ft(v) . (3)

Here

gi(v) - CfiM-m^/lTi) (4)

is the Maxwellian distribution. The ion density profile is •

rtj(x) =• /loexp _0(x)-(fr(O)

7)

/io is the ion density at *=*0.

(5)

Similarly, the electron equilibrium distribution function is a function of two electron

invariants: energy,

//,=» mev2/2-e<f>(x) (6)

and the guiding center position

X" x-Vy/atce . (7)

Let the electron distribution function fe(He,X) be given as

fe(He,X) - F(X)Qxp(-mev2/2 + e<f>)/Te . (8)

For a small electron gyroradius and a slowly varying ambipolar field, i.e., ae(d<j>/dx)<i>~l«l ,

the electric potential can be expanded around the guiding center position as

where

0(jc)-*(lT)+A*^-|jr+ (9)
ax

Ax —x—X** Vy/otce (10)

is the electron displacement from its guiding center. Therefore, Eq. (9) becomes

<f>(x) - <b(X)-vyE(X)/<oce . (11)



Substitute Eq. (11) into Eq. (8) and rewrite Eq. (8) as

mev£(X)/2+e<b(X) m{
fe(H„X) - F(X)exp

Te -£M^)1|.
=Ne(X)ge(v)

where Ne(X) is the electron guiding center density profile and

ge(v) - Qexp -tM*-**]!
is the electron drifting Maxwellian distribution.

From the Poisson equation,

dE(x)
ax

47re[nt(x)- ne(x)] ,

(12)

(13)

(14)

and Eq. (5), n,(x) and ne{x) can be determined by choosing an appropriate E(x) , where

ne(x) is the electron particle density. The E field with the form

£(x)»-2£0tanhU/L)sechU/L) , (15)

which gives a peak value as -£0 at x=x0=»Z.sinh"1(l) , was chosen in our simulations. There

fore, the ion density profile is

/i/Ot) -» zioexp
2eE0L

T,
tanh2(x/Z.) (16)

The electron density ne can be obtained by substituting Eqs. (15) and (16) into Eq. (14).

According to Eq. (12), electrons have to be loaded by following the electron guiding center

density profile Ne(X) which can approximately be expressed in terms of ne as

7 ^

(17)

dna

"'"ST e<<1 ' Hence' tne electron guiding center density Ne(X) is determined once

E(x) has been specified. Equilibrium profiles of the normalized ion density nt(x)/n0 and the

relative electron-ion drift velocity vE(x) are shown in Figs. 2(a) and (b).

There was a 64x64 spatial grid in the simulated system. The dimension in x was 42.43\Dl

and that in y was 44.43X^3/ >where kDi is the ion Debye length. Time step cu^AMU was



chosen and 32768 particles were used for each species. The mass ratio mj me in the simulation

was 100 and w£/<o2e=l , where o*^ and o>« are electron plasma and cyclotron frequencies,

respectively. Ty,pically vEJva was varied from 0.6 to 3.6, where ve = cE<JB is the maximum

electron Ex B drift velocity located at x=xq .

III. SIMULATION RESULTS AT LINEAR STAGE

A. Local Effects

Figure 3 shows a history plot of the simulation electrostatic energy of a single Fourier

mode at xq , where electrons have the largest Ex B drift velocities. According to local theory7,

the region near xq is the most unstable area. The theoretical local growth rate is drawn as a

straight line . Simulation local growth rates and frequencies for different modes were measured

arid compared with the theoretical results in the largest drift velocity region, as shown in Figs.

4(a)-(d) for vEJ vf/=0.6 , 0.9, 1.2 and 3.6, respectively. The figure shows good agreement of

simulations with local theory during the early stage of wave growth.

B. Nonlocal Effects

From the simulations, it was found that nonlocal effects become important at later times,

and a coherent mode structure develops along x as shown in Fig. 5. Figure 6 shows a snapshot

of a potential contour plot from a single mode simulation, i.e., except for the Ay—0 mode, only

one Fourier component in ky of electric potential was used to push the particles. The ^=0

mode is necessary in order to allow an ambipolar electric field due to the charge separation.

Note that no Fourier transform of electric potential was made in the x direction. Therefore, all

possible kx modes existed in our simulations. From Fig. 6, we found that plasma system can

be divided into three regions. At the most unstable region where electrons have the largest

Ex B drift velocities, the wave vector k was observed in the y direction as predicted by local

theory. The plasma has larger density in the region left of the maximum Ex B drift velocity

point.. It was observed that the normal mode of the lower hybrid drift instability propagates

toward higher density with a mean wave vector fc= ky (—~ex+'ey) that is, with a kx~— ky . In the



second region, the lower hybrid drift wave was found to travel down the density gradient.

These phenomena may be explained by the following argument.

We have found the governing eigenmode equation for the lower hybrid drift instability in

a slab geometry to be10

1 1 O)
tft^x) ^ o)^a,?e BNe(x)/Bx^ky(x)

Bx2 l+QtUu2 NAx) Bx
k2+

X*),(jc) l+cu^/w2* (o-kyvE(x) 0*/*)

Q>_. /T i_
'V 2 Airkl -ttcix)4irk2Di(x) l+^iUfv/^

for vE(X)« v„ . <bky(x) is a Fourier component in ky of the perturbed electrostatic potential.

Let

tkix) =• i/r(x)exp[-Ja(x)dx] ,
and put this into Eq. (18) to obtain the standard form

^Jj-r-- Q(ky^x)*(x) =o ,
where

and

Q(kyyw,x) =• Qr{ky,(tiyx) + iQtikpUyx) ,

QMy^x) - k2+ j-^\n(l+a>2e/<o2e) +1
, 1 1 <U

kb,(x) l+wje/oi2, 0»-AyV£(x) *

at

^Ind+a,^2,)

acwVirukh,(x) l+w2/**2* l/c|vri

The perturbed electric potential is related to \b through

(18)

(19)

(20)

(21)

(22)

(23)

*Gt,.y,/) - (l+a»2P(x)/cu2e)"' +(x)elik>3"t) . (24)
The Fourier component <^(*) of the perturbed potential, was solved for numerically by using

Eq. (20), and is shown in Fig. 5(b). Comparing the simulation result Figs. 5(a) with 5(b), we

see that the normal mode structures from simulations and theory are very similar.

In order to understand the contribution of resonant electrons and ions, we now derive an



equation of the wave energy flow. Assume w0 is the eigenfrequency of the equation

^f- Qr(ky,*>*x)4i(x) - 0 (25)
where ai<f=u>r+iy and y—*0 . Expanding Q(ky,u>,x) around a>0 gives

Q(ky,ot,x) =Q(A>,a>o,J:) +|S(/:y,(oo,^)(a)-a)o) - Qo+ iQoT~ » (26)
o<u of

where Q<f=£? (/£>,&><),*) , Qo=t^(A>,o>o,;c) »and <u-a>o is replaced by iB/Bt. Substituting Eq.

(26) into Eq. (20), we get

Multipling Eq. (27) with ty *gives

0 &-0,W2-/«*•£•-0
Bx2 "tu"r\ -uir Bx

Subtracting Eq. (28) from its complex conjugate, we obtain

Re(Oo)^+2Ime„l*l2+f|-(*-|!fc-^Ml)+/ImQo^-^L_^iil) _0. (29)
Of ox ox ox ot ot

The physical meanings of those four terms in the above equation are the rate of wave

energy change, the source or sink of wave energy, the flux of the wave energy, and the fre

quency shift due to growth or damping of the wave, respectively. The ratio of the second term

to the first term gives the growth or damping rate. Let us concentrate on the second term only.

According to Eqs. (21)-(23), ImQo can be expressed as

Im(?c kDi(x) l+a&ati

koi(x) l+(oje/ft>

ykyVE(x) ^ /T <»r
(«f-V£(jt)]+y2 2^**

-*kyvE(x)h\u-kyvE{x)}+y/YJ^

(27)

(28)

(30)

The second term in Eq. (30) represents the resonant ions which drive the lower hybrid drift

instability, a negative energy wave, as predicted by local linear theory. The delta function in

the first term represents resonant electrons whose ExB drift velocity equals to the y phase

velocity of the wave. The opposite sign of the first term from that of the second term shows



that those resonant electrons have stabilizing effects on the lower hybrid drift instability. Sup

pose that the plasma has a density profile similar to the density profile shown in Fig. 2(a), and

the electron ExB drift velocity as function of x is similar to the drift velocities in Fig. 2(b);

then there are two places in the system that electron drift velocities equal the y phase velocity

of the wave excited at the most unstable region. One resonant point is near the center of the

plasma ( x=sl.2 in Fig. 2(b) ), and another is at the outer edge of the plasma (outside of our

simulation system in Fig. 2(b) ). Therefore, when the lower hybrid drift wave is excited at the

largest drift velocity region, the wave packet will travel in x to these two electron resonant

points, where it dumps wave energy into the resonant electrons.

IV. SATURATION MECHANISMS

Saturation mechanisms of the lower hybrid drift instability in a uniform magnetic field at

zero plasma beta and zero electron temperature were studied. Simulation results show that the

lower hybrid drift instability is stabilized by current relaxation which is due to both ion quasil

inear diffusion and electron ExB trapping. According to local theory, the neighborhood of the

point where electrons have the largest relative drift velocities is the most unstable region. In

this region, we found that the current relaxes by modification of the ion velocity distribution

function. Figures 7(a) and (b) are ion velocity distribution functions, averaged in x over the

whole system, versus vx and vy , respectively, for v£(/vr/=0.6 from a single mode simulation.

Small modifications of the ion distribution function occurred after saturation. The slight

flattening around a small negative vx in Fig. 7(a) shows that the wave propagates in the nega

tive x direction. Similarly, Fig. 7(b) shows that the wave also propagates in the positive y

direction. Hence, the lower hybrid drift mode propagates up the density gradient For a larger

drift velocity, the lower hybrid drift wave is more localized around the most unstable region.

Figures 8(a) and (b) are ion distribution functions averaged over x between x=21Ajc and

x=32Ax , which is the most unstable region in the system, for v£)/vri=»3.6 from asingle mode

simulation, where Ax is the grid cell size and there are 64 grids across the system in x. Larger

modifications of the ion velocity distribution functions are shown in this case.
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According to Drake and Huba7, when the electron drift velocity, which includes both the

zeroth order and the perturbed Ex B drift velocity in the y direction, is equal to or greater than

the wave phase velocity, electrons are in resonance with the wave. This electron ExB trapping

was observed in our simulations in the range that v£yv„=0.6 to 3.6 . Figure 9 gives a snapshot

of an electron density contour plot for vEJ v^-0.9 from asingle mode simulation. The similar

ity of the electron density contour and the electric potential contour given in Fig. 6 shows that

electrons move along constant potential contours, and electrons around jc=1.2 are trapped by

the wave. This electron Ex B trapping causes current relaxation by local flattening of the den

sity profile around the trapping region as shown in Fig . 10 at x=1.2 and Fig. 11 at x=0.8 for

veJ>V=0-9 and 3.6 . The other flattening of electron density profiles in Fig. 10 at jc=3.0 and

Fig. 11 at x=2. are due to the ion quasilinear modifications in the most unstable regions. Fig

ures 12(a) and (b) show electron phase space ( vy versus x ) for v^v^O.9 and 3.6 . The ini

tial electron temperature is zero and the initial drift velocities are given by the solid curves. We

found that the averaged electron current was reduced after saturation of the wave. After sub

tracting the guiding center velocity from the electron total velocity, electron heating (shown in

Fig. 13) due to electron ExB trapping was observed starting around the electron resonant

region ( x=1.2 as shown in Figs. 2(b) and 5 ) and gradually spreading to the whole plasma sys

tem.

Finally, the simulated saturation levels are compared with saturation levels predicted by

both ion quasilinear diffusion theory4,5 and electron ExB trapping7. The local approximation

was used in the ion quasilinear diffusion theory which gives the saturation level due to current

relaxation as

2
1 me l

nT/ 8 mi l-hu^/ai
72

•Ml _1 JSl "j* , 02)1

2

me

ve

vti
(31)

where c=<8E2>/Sir . Assuming that the most unstable mode is dominant, Eq. (31) can be

rewritten as
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where 80 is the perturbed electrostatic potential. Assuming that the zeroth order ambipolar

electric field vanishes and setting the perturbed ExB drift velocity equal to the wave phase

velocity, the saturation level of the most unstable mode due to electron ExB trapping is given

as

'A
m„eS4> J_

T, " 2 m, Jh*.iTt •

In Fig. 14, Eqs. (32) and (33) are plotted for m,/me=\0Q , a&oi^l , and kx~ky . Simulation

levels are smaller than both the theoretically predicted levels by roughly a factor of two; this

could be due to the combination of ion quasilinear diffusion and electron ExB trapping

occurred in our simulations. From Fig. 14, our simulated data gives

e8<f>__l

Tt

m.

m,

ve

^ • <34)
Furthermore, VE-<a/ky varies and even goes to zero at the electron resonant point in our simu

lations, where v£ is only the zeroth order ExB drift velocity. This could cause electron ExB

trapping occurring at a lower level.

V. CONCLUSIONS

Two-dimensional electrostatic particle simulations of the lower hybrid drift instability in

the low drift velocity regime have been presented. Simulations show good agreement of the

measured local growth rates and frequencies with the results of local theory during the early

stage of wave growth. At later times nonlocal effects become important, and a coherent mode

structure develops. We found that the lower hybrid drift instability is stabilized by the local

current relaxation due to both ion quasilinear diffusion at the most unstable region and electron

ExB trapping around the electron resonant region. Electron heating due to electron ExB

trapping was observed at the electron resonant region.
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*E,vE

Fig. 1 Slab coordinates for lower-hybrid drift instability. Two dimensional simulations were

performed in the x-y plane.
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Fig. 2 Equilibrium profiles of (a) the ion density /i,(x)/«o and (b) the relative electron-ion

drift velocity vE(x) .
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0 100 200 300 400 500 0Jpet

Fig. 3 History plot of the perturbed electrostatic energy of a single mode at xo where elec

trons have the largest ExB drift velocities. Parameters are mjme=\00 , <ojj'(ole=\ ,

v£/v„=.6 and TJT^O . The theoretical local growth rate is drawn as a straight line.
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Fig. 4 Dispersion curves from local theory for the lower hybrid drift instability at where

electrons have the greatest drift velocities for: m,/mf=100 , w^/cu^=l , and v£fl/v„=

(a) 0.6, (b) 0.9, (c) 1.2, and (d) 3.6. Simulations results are denoted by dots ( w/w^

) and crosses ( y/w,* ).
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0 0.5 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0.

Fig. 5 (a) Simulated and (b) numerical normal mode structures of the most unstable mode

for Vmr«10d , aiiAu£«] , and v£(/v;/=0.9 . Both of them show that wave ampli

tude vanishes around jt-1.2 which corresponding to the electron resonant point.
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Fig. 6 Potential contours at fti^r-180 for m/mf-100 , w^Jtol^X , v£(/va—0.9 and

A^X/w—0.707 . The dashed curve shows the wave front of the wave. Note that the

vector perpendicular to the wave front is roughly at 135° for l<x<2 meaning

kx=— ky . A small positive kx component is also observed for jc>5 .
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Ion velocity distribution functions averaged in xover the whole system at w^M) (

dashed curve ) and after saturation ( solid curve ) versus (a) vx and (b) vy for

%/v„~0.6 . The small modifications at vph<0. and vphy imply that the wave pro
pagates up the density gradient.
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ajpet =0.2 .
a;pet =300

_L

-.10 -.08 -.06 -.04-02 0 .02 .04 .06 .08 1.0

-.10 -.08 -.06 -.04 -.02 0 .02 .04 .06 .08 1.0

Fig. 8 Ion velocity distribution functions averaged over the most unstable region ( x~2. to

x=«3 )at Wpet^O ( dashed curve ) and after saturation ( solid curve ) versus (a) vx
and (b) vy for v£(/v„=3.6 . Flattening in both negative vx region and positive vy

region shows that the wave propagates up the density gradient.
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Fig. 9 Electron density contours for a single mode ( kyk Di=0J07 ) at 0^=179.8 with

v£,/vh=0.9 . Note similarity with Fig. 6 <f> contours, implying that electrons move

along the potential contours and ExB trapping occurs around x=\.2 .
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Fig. 10 Electron density profile at ^^1=0 ( dashed curves ) and after saturation ( solid

curves ) for mjme=\00 , aifjco^l , and vEJv'„=0.9 . The flattening around x=\.2

is due to electron ExB trapping, and the second flattening between A=2.5and3.0 is

caused by ion quasilinear diffusion in the most unstable region.
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Fig. 11 Electron density profile at o>pe./=0 (dashed curves ) and after saturation ( solid curves

) for mj/me=\00 , u)p\J(i)}e=\ , and vEJv„=3.6 . Electron ExB trapping modifies the

electron density profile around x=\ . The density modification due to ion quasilinear

diffusion is occurred between *=2.0and2.5 which is the most unstable region.
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Fig. 12 Electron phase space ( Vy versus x) for vf/v,= (a) 0.9 and (b) 3.6, respectively.
The initial electron temperature is zero and the initial drift velocities are given in
solid curves. The averaged electron current was reduced after saturation of the wave
around the largest drift velocity regions.
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Fig. i3 Electron phase space plots after subtracing the guiding center velocity from the total

electron velocity, (a) Kinetic velocity ux versus x , and (b) uy versus y , where

u^T-cExB/B2 and E is the total electric field in the system. The spreading in ux

and uy shows that electrons were heated during the growth of the wave around the

electron resonant region ( x=1.2 ), and then the heat is diffused to the whole sys

tem.
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Fig. 14 Saturated lower hybrid drift mode perturbed potential e^/Ti as function of vEJvu for

/n///nr=100 , w£./w£=l , and Te/T,=0 . Two saturation mechanisms are compared:

current relaxation (cr) and electron ExB trapping ( ExB ). Simulation results are

represented by dots, roughly half that of either theory given separately.
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