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ABSTRACT

The diffusion model for multiple mirror confinement has previously been

limited to devices with a large number of cells and high mirror ratios. Ambipo

lar effects were assumed to reduce the confinement time by the usual factor
T -l

(l+Z—) . For the ideal multiple mirror regime, in which the mean free

path is shorter than the cell length but long compared to the mirror scale

length, a new discrete stair-case density profile model, without those limita

tions, has been developed. A kinetic description for ion and electron transport

in a multiple mirror device has been used. A self-consistent ambipolar potential

is included. We have found that the ambipolar potential reduces the

confinement time somewhat less than the usual ambipolar factor. Special atten

tion is given to the last cell which acts as a boundary condition for our system.

The ambipolar potential across the last mirror throat is studied and found to be

of the order of 0.5 kTe. For machines with small numbers of cells, significant

improvements over previously calculated multiple mirror confinement times are

found.



I. INTRODUCTION

Multiple mirrors are shown to be an effective way to reduce axial losses in open-ended

devices. Various studies have shown that when the mean free path for 90° scattering, X, is

much smaller than the device length, I, imposition of additional mirrors over a simple mirror

machine improves the confinement time substantially1"5. In this "multiple mirror" regime, mir

rors act as fixed scattering centers; and particles, scattering between these centers, leave the

system through a random walk process. This diffusive flow of particles results in a confinement

time scaling as L\

Makhijani et al1, using a computer code based on single particle motion, studied the scal

ing of the confinement time. They also developed a simple diffusion theory to study the

confinement for the devices with large mirror ratios, R»\, and sharp mirrors, /m«X«/c,

where lm is the mirror scale length, lm = (— —) , and lc is the cell length. In both calcula-
d az

tions, they found rmm — L2. Experiments (Logan et al2) confirmed these scaling laws. Makhi

jani et al also found that the mean free path for scattering out of the loss cone angle 0C,

X* = X02 = —, separates two distinct regions in which the confinement time scales as L2: 1)

The ideal (high density) multiple mirror regime where -£• « \ «/c, which has the max-
R R

imum confinement time, and 2) The low density multiple mirror regime where

/c« -jr «L. Using a kinetic description for ion and electron transport along amultiple mir

ror field, Mirnov and Ryutov3 studied the low density multiple mirror regime. In their analysis,

electron effects were included using a self-consistent ambipolar electric field. They found I2

scaling for both heat and particle transport. In addition, their analysis showed that sharp mir

rors (lm« lc) improve the confinement over a sinusoidal field variations.

Multiple mirror devices do not always operate in the ideal multiple mirror regime, such as

during the start-up of a fusion device when plasma is cold and highly collisional, X«/m.



Makhijani et al treated the ideal magnetohydrodynamics (MHD) regime in which 0.

They found that the axial loss process is sonic flow and the confinement time scales linearly

with the number of cell (or L). Mirnov and Ryutov considered the viscous fluid regime, where

r— «1 but not negligible, and found a diffusive loss process. Miller4 applied a viscous fluid

analysis to the ideal multiple mirror regime by limiting the classical viscosity for large X, and

found the same scaling laws. Bravenec et al5, using viscous magnetohydrodynamics flow equa

tions, investigated the confinement when -p <1. Their equations allowed them to study the

system over a wide range of parameters, covering both the dominantly flow regime (— — 0)

and the dominantly diffusive regime. In addition, they found a stair-case density profile which

is typical of multiple mirror devices.

In this paper, we use kinetic theory to study the confinement and density profile in the

ideal multiple mirror regime (lm«k«R!c). We use a long, thin approximation: parameters

vary only in the z direction and therefore have only non-zero derivatives with respect to z.

The distribution function of particles in velocity space is also assumed to be axisymmetric. We

consider a symmetric multiple mirror device with 2JV+1 cells. A source introduces S particles

per unit time in the central cell (S ions and ZS electrons, where Z is the atomic number of the

ions). Because of the symmetry, we restrict our study to only one half of the machine: from

the central cell (cell no. 1) to one end (ceil no. #+1). We assume modest mirror ratios

(*>3), and a modest number of cells (;V>5). We also assume sharp mirrors (/m«/c);

therefore, each cell can be divided into a highly collisional region (bulk of the cell) and a rela

tively short, collisionless, mirror region. Because \«Rtc, any particle, detrapped in one cell,

will be retrapped and confined in the adjacent cell. The distribution function in each cell, then,

depends only on the parameters of the adjacent cell. Fig. 1shows two adjacent cells: cell no. j

and cell no. j+1. We denote points j and j+1 as the centers of the cells j and j+1 respectively,



while points A and B represent the beginning and the end of the mirror region joining the two

cells; point M is located at the mirror throat.

Instead of solving Boltzmann's equation for the system, we use our assumptions to find

the distribution functions at each point (section II). We then apply moments of Boltzmann's

equation to the fully collisional region, while single particle motion is used to determine the

parameters of the collisionless mirror region. The moments of Boltzmann's equation can be

summarized in the following conservation laws:

1) Conservation of particle flux-continuity equation:

Fs = AJ a*v v2fs = j-j j =» const (la)

2) Conservation of energy flux-energy equation:

?.smsQ5 = lsmsAj dhVjV2/, = const (lb)

3) Conservation of momentum flux (z component)-momentum equation:

ZsmsPs s I.smsAJ d3v v2fs = const (lc)

where 5 is the particle species, qs is the particle charge, and A is the cell cross sectional area. It

is important to note that the first two conservation laws are valid even across the mirror region,

while the momentum equation is valid only where B = Bzz. Particles exchange momentum

with the magnetic field in the mirror region which results in a net force on the mirror coils.

The confinement time in multiple mirror devices scales as v"1, where v5 is the thermal

f2kT\xl2
velocity, v, = v. ) . So electrons diffuse out of the system much faster than ions (by a

m

1/2
m-x

factor of (—-) ). Thus multiple mirror machines are basically ion confinement devices and
me

electrons are confined electrostatically via an ambipolar potential, similar to a simple mirror



machine. Previous studies1,4 in the ideal multiple mirror regime usually treated the effects of

the ambipolar potential crudely. They assumed that ambipolar effects can be taken into account

T
by using the familiar factor (l+Z-=?-) derived in the diffusion theory. In this work, we use a

h

self-consistent ambipolar potential. By assuming that the electron distribution is maxwellian

(section III), we can relate the density and the ambipolar potential through the Boltzmann rela

tion.

To solve our equations analytically, we use our basic assumptions to introduce certain

approximations. We can then, determine the parameters of each cell in terms of the parame

ters of its adjacent cell (section IV). Special attention is given to the last cell which acts as a

boundary condition for our system. The ambipolar potential near the last mirror throat is stu

died and found to be substantially different from that of a simple mirror machine (section V).

No restriction has been imposed on mirror ratios in any cell. Engineering considerations can be

used to adjust the mirror ratios and optimize the confinement. Such a scheme is discussed in

section VI. A comparison of the results with the previous work on multiple mirror confinement

is presented in section VII.

II. ION DISTRIBUTION

The confinement time in each cell is much larger than the relaxation time for particles

because \«Rlc. Therefore, we can assume that the distribution functions at points j and j+1

are drifting maxwellians with parameters n} and nJ+l (density), wdj and vdJ+l (drift velocity),

and Tj and TJ+l (temperature),

yj+fr.-y2

flrtfiV&Tj) - -3L- e v* (2)

Using (2) for /, one can find F, Q, and P, given by (1), to be
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-= Fj = AjnjVjjVj (3a)

Qj - Ajnj VdJv?j(2.5+ V}) = FjV2(2.5+ Vft (3b)

Pj-Aj/ijvj(0.5+V$ (3c)

where Frfy = —-, and parameters of point j+1 can be found by exchanging j with j+ 1 in (3).

To find the distribution function at A, we assume that a drifting maxwellian,

/(ia» Vdat 7*a)> moves towards the mirror throat at point A. Particles which are not in the loss

cone (region R2) are reflected back with /(«<,,- Krffl, Ta). Particles in the loss cone (region R\)

will pass through the mirror throat and reach point B (Fig. 2a). As before, a drifting maxwel

lian, /(«&, Vdb, 7p, moves towards the mirror throat at point B. Trapped particles are reflected

back with f{nb^Vdb^Tb) (Fig. 3a). Particles that are not trapped will pass through and reach

point A. We will show later that Vd« 1 and n} is very close to nJ+\\ therefore, the distribu

tion functions at A and B are very close to a maxwellian and are not very distorted.

The mirror region AB is collisionless; so the laws of single particle motion govern this

region. Constants of motion are: 1) Total energy-£ «= —mv2+^<I>, 2) Adiabatic invariant-

w

fi — ——. We define normalized constants of motion as:

e - K2+0 (4a)

V2
P (4b)

where e= — , <f> = -^=-, b= —, and V= —. The distribution functions in terms of

these constants of motion are then preserved in the mirror region AB.



It is more convenient to consider the distribution in (e,fi) variables rather than (vj_,vz)

variables. The differential volume element at any point z transforms as

A =2irv/ VM dV±dVz =±\ v?bzU-4>z-nbz)-xl2d<idiL (5)

where + (-) sign is used when Vz >0 (Vz< 0). To transform the velocity space into € fi

space, we note that Vz should be real at any point z (€-<f>z-iibz ^0). In Fig. 2b, the region to

the right of the line fi = is allowed in cell j (V2 ^0). Of this distribution, that to the
t>A

right of the line fi = ^ has V2 >0 at the mirror throat (region Rx). These particles,

therefore, are in the loss cone of ceil j. The remainder of the distribution, region R2, is

reflected back by the mirror field. Fig. 3b is similarly constructed except that anew region, R3y

appears. Particles in this region pass the mirror throat, but cannot get to point A. These parti

cles are reflected back by the ambipolar potential in the region AM (&A-$iV).

Using (4) and (5), the integrals in (1) for points A and Bcan be evaluated in €fi space.

One can easily show that the contributions of the trapped particles (region R2) to the Fand Q

integrals cancel out. Furthermore, using the conservation of the magnetic flux

AJ a B*

one finds that the particle flux in the mirror region is conserved: Fz=° FA = FB. However, to

evaluate the momentum flux, />, and the density at any point in the mirror region, the integra

tions should be carried out over the entire allowed e j* space.

III. ELECTRON DISTRIBUTION

Basically, one can make the same arguments as in section II to find the electron distribu

tion function at different points; however, by substituting (3a) in (la) for any cell, we get



ne Vdevx - Znt *>s/ = Zj (7)

nu m
The charge neutrality condition, ne = Znh then, results in V^ = K^C—) « Vdi. In section

m/

IV, we will show that Vdi«\\ therefore, Vde« Vdi«ly which suggests that it is a very good

approximation to assume that the electron distribution is maxwellian and the electron loss rate

is determined only by the ambipolar potential. This assumption, together with the charge neu

trality condition, enables us to relate the potential and the ion density through the Boltzmann

relation:

*i~*2 - #(*H>a) - Z^r Ln (-2L) (8)
kit If ni

We will show in section IV that changes in the ambiploar potential between the cells are

small and most of the potential appear near the end of the device. Therefore, electrons move

between the cells quite freely. This freedom of movement, together with the high electron ther

mal conductivity parallel to the field lines, holds the electron temperature constant throughout

the machine.

IV. DENSITY PROFILE

Evaluation and substitution of the fluxes at points A, B, j, and j+1 in the conservation

laws, (1), together with the Boltzmann relation, (8), result in a set of eight equations in nine

unknowns: «,, VdJ, 7}, /ia, V^, Tay nb> Vdb, and Tb. One of these equations, FA = FB, is trivial; so

we need two more equations to complete our set. These are found from the viscous magne

tohydrodynamics equations which describe the change in the ion temperature in each cell. As a

good approximation, one can assume that the flow in each cell is isothermal: 7) = Ta and

Tb — TJ+\. Note that 7} is not necessarily equal to 7}+i: there can be a change in the ion tem

perature across the mirror region. Our set of equations is now complete. In principle, one is

able to solve these equations exactly (numerically) and find the parameters of cell no. j



(fly* vdjyTj) in terms of the parameters of cell no. j+ 1. Instead of doing this, we introduce the

following approximations that simplify the equations considerably.

A. Approximations

1) Earlier work1-2 has shown that "J nj+l = -7-7 and nr-nm 7^-. Using (3a),
nj N-j J J Ajvs

for modest Rand Ny we get Vd - -±- «1 and nj""J+l _ RVd«\. Therefore, Vd and
/v/v nj

nj— nj+\
— are of the same order. One can easily show that the change in drift velocities in adja

cent cells is second order in Vd> VdJ+l- V^ - RV}. To simplify the evaluation of the integrals

in (1) for points A and B, we expand the distribution functions in terms of Vd and keep only

the first order terms.

/(«, Vd, T^b) = (1+2 V2 Vd)f(nA r,0,6) =-370-0+2 >We-0-M£)*-<«-*> (9)

where /(/i,0, 7,0, £) is a maxwellian distribution (Vd = 0).

2) By substituting (3b) in (lb), we get

2.5(7V-W - 7>+1 Kjv+I - Tx V}x (10)

So to second order in Vd, we have Tx = TN+l = Th i.e. the ion temperature is constant

throughout the machine.

3) If one applies the Boltzmann relation, (8), to cells j and j+1, one can easily show

that the change in the potential between adjacent cells is also first order in Vdi

<f>A-<t>B~ Z^rRVd«\.

B. Simplified Conservation Laws

Using the approximations from part a, we drop the second order terms in (3) and



substitute the result in the conservation laws. Then we have

S

10

Fj°FA~FB = FJ+l = f (Ha)

Qa = Qb = 2-5v2Fa (lib)

W 0lAtf+nAZl)njil+Z-^) - Ag^2 +nAZ-^r (lie)

r, ;" o.saj+1v2 +w*z r,«,+,(i+z-^-) = ftg/ +«5z4?- (lid)

where the terms with Z— are electron momentum flux terms, and the factor Z is the result of

the charge neutrality condition. Electron terms in the energy equation drop out because elec

trons are maxwellian.

C. The Density Step, An = /I/—/1/+1

With the aid of the same set of approximations, all of the integrals in (1) for points A and

B can be carried out easily by keeping only the first order terms. We subtract (lid) from

(lie), substitute the flux terms, and eliminate n„ nb, V^ Vdb, and <f>A-<f>B with the aid of

(11a), (lib), and the Boltzmann relation6. We then have

„_„ ^ 2 S (Mcy+Mcy4.i)(^cy+Mcy-fi) „ . x Cg
*< **« V? AMv5 a-ri)RjHl-ri+ORJ+l °"cp T^A

where Ca and cp are defined below. Knowing the density in the last cell and the field geometry

Oic's, where fic = cos0c), one can use (12) to find the density in each cell. The drift velocity

in each cell, then, can be found from (3a). Equation (12) can also be used to find the

confinement time for a multiple mirror device, or to define a local diffusion coefficient.
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Before calculating these quantities, we discuss some of the important terms in (12). The

term cp is the result of the difference in the mirror ratios in the adjacent cells. cp is usually very

Q
small « 10 2), and cp = 0 for fj. cj = fiCJ+\. The last term, ?-=—» is due to ambipolar

l+Z-£-
T,

effects, and Ca has the form

l+(l+*,<M^^i)]z-jr
Ca = — jr (13)

l+[l+k2(iLCj+fj,Cj+{)}z-^-

where k\ and k2 are complicated functions of fj.cj and /xc/H. Equation (13) shows that in the

Tlimiting case of Z-jr —* 0 (no ambipolar potential), Ca =1and the ambipolar factor goes to 1.

Furthermore, when /jlcJ = ficj+i —0 (a solenoid with no mirrors), Ca = 1 and the ambipolar

Te ~l t ~lfactor, Cfl(l+Z-^r) , becomes the usual ambipolar factor (l+Z-=r) , as expected. A
*i Tt

Tnumerical calculation, in Fig. 4, shows Ca as a function of ficjy jtcy+1, and Z-~. The solid lines

T Tgive values of Ca for different Z-y- when p.cj - ficj+l. The dashed lines give Ca for Z-=f- - 1
li Tt

with ix CJ & fieJ+l. Fig. 4 also shows that Ca increases slightly with the increase in mirror ratio

or Z-=r. For the practical range of parameters, Ca is between 1.1 to 1.2.

D. Diffusion Coefficient and the Confinement Time

We define a local diffusion coefficient from the relation

| =-D(z)A(z) % =* -DizUiz) 4^ (14)
•£ az Az

In the limit of large W, we have



A/i __ _ nj-~nj+\ ^ nj— nJ+\
Az ~ 0.5(/e,+/c,+i) * /c(z)

Substituting for nj-nj+i from (12) in (15) and using the result in (14), we find

D(z)

T

8 /fU;Vj MJ(x) Ca(z)

12

(15)

(16)

where Ca is a function of fic and, therefore, is a function of z, and we have set

Mcy = Mcy+i = Ac(^)-

The confinement time , Tmm can be defined as

A
S3 ^~

/run o

AN-1

J-2
(17)

In order to simplify our expressions, we assume to have constant mirror ratios throughout the

machine, /mcJ —/j.cJ+i = /xe and therefore i4y «= ^y+i = ^4. We also assume that the density in

the last cell, n^+u is of the same order as the density jump, A/i = /iy— /iy+i, so that an explicit

determination of the last cell density is not required. Then, nj = (iV+2—y)A/i and substituting

for A/i from (12), we have

where /c is the average cell length.

2 rf1 L
J* 7cvs l-/xc3 1+ziL

Ti

N+l

'ci«i+2£ lcjnj
J-*
yv+i

«i+2 £ «,
7-2

(18)

(19)

Equations (16) and (18) show that the ambipolar potential increases the diffusion coefficient
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T
(decreases the confinement time) by the factor , Ca_1(l+Z^=r), which is somewhat less than

•*/

Te
1+Z—. In a multiple mirror device, the ambipolar potential is distributed throughout the

machine; therefore, one expects the ambipolar effects to be similar to the familiar factor

Te
1+Z—. However, the ambipolar potential appears as potential jumps near each mirror throat.

There, a combination of magnetic and electric fields affects the particle diffusion. The factor

Ca is the result of the interaction of these fields near each mirror throat.

For comparison with the previous work, we find the confinement time in the absence of

T
the ambipolar effects. We set Z-£- =0 in (18) to get

Ti

1 I2 M?
• mm I— — - i

Makhijani et al1 found the confinement time to be

(20)

^£R~°M"lkR (21)
2

The confinement time in the new model, (20), has the same scaling law, -p-, as Makhijani's

but different dependence on mirror ratio. Makhijani et al, in their theoretical model with con

stant mirror ratio and no ambipolar potential (section III, ref. 1), assumed large mirror ratio

and argued that, as a result, they could set.the drift velocities in the mirror region, V& and

K»i equal to zero. They found that the particle and the energy fluxes in the mirror region are

connected through, jmQA =2TaFA. Comparing that with (lib), they concluded that

Ta = 1.25 7}: the ion temperature in the mirror region is 1.25 times the ion temperature in the

cell, which cannot be justified in physical terms.
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For large mirror ratios, when fic is close to 1, one can expand the mirror ratio function in

(20) in terms of the small parameter e = l-/xc; then a simple expression for the confinement

time will be

t™ *= 0.376 -f-(R-2) (22)

Fig. 5 shows the two confinement times, (20) and (21). The dashed line in Fig. 5 represents

this approximate expression. Fig. 5 also shows that Tmm —• 0 when R — 1 in agreement with

the viscous magnetohydrodynamics models for multiple mirror confinement. We find the den

sity in the last cell, nN+h below, to complete our density profile calculations.

V. LAST CELL AND BOUNDARY CONDITION

As the boundary condition in the last cell, we assume that no ion enters the device

through the ends: integrals containing f(nb>Vdb,4>,b) in (1) vanish. But, in the last mirror

region, our approximation, Vd«\, is not valid and the complete expressions for fluxes must

be used to find the last cell parameters.

Evaluation and substitution of the flux terms in the conservation laws, (11), together with

the Boltzmann relation, (8), result in a set of nonlinear equations which is solved numerically.

The solution determines the drift velocity at any point in the last cell. Note that for this calcu

lation we again drop quadratic terms in the drift velocity in the center of the last cell, K<w+l.

TFig. 6 shows values of V^+x for different values of fie and Z-^j-. The density, then, can be
•*/

found from (3a). The drift velocity in the last mirror throat, K^, is approximately constant,

Jl , Jfc7\1/2

i. m

As before, we have obtained the expected qualitative result that the ambipolar potential

increases the drift velocities, and therefore, reduces the confinement time. But the rate of

T
increase in the drift velocities is smaller than the usual factor (1+Z-=t-).

Ti
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Fig. 7 shows the potential drop, (A3> = &a-&m), in the last mirror throat for different

T
last cell mirror ratios and Z-=f-. The potential drop is about 0.5 kTe, in contrast to a simple

h

mirror machine, in which the potential drop is typically in excess of 4 to 5 kTe. The loss cone

in a multiple mirror device is almost full, compared to a simple mirror machine which is almost

empty. Therefore, the difference between the density in the mirror throat and in the cell is

small. This leads to a relatively moderate potential drop at the last mirror throat in multiple

mirror devices. Fig. 7 shows that the potential drop, A<I>, increases as the mirror ratio increases.

T
A reduction in Z— also increases A*. Any increase in the mirror ratio or any decrease in

TeZ~y reduces the loss cone angle; therefore, for fixed nA, the number of particles which reach

the mirror throat, nMy becomes smaller. Since A<I> — Ln (—), A<I>, will increase as Fig. 7
km

T
shows. Note that even though A* increases when Z-^r decreases, the potential which acts on

T n
the ions, 0^-0^= Z-£- Ln ( ), decreases resulting in an increase in the confinement

Ji nM

time, as expected.

VI. OPTIMIZED MULTIPLE MIRROR CONFINEMENT

Equations (12) and (3a) determine the parameters of cell j (nJt VdJ) in terms of the

parameters of cell j+ 1. No restriction has been imposed on /xc's in any cell. A reasonable way

to adjust ficj is to keep £ constant throughout the machine. Because the density drops as one

moves towards the end of the machine, the pressure drops significantly. From an engineering

point of view, one desires to have the magnetic field as small as possible, so one can adjust the

field so that /3 remains constant in all cells. The magnetic field, therefore, decreases as one

moves towards the end of the machine, as

B 2
—L- =» const (23)
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T2For classical collisional scattering, \ , the decrease in density near the end of the

machine results in much longer cells to keep the device in the right mean free path regime

(\«Rlc). An increase in the mirror ratio in the last cells can partly compensate for this effect

and keep the cell length reasonable. Engineering considerations set a practical limit for the max

imum field. We, therefore, assume that the maximum field in the mirror throats is constant,

^max • const, which, together with (23) gives

njRj = nJ+\R2+i -» const (24)

If we adjust the mirror ratios so that (24) is satisfied, the change in the mirror ratio in adjacent

cells will be first order in Vd, R^"RJ _ TnJ+i _ Rvd«\.
Rj+\ nj

The parameters of the last cell found from Fig. 6 and (3a), together with (12) and (24),

uniquely determine the parameters of a multiple mirror device. Table I shows the result of

numerical computations for a 15 cell multiple mirror device with last cell mirror ratio of 8.6

T(fj.c =0.94) and Z-y- =» 1. Figs. 8a and 8b show the profiles of the density and the potential in

the same machine, respectively. They show the stair-case profile which is typical of multiple

mirror devices. Fig. 8c shows the drift velocities in the same machine.

VII. COMPARISON WITH PREVIOUS RESULTS

The new model is compared with the numerical computations of Makhijani et al1. To

compare, we set S - SxlO23 (particles/sec), A = 1 (cm2), R = 5 Qic = 0.894), r= 2.5 Kev

(v, = 4.8xl05 (m/sec)), and N =• 3 (7 cell device). We find central cell parameters:

n\ = 2.125xl013 (m~3) and vd\ - 1.13xl04 (m/sec), in excellent agreement with his results

/ii - 2xl013 (//T3) and vdl - 1.2xl04 (m /sec).

Yang et al7, using Makhuanfs diffusion coefficient, found that the density profile in the

system has the form of
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n(z) =/n(l- ^r) (25)

where n\ = n(Q). As the boundary condition, he assumed that the density goes to zero at the

end of the device, n(L/2) = 0, or V = L. Fig. 9 shows a comparison between the stair-case

model and Yang's for a seven cell machine. The dashed line represents Yang's model, not

using his boundary condition, but instead by adjusting V so that the profile has the same den

sity at the center of cell no. 2 (V = 9.8 while L = 5.2). Fig. 9 shows that this adjusted profile

has almost the same density in the center of each cell as the stair-case model. Therefore, the

boundary condition n(L/2) = 0 is not accurate for devices with a small number of cells. When

N is not large, the new model predicts longer confinement times than the ones obtained from

the diffusion theory. For example, by using the stair-case model in a reactor with 11 cells, we

have found a decrease in length of about 30% from the length predicted by the diffusion

model8.

In addition to the improved confinement time for machines with a small number of cells,

the new model is flexible and, therefore, more advantageous for reactor calculations. We have

used this model in our parameter optimization of multiple mirror reactors8. The multiple mirror

fusion device considered there consists of a central solenoid with length /ci and multiple mirrors

on both ends. We show there that the diffusion density profile, (25), indicates that lc\ = -~ for

the shortest reactor. The new model results in lcl = 0.3L. Engineering considerations demand

the fewest number of cells possible. Therefore the shortest reactor is not necessarily the

optimum reactor. We have found that with an increase of about 10% in the reactor length (and

le\ = 0.41), the number of cells can be reduced to half of the shortest reactor. The new stair

case model, with its flexibility to find the density profile for any number of cells, is an impor

tant tool for this type of reactor optimization calculations.
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TABLE I. Parameters of a 15 cell multiple mirror machine (N = 7) with

Rn+i - 8.6 (titf+i =0.94) and Z-^- - 1.

cell no. Mc R
n

fl/v+i

lc

4/v+i

A

Afif+i

8 .940 8.59 1. 1. 1.

7 .922 6.68 1.65 .707 .777

6 .908 5.71 2.27 .561 .664

5 .897 5.09 2.84 .470 .593

4 .886 4.66 3.40 .407 .543

3 .877 4.34 3.92 .360 .505

2 .869 4.08 4.43 .324 .475

1 .861 3.87 4.92 .295 .451
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LIST OF FIGURE CAPTIONS

Fig. 1. Parameters of two adjacent cells: cell no. j and cell no. j+ 1, a) potential, b) magnetic

field, c) density.

Fig. 2. The loss cone for the ions moving to the right in cell no. j, a) Velocity space, b) e fi

space.

Fig. 3. The loss cone for the ions moving to the left in cell no. j+1, a) Velocity space, b) e fi

space.

TeFig. 4. Ambipolar term, Ca (/*<.,,/* cy+i,Z-=r) versus p.cj. Solid lines: ficj = ficj+l and different

T TZ-£-. Dashed lines: \jlc} t* ficj and Z-~ = 1.

Fig. 5. Confinement time, Tmm, versus the mirror ratio, R. Dashed line represents the approxi

mate formula, (22).

TFig. 6. Drift velocity in the last cell, K^y+i, for different mirror ratios and Z-^-.
Tt

Fig. 7. Potential drop, A* «= &A—&m, in the last mirror throat for different mirror ratios and

T,

Fig. 8. Parameters of a typical multiple mirror device, a) density, b) potential, c) drift velocity,

z axis not in scale.

Fig. 9. Comparison of the density profiles in a 7 cell machine, new stair-case model and Yang's

model, with (n(L/2) = 0). Dashed line represents the diffusion profile, (25), adjusted to pass

point A.
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