
 

 

 

 

 

 

 

 

 

Copyright © 1981, by the author(s). 
All rights reserved. 

 
Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 
lists, requires prior specific permission. 



ON SYNONYMY, ANTONYMY AND NEGATIONS

by

S. V. Ovchinnikov

Memorandum No. UCB/ERL M81/63

20 July 1981

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



ON SYNONYMY, ANTONYMY AND NEGATIONS*

S. V. Ovchinnikov

Department of Electrical Engineering and Computer Sciences
and the Electronics Research laboratory

University of California, Berkeley, California 94720

ABSTRACT

Structures of automorphisms, dual automorphisms and automorphism

groups in fuzzy set theory are studied in detail in view of applications

to representations of synonyny, antonymy and negations.

* Research sponsored by the National Science Foundation Grant ENG78-23143



PART I. AUTOMORPHISMS AND AUTOMORPHISM GROUPS

1. Introduction

The aim of Part I of this paper is to suggest an algebraic model

which may provide an answer to the following Zadeh's question: how

could synonyms and anonyms be represented in fuzzy set theory?

Let us suppose that there is a rule assigning a synonym (or an

antonym) to each fuzzy set with a given universe. It is easy to accept a

hypothesis that this rule commutes with connectives "and" and "or". For

instance, "wealthy and sick" is an antonym to "poor and healthy". It.means

that the rule in question is actually an automorphism of an algebra of all

fuzzy sets. Obviously, there are a lot of possible rules of this kind.

Symmetry of synonymity and statements in a colloquial language like "a

synonym of a synonym is a synonym" or "an antonym of an antonym is a

synonym" show that a proper mathematical model should employ a group structure

of a set of automorphisms.

The paper (Part I) studies automorphisms in fuzzy set theory

(section 2) and automorphism groups (section 3) with the view of their

applications to synonyipy and antonymy representations. Only algebraic

aspects of the problem in question are considered in this paper. We leave

applications to linguistics for further publications.

2. Automorphisms in fuzzy set theory

Let X be a finite set. Fuzzy set theory considers the following

model. A fuzzy set A with universe X is a mapping Z: X^[0;1]. A function

A(x) with domain X and range [0;1] is said to be a membership function.
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Further we will not distinguish between fuzzy sets and their membership

functions. The set of all fuzzy sets with universe X is denoted P(X)

Operations of union and intersection are defined pointwise. by

(A u B)Cx) = ACx) V BCx) = max {ACx),BCx)},

(A n B)(x) = ACx) A B(x) = min {ACx),B(x)}.

The set P(X) is a complete distributive lattice vdth respect to operations

u and n and universal bounds 0 and 1 where 0(x)= 0 and l(x)=l. Considering

this lattice as an abstract algebra we denote L(X) = <P(X); u, n, Q, i > .

Actually, L(X) = where [0;1] is regarded as a lattice with respect to

max- and min- operations. An operation of negation ~ is defined as follows

in fuzzy set theory

A(x) = 1 - A(x), for all x^X.

The lattice L(X) endowed with a negation operation defined above is a de

Morgan algebra M(X) = <P(X); 0,1 > (see [2] for a general definition

of de Morgan algebras).

An automorphism of L(X) is a one-to-one and onto mapping

©• P(X) -^P(X) such that

0 (A u B) = 0(A) u 0(B),

0(A n B) = 0(A) n 0(B),

0 (0) =0 and 0(1) = 1.

We obtain an automorphism of M(X) adding the property

©TO = qU)

In this section all automorphisms of L(X) and M(X) are completely

described. We start with a description of automorphisms of L(X), for

any automorphism of MCX) is an automorphism of LCX).

Let us denote P(X) a set of all crisp subsets in X, i.e. fuzzy

sets with membership functions taken only values 0 and 1. Then PCX) is
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a Boolean algebra which is a maximal Boolean subalgebra in LCX)

(and M(X)).

Lenma 2.1. Let 0 be an automorphism of iCX). Then the restriction

of 0 on P(X) is an automorphism of P(X).

Proof. Let A be a crisp set, i.e. A ^ PCX). Then

AUA = 1 andAnA=0

imply

0(A) LJ 0 (A) = 1 and eCA) ^ 0 ^A) = 0.

Hence, ©(A) is a crisp set and 0(A) = 0 (A). «

Lerrsna 2.2. Let 0 be an automorphism of P(X). There is a permutation

s: X -»-X such that

0(A)(x) = A(s(x)) for any A€P(X).

Proof. Atoms in P(X) are singletons in X. An image and an inverse

image of any atom are atoms again, for 0 is an automorphism. Hence,

0 defines a permutation on the set X. Note now that any A e p(x) is a

union of atoms. «

Remark. The group of all automorphisms of P(X) is isomorphic

to the symmetric group for n = |X|.

In order to describe automorphisms of L(X) we introduce the

following families of elements in L(X);

.^(x) =
1 if X = a,

0 is X a, for a e X

and

a (x) = a for aG[0;l].
a

Note that <s^Cx) is an atom in PCX) for any a ex.
a
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Let 0 be an automorphism of iCX). We define

= 0(a^)(x) for x^X, [0;!].

Lemma 2.3. e is an automorphism of [0;1] for any xsx.

Proof, We have

ejj(aAg) =eCa^^gXx) =0C(jj,A<jg)(x) =

e(trj^)(x)A 0(ag)(x) = ej^(a)A 0jj{6).

In the same way eAa^i) = 0„(a)v0 (g). Finally,
A AX

0^(0) = 0 and ©^^(1) = 1. ^

Now we have the following

Theorem 2.1, A mapping 0: P(X)-»-P(X) is an automorphism of

the lattice L(X) iff there is a family {0 }, x^X of automorphisms of
J\

[0;1] and a permutation s: X->X such that

0{A)(x) = 0j^(A(s(x))) (2.1)

for any A€P(x).

Proof. It is easy to verify that (2.1) defines an automorphism of

L(X) for any family {0^} and any permutation s.

Conversely, let Aep(x). Then we have a decomposition

A(x) = u
a ^ X

Hence,

0(A)Cx) = U {0(fig)(x)A 0(<Jy^(g))(x)}.
a ^ X

By the definition of 0j^ and by lenma 2.2 we infer

0 (A)(x) = U {« , (x) A 0 {A{a))} = 0„{A{s(x)))
a€X s''(a) * *

for some permutation s~ on X. The proof Is over.

-5-



The following theorem describes all automorphisms of a de Morgan

algebra A(X).

Theorem 2.2, A mapping 0: PCX)^PCX) is an automorphism of

MCX) iff there is a family {0 }, x^X of automorphisms of [0;1]
X

fulfilling the equation

+ 0^(1 - a) = 1 (2.2)

for all x€X, ae[0;l], and a permutation s: X^X such that

0(A)(x) =0j^(A(s(x))) (2.3)

for all A€P{x).

Proof. A mapping 0 defined by (2.3) is an automorphism of L(X).

To prove that it is an automorphism of M(X) it suffices to show that

0(A) = 0(A). We have

0(^(x) = 0^(1 - A(s(x))) = 1 - 0^(A(s(x))) =

1- 0(A)(x) = 0(A)(x)

by (2.2) and (2.3).

Conversely, let 0 be an automorphism of M(X). Then, by theorem

2.1, 0 is represented by (2.3). Let us prove (2.2) in this case. We

have 0(7^ = oJJ) for any Ae P(X). Let A=a^. Then 7^ =

and we obtain 0(cJ^_^) = 1 - or, by (2.3),

0J^(1 - a) = 1 - 0j^(a), Q.E.D. «

3. Automorphism groups

Only lattices L(X) are considered in this section, because all

statements concerning automorphisms of these lattices are easily

extended to the case of de Morgan algebras by theorem 2.2.
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The set of all autoraorphisras of a given algebra is a group with

respect to a coinposition of automorpKisnis. We use a symbol o as a

denotation for any composition operation. Aut(L), Aut(X) and Aut([0;l])

denote, respectively, automorphism groups of a lattice L(X), a set X and

an interval rO;l]. X is supposed to be a finite set with cardinality

n. AutCX) is a synroetric group and Aut([0;l]) is an automorphism

group or the unit interval considered as a lattice with universal

bounds (the latter group is studied in 111]).

By theorem 2.1 any automorphism of L(X) is determined by a pair

s > where 0^^ SAut([0;l]) for all xex and seAut(X).

(For simplicity sake, we denote {0^} a family )
The composition law in Aut(L) is given by

s'> 0 < {0p, s"> = <{0^ 0 0

For instance,

<{e^}.s >-^ = ^

and an identity element id^ in Aut(L) is ^

where identity elements in Aut(£0;l]) and AutCX),

respectively.

Let us denote K= {<{0^}, idj^>} and H= ^

It is easy to verify that K and H are subgroups of AutCL) such that

K- Aut"(IO;l]) and H= Aut(X). Moreover, we have the following

Theorem 3.1. The group Aut(L) is a semidirect product of K by H.

Proof. Obviously, KOH = {id^}. Hence, it suffices to prove that

K is a normal subgroup and KUH = Aut(L) (see theorem 6.5.3 in [7]).
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We have

s>*^o< id^> o<{0^}, s> =

<{0"\ 0 0', 0 0 T }, idw >
s"\x) s*^\x) s"\x) ^

Hence, K is a normal subgroup.

Further,

<{Q^}» s > = ^^

Hence, K and H generate Aut(L). The proof is over.

The following definition introduces some particular auromorphisms

which are important in applications to representations of synonyiny

and antonymy.

Definition 3.1. 1) An automorphism 0 of L(X) is said to be an

S-autgmorphism if 0(A) = A for any crisp set A;

2) An automorphism ©of L(X) is said to be an A-automorpliism if
2

0 is an S-automorphism and there is a crisp set A such that 0(A) f A.

The following theorem yields a description of S- and A-automor-

phisms.

Theorem 3.2. An automorphism 0 = s> of L(X) is an
2

S-automorphism (resp. A-automorphism) iff s = idj^ (resp. s = idj^ and

s f

Proof. 1) Let s = id^^. Then 0 CA) = Afor any crTsp set A, by

theorem 2.1. Conversely, let 0 CA) = A for any crisp set A. Me

have

"S.Cx) = 0tfia)Cx) = 6: (sCx)) =5^1 (x).
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Hence, s(a) = a for all a e x.

2 22) Let s = Idj^ and s f id^. Then e =<{0^ o

is an S-sutomorphisra by previous arguments. Obviously, there is a

crisp set Asuch that 0(A) Afor s ^ id^^- Conversely, let 0^
is an S-automorphism and there is a crisp set A such that 0(A) f A.

2 2 . . 2We have 0 = <{0^ 0 # s >which implies s = idj^, by previous

arguments. Finally, s idj^ , since 0(A) f A.

Corollary. The set of all S-automorphisms is a subgroup K.

Permutations s such that s^ =id^^ will be called synmetries.
We define below a special class of subgroups of Aut(L), namely,

SA-subgroups. If 6 is an SA-subgroup, then elements of G may be

regarded as representations' of synonyiny and antonymy. The following

definition is based on an observation that a synonym of a synonym is

a synonym again and an antonym of an antonym should be a synonym.

Definition 3.2. A subgroup G c Aut(L) is said to be an

§A-subgroup if

1) any element of G is either an S-automorphism or an

A-automorphism;

2) G contains at least one A-automorphism;

3) composition of any two A-automorphisms is an S-automorphism.

The structure of SA-subgroups is established in the following

Theorem 3.3. Let G be an SA-subgroup of Aut(L). Then

1) there is a symmetry s such that

GOH = {<{id|-Q.^j}, id^ > , <{id]-Q.^j}, s >} = Zg;

2) G is a semidirect product of Gn K by Gn H.
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Proof. 1) Let ^ ^2 ^
GHH and different from id|̂ . Then they are A-sutomorphisms, i.e.

2 2= $2 = idjj. On the other hand s^osg = id^^, by definition 3.2,3).

Hence, s-j = = Sg, i.e. GHH contains only one automorphism, say

< ^ which is different from the identity element.

We have GHH =Zg, for s^ =id^.

2) GHK is a subgroup of G. Moreover, G is generated by GOK

and GHH. Indeed, any element <{0 }, s> of G is an S- or an A-

2automorphism, i.e. s = idj^. We have

where ^ ^ ^''"^6 s > € G. Hence,

G = (GnK) u (GHH). The rest of the proof is the same as the

proof of theorem 3.1. «

Corollary. G is a union of a normal subgroup GHK of

S-autoraorphisms and a unique coset of all A-automorphisms in G.

There are two special kinds of SA-subgroups which are useful in

applications.

Definition 3.3. An SA-subgroup G is said to be

1) a fylLSA-subgroup if Kc G;

2) a homogeneous SA-subgroup if GOK is a diagonal in K= Aut"C[0;l]).

Note, that G is a homogeneous SA-subgroup if and only if

GHK = idj^ > I = 0 for some 0eAut([O;l])}.
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Theorem 3.4. Any homogeneous SA-subgroup F of Aut(L) is

isomorphic to a direct product of Aut([0;l]) on Zg.

Proofs G is a semidirect product of GHK = Aut([0;l]) by

Gn H= Z2 , by the previous theorem. Let <{0}, idj^ >e Gn K

and e G n H. We have

<{e}, idj^ >o< }, s > = s >o<{e}, idj^ >

i.e., any two elements of G K and G H coiranute. Hence, G is a

direct product of GHK on GHH (see Section 6.5 in [7]). n

Corollary. Any element <{0)5 s> in a homogeneous SA-subgroup

has a unique representation as a composition

<{0}, s> = <{0}, idj^> 0 ^ ^

<{id[o.i]}, s >0 <{0},-idj^>.

4. Representations by ultrafuzzy sets

Let A be a given fuzzy set and 0 - an S-automorphism. We

consider B = 0(A) as a synonym of A and define a degree of synonymity

of B with respect to A by

I^{B) =1 - cl(A,B) (4.1)

where d is any normed distance function on P(X). We set

J]^(B) = 0 iff Bis not a synonym of A. I^(B) thus defined may be

regarded as a value of a membership function of an ultrafuzzy set

(an ultrafuzzy set is a fuzzy set with universe P(X)). This set is

considered as a fuzzy set of all synonyms of a given fuzzy set A.

We have ^(A) = 1 which implies ^ L = P(X). Hence, the
AeP(X) ^ "

family {Ij^} ^ep(x) ®covering of P(X)
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Actually, this covering is a partition of P(X) if a max-A

composition law is employed in ultrafuzzy set theory, where a is

a connective defined by

X Ay = max(x+y-l, 0).

(See [10] for definitions of coverings, partitions and related results

and [5] and [3] where a detailed study of a connective A may be

found.) Then a resemblance relation

ItA,B) = V I^.CA)a 1^{B)
C€p(X)

generated by the covering a^PCX) ^ similarity relation.

Simple calculations yield

1 - dCA,B), if A and B and synonyms,
I(A,B) = J

j 0, otherwise.

The relation I may be regarded as a synonymity relation on PCX).

Classes of this similarity relation are ultrafuzzy sets of synonyms.
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PART II. GENERAL NEGATIONS

1. Introduction

Let P(X) = [0;!]^ denote the set of all fuzzy sets with a

universe X. It is possible to define logical connectives "or" and

"and" for fuzzy sets by different ways [1]. We use standard definitions

due to Zadeh [14] in this paper. Then P(X) is a complete distributive

lattice under operations of union and intersection with universal

bounds 0 and X. The lattice PCX) is a noncomplamented lattice, i.e.,

there is no operation A->A in P(X) such that

AHA = 0, and (1)

AUA = X. (2)

Nevertheless, a number of "complement" operations, usually called

negations, are studied in current papers (see, for example [8],

[12-14]). Naturally, these negations violate at least one of the

properties (1) - (2). Definitions of most negations suggested are

pointwise ones. That means that A(x) = n(A(x)), where n: [0;1]-*'[0;1]

is any "negation function".

This part of the paper is concerned with a general [not necessarily

pointwise) negation in fuzzy set theory. At first, all "optimal" in

some precise sense negations are completely described. They turn out

to be only involutions, intuitionistic negations and dual intuitionistic

negations. Then a structure of involutions in P(X) is studied. It is

proven that each involution in P(X) is a variable pointwise involution

generated by a family of negation functions, i.e. Lowen's fuzzy complement

[8]. In conclusion some possible generalizations are discussed.
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2. . General Negations

We begin with some conmon examples.

Example 1. Let n be a decreasing function n: [0;1Jsuch

that n{n(a)) = a for all a e [0;1] ("strong negation function" in [12].

Then an involutionary negation in P(X) (see [13]) is defined by

A(x) = n(A(x)} for all x^X.

Example 2. Let ® family of strong negation functions.

Lowen in [8] defines a "fuzzy complement" on Xby A(x) = Tiy(A(x)).

This operation generalizes the previous example.

Recall the reader (see [4], p. 3) that an involution in the

lattice P(X) is a mapping e: P(X) ^P(X) such that: 1) ACB iff ©(A) 50(B),

and 2) © is an identity in P(X). Any fuzzy complement on X (and, there

fore, any involuntary negation) is an involution in P(X). Fuzzy

complements in Lowen's sense are called variable, pointwise involutions

in this paper.

Example 3. P(X) is a completely distributive lattice. Hence,

each element Aep(x) has a pseudo complement A (see [4]). We have, by

definition,

A = V{B| AHB = (3}, or

0, if A(x) > 0,

1, if A(x) = 0

in PCX). This negation is said to be an intuitionistic negation in [13].

Example 4. By duality, we define a dual intuitionistic negation by

1, if ACx) < 1,

0. if ACx) = 1.

All the negations defined fulfill the following

m =

A(x) =
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Extension Principle. ([15])The restriction of a negation on the

set of all crisp subsets of X is a usual complement.

Only negations satisfied this Principle are considered in this

paper.

In addition to properties 0) and [2) the crisp complement fulfills

the following DeMorgan's laws

F^=AUB (3)

FuT = A n B, and (4)

A' = A. (5)

It is easy to verify that any involution satisfies [3) - (5) and

does not satisfy (1) - (2). On the other hand an intuitionistic

negation fulfills C2) - (4) and does not fulfill (1) and (5).

We will use the following general definition of a negation in P(X):

Definition 1. An operation ©: P(X)->P(X) is said to be a negation

if it violates as few as possible of properties (1) - (5). We denote

A = ©(A) in this case.

One can consider negations thus defined as "optimal" negations in

the sense that they are notions nearest to the crisp one.

Lemma 1. A negation in PCX) fulfills exactly three of properties

CD - C5).

Proof. Since PCX) is a noncomplemented lattice, any negation A-»-A

violates CD or C2). Let, for example, CD is violated and A^A = B 3^0

for some A^PCX). Suppose that all the rest properties C2) C5) are

fulfilled. Then we have

B = An"A = AUA = X, by C3), C5) and C2),

and B = 0, by (5) and the Extension Principle. This contradiction shows
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that at least two of properties (1) - (5) are violated. As it was

mentioned above, for example, an intuitionistic negation violates exactly

two of properties (1) - (5) which completes the proof. «

Corollary. Any involution in P(X) and both intuitionistic and

dual intuitionistic negations are negations in the sense of definition 1.

The following theorem shows that the converse is also true.

Theorem 1. Any negation in PCX) is an involution or an intuition

istic negation or a dual intuitionistic negation.

Proof. 1) Let e be a negation which satisfies {5). Then, by

lemma 1, it also satisfies (3) or (4). By (5), © is an identical mapping

which implies bijectiveness of 0. Let, for example, (3) is true (the

second case is dual to this one). Then A ^ B implies A = An B implies

A = Au B implies ©(A) ^ ©(B), and ©(A) ^©(B) implies F = An B" implies

B = A u B implies A s B. Hence, © is an involution.

2) Let © violate (5). Then it violates (1) or (2). Let (1) be true and

A n B = 0. Then A u F = X which implies B = Bn(AuF) = (BnA)u

(B n F) = B n A, by (1). Hence, B and we have, by (1),

A= V{B| B n A = 0}

i.e. 0 is an intuitionistic negation.

3) A dual argument shows that © is a dual intuitionistic negation in

case when (5) and (1) are violated. «

Note, that an intuitionistic negation and a dual intuitionistic

negation ©^ can be considered as limit cases of negations because we have

©^. < for any negation ©.
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3. Involutions in P{X)

It follows from section 2 that, generally speaking, most negations

in P(X) are involutions. The following theorem shows that variable

pointwise involutions (see Example 2) turn out to be the most general

form of an involution in P(X) fulfilled the Extension Principle.

Theorem 2. Any involution in P(X) which fulfills the Extension

Principle is a variable pointwise involution.

Proof. Let us define the following fuzzy sets:

1, X = a

0, X a, a € X,
6aCx) =

and

a^(x) = a,a G[0;1].

Then

° a °A(a)^-

Let A-»-A be an involution in P(X). Then

^=2^«aSCa)^-
Let us denote ny(a) = a (x). Then, by Extension Principle,

J\ (X

ACx) =A {IgCx)v njf(A(a))} = n^CACx)).
— 2For A = a the last formula gives a = ny(ny{a))s i.e. n is an identity.

Let a^B. Then a < a. or a = ancL which implies a = F Uo". or
aB aap ^ aaB

> a.. Hence, x] (a) ^ n^CB). By dual arguments, nict) ^
(X p A A A A

implies a ^ B. Hence n (ot) is a strong negation function and A-^A is a
A

variable pointwise involution. a
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Note that the statement of this theorem is strongly based on the

Extension Principle because there are a lot of involutions in P(X) which

are different from variable pointwise involutions (see [9] where all

involutions in P(X) are described).

4. Concluding Remarks

It follows from theorems 1 and 2 that negations from Examples 2-4

present all possible optimal negations in the sense of definition 1.

All these negations can be extended on arbitrary L-sets (see [6] for

definitions) where L is any complete distributive lattice. The main prob

lem here is an existence problem: whether or not a given negation can

be defined on a given lattice. Let us consider, for example, a lattice

L from Fig. 1. It is easy to prove that this lattice does not admit

an involution and both intuitionistic and dual intuitionistic negations

are not optimal in L. On the other hand it can be proven that theorem 1

is true in any L-set theory if L has irreducible universal bounds,

in particular, when L is a chain. Also theorem 2 is true in any L-set

theory if L is a complete distributive lattice. Nevertheless, it should

be noted that involutions could not exist even in the case when L is a

chain. It becomes clear if we consider L= {0} L) [l;l] with a natural

order.
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