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Section 1. Introduction

It is well known that high loop gain enhances the desirable effects of

feedback, e.g. desensitization and disturbance attenuation. It is known also

that practical control systems are driven to instability by high gain feedback.

This paper presents a new geometric way of calculating and numerically stable

way of computing the asymptotic behavior of unbounded root loci of a strictly

proper, linear, time invariant control system shown in Figure 1 as loop

gain -*-00 (k —°°).

The asymptotic behavior of unbounded root loci has been studied extensively

by Kouvaritakis and Shaked [3], Kouvaritakis 14], Kouvaritakis and Edmunds [5]

and Owens [11,12]. We believe that our (mathematically) new approach leads to

more explicit and simpler formulae. For an intrinsic algebraic-geometric

picture of multivariable root loci we refer the reader to Brockett and

Byrnes [10].

The present paper recognizes that the calculation of the asymptotes of the

unbounded root loci is a process of identifying subspaces in the input space

and'modding out1 subspaces in the output space of the open-loop control system

1/2 1/3
where the effects of the 0(k), 0(k ), 0(k ), ... unbounded root loci domi

nate asymptotically (for this standard notation see [6 ]). To compute the

asymptotes of the unbounded root loci we are led naturally to the use of numeri

cally stable orthogonal projections and the singular value decomposition (see

for instance, Golub and Reinsch [17], Stewart [1]).

The organization of the paper is as follows: In Section 2, we develop some

, where A is

a map from <En to (D and S_, S« are subspaces of complimentary dimension. This

development was motivated by Wonham [18]. In Section 3, we apply this theory

properties of restricted linear maps of the form A(mod S?)
si
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to the computation of the asymptotic values of the multivariable root loci.

Using the results of van Dooren, et al [7] and the simple null structure

assumption, we relate these asymptotic values to the structure at °° of the

Smith - McMillan form of the open loop transfer function. In Section 4, we

derive a numerically stable method for computing the formulae of Section 3,

using the singular value decomposition. We calculate formulae for the pivots

and indicate robust computation to obtain them in Section 5. Concluding remarks

on relaxing the assumptions of and extending our work are collected in Section 6.

Notation

i. R(A) stands for the range of a matrix A€(E and KerA stands for the

kernel of A.

ii. A stands for (any) generalized (or pseudo-inverse) of A, defined as

follows:

Let f-,... ,f, € <E be a basis for the R(A) with e.,... ,e, chosen

such that Ae = f-, i = l,...,k. Complete the basis f-,...,f, to obtain

a basis f.,...,f of (E . Now, define

t
A f. = e. i = 1,... ,k

f
A f. = arbitrary i = k+1, ...,n.

Section 2. Restrictions of a Linear Map

2.1 General Theory

Given a linear map A from <E to S and a subspace S« C 6 of dimension

(n-m), the operator A(mod S«) is the linear map from <E to <E /S« defined by the
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following diagram:

Cn A >Cn

=P-A)\ 1(A(mod S:) ~ *N " ' P
2 * (T/S,

Here, P stands for the canonical projection C -* G /S-, The maps whose structure

we will expose here are of the form A(mod S2)|g where S- C <En is a subspace of

dimension complimentary to S« (namely, m). Pictorially, we have for

A(mod S2)L

sl<^,a:n-A^a:11
A(mod S2)ig = P • A'i

i l \ ^

p

<cn/s(

Here i is the (canonical) inclusion map of S. in (Cn. Note that if S is any

direct summand of S2 then S2 is isomorphic to <Cn/g .Since ffn/g is an abstract

vector space, we will for the purpose of computation identify <Dn/c with S0.

We have then the following representation theorem for A(mod S0)l

2|S1
Theorem 2.1 (Representation Theorem)

Let the columns of T.6 <C form a basis for S., and the columns of

_ _ m nxm _ , _T2 €C form a basis for S2, some direct summand of S2. Then, the matrix

representation for A(mod S2) J with respect to the bases furnished by T., and

T2 is

(T* T2)_1 T* ATx €(E™011 . (2.1)

Proof: Recall from elementary linear algebra [1, pg. 125] that

/ \~*1 *k nxn^2 2 T2 T2 € (C is the matrix representation of the projection from

n ^ *(E onto S2 with the columns of T« as basis for S«. Since the columns of T-,

T2 are chosen as bases for S., S« the result follows D
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Notes: (i) (T2 T£) T2 is a left inverse of T2-

(ii) If the columns of T± GGnxm and T2 €G11*"1 form bases for S and
S2 (any other direct summand of S2), then the representations are

related by (T2 T^"1 T* AT =P(T* T^"1 T* ATx Q.
where P,Q 6 G are nonsingular matrices.

Definition 2.2 X 6 G is an eigenvalue of A(mod S-)L if"3 non-zero x € Sn such
2 lb. ~* 1

that (A - XI)x (mod S2) = 0; equivalently,^} x € S± 3 (A - Xl)x 6 S2.

Proposition 2.3 (Generalized eigenvalue problem for eigenvalues of

A(mod S2)L ).

Let B€Gnxm; CG G11^11 be chosen so that R(B) =S,Ker C=S^ Then, the

eigenvalues of A(mod SOL are precisely the solutions,X, of the generalized

eigenvalue problem

A - XI

det = 0 (2.2)
0

3 m
x 6 G, u 6 G not both

zero such that

(A - Xl)x + Bu = 0

with

x € Ker C. °

In fact solutions of all generalized eigenvalue problems can be obtained from

Definition 2 »1 as follows:

Proposition 2.4 (converse to Proposition 2.3)

The solutions X of the generalized eigenvalue problem

det

are the eigenvalues of

A - XI

= 0 (2.3)
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A-BD+C(mod B(Ker D)) L-1(^(D)) . (2.4)

(Here, D'stands for any pseudo-inverse of D, c"\R(D)) stands for the inverse

image under C of K(D) and B(Ker D) stands for the image under B of Ker D).

Proof: ^ is a solution of (2.3) iff "3 x € Gn, u € Gm not both zero such that

(A - Xl)x + Bu = 0 (2.5)

Cx + Du = 0 (2.6)

Note that Cx must belong to the range of D so that x € c" (R(D)) and the

(non-unique) solution of (2.6) is

u = -D+Cx + v (2.7)

where v is any element of Ker D.

Use (2.7) in (2.5) to obtain

(A-BD+C-Xl)x + Bv = 0

with x € C"1(12(D)) and v G Ker D.

The converse is similar. D

We now specialize to the case when S- (+} S« = G . There is then a natural

isomorphism I between S, and G /c as follows
1 S2

I:= I(mod S2)L

I = P«I«i

It is clear that in this case there are m eigenvalues of A(mod S2)|q . We

explore their structure:

Definition 2.5 A(mod S ) is said to have simple null structure if
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J x€ S1 such that

A(mod S2)x ±0 and A(mod S2) i"1 A(mod S2)x =0.

Comments: (i) The definition states that there are no generalized eigenvectors

associated with the eigenvalue X =0 of A(mod S«)| .

(ii) Definition 2.5 is useful for counting the number of non-zero

(possibly repeated) eigenvalues of A(mod S2)L as follows:

Proposition 2.6 (Number of non zero eigenvalues of A(mod S0)|c ).
2 lsi

If A(mod S«) q has simple null structure the number (counting nultiplicities)
1

of its non-zero eigenvalues is equal to its rank, namely the dimension of

R(A(mod S2)|s ).

Definition 2.7 : A(mod S«)| is said to have simple structure associated with
lSl

an eigenvalue X if A - XI(mod SO| has simple null structure.

With these definitions on hand, one may state the Jordan canonical form

theorem for the operator A(mod S2)|- .

Theorem 2.8 (Jordan Canonical form for A(mod S0) _ )
1 ,S1

Assume S. © S- » Gn and identify Gn/ with S-. Then, there exists a

choice of basis for S. - the columns of T € Gnxm such that the matrix representation

ofA(modS2)|s : S1 -»• Gn/g =S^^ is

(T* T)"1 T* AT =diag [J1,...,J ] (2.8)
where J.

l
X. L 0

l -

.. o *x.
1 -

* -1 * L
Since (T T) T = T , a left inverse of T, we may write (2.8) as

TL AT =diag [J1,...,J ]
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Proof: Follows exactly along the same lines as the regular Jordan canonical

form theorem and is omitted.
O

2.2. Specialization to Orthogonal Projections

For the purpose of numerically stable computation we specialize the above

definitions and propositions to orthogonal bases and orthogonal projections.

Let the subspace S2 C G be the orthogonal complement of S and the columns of

Pl' Po € C ^om orthonormal basis for S^» S- respectively. We will

identify A(mod S2)jg with the representation furnished by P1,P2, namely

P2 AP1( by Theorem 2^.1)6 Gmxm. We also denote P* AP± by A|g ^g.

In these coordinates, the eigenvalues of A(mod S2)|_ are the zeros of the

polynomial

det(XP* Px -P* AP^ =0 (2.9)

Definition 2.9 The adjoint of A|_ ^ " is defined to be the linear map
,S1 2

tS2"»Sl '
A

The following proposition is now obvious:

Proposition 2.10 (Orthogonal decomposition of domain and range)

n(A|Sl^2> ® R<Als2+ Sl> - si

Section 3. System Description, Assumptions and Main Formulae

The system under study is the system of Figures, where G(s) is the mxm

transfer function matrix of a linear, time-invariant, strictly proper control

system assumed to have Taylor expansion about s = °° (convergent V |s| > M):

Gl G2 G3
S £.5

S S
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mxm

with G^y G2»**» 6 ^ J k real and positive. We consider the case when G(s)

is a strictly proper rational transfer function matrix, i.e. G(s) G ]R (s)*3™

(Formally, all the results of Section 3.1 go through for strictly proper irrational

transfer functions with convergent Taylor series at s = <»). We study the closed

loop poles of the system of Figure 1 as k -* °°. The motivation is that G(s)

represents the composition of a linear, time-invariant plant and controller and

k represents high gain feedback; as k -*• « the gain tends to «> in all control

channels. The one parameter curves traced on an appropriately defined Riemann

surface [2] by the closed-loop eigenvalues (parametrized by k)are referred to

as the multivariable root loci. As k -*• » some of the root loci tend to finite

points in (copies of) the complex plane located at the (McMillan) zeros of the

system (see for e.g. [3,4,5]), the others go to » as k •+ « and are referred

to as the unbounded root loci of the system. We classify the unbounded root

loci by the velocity (with k) with which they tend to °°:

Definition 3.1 An unbounded multivariable root locus s (k) is said to be an
——————^———— xi

nth order unbounded root locus (n = 1,2,3,...) if asymptotically

sn(k) -yn(k)1/n +0(k°) (3.2)
where lyj <« and 0(k°) is a term of order 1.

We identify an nth order unbounded root locus with u , the coefficient of
n

its asymptotic value.

Theorem 3.2 (Generalized eigenvalue problem for the nth order unbounded root locus)

P = (-X) € G is the coefficient of the asymptotic value of an nth

order unbounded root locus iff X is a solution of the generalized eigenvalue

problem



-9-

det G -
n

XI : Gn-1 ' • '• Gl

Vi : V2
• 'i °

• • • •

G2 : Gl
• 0

Si 0 ' • 0

= 0 (3.3)

provided (3.3) is a polynomial equation in X.

Proof* Assume, asymptotically, that the value s of the unbounded root locus

is given by

s=yk1/n + 0(1) (3.4)
with u ^ 0.

Using the standard method to find the terms in the asymptotic expansion

of an implicitly defined variable [6, Chap. 3 esp. article 8] we rewrite

det (I + kG(s)) =0 asymptotically as :j[ e.,,e2,... € Hm such that

e„ ekG, kG

[I+ — + -t •••][«!+ nfe +••• + -^ +..1-0(3.5)
s k

or using (3.4)

n-l

k ft G.
n-2_

Jl k* G2[I + -+ T^-
u y

n-l n-2

] [ex +
1/n

+ ... +

n

n

n-l
.^n"~

...] = 0
(3.6)

Equating terms of 0(k n ), 0(kir~), . . . , 0(1) we obtain from (3.6)

det Gn +̂ ni I G„-l ! |G1

Gn-1 j Gn-2 1 | °

el

Ve2

• * • * 1 • •

g2 ]_gi j _ _ .1°
Gi i ° i ' °

,,n-l
v en

= 0 (3.7)
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(3.3)now follows readily from (3.7), provided of course that (3.3) is non-

degenerate (i.e. depends on X). D

Comments: (i) There are n separate nth order root loci corresponding to

the distinct nth roots of 1 associated with each solution of (3.3); so that

these root loci constitute at °° , an n-cycle of the Riemann surface of the

system (see [8, pg. 32], [2, pg. 112]). (ii) The matrix of (3.4) is a

triangular, block Toeplitz matrix so that (3.4) must admit of simplification.

We take this up next:

3.1 Formulae for the asymptotic values of the unbounded root loci

3.1.1 First-Order

Clearly, these are the negatives of the non-zero eigenvalues of G^

si,i • -li,ik +0(k°»'
3.1.2 Second Order

These are given by

Si,2 "(-Xi,2 k)1/2 +0(k°>

where X. . is a non zero solution of

det G2- XI ; Gl
= 0

G-l ' 0

From Proposition 2.3, then X. 0 is a non-zero eigenvalue of
l, i.

G2(mod R^))
IiKG^

A 7.
= : G,

3.1.3 Third Order

These are given by

Si,3 =<-Xi,3 «1/3 +°<k°>
where X. « is a nonzero solution of

det G3 -XI
! G2 ! Gi

G2 Gl 0

Gl ' 0 i 0

= 0. (3.8)
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Proposition 3.3 (Third order eigenvalue formula)

X. ^ is a non-zero eigenvalue of

,t(G3 - G2 G| G2)(mod R^)) (mod R(G2))

where

G2: = G2(mod R(G][))
n(G1)

,f .
and G is any pseudo inverse of G. .

Remark: Pictorially, we have

i« i t
/\ *- 1 G^—G^G. G«
/0 % _ f- N _m o l l £.. _mTl (G2) ^L-? Tl vG^ <: 5>C 7C

n(G2)

Cm/R(G1)

\y
,m(C"7R(G1))/R(G2)

mProof: Let v_, v2, v« € ]R not all zero such that

(G3 - XI)vx + G2v2 + GlV3 = 0

G2V1 +G1V2

G1V1

= 0

= 0

(3.11)yields that ^ € n^). Next (3.10) yields that
/\

v € r|(G9 (mod R(G..)I ) i.e. n(G0).
1 ,n(G1) l

Further from (3.10), we obtain

V2 = "Gl G2 vl + ul

(3.9)

(3.10)

(3.11)

(3.12)

where u- is (any) vector belonging to ri(G.|) and G. is a pseudo-inverse of

G1. Using (3.12) in (3.9) we obtain
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(G3 - G2G]LG2 - XI)vx + G2Ul + Glv3 = 0.

i.e. (G3 - G2G|G2 - XI)v]L mod R^) mod R(G2) = 0.

This proves the proposition.

3.1.4 Fourth Order

These are of the form

si,4 = ("Xi,4k)1/4 +O(k0)

Proposition 3.4 (Fourth order eigenlocus formula) X- , is an eigenvalue of
- ± , H

+ 4. 4. J. ^

(G4 "G3G1G2 "G2G1G3 +G2GlG2GlG2)(m°dR(G1))(modR(G2))(modR(G3))
n(G3)

where

G3 := (G3 -G2G^G2)(modR(G1))(modR(G2))
ri(G2)

t
and G- is any pseudo-inverse of G..

Proof: From Theorem 3.2 , X. , is the coefficient of a fourth order root locus

ifj v1,v2,v3,v4 €3Rmnot all z
ero such that

(G4 - XI)V;L + G3v2 + g2v3 + Glv4 =0

G3V1 + G2V2 + Glv3

G2V1 + Glv2

Vl

= 0

= 0

= 0

As before from (3.15), (3.16) we have v G n(G2) and v2 =

for some u1 € r| (G^^). Using this in (3.14) we get

(G3 - G2G1G2)v1 + G2Ul + Glv3 = 0 .

•G1G2v1 + U]L

(3.13 )

(3.14)

(3.15)

(3.16)

(3.17)
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Then, vx € n(G3), u1 Gn(G2) and

V3 = "Gl (G3 " G2GlG2)vl " G1G2U1 + u2 (3.18)

for some u2 € ri(G-) .

Using (3.18) in (3.13) we obtain

<G4 -G3G^G2 -G2G^G3 +G2G*G2G*G2 -XI)vx +(G3 -G2G^G2)U;L +G^ +G^ =0
or

(G4 -G3G^G2 -G2G^G3 +G2G^G2g|g2 -Xl)v1(modR(G]L))(modR(G2))(modR(G3)) =0

This proves the proposition.

3.1.5 Higher Order

We invite the reader to write formulae for the higher order root loci.

The basic idea is to solve the triangular algebraic equations as if G were

t
inverible using any pseudo-inverse , G. . The non-uniqueness in this process

is kept track off by succesively restricting in the domain to T)(G..)3ti(G„)3 ..,

Also the conditions for the algebraic equations to have solutions are kept

track of by succesively modding out in the range %(&*), R(G2),

3.2 Simple Null Structure and Integer Order for All Unbounded Root Loci

In general, the branches of the algebraic function obtained from

det (I + kG(s)) =0 at s = °° have asymptotic expansion (see [8])

s =X(k)m/n + 0(k°)

showing possible non-integral order, unbounded root loci.

However, we show now that under some simple assumptions the only

unbounded root loci are those of integral order. First, some preliminaries
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Notation: Define T G ir11311*11111 t0 be the block Toeplitz matrix;

T =/ G G ., .... G.n / n n-l . 1 . (3#19)

Assumption 1 (Non-degeneracy assumption )

There exists some n such that
o

G R(T ) . (3.20)
n

o

Comments: (i) If (3.20) is satisfied for some n it is satisfied for all
o

n >_ n . Hence, in the sequel we will understand that n is the smallest integer

so that (3.20) is satisfied.

(ii) (3.20) implies in particular that no linear combination of outputs

is identically zero and that the inputs are linearly independent. Further insight

into the nature of this assumption follows from Proposition 3.5.

To study the behavior at s =» of G(s) perform the change of variables,

w = 1/s. Then,

G(w) =GjW +G2w2 +... (3.21)
Recall that G(w) admits of a unique Smith-McMillan form A(w) given by

G(w) = M(w) A(w) N(w) (3.22)

where M(w) and N(w) are unimodular matrices and

e, (w) e (w)
l mAGO - diag (—jjj. f-5jj
1 m

) • (3.23)

with the e. and f. monic coprime polynomials, with e. dividing e. - and f. -

dividing f. for all i. Further
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Proposition 3.5 (Explication of Assumption 1)

Assumption l^G(w) has normal rank m.

Proof: Is straighforward, see for e.g. [7] .

For any a € C, which is either a pole or zero of G(w)

A(w)

where

A
a

(w-a)

A (w) • A(w)
a

(w-a)
m

(3.24)

with an < a0 < . . . < a .
1 — 2 — — m

The matrix A„ (w) contains information about the order 0) (o)_)and degree
a p ^ °

6 (6 ) of the pole (zero) at w = a as follows
P £.

co = -a- if o\. < 0
p 1 1 -

co = a if a > 0
z m m —

6 = -Y a, .
p a.<0 i

1

<5 = I a' 'Z *• ^ 1
a >0

(3.25)

(3.26)

We are interested in the order and degree of the zero of G(w) at w = 0. A

theorem of [7] relates co_, 6_ for the zero at w = 0 to the ranks of

the block Toeplitz matrices T , defined by (3.19). Define, for i ^ 1 (with

the understanding that T =0)

p. = rank T, - rank T. .
i i l-l

Then, we have

Theorem 3.6 [7] (Order and degree of zeros related to rank T )
n

coz = min {i|p.= m}

co.

6 = T (m-p.) + m .
z .**_ Ki

i=l

(3.27)

(3.28)
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Corollary 3.7 (Further explication of Assumption 1) [7].

Let nQ be the smallest integer so that (3.20) is satisfied. Then,

n = co .
o z

Comment: The number of unbounded root loci of the system is 6 . We will show
z

under Assumption 2, that 6Z unbounded roots of the 1st, 2nd, ... ,co th order are

obtained. First, a preliminary proposition.

Proposition 3.8 (Connection between rank G and rank T )
n n

rank G- = p.

rank G2 := dim (R(G2)) = p2 - Q1

rank G := dim (R(G3)) = P3 ~ P2

and so on.

Proof: We leave it to the reader to verify that:

rank T- = rank G- p-

rank T« - rank T.. = rank G, + rank G2 = p2

rank T^ - rank T2 = rank G_ + rank G2 + rank G3 = p3

and so on. D

Recall from Proposition 2.6 that the connection between rank and number of

non-zero eigenvalues is simple-null structure. Hence, we assume

Assumption 2 (Simple null structure)

Assume that

Gi

G2 := G2 mod R(g^

G3 := G3 -G2 G^ G2 (modR(G2))(modR(G1))
n(G2)

etc. have simple null structure.
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The key observation to make is that Assumption 2 guarantees that the operators
A* A,

G-, G2, G3,..., are of the form studied in the previous section (i.e. of the form

,msA(mod S2)i with S± + S2 = C ). Precisely,
K

Proposition 3.9

G- has simple null structure^ R(G) + n(G-) = ]Rm.m

Proof: Follows from Jordan canonical form.

Let Ix now be the' (natural) isomorphism between Ti(G1) and mm/R(G.). Then, we have

Proposition 3.10

-1G2 has simple null structure£=£Ti (G2) + I. r(G2) = n(G^) . •

Proof: exactly as in Proposition 3.9

/v /\

Similar considerations hold for G_, G,, etc.. Pictorially, we have the

condition that the operators I-, I«, I,,, ..., etc. defined so that the diagram

below commutes are all isomorphisms.

n(G3)<^n(G2) .JL? r\(Gx) cilm —i*]Rm

(]Rm/R(G1))/R(G2)

((mra/R(G1))/R(G2)/R(G3)

Proposition (2.6) then assures us that the number
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A. A,
A.

of non-zero eigenvalues of G , G2, G3,... is the same as rank G1 ,rank G2,

rank G~ Using this, we obtain

Theorem 3.11 (Asymptotic Unbounded Root Loci)

Under Assumptions 1 and 2 the only unbounded root loci of the system of

Figure 1 are the 1st, 2nd, ..., n th order unbounded root loci specified by

Theorem 3.2.

Proof: The proof is by counting. By Theorem 3.2 and the observations made above

the number of 1st, 2nd,...,n th order unbounded root loci is
o

y\ A.

dim R(G-) + 2 dim R(G0) + n dim R(G )
l z o n

o

Using Proposition 3.8, this is rewritten as

Pl + 2(p2 - Pl) + .... + nQ(pn - pn _x) (3.29)

with p = m and n = co (by Theorem 3.6 and Corollary 3.7).
o

Simplifying (3.29) we obtain the number of lst,...,n th order unbounded root loci

to be

m

n

+ l (m - Pl) =Sz.
i=l

This proves the theorem. O

Comments on dropping the simple null structure assumption

Consider the following example of the failure to Theorem 3.11 without the

simple null structure assumption:

Gl = 0 G2 = 0 0

G, = 0 k > 3.
k —

By Theorem 3.2 there are no first, second, .... order unbounded root loci. Also,
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unbounded root loci. Also, by Theorem 3.6, co = 2 and 5, = 3. Note that
2 z z

det (I +kG(s))= 0yields 1+^j =0so that there are three 0(k2/3) root loci.
s

To indicate the nature of the unbounded root loci in the absence of Assumption 2,

consider

Proposition 3.12

Let G± = 01

mxm
[€ H and let the (m,m)th element of ]

(A) 0 1+D+lV 8m m =° for = i+1».«.»i+P and g^ni^ t 0. Further, assume p< m-1.V 6m,m

Then the im + p + 1 unbounded root loci for this system are

o f0(km im^> ) with asymptotic values given by (-g^1+p+1^)im+p+l

Proof: Follows from the result in numerical analysis (see [9]) that assymptotically

the eigenvalues of

0 1

+ B(e) where B(e) is a mxm matrix

1/m,
of 0(e) with lim b (e) ^ 0 are of 0(e ) with asymptotic values given

»/» mm
e*0

1/m
by e lim bmm(£)

e-^0 e

^ 1/m
The details are messy and are omitted.

Section 4. Robust computation of asymptotic values

For robust computation we use orthogonal projections and the singular value

decomposition (see for e.g. [17]), which we restate. The reader is assumed to

be familiar with the many desirable properties of the singular value decomposition

(s.v.d) in numerical computation.
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Proposition 4.1 (The Singular Value Decomposition) [17]

.mxm
A matrix A G C of rank r may be decomposed as

A = [Ux • U2] II
(4.2)

where U-[^ » U2] G (D*™ withU16Cm*C; D2«^r)

and V=[Vx ! V2] G V™™ with V± G(T*; V£ Gc""*"")
rxr

are unitary matrices and £ G ]R is a diagonal matrix of positive real

numbers.

Comment: The columns of V_, U represent orthogonal bases for the range

*

spaces of A , A respectively. The columnsof V«, U represent orthogonal bases

for the null spaces of A, A respectively.

Notation: Denote the S.V.D. of G. € E
mxm

g, = m£ ;uj]

m-jXm,

I1 ; o

0 ' 0

1*

V1*
_ 2 _

by

(4.2)

where Y 6 H, and the other matrices are real and of conformal dimensions
1 i* i (m-m-) x (m-m.)

Further let the S.V.D. of U^ q v* 6]R be given by

X* 1U2 G2^

where G IR

2 f 2

m~xm„
2 2

—
—* ™•

2

0
2*

vi

0 0
2*

V
2

_ „

(4.3)
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o* i* •*• 19 (m-m.-m0)x(m-m_-m0)
denote the S.V.D. of U* t£ (g3 - G2 G^ G^ V^ V^ GIt -1 2 X 2 by

U2 U2 <G3 "G2 GI G2> V2 V2 =^ !$
r

3 t

J il !
— — "T

0

1
3*

vi

o ! 0 v3*
2

choosing for G-, the Moore-Penrose inverse,

"i "l> fa
0

1*

ul

1*

U2

(4.4)

Then, using (2.9) to compute the asymptotes of the integral order asymptotic

root loci computed in Section 3.1 we obtain

Theorem 4.2 (Polynomial equations for the asymptotes of integral order unbounded

root loci).

(i) y. = (-X) t OG G is the coefficient of the asymtotic value of a 1st

order unbounded root locus iff

det (-G-l + XI) = 0 (4.5)

1/2(ii) u0 = (-X) 9* °GG is the coefficient of the asymptotic value of a

(iii)

2nd order unbounded root locus iff

U3 = (-X)1/3

, I* l l* ivdet (XU^ V^ - u£ G2 Vp = 0 (4.6)

£ 0 G G is the coefficient of the asymptotic value of

a 3rd order unbounded root locus iff

dee <w^*viv».n^ui*<c3 G2 g[ G2) V* V2) + 0, (4.7)

and so on.



-22-

Comments: (i) Note that equations (4.5), (4.6), (4.7) are solved by setting

up generalized eigenvalue problems of dimension m, m-m., m-m..-m0 respectively.

They can in fact be set up as ordinary eigenvalue problems, since by

1* 1 2* 1* 1 2Assumption 2, U2 V2 and U2 U2 V2 V2 are invertible.

(ii) Some geometrical insight into the computation procedures is

obtained by expressing the solutions of (4.5), (4.6), (4.7) as the non-zero eigen

values of

Gi

G2l
hCG^ •* n(G1) = : G2

S-S^aj^^^- «3 » respectively.

Theorem (4.2) then identifies orthogonal subspaces of the input space (Rm)

and the output space (R ) for the computation of the integral order unbounded

root loci. R(V*), R(V* V*), R(V2 V2 V3), ... are subspaces of the input space
and R(U£),R(U2 U^), R(U^ U2 U.), are subspaces of the output space associated

with the 1st, 2nd, 3rd,... order unbounded root loci respectively.

Section 5: Pivots for the asymptotic root loci

For the integral order root loci the asymptotic series have the form given

by (see [8])

s. = (-kX.)1/n + c. + d.k"1/n + ... n= 1,2,3,... n (5.1)
i,n l ii o

with X- ^ 0, c. d. G G. By the pivot of the asymptotic root locus is meant

the coefficient of the 0(1) term of the asymptotic expansion of (5.1) i.e. c.

Each cycle of the multivariable root locus at °° has the same pivot. To make

the calculation we need
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Assumption 3 (Simple Structure)
A. A. A. A,

Assume that G^ G2, G3,...,Gn have simple structure associated with each of
o

their eigenvalues.

Theorem 5.1 (Expression for the pivots)

Under assumptions 1,2,3 the nth order asymptotic unbounded root loci for

the system of Figure 1 have the form (5.1) with c. given by the solution of

det Gn+1 " ci Gn ; VV ! • ; Gi
— — — — — — — T — — — — — — —» — I — — I —

G - X.I ' G : i G I
nil n-l t fit

G2 i Gi i I ° i °

= 0.

Proof: Using the same technique as in the proof of Theorem 3.2 we get,

k _
with —

n
s

i. (1-_^P +0(k-2/n})
y11 vk1/n

n-l

I + k
n

n-2

G! +k n G2 +...+ °ji
2 n

y y

nG c
n

n+1 vl/n

e- + e« + . . e
1 z n n+1

1/n

n-l

n-l

n
-1

n+1

.1/n n+1
k y

= 0.

(5.2)

(5.3)

Equating terms of 0(k ),..., 0(1), 0(k ), one obtains equation (5.2)

with -y11 = X. . ,-,
i,n a

Comments: (i) For each of the nth root of X. the same value of c. occurs
i,n 1

from equation (5.2), justifying the term "pivot of the n- cycle for c..
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(ii) Equation (5.2)is triangular block Toeplitz and so admits of

simplification. We take this up next.

5.1 Formulae for the pivots of the unbounded root loci

5.1.1 First Order: s = -X^ + c± + 0(k" ).

^ are the solutions of

det G2 " Ci Gl J Gl " V

Gl " h1

(5.4)

where X. is a non-zero eigenvalue of G1. This may be rewritten after row

operations as

det G0 - c. X.I ; G- - X.I
2 i l J 1 i

G. - x.i; o
1 1 I

1

= 0

so that by Proposition 2.3, ci^^ ^s an eigenvalue of

G2 mod R(G1 - XI)
n(G1 - X±I) (5.5)

By Assumption 3, in analogy to Proposition (3.9) we have

R(GX - X± I) +T](G1 - Xi I) = ]Rm

so that there are as many eigenvalues to the operator in (5.5) as the dimension

of n(G1 - X± I).

5.1.2 Second Order: s = /-X.k + c. + 0(k~1/2).

c. are the solutions of
i
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det Gn - 2ciG2 G, - X±I
= 0, (5.6)

G« - X±I

Proposition 5. 1 (Formula for second order pivots)

The second order pivots c± corresponding to X. of (5.1), the co

efficient of a second order unbounded root locus are -rr— times the eigenvalues of
ZAi

(G3 -(G2 -X±I) G* (G2 -X±I)) mod(R(G2 -X±I)) modR(G1)
|n(G2 - XI) (5.7)

where (^ - X±I) := G2 - XI modR(G1)
n(G1)

Proof: (5.6) may be rewritten as :] v., v2, v3 6 R.m not all zero such that

G3 " ^i*!1 " 2ci(G2 " XiI) G2 - XlI ! Gi

G2 - X±I Gl 0

Gl 0 0

•

vl

V2

v3
_ _

= 0

(5.8)

Adding 2c. times the second row of (5.8) to the first row of (5.8) and then

subtracting 2c. times the third column of (5.8) from the second column of

(5.8) we have

det G3 - 2C.X.! j G2 - X.I ! 6X

G2-X.I j gx j 0
g ; o ; o

(5.7) now follows readily from (5.9).

= 0 (5.9)
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Comment: As before by Assumption 3, there are as many pivots as there are

X.'s for the second order unbounded root loci.

-1/31/3
5.1.3. Third order s = (-X.k) + c. + 0(k )

c. are the solutions of
l

det G4 " 3ci G3 G3" \±l
\ °Z ; Gi

G3 " h1 G2 1 Gl °i

G2 Gl i o 0

Gl 0 i o 0

= 0 (5.10)

Proposition 5.2 (Formula for third order pivots)

The third order pivots c. corresponding to X. of (5.1), the coefficient

of a third order unbounded root locus are -~t— times the eigenvalues of
i

G4 -(G3 -XtI) G+ G2 -G2 G+(G3 -X.I) +GG+G G+G
A. A.

modR(G1) modR(G2) mod R^-^I)
n(G3 - X±I)

where G3 - XI := G^ - XI modR(G1)modR(G2)

Proof: Exactly as in Proposition 5.1.

n(G2)

5.1.4 Higher order pivots s= (-X.k)1^1 + c. + 0(k"1^n)

(5.11)

The extension of the foregoing procedure to higher order pivots is exactly

as in Section 3.1 and is omitted.

5.2 Computation of the Pivots

The machinery introduced in Section 4 can be used to set up a procedure
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for the computation of the pivots involving essentially multiplying G0,

G3 " (G2 " Xil)Gl(G2 " XiI)j by U2 'U2 U2 » on the left and
1 12v2> V2 V2, ... on the right. The details are omitted.

Section 6. Concluding Remarks

The above calculations of the asymptotes of the unbounded root loci may be

applied to state a necessary and sufficient condition for the closed loop

exponential stability of a strictly proper linear time-invariant system under

arbitrarily high gain feedback k >_ k as follows:

Theorem 6.1 (High gain stability)

If the strictly proper, linear time-invariant plant G(s) satisfies

Assumptions 1,2,3; then the closed loop system of Figure 1 is exponentially

stable for all k ^ k with all closed loop eigenvalues uniformly

(for k 6 [k ,°°]) bounded away from the jco-axis for k >_ k , iff

(i) the McMillan zeros of G(s) are in the C_.

(ii) the non zero eigenvalues of G. are in C,

(iii) the eigenvalues of G2(modR(G-))l are real and positive

(iv) the pivots associated with each eigenvalue of G2(modR(G-))

have negative real part

(v) ]Rm=R(G1) +R(G2j ) .

Comments: (i) Condition (v) of the theorem guarantees that only first and

second order unbounded root loci exist.

n(Gx)
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(ii) Theorem 6.1 is the generalization to multi input - multi

output of a well known theorem for single-input, single output systems

(see [13]).

(iii) The proof is straight-forward from the preceding calculations.

The results of this paper are easily generalized to the case of proper

rather than strictly proper plants. The Taylor series about s = °° then is

G (s) = G0 + Gl + *' *•
s

and the calculations would begin with restriction in domain to ri (Gq) and

modR(G ) in the range.

The generalization to the case of proper irrational transfer functions

analytic outside a compact disc is also immediate. Note, however, that there

is no counterpart of the Smith McMillan theory of Section 3.2.

We have not investigated in our set-up the specialization of our computations

to asymptotic Linear Quadratic regulators (see for e.g. [14], [15], [16]).

-oOo-
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Figure 1. System configuration.
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