

Copyright © 1981, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

g

FINDING ALL SOLUTIONS OF

PIECEWISE-LINEAR EQUATIONS

by

Leon 0. Chua and Robin L. P. Ying

Memorandum No. UCB/ERL M81/54

23 July 1981

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

+

Finding All Solutions of Piecewise-Linear Equations

6

Leon 0. Chua and Robin L.P. Ying

ABSTRACT

A new algorithm is given for solving piecewise-linear equations of nonlinear

electronic circuits. Unlike other methods, this algorithm guarantees that a]J_

solutions will be found in a finite number of steps. The method depends

crucially on a recent development which allows a multi-dimensional piecewise-

linear function to be represented in a closed canonical form. This highly

compact representation requires only a minimum amount of computer storage and

is responsible for the efficiency of the algorithm.

t
Research supported in part by the Office of Naval Research under Contract
N00014-76-C-0572, by the National Science Foundation under Grants ECS 80-20-
640/ENG-7722745, and the Joint Services Electronics Program Contract F49620-79-C-0178.
§
The authors are with the Department of Electrical Engineering and Computer
Sciences and the Electronics Research Laboratory, University of California,
Berkeley, CA 94720.

1. INTRODUCTION

Nonlinear circuits exhibiting multiple equilibrium points (dc solutions)

are indispensable building blocks (e.g., flip flops) of many modern electronic

systems. Multi-valued circuits has received a great deal of attention recently

in view of its potential applications to VLSI circuits [1-6] where significantly

fewer wirings are required over conventional designs. The phenomenon of

multiple equilibrium points is also encountered in many physical devices [7-10]

and models [11-12].

Although many algorithms have been published over the past decade which

are capable of finding multiple solutions of nonlinear resistive circuits [13-20],

except for [13-14], none can guarantee that alj[solutions will be found. The

other algorithms will usually find only those solutions which fall on a certain

solution branch. Random searches will sometimes incover additional solutions

falling on other solution branches. However, these algorithms all share the

serious shortcoming that they can not guarantee that all solutions will be

found.

The algorithm described in [13-14] is an improved version of the brute-

force piecewise-linear combinatorial algorithm described in [21]. Unfortunately,

this algorithm is still quite inefficient and is difficult to implement in a

computer.

One objective in this paper is to describe a new algorithm which is more

efficient and more easily programmed. This algorithm takes advantage of a new

canonical representation for single- and multi-dimensional [23,24] piecewise

linear functions. It is applicable to any resistive circuit described by a

piecewise-linear hybrid equation to be described in Section 2. The algorithm is

derived in Section 3 with illustration example given in Section 4. The ill-

conditioned cases are analyzed in Section 5 along with remedies. Finally, the

computational efficiency of this algorithm is compared in Section 6 with the

brute-force combinatorial method.

2. PIECEWISE-LINEAR EQUATION FORMULATION

Let N denote any circuit made of linear, possibly coupled, resistive elements

(e.g., linear controlled sources, transformers, gyrators, etc.) and 2-terminal

nonlinear resistors. We assume the nonlinear resistors are either voltage or

current-controlled and are approximated by continuous piecewise-linear functions.

Hence the class of circuits we allow can be depicted as in Fig. 1, where all

nonlinear resistors have been extracted across a linear n-port N. Note that

In spite of the tremendous advances in the development of "computer circuit
analysis programs" over the last decade [14], MECA [22] remains the only existing
resistive circuit analysis program capable of finding all solutions.

-2-

since N may contain any type of linear controlled sources, and since most device

circuit models are made simply of 2-terminal nonlinear resistors and controlled

sources [14], most practical resistive circuits are allowed. In fact, using

the recent "decomposition theorem" in [25] which asserts that any multi-terminal

nonlinear resistor can be modeled in terms of a circuit made of only 2-terminal

nonlinear resistors and linear controlled sources, we can in principle allow

all resistive circuits provided certain preliminary transformations are

performed. In other words, there is little loss of generality in developing

algorithms for the class of circuits shown in Fig. 1.

The only additional assumption we make is that the linear n-port N in Fig. 1

has the following hybrid-representation:

ia ^
^aa Hab

i. *a
+

h

Lyb. „Sba ^bb. w .-Sb.
where

ya A Cv2

taiCV2 1/

Xb^tWi+2 •— */

(2.1)

anJ re "q" "I •

L-a ~bJ denote the source vector due to the independent sources. Efficient

computer methods for deriving (2.1) are given in [14]. Hence, we will simply

assume that (2.1) is given when describing our algorithm 1n Section 3. Note

that even in the few instances where N does not have a hybrid representation,

there exit many standard techniques for transforming the circuit N in Fig. 1

into an equivalent circuit N' such that the associated linear n-port N has a
hybrid representation (2.1). For example, one can always extract a small linear

resistor from any nonlinear resistor and imbed it into the linear n-port N.

Hence, the additional "hybrid-representation assumption" does not entail any
loss of generality.

Applying the canonical representation from [23], each (piecewise-linear)
voltage-controlled resistor can be described analytically by:

1k= ak+ Vk+ I, ckJ¥k|vk - Vk |, k= 1,2,••••* (2.2)

Similarly, each (piecewise-linear) current-controlled resistor can be described

by:

\= ak+ Vk+1|1 \\\ - v* k=i+1'4+2, ""n (2.3)

-3-

By defining

ya A[Vlv2 v/, vb A[v£+1v
1+2

.. -Jh^V^z •- ^ • ibA"Ci£+1i 1+2

.... Vn]

.... i f

we can combine (2.2) and (2.3) into a single vector equation

ia

*b
= a" +1'

*a

ib j=l 1=1 J1 a (*r *a

ib
V6ji

where

a- =[a,^ •— a^ •— an]T

B' = d1ag[b.,b2 •••• b^b^., •••• bR]

fv« . J= 1.2'.,""!.

(2.4)

6J1 = Ij^ . j = i+l» 4+2,••••n

and U.. 1s the jth unit vector In Kn, and <•,• >denotes the vector dot product.
From Fig. 1 we have vfc = vk, iV - i^, k= l,2,-"*n. Hence, we can equate

the right-hand sides of (2.1) and (2.4) to obtain the equation

n PJ
S+ §x + I I Sl1| <u.,x> -B.J =0

j=l i=i ~V J J1

where

x A

ib

a A a* -

Bi §' -

h

h

t!aa ^ab

Hba Hbb

Sjl A cjl Sj

-4-

(2.5)

If we relabel the double indices in the last term of (2.5), we can recast (2.5)

into the following canonical form [24]:

fW B I + fee + I c. |<a.,x> - &A = 0 (2.6)

where c. and $. denote simply c.. and £.. rewritten with new single indices

Note that

'"Uj »Js1.2,••••p1,

a. -

*J-< h j = p-j +19 ••••p^+pg

l«n •J=Pn-l+1* Pn-1+V
We have just proved that any piecewise-linear resistive circuit can be

described by a system of multi-dimensional piecewise-linear equations in the

canonical form (2.6). This compact equation contains only the minimum data

needed to specify the circuit. It is clearly far superior to the conventional

piecewise-linear approach where a linear equation must be specified and stored

in the computer for each region, along with its boundary.

Another noteworthy feature of (2.6) is the special form assumed by the unit

vectors a... Since each c^. is simply a "unit vector" along some coordinate
axis, each hyperplane

<31,x> = 3i » 2 IR

is perpendicular to a coordinate axis. Hence the set of "p" hyperplanes in

(2.6) partition the domain IRn of f(x) into a "rectangular lattice" whose
boundaries, are parallel to the coordinate axes. This remarkably simple

geometrical structure is responsible for the high efficiency of the algorithm
to be developed in the following sections.

3. ALGORITHM FOR FINDING ALL SOLUTIONS

We begin with a simple example which illustrates geometrically the basic
—

The enormous amount of data needed to be stored is in fact one of the most
objectionable features of conventional piecewise-linear analysis. This
objection is now overcome by representing the data by a compact canonical
equation.

-5-

idea behind the general algorithm to be presented in detail later.

Example 1.

Consider the simple circuit shown in Fig. 2(a). The v-i characteristics of

Rl and R2 are approximated by continuous piecewise-linear segments shown in

Fig. 2(b) and 2(c), respectively. Using the formulas in [20], Rl and R2 can

be expressed in the canonical form [20] as follow:

Rl: i^ =

R2: i2 =

4 4 vl

i +iv4 4 v2

f |vr2|+f |V5

T IV3

Applying KCL (i1=i2) and KVL t0 Fi9- 2(a)» we obtain

v-j + v2 + 21^ = 9

V] + v2 + 2i2 = 9

substituting (3.1) into (3.3), and (3.2) into (3.4), we obtain

•f +?vi+K-f lv2l+f lvr5l =0
-f +rvi+iv2-flv3l=0

This can be recast into the following canonical form:

£(v1v2) =

" 21 "
4

"7 1 "
4 2 Vl

" 3"
" 2

9

* 4

+
1 7

_2 4. -V2.
+

0

|vr2| +

3 0

4
|vr5| +

3
U "4

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

IV3|

(3.7)

Figure 2(e) shows that the domain of f is partitioned by the following three

1-dimensional hyperplanes (straight lines in this case) v-| = 2, v-j = 5, and
v2 = 3.

Note that they are parallel to either the v-j or v2 axis. Hence, the domain
of f in Fig. 2(e) is partitioned into a rectangular lattice with edges parallel

to the coordinate axis.

-6-

The image of the lattice in the range space of f(v-j,v2) is shown in
Fig. 2(f). Note that each of 3 regions bounded by c'a'd'. d'a'b'e' and e'b'f,

respectively, contains the origin of the range space as an interior point.

By the regionwise linearity of f, we can conclude immediately that the 3

corresponding regions in the domain bounded by cad (region R-j), dabe (region R2)
and cbf (region R3) contain solutions of (3.7)

Observe that since there are no other regions in the range space in Fig. 2(f)

which contain the origin, the regions in the domain which contain a solution

of (3.7) are precisely R-., R2, and Rg.
Since f(-) is an affine function in each region* we can simplify (3.7) into

a system of 2 linear equations for each of the 3 regions where f(«) has a

solution. For example, in region R,, (3.7) reduce to:

"5 1 "
2 2

1 5
.2 2_

Vl

-V2_

+

9"
" 2

9
" 2

=

0

0
f(v1v2) = Vv2€ Rl

solving (3.8), we obtain the following solution of (3.7) in region R,:

f3"
vl

=
2

3

LV2J _2_

Similarly, we obtain the following solution of (3.7):

Region R2: '1
Region R,:

(3.8)

r* -1 r 17 1
vi 3

*"

2LvzJ 3

The above three solutions can be easily verified by the load-line method

shown in Fig. 2(d) . Here, we combine the 2 nonlinear resistors into an

equivalent one-port described by the 3-segment driving-point plot shown in

Fig. 2(d) [21].

3.1. The n-dimensional case:

In Example 1, we use visual inspection to determine the regions whose

images contain the origin in the range space as an interior point. However,

in higher-dimensional cases (dimension ^ 3), visual inspection becomes
very awkward (dimension =3) or even impossible (dimension >3). We will now

develop an algorithm which will extend the preceding geometrical idea to the

-7-

arbitrary n-dimensional case.

Let f(«) be represented in the form of (2.6). The partition hyperplanes
associated with f(«) are determined by the set of equations:

hi^> ' 31 =0, i= 1,2, p (3.9)

Consider an arbitrary k-th hyperplane Hk defined by:

<ak,x> - 0k =0 (3.10)

In general, Hk will be further partitioned into several sections by other
hyperplanes which intersect it. We consider only one arbitrary section o o.

on Hk. (See Fig. 3(a).)
For x, € a o^t we expand the absolute value in the last term of (2.6) and

write f(-) as:

£(*) = ak +f. x (3.11)
a b a b

where x is subject to the constraint (3.10) and

P

§k =§+ I Si(+Pi) (3-12)
a b m

h =B+ I c.(+aj) (3.13)
Voh i=l 1 1

a d ...
i?*k

The choice of + sign in (3.12) and (3.13) depends on the sign of the arguments

<a..,x> - &., i = 1,2,.-..p.

Assuming BY exists, we get from (3.11)

a b

S=Bk"1 f(x)-a. (3.14)

Vbl "aaab

3
A section of the k-th hyperplane Hk is a subset of Hk such that for all x in
this subset, sgn(<g_.»x>-3.-), i= 1,!,••• »p, i f k do not change sign.
4
The term involving i = k drops out in view of (3.10).

-8-

Substituting (3.14) into (3.10), we get

7T-1

or

Sk'Bk
Vb

f(x)-ak
1 VbJ

<ak ,y> - 3k =0
aaab Vb

-\-°

where

y = f(*)

v „ =̂ k"1 „)T *k
aaab aaab

6k =3k+<^
Vb

»§k >
a b a b

(3.15)

(3.16)

(3.17)

Let a1a! denotes the image of a section a ov of Hk, then (3.15) is the
representation of o'oi in the range space of f.

In Fig.3(a),let Ra and R. denote the neighborhood regions separated by
a o^ and let x and x^ denote arbitrary interior points of Ra and R^ respectively.
Let their images in the range space of f be R', RL, y and y. respectively

(see Fig. 3(b)).

Assuming that f is not degenerate (i.e. det EL f 0) in either R. or

Vb
Ru, then yfl and y. will be interior points of R' and Rl respectively. The
following sign test allows us to determine whether the origin in the range

space lies on the same side of olal with y„:
a d la

Sign test:

y. and the origin lie on the same side of
a b

if and only if

sgn(<a

aaab
- 6k)

Vb

=sgn(-Bk)
Vb

(3.18)

where a/ and

jb

BA are defined

aaab

in (3.16) and (3.17) respectively.

Proof of the sign test:

Since f is piecewise-linear and since f is assumed to be nondegenerate

-9-

in the neighborhood regions of o o^9 the image gr'a/ is a portion of a linear
hyperplane represented by <ak ,y> - ej, = 0. Therefore ya and the origin

Vb Vb

lie on the same side of olal if and only if
a d

sgn(<a/ ,y >- 3') = sgn(<ct/, ,0> - 0')

Vb Vb Vb~ Vb

=sgn(-6^ ^)

which is exactly (3.18). n

Vb

In order to conclude region R* contains the origin, we need to perform
a

the sign test on all boundaries of R'. Hence we have the following necessary
a

condition:

Solution Validation Test:

If the sign test fail

contains no solution of (2.6).

If the sign test fails on any one of the boundaries of R', then R_
a a

The above test allows us to discard a region once the sign test fails on

any one of its boundaries. Therefore, carrying out the sign test over all

partition hyperplanes defined by (2.6) will allow us to identify all regions

which contain a solution of (2.6). Hence this approach guarantees that all

solutions of (2.6) will be found.

3.2. Efficient implementation of the sign test

Although the theory behind the sign test is quite simple, its practical

implementation is extremely time consuming for arbitrary piecewise-linear

equations, i.e., when f(-) in (2.6) is arbitrary. However, for the subclass

of piecewise-linear equations representing the hybrid equations derived in

section 1, the unit vectors a., i = l,2,«...p»assume a particular simple form.

In this section, we will exploit this special structure to develop an efficient

algorithm for carrying out the sign test.

We will use the following 3-dimensional example as a vehicle to describe

the algorithm.

A. Example 2.

Consider the circuit shown in Fig. 4(a). Piecewise-linear resistors Rl

and R3 are voltage controlled; their v-i characteristics are shown in Figs. 4(b)

-10-

and 4(d) respectively. Piecewise-linear resistor R2 is current controlled; its

v-i characteristic is shown in Fig. 4(c). Extracting Rl, R2, R3 as external

ports, we obtain the following hybrid representation for the remaining linear

3-port:

*1
v2 =

*3

1 1 1

0 1 1

0 0-1

rl
-5

-5

5

(3.19)

Substituting the equations for Rl, R2 and R3 into (3.19), we obtain the

following system of 3 piecewise-linear equations:

||V6| -f |vr6| -v, +i2 +v3-5

£|12+ll "ilV5! - *2 +v3-5

v3 - f IV1' +2 lv3"2l " lv3"3l ="v3 +5

These equations can be recast into the following canonical form:

-5

-5

5

where

x =

1 1 1

0 T 1

0 0-2

x +

|<a3,x> + 1| +

0

0

-2

l<S6»x>- 2| +

|<grx> + 61 +

|<a4,x> - 5| +

l<S7»*>- 3I =

5

L4 J

0

0

0

|<a2,x> - 61

|<a5,x> - 1

» a-i = a2 = » «3 = «4 and
»5 = »6 = »7

-11-

(3.20)

3
The domain IR is partitioned by 7 hyperplanes h,,h2...«hy into 36

regions as shown in Fig. 5(a). For example, hyperplane h, is described by

<a-i,x> + 6 = 0. Note that the special structure of a. guarantees that the

hyperplanes along each coordinate axis are parallel to each other. Now, a

brute force implementation of the sign test will require solving for al

Vb
using (3.16),and 3k using (3.17),over all regions. The calculation of

Vb
a! is particularly time consuming because it involves solving a system of

a d

linear equations of order n.

However, by taking advantage of the special structure of (3.20), the

total number of a! and 3I that needs to be computed can be greatly

Vb Vb
reduced in view of the following observations:

B. 5 observations

Observation 1:

Consider the center section defined by the rectangle abed of h5 in
Fig. 5(b). Let a'b'c'd' denote the image of abed in the range space and let

etc be the normal vector of a'b'c'd'. Since abed serves as a boundary for

region 5 as well as for region 14, we can use otg for two sign tests. Therefore
for each ak computed by (3.16), we can perform the sign test on two adjacent
regions.

Observation 2:

For hyperplane hg in Fig. 5(c) and h7 in Fig. 5(d), let e'f'g'h'
and p'q'r's' denote the images of sections efgh and pqrs in the range space

respectively. Let aJ- and a23 denote the normal vector of e'f'g'h' and p'q'r's'
respectively. In Fig. 5(a), hyperplanes hg, hg, h7 are parallel, therefore
a,- and oj23 should also be parallel to ai. Consider a23, by the parallelism,
there exists a constant t t 0, such that

tS23 =S^ (3-21)

To determine t, we observe from (3.16) and Fig. 5(d) that

223=<§23>T37 (3"22)

Now in (3.20), we have otg = ou = (3.23)

-12-

Substituting (3.22) and (3.23) into (3.21), we get

(3.24)(?23>T «5 =t?5 =t

Hence, t can be determined by computing the vector dot product between the

previously calculated al and the last column of f23. To implement the sigh test on
region 23, we also need to calculate 323- By (3.17), we have

e23 =623 +(S23'S23> (3'25)

The set of y in the image p'q'r's' must satisfy the equation:

<a£3,y> -3£3 =0 (3.26)

Multiplying (3.25) and (3.26) by t and using (3.21), we obtain

t3£3 =t323 +<a',a23> (3.27)

and

<a',y> -t3£3 =0 (3.28)

It follows from (3.28) that we can use gi instead of g23 in the sign test for
region 23 provided we use t323 from (3.27) instead of 323 at same time. Note
that (3.27) and (3-28) do not involve g23. Hence, we have replaced the expensive
task of solving a linear system by the simple task of computing a vector dot

product via (3.24). Likewise, we have eliminated the task of calculating anew

vector by simply rescaling a scalar via (3.27) and (3.28). Note also that we need

only one column of f23 instead of the whole matrix for calculating t via (3.24).
It follows from the above observation and Figs. 5(b)-5(e) that only 9 normal

vectors (corresponding to the 9 sections comprising he) are needed to perform

the sign tests for all regions associated with the group of 3 parallel hyperplanes

h5,h 6, h7.

Observation 3 :

Since Observation 2 shows that the number of normal vectors aj"
a o

that must be calculated by solving a linear system of equations (hence

inefficient) is equal to the number of sections of the associated hyperplane,

significant amount of computation time can be saved by choosing a hyperplane

-13-

having the smallest number of sections.

For example, in Fig. 4(a), hyperplanes h-p h2, h3 and h4 have 12 sections
each, whereas hyperplanes h5, h^, and hy have only 9 sections each. In this
case, we would pick hg, or any hyperplane parallel to hg (hg or h7).

In the general case of (2.6), we let k. > 0 denote the number of "parallel"
5

hyperplanes intersecting the x- axis. Hence the set of all hyperplanes

associated with (2.6) is subdivided into "n" groups corresponding to the "n"

variables x-j, x2, ..., xn- All hyperplanes belonging to a given group j contains
the same number "N^" of sections, where

n

N. = n (k.+l) (3.29)
J i=l q

1«

Hence, we simply pick a group "k" which contains the smallest number of sections;

namely,

N. = min N. (3.30)
K l<j<n J

Observation 4:

Since each normal vector can be used to check the sign test for two

adjacent regions (Observation 1) we need only calculate 3' (as described in

Observation 2) for sections lying on every second parallel hyperplane.

For example, if we start with hyperplane he in Fig. 4(b), then it is not

necessary to calculate 3' for any of the sections comprising hyperplane hg. In
this case, 3* needs to be calculated only for corresponding sections on

hyperplanes h5 and h7, using the efficient technique described in Observation 2.

Observation 5:

To implement the sign test in each region R.-, we must locate an

interior point x* e R.. and calculate y* = f(x*) using (3.11). Since all hyper-

planes intersecting a coordinate axis x. orthogonally are parallel to each other,

x* can be trivially chosen to be the mid point within each "bounded" region.

For example, to find x«3 for region R23 in Fig. 4(d), we note R23 is bounded by
h-, (x, = 3-j) and h« (x2 = 32) in the x,-direction; by h3 (x2 = 33) and
h4 (x2 = 34) in the x2~direction; by hg (x3 = 3g) and h7 (x3 = 37) in the
"5
k = 0 if x does not appear within the absolute value signs in (2.6). In terms

of the network in Fig. 1, this corresponds to the degenerate case where port
"i" is terminated by a linear resistor.

-14-

x3-direction. Hence, we simply choose

-23 I (»3+64)

\ (6-6)

| (5+1)

\ (3+2)

For unbounded regions, we simply add or subtract the boundary coordinate by

a convenient number. For example, to find x3 for region R3 in Fig. 4(b), we
note that R3 lies to the right of h2(x, = 32) in the x,-direction; above h3(x2
= 33) in the x2-direction, and below hg (x3 = 3c) in the x3-direction. Hence,
a convenient choice of x3 is:

B2+l 6+1 7

hA = -1-1 = -2

.V1. 1-1 0

x3 =

C. Bookkeeping Scheme

In order to take full advantage of the above observations, it is essential

to develop an efficient bookkeeping scheme. Again, we will use the example

in Fig. 4(a) as a vehicle to illustrate our bookkeeping technique:

We use 3 lists to keep track of regions. Before the "iteration process"

starts, the first list WQ contains all 36 regions; the second list Ws (solution
list) and the third list W, (working list) are both initially empty. Having

chosen hg (Observation 4), we begin the iteration by listing all "neighborhood"
regions of hg belonging to WQ u ws into W,; namely,

W1 = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18}

Next, we compute 9 g's and 3's (corresponding to the 9 sections 1,2,...9

in hg) and carry out the sign tests for regions 1,2,...18. If a region in W-j
passes the test, it is put into Ws; otherwise it is discarded.

For this example, all 18 regions failed the sign test. Hence, we set

Wg = empty set and put the remaining regions (19,20,...36) into WQ.
Next, we move to h7 with W, containing regions 19 through 36. Now we

only need to compute 9 t3's (recall Observation 2) to accomplish the sign tests.
6
The "iteration process" here means "computing a', 3' and performing the sign
test on related regions.

-15-

In this case, only regions 19,20,...27 pass the sign test and we write

W.$ = {19,20,21,22,23,24,25,26,27} and WQ is now empty.

Since W contains neighborhood regions of hg, we return to hg to calculate
the "9" associated t3's needed to carry out the sign test. In this case, we found

Ws stays the same.
Having exhausted all hyperplanes in group 3, we proceed to the next group

of hyperplanes having the smallest N. (recall Observation 2). In this case, we
j

can pick either group 1 or group2 (since N-j = N2 = 12) and then repeat the
iteration. We picked h-j from group 1 and put its neighboring regions contained
within Ws into W^ namely, W^ = {19,20,22,23,25,26}.

We calculate 3 more normal vectors to the 3 sections in h-. (see Fig. 4(d))

by calculating 3 new g's and 3's. The resulting sign tests show W remained

unchanged. Weproceed to h2 and put W1 = {21,24,27,20,23*26} (see Fig. 4(d)).
Again, we need to calculate 3 more normal vectors to h2 by calculating 3 more
t3's. Again the resulting sign tests show W remained unchanged.

We proceed next to h3 with W-j = {19,20,21,22,23,24} (see Fig. 4(d)). We
calculated 3 new g's and 3's to implement the sign tests. The result shows

regions 19,20,21 failed the test and these regions are discarded from Ws. Hence
the new Ws is {22,23,24,25,26,27}.

We proceed to h- with W-j = {22,23,24,25,26} and after the sign test, we
found Ws = {22,23,24}.

Having exhausted all hyperplanes at this point, the iteration is terminated

with the conclusion that (3.20) has exactly 3 solutions corresponding to the

3 regions 22,23, and 23 left in Ws-
Finally, using equations (A.2) and (A.3) from Appendix to compute the

Jacobians and offset vectors for these regions, we obtain the following

solutions:

Region 22 RecIion 23 Region 24

vi
r 1511
15 vl

" 1 "
10 vi

"149 "
15

'2 =

11

5
9 12

=
11

5
» h s

11

5

v3
43

15 v3
43

15 v3
43

15

To summarize, we need only solve a total of 9+3+3 = 15 systems of linear

equations compared to the 36 needed in the "brute force" method. The additional

-16-

computation needed to carry out the sign tests is generally insignificant compared

to that of solving systems of new linear equations repeatedly, especially when

k- » 1 for all i = l,2,*--,n. In other words, we expect the efficiency of our

algorithm to increase as the number of segments per piecewise-linear resistor

increases.

3.3. The algorithm

We now summarize our discussions in the previous sections and state the

complete algorithm formally for the most general case.

Assume all coefficients in equation (2.6) are given.

Step 0 (initialization)

(1) Let k. denote the number of parallel hyperplanes orthogonal to coordinate

axis x. where k. >. 0, i = l,2,..*n, compute.

n

N. = n (k.+l) i = 1,2,••••n (3.31)
0 i=l 1

Reorder the index j so that N-j < N2 £ •••• < N

(2) In each group j, reorder the indices in {0..|i = l,2,...«k.} so that

Sjl <6j2 < —• < ejkj-

Comment: We assume all hyperplanes are distinct. This implies that all 3^-
are different.

Let h«. be the hyperplane which corresponds to 3,-,-. Rearrange the hyperplanes
j i j i

in alternating order:

hjl' nj3* nj5' '•- hj2> hj4' •"•
n

Label all hyperplanes from 1 to p where p = J k. so that
1=1 1

hl = hll' n2 = n13' *••• hp =hpkn '

(3) Let Wq denote a list which contains all regions, and let W denote a list
which is initially empty.

Set i = 1, go to step 1.

Step 1.

Form a sublist W-j of WQ u w such that W, contains all neighborhood regions
of the i-th hyperplane in WQ u w$. Replace WQ by WQ - W-j and Ws by Ws - W-j,

-17-

where "-" denotes the usual set difference. Let m be the total number of regions
in W-j.

Step 2

If m = 0, go to step 5; otherwise pick an arbitrary region R from W, and

consider the section a of the i-th hyperplane such that a is the boundary of
region R. Find whether gj has previously been computed by checking the parallel
sections in the parallel hyperplane group where i-th hyperplane belongs. If

gi has been computed, then compute t3j for the section a using the technique
described in (3.24) and (3.28); otherwise compute a} and 3'. using (3.16) and
(3.17) respectively and store the computed g!. Go to step 3.

Step 3

Pick an arbitrary point x in the interior of region R and compute

y = f(x). Perform the sign test (3.18) on region R. If the result is true,

put R on list Ws; otherwise discard region R. Decrease m by 1, go to step 4.

Step 4

Search in the list W-j the neighborhood region R of Rwhich share the same
boundary a. If it exists, repeat step 3 for R and decrease m by 1. Go to Step 2.

Step 5

Increment i by 1. If i < p, then go to step 1, otherwise go to step 6.

Step 6

If list Ws is empty, then (2.6) has no solution; otherwise for each region
in W$, compute the Jacobian matrix J and the offset vector s using equation
(A.2) and (A.3) in the Appendix respectively. The solution in the region is
then given by -J" s.

4. ILLUSTRATIVE EXAMPLES:

We have programmed the algorithm described in section 3.3 using the "C

programming language" on a PDP-11/780 VAX computer running a UNIX time-sharing

operating system. The following examples are generated using this program.

Example 3.

Consider the same circuit shown in Fig. 1(a) except that Rl and R2 are

represented by (4.1) and (4.2), respectively.

7PDP and VAX are Trademarks of the Digital Co., UNIX is aTrademark of Bell
Laboratories.

-18-

125 +9 +7 . +1. 3 | 2. +3 ,5, . 1 , u{ , , 13[+2> 15
nl = " "8" r 8 ¥1 '" 8 |¥1 2 |V1 4 |V1 8 »vl

9
8 |V1

j2 =f +I V2 "I lV2+8l +! IV2+5I • I lv2+3l +I lV2+11 "! IV3I "I IV8I
+f |vr10| +|v2-13| - f |v2-16| +\ |v2-18| (4.2)

The associated circuit equations can be expressed in the following canonical

form:

f(x) -

where

x A

'- 161 " "13 1 "
8

+
8 2

11 1
2

4 _ 2

16

x + I c. |<a.,x> - 3,-| =
1=1 1 1 ~

-i
= mLoJ for i = 1,2,..".6 and a. •[?] for i = 7,8,«...16

£1

£6

Sll

-16

•7" 3" "3" " l"
8 " 2 4 " 8

,0_ • ^2 = 0_ ' S3 = _0_ • Hs 0_

"2" 0" '0" " 0"

0
' $7 = 3

_" 2.
» $8 = 3

2
• $9 = 3

" 2

» £12 • -13 • -14

•£5 =

5:10

» Sl5

(4.3)

3-, » -1. 32 = 2, - 33 » 5, 34 » H. 35 * 13, 3g = 15, 37 » -8, 3Q = -5

39 =-3, 310 ="1» &n = 3> 312 =8> 013 = 10» Bi4 = 13» 315 =16, 316 =18
2

Note that the domain IR is partitioned into 77 regions by 6 parallel

1-dimensional hyperplanes (vertical lines) H-j,H2,...,Hg along the x^-axis, and

-19-

1

(4.1)

by 10 parallel hyperplanes (Horizontal lines) H7,Hg,".,H.|g along the x2-axis,
as shown in Fig. 6. Hence k-j = 6, k2 = 10 and N, = 11, N2 =7 in (3.29). We
arrange the hyperplanes in the following alternating order:

"LHy»Hq9H-.-. »^i3»^ic9Hg,H,Q,H-j2,H-i *,H-jg,Hi »H3»Hg,H2,H*,Hg}
V ^ J I ^ J
first parallel hyperplane group second parallel

hyperplane group

This completes the initialization step. We also label the regions from R, to

Rjy in (Fig. 6) for easy identification.
We start the sign test in the neighborhood regions of Hy, namely; R-j

through R,,. Since none of the regions passes the test, they are deleted. We

note that H7 was partitioned into 7 sections by H, through Hg. So we have
computed 7 als to accomplish the sign test.

Next, we perform the sign test on the neighborhood regions of Hg, which are
R-jg through R2«. Note that we need not compute any new c^ since Hg is parallel
to Hy. Test results showed R2Q, R2,, R27 and R2« were put in set Wg.

Continuing the iteration on H^, we found regions R2g through R35 were put
in set W$; on H-jg, regions Rg7 through Rg3 were put in Wg. At the end of
iteration on H,g, WQ contains Ry, through R77 and W contains the following
regions:

{R20'R21,R27'R28'R29,R30,R31»R32,R33,R34,R35,R57'R58sR59,R60,R61,R62,R63}

We continue to iterate on Hg through H,g, and eliminated R2,, R2g, R2g, R3g,
R57, RgQ, Rg0 and Rg3 from Wg, and R71 through R77 from WQ. At the end of
iteration on the first parallel hyperplane group, WQ is empty (i.e., we have
scanned all regions once) and W contains the following regions:

{R20,R27,R30,R31»R32»R33»R34»R58»R61,R62*

Note that these are the only regions left to be tested in the second

parallel hyperplane group.

The first hyperplane in the second parallel group.is H-,. Since WQ is now an
empty set,the only neighborhood regions of H, on WQ u wg are R3Q and Rgg.
Therefore we need only to compute 2 new o^s.

-20-

Note that the a! calculated for the section serving as boundary of R3Q can

be used for R3, through R3-. Similarly, the a! calculated for the section
serving as boundary of RgQ can be used for Rgl and Rg2. Therefore, for all
sections of the hyperplanes in the second group, only 3 new a^s need to be
calculated (the third one was for R20).

At the end of iteration on the second parallel group, W$ contains R3Q, R31
3

and R32, and step 6 gives the following three solutions:
17

R3,, and in R
32

1
3

2

in R
30•[!]-»

Remark:

To help us keep track of the results of the sign test.some regions in Fig. 6

are marked with one or more asterisks. A "*" near a boundary means the sign test
g

associated with that boundary in the region is "positive". For example, in

region R33, three *'s are marked close to the boundaries H-j-j, H-jq and Hg. This
means that for boundaries H^, H1Q and Hg, the results of the sign test are all
positive. However, since there is no * for H^, the sign test is negative there.
Hence, R33 contains no solution of (4.3).

Example 4.

Consider the four-transistor multi-state circuit shown in Fig. 7(a) [15].

Each transistor is modeled by a controlled source in series with a p-n junction

diode as shown in Fig. 7(b). The diode Ip-Vp characteristic is approximated by
a continuous piecewise-linear function with two segments as shown in Fig. 7(c).

The canonical representation of the piecewise-linear function is:

,-2 -2.ID = f(vD) =-1.29052x10"* +3.9708313x10"SD + 3.9708313 |vD-0.325|

The associated circuit equations can be expressed in the following canonical

form:

f(x) -

-1.27712

-1.69119
-1.27712
-1.67119

2.42347 1.18058 0 0
1.47556 2.62869 0.28796 0.19854

0 0 2.42347 1.18058
0.28796 0.19854 1.47556 2.62859

(4.4)

8For simplicity, we say that sign test is positive for a given section a if
(3.18) holds in a. Otherwise, it is negative.

-21-

+ I St I<2r5>- B,]
i=l

where

x A

Si =

VD1
VD2
VD3 * 2f'1 =

"1 "

0

0 • ?2 =

"0"

1

0 • 53 =

"0"

0

1 » S4 =

"0"

0

0 >

LVl _0_ ,0_ m0m J_

"2.42:
1.421

0
0.277

J47"
56

r96_
>h1 s

"1.13692'
2.62869

0
0.19854

» £'3 a

" 0
0.27796
2.42347
1.42156

' £4 s

" 0 "
0.19854
1.13692
2.62869

B-, ° 32 » 33 = 34 = 0.325.

Using our program, all nine solutions of the circuit are found and the result

is listed in Table 1.

The number of regions eliminated by the sign test does not look impressive

in this example because we have approximated each diode by only 2 segments so

that the reader can check the results manually. However, the efficiency of our

algorithm becomes apparent as we increase the number of segments of the piecewise-

linear characteristic, as shown in Figs. 7(<j)-7(g) for 3,4,5 and 6 segments

respectively.

The calculations corresponding to different number of breakpoints (Column 1)

and segments (Column 2) is summarized in Table 2. Note that for large k.-, the

number of linear system of equations that must be solved using our algorithm is

significally smaller than that of using the "brute-force" combinatorial-method; namely,
n

II (k-+l). Note that the higher k. is, the more efficient our algorithm becomes.
i=l 1 1

5. ANALYSIS OF ILL-CONDITIONED CASES

So far we have assumed that system (2.6) behaves rather well in the sense

that the algorithm can be carried out without difficulty. For example, the

matrix B^ in (3.13) is assumed to be nonsingular; and the scalar 3£ in (3.18)
Vb aaab

is assumed to be nonzero, etc. But this may not be true in general.

In this section, we will exhibit some ill-conditioned examples where the

above assumptions are violated so that the sign test can not be performed.

-22-

We will analyze these ill-conditioned cases in detail and offer a remedy in

each case.

5.1. Ill-conditioned case 1: matrix B, is singular (Example 5)

aaab
Consider the circuit shown in Fig. 8(a). Both Rl and R2 are voltage-

controlled with constitutive relation i- = g(v_-)» j = 1,2, where g(«) is shown

in Fig. 8(b). The circuit equation can be expressed in the following canonical

form:

f(x) =

5
" 2 1 0

1
" 2

5
" 2

+

0 1
x +

0

|<g3,x> - 1| +

|<g.,,x> - 1| +

l<24,x>- 2| =

where x A Sh = 9f? = and ou = a* =

|<g2,x> - 2

(5.1)

The partition in the domain of f(«) and its image in the range space are shown

in Figs. 8(c) and 8(d) respectively. The singularity of matrices f«c, f«B, BgD,
and Bpp give rise to the following degenerate behavior: the interiors of regions

R2* R4' R5' R6 and R8 as we^ as tneir boundaries AB, AC, BD and CD have shrunk
into a single point P in the range space. Since point P does not coincide with

the origin in the range space, there is no solution of (5.1) in these degenerate

regions.

However, the sign test is applicable in the 4 corner regions and the test

results show that region Rg contains a solution of (5.1). This conclusion can
also be verified by inspection of Fig. 8(d), where the image of Rg is the only
region which contains the origin. The corresponding solution is

rl

This example suggests the following method for overcoming "ill-conditioned

case 1:" If we encounter a singular IV , consider instead the equation

°aab

-23-

h * + Sk = ° (5.2)
Vb Vb

where ?k is computed from (3.12). Using standard techniques from linear
a b __ __

system theory [26], determine if a. is in the range space of B. . If it

" aaab ~aaab
is, then all solutions of (5.2) lying within the definition of regions RQ and Rb
(referring to Fig. 3(a)) are solutions of (2.6). This unusual situation

corresponds to the case where point p in Fig. 8(d) coincides with the origin.

On the other hand, if a. is not in the range space of \ , then
a ov a oy
a b a b

(2.6) has no solution in regions R and Rfa. This situation corresponds to the
case in Fig. 8(d) where point-p does not coincide with the origin.

For efficient computer implementations we will now derive a useful

Property for checking the singularity of \ . Although matrix B. is a
aaab aaab

constant matrix, it is obtained from (2.6) by restricting xei to certain

section a a^ (i.e., equation (3.13) in agiven region. In fact, fk is just
_ a b

the Jacobian matrix of f(*) evaluated in section <r o\ # Since B. will vary

~ aaab
from one section to another; let us write B. as follows:

~ aaab
Ik mitW\^a (5.2)

a^ov • a d
a b

Note that if we let (g^x) - 3k =0 in (2.6) before we compute the Jacobian
matrices of f(-) in regions Ra and Ru (Fig. 3(a)), then the results will be
-alxQj a and ~blx&j a 'respectively. Since f(*) is continuous, we must
, '*" ,aib <i'i ab •£•have Ja L~ „ = Jh LJ* ~ = B.

1 a b ' a b o\a.

Since o a. is of 1 lower dimension than IR , we have

null(fk)c null(Ja) n null(Jb) (5.3)
~ aaab

where null(«) denotes "the null space of" (•). We can interpret (5.3) as follow:

Property 1.

For any continuous piecewise-linear function f(*), if det dx JW|*Vb = 0

-24-

then, using the notation of Fig. 3(a), £(•) is singular in both R, and R2.
Property 1 implies that if det J t 0 or det JK f 0, then det F. f 0.

aaab
To illustrate the application of this property, consider the regions in

Fig. 8(c). Since fAC, JAB, fBD and §CD are singular, by Property 1, J2, J4,
Jg, Jg and Jg must also be singular, as is easily verified by inspection of the
Jacobian matrix in each region of Fig. 8(c). On the other hand, since Jg is
nonsingular (as well as Ji, J3 and J7), it follows from Property 1 that
8DC, BDp (as well as §Aa, JAb, JBc, JBd,]L and |L)must also be nonsingular.
This conclusion allows our program to perform the sign test in regions Rg (as
well as in R-., R3 and R7).

5.2. m-Conditioned Case 2 (Xgj" ,ya> - 3£ =n) and 111-Conditioned
a b a b

Case 3 (£' * 0)

. a b

From here on, we assume that matrix B. is nonsingular, and that we have

~Vb
computed a! and 3^ from (3.16) and (3.17) respectively. Consider

"Vb Vb
Figs. 3(a) and 3(b), let

<Sk »y>=Bk (5.4)
aaab aaab

denote the equation of the hyperplane containing the section a'g^ in the range
space. Let x_ be an arbitrary interior point in region Ra and let ya = f(xj.

a a ^a "" ""«

Let J_ denote the Jacobian matrix of f(-) in region Ra.

Property 2.

det Ja = 0 if and only if

K .y,>aBi (5.5)^k_ _ '£a' pk

Proof:

aaab aaab

Necessity (only if): If det J = 0,then the interior of Ra collapses into its
boundaries. The degree of degeneration,depends on the rank of Ja, and the highest
dimension of Ri can not exceed n-1 where n is the dimension of Ja.

a -a

-25-

Sufficiency (if): Let <ak,x> = 3k be the equation of the hyperplane in
the domain containing aa.. Write f(x) = J x + sa for x6R, and suppose that

det Ja f 0.

Since o^o^ is a subset of Ra and f(«) is continuous, we can rederive
equation (3.16) and (3.17) with Ja in place of "B. and sa in place of a,

Thus we have Vb

Vb

Vb Vb

Substituting v by J.x + s. and BJ, by (5.7), equation (5.5) becomes
—a ~a "*a k_ _

aaab

<a'*k n -*a~a ~a
aaab

^a+s,>=^+<g' ,s>
aaab

Cancelling <a/ ,s > from both sides, we get << ,J,x, >= Bi,» or

Vb a b

<&k >V =ek
Vb

Vb

(5.6)

(5.7)

J.,But (5.6) implies J g/ =g. . Therefore we have <a. ,x >= 3k» which is
a b

absurd since x was assumed to be an interior point in R . Hence we must have

det Ja = 0. n

Example 6.

Consider the circuit shown in Fig. 9(a). Let Rl and R2 be the same as in

Example 4. The circuit equation can be expressed in the following canonical form:

f(5) -

' 5"
" 2

5
" 2

+

2 1

1 2

x +

" 1 "
" 2

0

|<g3,x> - 11 +

|<grX> - 1| +

l<S4>x>- 2| =

-26-

|<a2,x>- 2|

(5.8)

The partition in the domain of f(») and its image in the range space are shown

in Figs. 9(b) and 9(c) respectively. Note that ill-conditioned case 2 manifests

itself in Fig. 9(c) with region Rg degenerating into the line segment A'D'. This
ill-conditioning follows of course from Property 2, since det Jg = 0.

In general, if ill-conditioned case 2 occurs, we need to examine the value

of*k
Vb
If 3/, t 0, which is geometrically related to the fact that the hyperplane

a b

in the range space containing o'^o^ (Fig. 3(a)) does not pass through the origin,
there is no solution in a ov or in its degenerate neighborhood region.

If 3J, = 0 (i.e., ill-conditioned case 3), the hyperplane in the range

ab

space containing a'o^ must pass through the origin. In this case, we need to
consider the following subcases:

Case a: J, or J. or both are singular.
~fl ~o

If J, is singular, form a set W, A {x € IRn|Jx + s, = 0}. (s. is calculated
Using (A.3) in the Appendix), men all x6N, n R are solutions of

~ a
(2.6).

If Jb is singular, form Wj A{x e IRn|Jbx +sfa =0} and all x. eWj nRfa
b b

will be solutions of (2.6).

Case b. Both J and Jb are nonsingular.
Solve (5.2) directly to obtain x* = -IT1 a. (recall that by

__ a b a b
Property 1, B. is nonsingular). If x* e ^a^b> then it is the solution of

~Vb
(2.6). Otherwise, continuity of £(•) implies that (2.6) has no solution on

Vb' as we^ as ln eitner Ra or Rb*
Let us illustrate the above method using Example 6. Since Jc is singular,

2we form (case a) Wj = {x e IR |x1 + x2 -1 = 0}. Since Wj n Rg = empty set,
there is no solution of (5.8) in Rg. This can also be verified graphically
in Fig. 9(c). Note that even though the line containing segment A'D' passes

through the origin, segment A'D' itself does not contain the origin.

The sign test remains valid in the remaining regions. The resulting

calculation shows that (5.8) has a single solution

vi

v2

, which is located in region R-,

-27-

In the next example, we will show a similar case where 3k = 0. However,

this time the circuit exhibits infinitely many solutions.
Vb

Example 7.

Consider again the simple circuit shown in Fig. 2(a). Let Rl and R2 be

the same as in Example 1, but the value of the linear resistor is changed from

2Q, to 0.5 Q and the value of the dc voltage source is changed from 9v to 6v (see

Fig. 10(a)). Now the load line formed by the linear resistor and the dc voltage

source coincides with the middle segment of the driving-point plot of the one

port made up of the series connection of Rl and R2 (see Fig. 10(b)). Therefore

the circuit must have infinitely many solutions. The circuit equation is

expressed in the following canonical form:

!(*)-

" 39"
" 8

+
\ 1¥1

x +

0

3
5 5 • 3

2

|<g3,x> - 31 =

|<grx> - 2| + |<»2»x> - 5|

The partition in the domain of f(«) and its image in the range space are shown

in Figs. 10(c) and 10(d) respectively.

Note that (5.5) holds in this case because region R« degenerates into a

half line A'b' (or equivalently B'c') in the range space. Now since J2 is
singular, we form

Wj A{x eIR2|J2x +s2 =0} ={x eir2|Xi +2x2 -6=0}

and Wj n r2 ={x e jr^|x =
6 2

» 2<q<5, qSlR}. Therefore, the

solutions of (5.9) are given by

3-3.6 2

,2£q<5, qSIR

This is shown in the shaded region (including the boundaries) in Fig. 10(c)

-28-

6. Computational Efficiency

We will discuss the computational efficiency of our algorithm in this

section. First, we assume the given system (2.6) is well-behaved so that we

can exclude ill-conditioned cases. Then we will compare the efficiency of our

algorithm with that of the "brute-force" combinatorial algorithm [14], where

Jx + s = 0, must be solved in each region. A reasonable figure of merit to be

used in the comparison is the total number of linear systems of equations needed

to be solved until all solutions are found.

Let n be the number of parallel hyperplane groups. Let k.,i = l,2,...n,

be the number of parallel hyperplanes in the i-th group. Then the total number

of linear systems needed to be solved in the "brute-force" combinatorial

algorithm is equal to the total number of regions; namely,

n (k-.+l) (6.1)
i=l

For the algorithm stated in section 3.3, the number for the worst case is

found to be

n

I N_. + total number of solutions (6.2)
j-l °

where N. is defined in (3.29) or (3.31).
j

For circuits exhibiting multiple solutions, the exact number of solutions

is usually impossible to predict. Indeed, comparing Example 7 with Example 1,

we note that as we change the value of the linear resistor and the constant

voltage source slightly, the number of solutions can change drastically. From

the practical point of view, however, the number of solutions is usually wery

much smaller compared to the first term in (6.2).

Hence, comparing only the first term in (6.2) with (6.1), we get

n

n (k.+l) - I n (k,+i) = n (k.+l)
1-1 1 j=l i=l n i=l ^

w

n -j

1" A ¥T
(6.3)

Equation (6.3) implies that if k- + 1 > n, j = 1,2, n, then the left-hand
j

side of (6.3) will always be positive. Since k. is also equal to the number
j

of breakpoints in the j-th piecewise-linear resistor in the circuit,then

k- + 1 > n means that if the total number of segments in each piecewise-linear
j

resistor is greater than the total number of piecewise-linear resistors, then

-29-

the worst case figure of our algorithm will be smaller than that of the combinatorial
n

algorithm. Fortunately, the worst case number y N. is seldom achieved in
j=l J

practical circuits. As illustrated in Examples 2, 3, and 4,most of the regions

are eliminated by the sign test before the iteration reaches the second group

of parallel hyperplane.

We have already given the comparison data in Table 1 for Example 4.

The corresponding data for Examples 2 and 3^ is given in Table 3.

In Table 4 we list the total CPU time consumed for each example. Since:the

UNIX operating system is a time-sharing system, the actual time consumed depends

on the current load on the system at that time. Hence, we give only a range of

the total CPU time. The data is obtained from 10 tries at various loading

conditions. Although this quantity is not exact, it does give a realistic

"ball park" figure.

7. CONCLUDING REMARKS

The algorithm presented on Section 3.3 and the combinatorial algorithm in

[14] both scan all regions defined by the piecewise-linear function f in (2.6).

Therefore, both will find alj_ solutions .

The worst case figure of our algorithm is given by the first term in

(6.2). This overly conservative upper bound is achieved only when there is a

solution to (2.6) in every region. In practice (e.g. Examples 2, 3 and 4),

many regions will usually be eliminated during the early phase of the iteration;

i.e., from the very first few groups of parallel hyperplanes. Hence, our

algorithm is indeed quite efficient in solving practical circuits.

Although originally developed for nonlinear circuits, our algorithm is

applicable to any system of piecewise-linear equations which can be expressed

in the canonical form (2.6), where g^ denotes unit vectors.
Finally we remark that since it is possible for a piecewise-linear equation

to have a solution in every region, any algorithm capable of finding all_

solutions must necessarily scan through all possible regions.

-30-

References

[I] R. 0. Nielsen and A. N. Willson, Jr., "A fundamental result concerning

the topology of transistor circuits with multiple equilibria,"
Proceedings of the IEEE, vol. 68, no. 2, pp. 196-208, Feb. 1980.

[2] T. T. Dao, "Recent multi-valued circuits," IEEE C0MPC0N conference

Digest, pp. 194-199, Feb. 1981.

[3] D. Etiemble, "Multi-valued integrate circuits for signal transmission,"
IEEE COMPCON conference Digest, pp. 205-208, Feb. 1981.

[4] Z. 6. Vranesic, "Application and scope of multipie-valued LSI technology,"
IEEE COMPCON conference Digest, pp. 213-216, Feb. 1981.

[5] Z. G. Vranesic and K. S. Smith, "Engineering aspects of multi-valued
logic systems," Computer, vol 9, pp. 34-41, 1974.

[6] D. C. Rine, Computer Science and Multipie-valued Logic, North-Holland

Publishing Co., 1977.

[7] R. M. Bozorth, Ferro-Magnetism, D. Van Norstrand Company, Princeton, NJ,

1951.

[8] V. M. Fridkin, Ferroelectric Semiconductors, (translated from Russian),
Consultants Bureau, New York, NY, 1980.

[9] T. Van Duzer and C. W. Turner, Principles of Superconductive Devices

and Circuits, Elsevier, New York, NY 1981.

[10] H. Hartnagel, Gunn-Effect Logic Devices, Heinemann Educational Books

Ltd., London, 1973.

[II] L. 0. Chua and Y. W. Sing, "A nonlinear lumped circuit model for Gunn

Diodes," International Journal of Circuit Theory and Applications,

vol. 6, pp. 375-408, Oct. 1978.

[12] M. Latif and P. Bryant, "Multiple equilibrium points and their significance

in the second breakdown of bipolar transistors," IEEE J. Sol id-State

Circuits, vol. SC-16, no. 1, pp. 8-15, Feb. 1981.

[13] L. 0. Chua, "Efficient computer algorithms for piecewise-linear analysis

of resistive nonlinear networks," IEEE Trans. Circuit Theory, vol. CT-18,

pp. 73-75, Jan. 1971.

[14] L. 0. Chua and P. M. Lin, Computer Aided Analysis of Electronic Circuits:

Algorithms and Computational Techniques, Englewood Cliffs, NJ: Prentice-

Hall, 1975.

[15] L. 0. Chua and A. Ushida, "A switching-parameter algorithm for finding

multiple solutions of nonlinear resistive circuits," Inter. J. Circuit

Theory and Applications, vol. 4, pp. 215-239, 1976.

-31-

[16] K. S. Chao, D. K. Liu and C. T. Pan, "A systematic search method for

obtaining multiple solutions of simultaneous nonlinear equations,"

IEEE Trans. Circuits and Systems, vol. CAS-22, pp. 748-753, Sept. 1975.

[17] M. J. Chien and E. S. Kuh, "Solving nonlinear resistive networks

using piecewise-linear analysis and simplicial subdivision," IEEE Trans.

Circuits and Systems, vol. CAS-24, no. 6, pp. 305-317, Jan. 1977.

[18] M. J. Chien, "Searching for multiple solutions of nonlinear systems,"

IEEE Trans. Circuits and Systems, vol. CAS-26, no. 10, pp. 817-827, Oct. 1979.

[19] S. N. Stevens and P. M. Lin, "Analysis of piecewise-linear resistive

networks using complementary pivot theory," IEEE Trans. Circuits and Systems,

vol. CAS-28, pp. 429-441, May 1981.

[20] W. M. G. van Bokhoven, "Macromodelling and simulation of mixed analog-

digital networks by a piecewise-linear system approach," Proceedings of

the 1980 IEEE International Conference on Circuits and Computers* pp. 1-5.

[21] L. 0. Chua, Introduction to Nonlinear Network Theory, New York: McGraw

Hill, 1969.

[22] L. 0. Chua and P. A. Medlock, MECA - A User Oriented Computer Program

for Analyzing Resistive Nonlinear Networks, vol. 1, User's Manual.

Lafayette, Ind.: Purdue University, School of Electrical Engineering,

Rept. TR-EE69-7, Apr. 1969.

[23] L. 0. Chua and S. M. Kang, "Section-wise piecewise-linear functions:

canonical' representation, properties, and applications," Proceedings of

the IEEE, vol. 65, no. 6, pp. 915-929, June 1977.

[24] S. M. Kang and L. 0. Chua, "A global representation of multidimensional

piecewise-linear functions with linear partitions," IEEE Trans. Circuits

and Systems, vol. CAS-25, no. 11, pp. 938-940, Nov. 1978.

[25] L. 0. Chua, "Device modeling via basic nonlinear circuit elements," IEEE

Trans. Circuits and Systems, vol. CAS-27, pp. 1014-1044, Nov. 1980.

-32-

Appendix

Let f be represented in the canonical form (2.6). Since f is piecewise-

linear, it is affine in each region Ry Hence, for any x€ R., f can be
written as J-x + s«. The matrix J. (often called the Jacobian matrix of f

in region R.) and the vector s. (often called the offset vector of f in region
j j

R.) can be computed from the coefficients of (2.6). Here we derive two
J

simple formulas for computing Jj and s..
We can write (2.6) in the following form:

f(x) = a + Bx + C

|<c^l »x> - 3^

(A.l)

Cll C21 'Pi

where C =

Cln C2n "•• Cpn

Since we expect to express f(«) in the form of J.x + s. for x in the interior
j j

of region R.., we can differentiate (A.l) with respect to x to find J.. Since

x is assumed to be an interior point in R.., none of the terms <g.j,x> - 3^ >
i = 1,2, p, will be zero. Carrying out the differentiation, we get:

5f(x) x€R.=§+Cdiag[{sgn(<g.,x>-3i)}^]

T

Sfl

S2

T
a

-P
xGR.
"** J

(A.2)

where diag[sgn(<g.,x>-31-)}?] is apxp diagonal matrix with the i-th diagonal
element being sgn(<g.,x>-3-). Here, sgn(.) denotes the sign function

defined as follows

sgn(z) =

1 if z > 0

-1 if z < 0 , z € IR

undefined if z = 0

For any x in the interior of R.,the terms sgn(<g.,x>-3.j)» i = 1.2 p,
assume fixed values. Hence, jh is precisely the right-hand side of (A.2)

To find s-, we observe:
j

Sj =£W|x6R-Jj5|xeR.
J J

KgpX^-jl
= a +

s
- diag[{sgn(g..,x -3^}^]

<s l<Sp.x>-3p

Rl
•>!

•

•

•
X >

T

-SP. J
J

=a+c diag[{sgn(<gi,x>-31)}^}

s ' <2f1»x>-31

<3p^>-3p

a - c diag[{sgn(<gi,x>-3i)}^]

LP J xGR.

<g, ,x>

<ot ,x>
x^R,-

(A.3)

FIGURE CAPTIONS

Fig. 1. Extraction of 2-terminal nonlinear resistors to form a linear n-port ¥.

Fig. 2. Figures for Example 1.
(a) Circuit containing 2 piecewise-linear resistors.
(b) Constitutive relation of piecewise-linear resistor Rl.
(c) Constitutive relation of piecewise-linear resistor R2.
(d) Driving-point plot of 1-port N and the load line showing 3

intersections Q-j, Q« and Q3-
(e) Partitions in the domain of f(«) defined by (3.7).
(f) Partitions in the range space of f(*). Note that region e'b'a'd'

encloses the origin.

Fig. 3. A portion of a partition in the general case.
(a) Partitions in the domain of f(-) defined by (2.6). H. denotes

an arbitrary hyperplane and a ov denotes an arbitrary section on Hk,

(b) Corresponding partitions in the range space.

Fig. 4. Figures for Example 2.
(a) Circuit containing 3 piecewise-linear resistors.
(b) Constitutive relation of piecewise-linear resistor Rl.

Rl: 1, -| |v, +6| -| |Vl - 6|
(c) Constitutive relation of piecewise-linear resistor R2.

R2: v2 =̂ |i? +l| -I |i2- 5|
(d) Constitutive relation of piecewise-linear resistor R3.

Rl: i3 =v3-f |v3- 1|- 2|v3 - 2|- | v3 - 3 |
Fig. 5. Figures for Example 2.

(a) Partitions in the domain of f(*) defined by (3.20). Note the
rectangular lattice structure.

(b) Part of the partition for -~ < v3 < 1.
(c) Part of the partition for 1< v3 < 2.
(d) Part of the partition for 2< v3 < 3.
(e) Part of the partition for 3< v3 < «.

Fig. 6. Partitions in the domain of f(«) defined by (4.3). Each asterisk "*"
implies the sign test in thecorresponding region is positive.

Fig. 7. Figures for Example 4.
(a) A 4-transistor multi-state circuit.
(b) Simplified Ebers-Moll model of a NPN transistor.
(c) Piecewise-linear approximation of diode v-i characteristic:

(2-segment case):

m0 =0, m1 =7.94167xl0"2; V-, =0.325v
ID =-1.29052xl0"2 +3.9708313xl0"2vD +3.9708313 |vQ - V]|

(d
)

Pi
ec
ew
is
e-
li
ne
ar

ap
pr
ox
im
at
io
n

of
di
od
e

v-
i

ch
ar
ac
te
ri
st
ic
:

(3
-s
eg
me
nt

ca
se
):

mQ
=

0,
m-j
=
4.
95
06
2x
l0
"2
,

m2
=
2.
26
X1
0"
1;

V-,
=

0.
32
5,

V2
=
0.
37
2

ID
»
-4
.0
87
34
95
6x
10
"2
+

1.
13
00
23
91
xl
O"
1

vQ
+

2.
47
53
08
03
x1
0"
2
Iv

D-
V1|
+
8.
82
49
31
06
x1
0~
2|

vD
-

V2
|

(e
)

Pi
ec
ew
is
e-
li
ne
ar

ap
pr
ox
im
at
io
n

of
di
od
e

v-
i

ch
ar
ac
te
ri
st
ic
:

(4
-s
eg
me
nt

ca
se
):

mQ
=

0,
m1
=

3.
88
6x
l0
"2
,

m2
=
9.
66
1x
l0
-2
,

m3
=
2.
24
6x
l0
-1
;

V1
=

0.
32
,

V2
=
0.
35
5,

V3
=
0.
37
7

ID
=
-4
.0
60
03
05
x1
0"
2
+

1.
12
31
59
82
x1
0"
1

vQ
+

1.
94
31
18
xl
0~
2|

vD
-

V1
|+

2.
88
74
72
96
x1
0"
2|

vD
-

Y2
|

+
6.
40
10
07
27
x1
0"
2
|v

D
-

V3
|

(f
)

Pi
ec
ew
is
e-
li
ne
ar

ap
pr
ox
im
at
io
n
of

di
od
e

v-
i

ch
ar
ac
te
ri
st
ic
:

(5
-s
eg
me
nt

ca
se
):

mQ
=

0,
m-|
=

2.
31
6x
l0
"2
,

m2
=
4.
68
2x
l0
"2
,

m3
=

1.
44
9X
10
"1
,

m4
=
2.
99
6X
10
"1
;

V1
=
0.
30
6,

V2
=

0.
33
75
,

V3
=
0.
36
6,

V4
=
0.
38
75

ID
=-

5.
48
80
86
81
xl
0'
2
+

1.
48
30
98
06
x1
0"
1

vQ
+

1.
15
78
03
76
x1
0"
2|

vQ
-

V1
|+

1.
18
30
04
72
x1
0"
2|

vQ
-

V"2
|

+
4.
90
26
52
38
x1
0"
2|

vQ
-

V3
|+

7.
58
75
19
71
xl
O'
2|

vQ
-

V4
|

(g
)

Pi
ec
ew
is
e-
li
ne
ar

ap
pr
ox
im
at
io
n

of
di
od
e

v-
i

ch
ar
ac
te
ri
st
ic
:

(6
-s
eg
me
nt

ca
se
):

m0
=

0,
m-j
=

2.
51
3x
l0
"2
,

m2
=

2.
66
6x
l0
'2
,

m3
=

3.
76
5x
l0
"2
,

m4
=
8.
60
3x
l0
"2
,

mg
=

1.
86
5x
10
"1
;

V1
=

0.
30
6,

V2
=

0.
32
1,

V3
=

0.
33
6,

V4
=
0.
35
1,

Vg
=
0.
37
6

ID
=
-3
.3
35
70
32
2x
l0
"2
+

9.
32
40
01
46
x1
0"
2

vQ
+

1.
25
66
66
08
x1
0"
2|

vQ
-

V]
|+

2.
23
53
72
7x
10
"3
|v

Q
-

V2
|

+
8.
49
35
46
18
xl
0"
3|

vD
-

V3
|+

2.
41
90
06
58
x1
0"
2|
vD
-

V4
|

+
5.
02
25
11
45
xl
0"
2
|v

Q
-

Vg
|

Fi
g.

8.
Fi
gu
re
s

fo
r

E
x
a
m
p
l
e

5.

(a
)

C
ir

c
u

it
d

ia
g

ra
m

.
(b

)
C

ur
ve

o
f

a
co

n
ti

n
u

o
u

s
p

ie
ce

w
is

e-
li

n
ea

r
fu

n
ct

io
n

:

gC
yl

=
-1

+
v

-j
\v

^
\

+
j

|v-
2|

(c
)

Pa
rt
it
io
ns

in
th
e

do
ma
in

of
f(
-)

de
fi
ne
d

by
(5
.1
).

Th
e

Ja
co
bi
an

m
a
t
r
i
x

i
n
e
a
c
h
r
e
g
i
o
n

is
a
l
s
o

sh
ow
n.

(d
)

Pa
rt
it
io
ns

in
th
e

ra
ng
e

sp
ac
e

of
f(
«)
.

No
te

th
at

re
gi
on
s

R2
,

R4
,

Re
,

Rg
an
d

Rg
de
ge
ne
ra
te

in
to
a

si
ng
le

po
in
t

P.

Fig. 9. Figures for Example 6.
(a) Circuit diagram.
(b) Partitions in the domain of f(«) defined by (5.8).
(c) Partitions in the range space of £(•). Note that region Rg

degenerates into a line segment A'D'.

Fig. 10. Figures for Example 7.
(a) Circuit diagram.
(b) Driving-point plot of 1-port N and the load line. Note infinitely

many solutions exist for this circuit.
(c) Partitions in the domain of f(-) defined by (5.9).
(d) Partitions in the range space of f(«). Note that region R2

degenerates into a half line passing through the origin.

LIST OF TABLE CAPTIONS

Table 1. Solutions of Fig. 7(a).

Table 2. Summary of computation for Example 4.

Table 3. Summary of computation for Example 2 and 3.

Table 4. Approximate CPU time used in each example.

voltage -
controlled
piecewise-.
linear
resistors

Fig. I

%+i [l^+i

In : In

i:
+

Vn

current-

controlled
piecewise-
linear
resistors

2
fi

ip
p

^
9

V i
Mp

<a
)

4
-

D
ri

vi
n

g
p

o
in

t

^
«

«
*i

p,
ot

of
'J

^
*

^
0

,(
3

,3
)

ly
*

^

S
^

ds
*)

^
*^

^
li

X
X

*3
Vn

aV
|+

V2
/

0
4

5
.5

^
V

J
o

a
d

li
ne

.
(c

)
nV

*
hi

1(
2,5

)
gi

!(
5,

5)

4
1

1
1-

2
3

4
5

6
f,(

v,
,v

2)

[d
'C

i-
t)

Rl

°b

^Dther Hyperplanes

(a) (b)

Fig. 3

Ift 2ft 7V2+ '2 2|i l& Ift

10-
(6,10)

(a)

i

R2 •
'v2

i-
(5,1)

—<k£
w,-i)

5 i2

(O

Fig. 4

R3 3.

(d)

3 4v-

HI6

HI5

H|4

H|3

H|2

H II

Hio

H9

H-7

I2

R71 H72 R73 R71| R75 R76 R77

B64 "65 B66 R67 B68 R69 R70

*

R57
*

B58

*

*

R59
*

R60
*

B61

*

*

B62

*

*

B63

H50 B51 R52 R53 R5fl R55 R56

RJ»3 R44 R45 R46 B47 RU8 R49

R36 R37 R38 R39 RilO B41 B42

*

"29

*

*B30 *

*

*

* Rg1 *

*

*

*

*

Am « It

*

*

R34

*

*

R35
*

»22 H23 B2i| R25 B26 R*
H27
*

B28
*

B15 R16 R17 B18 B19 "20

*

R*
H21

*8 R9 R10 R11 R12 B13 B14

»1 B2 R3 •* R5 B6 B7

>V|
H1 H2 H3 H4 H5 H<

Fig. 6

Col lector
o

Ao.98ID
Base«-

„r0

((Emitter(b)

4In(mA)

IOV 10 K

(a)

v, v2VD(volts) i.o xio

(d)
Fig. 7

ID(mA)

VD(volts)

VD(volts)

Fig. 7 cont'd

mo vi v2v3v4v5

(g)
Fig. 7

+
:
T

|
+

£
•1

>
»

a

,\

C
M

O
T

C
M

JO
"

-o
1

'
"
o

"CD

"
<

"3d

a
.

-C
MI.*•

H

<
•

>
"

o
-
»

0>

-
d

.K

O
-

C
O

o
o

.

o
-

h

-
o

a
:

r
o

o
o

v

-
o

*

o
o

«
n

o

o
o

<
•

C
M

>4

fO

C
M

C
D

O
-

M

.o
o

o
n

o
-

_

U

0
0

u
.

(a)

(b)

(c)

in

+

vi Rl

"Ji]RZ

tv2

y
< g

h "7
^—-!•

0 R4

Ri

Fig.9

in
R5

b R2

h]
l* .e

• »

ft:]
Re d

• m

c Rs -*v,

0.5ft ip r

(a)

ifv2 t > < i

6- « »f < e

5-

4-

3

2-

a A* B d

/////
1-

b,
W/,

c.

0 1

i

2 3 4 5 €

1 .

7 8 V[

(c)

Fig. 10

(b)

-Driving Point
Plot of N

4 6\ VP
Load Line

Table 1. Solutions of Fig. 7(a).

solutions vdl vd2 Vd3
1 0.38392 -3.79264 0.37543

2 0.38859 -4.31084 0.33696

3 0.33398 0.35187 0.38142

4 0.33197 0.35608 0.33452

5 -1.06411 0.37066 0.38539

6 -0.72552 0.37066 0.33345

7 0.39388 -4.89790 -1.52344

8 0.33051 0.35914 -1.11032

9 -0.52530 0.37066 -0.97985

rd4

-2.84029

0.34565

-3.51440

0.35074

-3.95558

0.35298

0.37066

0.37066

0.37066

Table 2. Summary of computation for Example 4.

no. of

breakpoi nts

ki

no. of

segments

ki + 1

total no. of

regions

n (k.+i)
i=l 1

no. of linear systems solved by;

"brute-force"
combinatorial

method

our algorithm

worst case

n

J=l J
actual case

1 2 16 16 32 28

2 3 81 81 108 72

3 4 256 256 256 133

4 5 625 625 500 229

5 6 1296 1296 864 362

Table 3. Summary of computation for Example 2 and 3.

Examples

total no. of

regions

no. of linear systems solved by:

brute-force
.combinatorial

method

our algorithm

worst case

n

actual case

Example 2 36 36 33 15

Example 3 77 77 18 10

Table 4. Approximate CPU time used in each example.

Examples CPU in seconds

Example 1 0.10 - 0.13

Example 2 0.37 - 0.48

Example 3 0.83 - 0.93

Example 4

ki = 1 0.40 - 0.62

ki = 2 2.Q0 5.07

ki = 3 4.53 - 8.77

ki = 4 14.40 - 21.65

ki = 5 36.65 - 48.22

Example. 5 0.13 - 0.22

Example 6 0.12 - 0.15

Example 7 0.10 - 0.20

PROGRAM LISTING

aspwlf.h aspwlf.h

/• Copyright (c) 1981 Robin LP. Ying
*♦

♦* The routines in this package are able to find All Solutions
** of a given Piece-Wise Linear Function (ASPWLF)

f(x) = 0
♦* provided that f(.) is represented in the piecewise-linear
** canonical form with boundary hyperplanes parallel to the
** coordinate axes. The algorithm used is described in this
** section 3.3 of this memo.

** This package is written in the standard C-language described in
— "The C Programming Language" by B.W. Kernighan and D.M. Ritchie.
** It can be run on a PDP-11/780 VAX-UNIX system which supports
** the double-precision IMSL library. It contains the following
*• separated modules:
** aspwlf.h: containing definitions of data structures and global
*• variables.
** mam.c: handling command line options.
** aspwlf.c: containing the main routines for solving the given
** piecewise-linear system.
** init.c: containing routines for initializations.
** queue,c: containing queue lists manipulating routines.
** print.c: containing printing routines.
*• error,c: printing run-time error messages.
** support, c: containing various supporting routines.
** interac.c: an user oriented interactive program, which will
** creat a C-program defining the piecewise-linear
*• function.
•* Makefile: file maintenance program.
*•

*• The folowtng routines are needed from the double-precision IMSL
** library:
•• leqt2f(), ludatfQ, luelmfQ, lureffQ, uertstQ,
•• ugeUoQ, vxaddQ, vxmulQ, vxstoQ.

** Compile and run:
** The following steps are contained in "Makefile" for compiling
** and running this package:
♦♦

*• Step 1. create Alib:
•• cc -c matnx asplwf.c init.c print.c queue.c error.c support.c
*• or ru ALib *.o
— ranlib Alib
♦•

•* 2. create interac:
** cc interac.c —o interac
••

** 3. create a.out;
*♦ cc ex.c Alib -limsld -IF77 -1177 -Im
*♦ [ex.c can be created by running "interac"]

Page 1 of aspwlf.h

aspwlf.h

♦* aspwlf.h — this is the header file for all ASPWLF routines
♦* except "support.c", "interac.c" and "ex.c" which defines
" pwLfO-
*m

** 5 data structures are defined in this module:
♦* RCN: each region;
** RGNQ: queue of regions;
♦* HYP: each hyperplane;
♦* HYPQ: queue of hyperplanes;
♦* QLST: list of the HYPQs.
*•

•* Dimension of arrays:
** variables in pwlf():
** a[dtm\, B[dim][dim\, C[dtm][hyp], D[dim][hyp], e[hyp].
** variables in struct RGN:
♦* sgnsqihyp], bdry[hyp], px[dim], py[dim\.
♦* variables in aspwlf():
** a/i[dim], Bhldim][dvn], Bht[dim][dim], alphah[dim],

soUdirn,], sgnsvihyp], markx\rjmxix][dim], ynrmt[rjmo&][dim],
wk[dim*(dim+3)]

All these arrays are dynamically allocated using paUocQ
V

#define F0RMAT1 "%6.3f "
#define F0RMAT2 "%2.0f "
#deflne F0RHAT3 "%13.6e

#define RNIL (RGN ♦)
#define HNIL (HYP *)
#define QNIL (HYPQ ♦)

0177777

0177777

0177777

typedef struct
int
int
double
double
int

struct

struct

RGN
RGN
int

| RGN;

typedef

{ RGNQ;

typedef

I HYP;

typedef

struct

int
struct

{ HYPQ;

typedef

struct

HYP
HYP
int

int
int
struct

struct

region {
•sgnsq;
•bdry;
♦px;

•py;
id;
region *link;

\
♦head;

•taU;
n;

hplane {
id;
hplane *link;

hqueue {
•head;
•tail;
n;

axis;
hqueue •link;

/* define printing formats •/

/• sign sequence */
/* boundaries •/
/• point in region •/
/• f(px) ♦/
/♦ region identifier ♦/

/* region queue link •/

/* head of queue ♦/
/• tail of queue •/
/• § of elements on queue •/

/• hyperplane identifier •/
/• hyperplane queue link •/

/• head of queue •/
/• tail of queue •/
/• # of elements on queue */
/• # of sections •/
/• coordinate axis */
/• Knfc •/

aspwlf.h

Page 2 of aspwlf.h

aspwlf.h aspwlf.h

/• head of list •/
/• tail of list •/
/• # of elements on list •/

HYPQ •head;
HYPQ •tail;
int n;

I QLST;

RGNQ ♦W[4];
QLST •Q;
int rjraax;
extern double •a, *B
extern int dim, b

•a, *B, *C, *D, *e, epsilon;
dim, hyp, aflg, pflg, tfig, imsl, ier, sigdgt;

Page 3 of aspwlf.h

main.c main.c

/♦

•• main.c — handles command line flags.
*•

•• Command line flags:
** -p : turns on the "pfig" so that all information of hyperplanes
•* and reatons will be printed.

•• -t : turns on the "tfig" so that the solution obtained in STEP 6
•• will be tested.
*•

•* -a : turns on the "aflg" as well as "pflg" & "tflg" so that every
** detail of the iteration will be printed.
•*

•* -i : turns on the "imsl" flag so that aspwlfQ will use the IMSL
** routine LEQT2FQ to solve linear systems.

•• -s int : resets the significant digit to "int' decimal digits
•• (int < 0 is ignored); if int = 0 then the accuracy test in
•• the IMSL routine is disabled; the default value of int is 9;
•* this option automatically turns on the "-i" fiag.
♦/

int aflg=0, pflg=0, tflg=0, imsl=0, sigdgt=9;
double epsilon;

main (argc, argv)

int argc;
char ••argv;
I

register int i, flg=0, tmp;

while (—argc > 0 && (*++argv)[0] == '-') \
while (•++*argv) switch (•♦argv) (

case 'a': /• turn on afig •/
aflg = 1;
pflg = 1;
tflg = 1;
continue;

case 'p': /* turn on pflg •/
pflg = 1;
continue;

case 'f: /• turn on tflg •/
tflg = 1;
continue;

case T: /• turn on imsl ♦/

imsl = 1;
continue;

case V: /• reset sigdgt */
imsl = 1;
tmp = atoi(argv[l]);
if (tmp > 0) {

sigdgt = tmp;
fig = 1;

goto next;
default: /• other char has no effect •/

continue;

I
next:

argc—;

if (imsl)

Page 1 ofmain.c

main.c main.c

printf("**-< using IHSL routine >-**\n");

epsilon = 5.0;
for (i=0; i < sigdgt+2; i++)

epsilon ♦= 0.1;

if (fig II Pflg) \ j
printff'**-< signiflcant digit is set to %d >-**\n",sigdgt);
printf("••-< epsilon = %8.1e >-»*\n",epsilon);

aspwlfQ; /* start •/

Page 2 of main, c

aspwlf.c aspwlf.c

/•

•• aspwlf.c — contains 6 routines:
•• aspwlfQ: the main iteration routine.
•• conW2Q: construct list W[2].
•• compahQ: compute ah\\ and offsetH.
•• compBhQ: compute BhQ and jcbn[,J.
•* sgntstQ: perform sign test.
•* cpnrmlQ: compute ynrmlU-
V

#include "aspwlf.h"

double ^ah, *Bh, *Bht, •alfah, *sol, •ynrml, •markx, »wk;
int •sgnsv, kk, mxcnt, itr=0, ier;

/•

** aspwlfQ — this is the main iteration routine, each action
•• falls in clearly defined steps; called by mainQ.
•/

aspwlf ()

HYPQ ♦gethqO, 'hq;
HYP •gethypO;
RGN *getrgn();
double inprdctQ, betah, scale;
int cpnrmlO. n, nhq,

nsol=0, /• # of solutions */
btaflg, /• for betah==0 */
erflgl, /• for Bh[,] singular ♦/
erflg2, /• for putvng h back to hq •/
hqfig; /* for 1st h on hq ♦/

register RGN *rgn;
register HYP *h;
register int i, j, /* running indices ♦/

flgl, flg2; /♦ for matching is nbhd */

/• STEP 0: initialize & allocate spaces •/
init();
ah = (double *) palloc(dim*sizeof(double));
Bh =(double ♦) palloc(dim*dim*sizeof(double}V,
Bht as (double •) palIoc(dim*dim*sizeof(double));
alfah = (double •) pallocfdim*sizeoffdouble^;
sol = (double ♦) palloc(dim*sizeof(double));
ynrml = (double •) palloc(dim*rjmax*sizeof(double^;
markx =(double •) palloc(dim*rjmax*sizeof(double));
sgnsv = (int •) palloc(hyp*sizeof(int));
if (imsl)

wk = (double •) palloc(dim*(dim+3)*sizeof(double));

/• BEGIN ITERATION ♦/

while (Q—>n != 0) { /• main loop •/
hq = gethq(Q);
nhq = hq—>n;
mxcnt = hqfig = 0;
while (hq->n != 0) | /• 2nd loop ♦/

h = gethyp(hq);
kk = h->id;
erflg2 = 0;

Page 1 of aspwlf\c

aspwlf.c aspwlf.c

/• STEP 1: construct set W[2] from (W[0] union W[l]) ♦/
if (aflg) {

printf("\n\n@ STEP 1: hq->axis: %d, ",hq->axis);
printf("hyp->id: %d,\nW[0]->n: %d\n",kk,W[0]->n);

for (i=0; i < 2; i++) {
conW2(W[i].W[2]);
if (aflg) printf("W[%d]->n=%d\n",i+l,W[i+l]->n);

/• STEP 2 •/
while (W[2]->n != 0) { /* 3rd loop •/

/•

•• pick a region from W[2], save its sonsg[],
•• set kk-th element in rgn->sgnsq[\ to zero.
•/

rgn = getrgn(W[2]);
for (i=0; i < hyp; i++)

sgnsv[i] = rgn->sgnsq[i];
rgn—>sgnsq[kk] = 0;
if (aflg)

printf("\n\n® STEP 2: rgn on W[2]: 55d\n»',rgn->id);
compah(ah,rgn); /• compttte o/i[] •/
scale ss 1.0; /• reset scale •/
if (Jhqflg) /• 1st hyp on hq •/

erflgl = cpnrml(rgn);
/♦

•• try matching 'markx\X with ron->pa:[],
•• if not, compute ynrmlU-
*/

else {
erflgl = flg2 = 0;
for (j=0; j < mxcnt; j++) {

flgl = 0;
for (i=0; i < dim; i++) {

if (i ss hq->axis) continue;
else if (rgn->px[i] != markx[j*dim+i]) f

flgl = 1;
break;

I

if (!flgl) \ /• matched ♦/
for (i=0; i < dim; i++)

alfah[i] = ynrml[j*dim+i];
/♦ compute hq—>axis—th column of Bh[,] •/
compBh(sol,rgn, l,hq->axis);
scale = inprdct(alfah,sol,dim);
Ag2 = 1;
break;

I

if (!flg2) erflgl = cpnrml(rgn);

/• restore the kk-th bit in rgn->sgnsqU V
rgn->sgnsq[kk] = sgnsv[kk];
switch (erflgl) (
case 0: /* compute betah •/

betah = scale*e[kk] + inprdct(alfah,ah,dim);
btaflg = 0;
if (betah == 0) \ /• put rgn to W[l] •/

btaflg = 1;
if (pflg) error(3,"aspwlfO".rgn,kk,Bh,ah);

n$f(l],i 'putrgn(W[l],rgn);

Page 2 of aspwlf. c

aspwlf. c aspwlf. c

break;
case 1: /* numerical error occurred

in solving alfahQ */
erflg2 = 1;
if (nhq == 1) /* can not revover error •/

error(0,"aspwlf()",rgn,kk);
else (

if (aflg)
printf("\n** put back to W[0]: %d\n",rgn->id);

putrgn(W[OJ,rgn);

break;
case 2: /• rgn degenerated •/

if (pfig) error(4."aspwlf()",rgn);
putrgn(W[3].rgn);
break;

if ((erflgl!=0) || btaflg) goto nbhd;

/• STEP 3: perform sign test •/
if (aflg) |

printf("\n alfahD: ");
prdvctr(alfah,dim,FORMATl);
printff'Nn betah=%6.3f\n",betah);
printf("\n\n® STEP 3: rgn on 1st sign test:");
printf(" %d\n",ign->id);

/• if sign test is true, put the region on W[i] •/
if (sgntst(rgn,alfah,betah)) putrgn(W[l],rgn);

/• STEP 4: get neighborhood region •/
/•

•• scan W[2], search for the neighborhood region
•° (all but the sgnsq[kk] matches) and perform sign
•• test again.
V

nbhd:
n = W[2]->n;
for Q=0; j < n; j++J j

rgn = getrgn(W[2J);
flgl = 0;
for (i=0; i < hyp; i++) (

if (i == kk) continue;
else if (rgn->sgnsq[i] != sgnsv[i]) {

flgl = 1;
break;

if (flgl) /• not nbhd region •/
putrgn(W[2],rgn);

else \ /• nbhd region •/
if (aflg) (

printf("\n\n® STEP 4: rgn on 2nd sign test:");
printf(" %d\n",rgn->id);

switch (erflgl) \
case 0:

if (btaflg || sgntst(rgn,alfah,betah))
putrgn(W[l],rgn);

break;
case 1:

if (aflg)
printf("\n" rgn put back to W[0]: %d".

rgn->id);

Page 3 of aspwlf. c

aspwlf.c aspwlf.c

i
hqflg = 1;
if (erflg2) (/• try to fix error V

if (aflg)
printf("\n** end3: put #%d hyp back to queue.",h->id);

puthyp(hq,h);
nhq = hq—>n;
if (afig) printf("\n** end3: nhq=%d",nhq);

/• STEP 5 •/
| /* end of 2nd loop •/

j /• end o/ main toop •/

/• STEP 6: compute solutions V
if (pflg) printf("\n\n@ STEP 6: compute solution.");
if (W[3]->n != 0) \ /• check W[3\ •/

printf("\n\n** The following are degenerate regionsAn");
/• print degenerated region id •/
while (W[3]->n != 0) {

rgn = getrgn(W[3]);
printf("\tregion %d\n",rgn->id);
if (Pflg) I

compah(ah,rgn);
compBh(Bh,rgn,0);
printf("Jacobian[,]:");
prdmtrx(Bh,dim,dim,FORMATl);
printf("0flset[]: ");
prdvctr(ah,dim,FORHATl);
printf("\n\n");

, ' '
if (W[l]->n != 0) /• check W[l] ♦/

while (W[l]->n != 0) {
rgn = getrgn(W[l]);
/• compute ojffsetD, use an[] as offset{] •/
compah(ah,rgn);
/• compute jcbn[,], use Bh[,] as yc6n[,] •/
compBh(Bh,rgn,0);
if (pflg) I

printf("\n\n* region %d:\n",rgn—>id);
printf("Jacobian[J:");
prdmtrx(Bh,dim,dim,FORMATl);
printf("Oflset[]: ");
prdvctr(ah,dim,FORHATl);

/• compute solution •/
if (!imsl) \

lineqn(Bh,sol,ah,dim.O,&scale);
for (i=0; i < dim; i++)

sol[i] = 0 - sol[i];

else [

putrgn(W[0],rgn);
break;

case 2:
if (pflg) error(4,"aspwlfO",rgn);
putrgn(W[3],rgn);
break;

I
break;

/• end of 3rd loop •/

Page 4 of aspwlf.c

aspwlf.c aspwlf.c

end:;

transp(Bh,Bht,dim,dim);
leqt2f-(Bht,&imsl,&dim,&dim,ah,&sigdgt,wk,&ier);
if (ier > 128) {

error(6."aspwlf()",rgn,kk,Bh);
goto end;

I
else

for (i=0; i < dim; i++)
sol[i] = 0 - ah[i];

nsol++;
/* print solution •/
printf("\n\n** solution %d:\t", nsol);
prdvctr(sol,dim,F0RMAT3);
/* test solution ♦/

if (tflg) |
for (i=0; i < dim; i++)

rgn->px[i] = sol[i];
cmputy(rgn);
printf("\n -> pwf(solution) = ");
prdvctr(rgn->py,dim,FORMATl);

else /• W[l] is empty ♦/

printf("\n\t** No solution ••\n");
printf("\n\n** Total number of normal vectors computed: %d\n",itr);

/*
*• conW2() — construct W[2] from W[0] or JF[i]; called by aspwlfQ.
V

conW2 (w, wi)

register RGNQ *w, •wi;

register RGN *rgn;
register int i, n;

n = w->m /• save # of regions on w •/
/•

•• for each region on queue w, test the the specified bdry
•• bit, if it is on, then put the region on queue wi,
•• otherwise return it to queue w.
•/

for (i=0; i < n; i++) f
rgn = getrgn(w);

' afig) printf("conW2: rgn from W[0&1]: %d\n",rgn->id);
rgn->bdry[kk] == 1) |
if (aflg) printf("conW2: rgn put on ¥[2]: %d\n".rgn->id);
putrgnCwi,rgn);

else \
if (aflg)

printf("conW2: rgn put back to W[0&l]:\t%d\n,,,rgn->id);
putrgn(w,rgn);

Si

Page 5 of aspwlf. c

aspwlf.c aspwlf.c

/•

*• compahQ — compute vector ah[] and offsetf] since they
•• share the same codes; called by aspwlfQ.
V

compah (vctr, rgn)

register double *vctr;
register RGN *rgn;

register int i, j, n;

for (i=0; i < dim; i++) \
vctr[i] = a[i];
n = i*hyp;
for (j=0; j < hyp; j++)

vctr[ij -= C[n+j] • e[j] • rgn->sgnsq[j];

/•
•♦ compBhQ — compute matrix Bh[,] and jcbn[,] since
** they share the same codes; called by aspwlfQ.
V

compBh (mtrx, rgn, fiag, axis)

double *mtrx;
RGN •rgn;
int flag, axis;
\

register int i, j, k, m, n, p;

/* compute the whole matrix */
if (Jfiag) [

for (i=0; i < dim; i++) |
m = i*dim;
n = i*hyp;
for (j=0; i < dim; j++) {

mtrx[m+j] = B[m+jJ;
P = i*hyp;
for (k=0; k < hyp; k++)

mtrx[m+j] += C[n+k] ♦ D[p+k] * rgn->sgnsq[k];

/• compute the axis-th column of Bh[,] only */
else |

for (i=0; i < dim; i++) \
m = axis*hyp;
n = i*hyp;
mtrx[i] = B[i*dim+axis];
for (k=0; k < hyp; k++)

mtrx[i] += C[n+k] • D[m+k] * rgn->sgnsq[k];
I

I

/•
•• sgntstQ — perform sign test; called by aspwlfQ.
V

Page 6of aspwlf.c

aspwlf. c aspwlf. c

sgntst (rgn, alfa, beta)

register RGN *rgn;
register double •alfa, beta;

double AbsQ, inprdct();
int SgnQ;
register int sa, sb;
register double tmp;

tmp = inprdct(alfa,rgn—>py,dim) - beta;
if (Abs(tmp) < epsilon) {

if (pflg J error(4,"sgntst()",rgn);
putrgn(W[3],rgn);
return(0);

else \
sa = Sgn(tmp);
sb = 0 - Sgn(beta);

aflg) printf("\tsa = %d, sb = %d",sa,sb);
sa == sb) {
if (aflg) printf("\n\trgn put on W[l]: %d\n".rgn->id);
return(l);

else
return(0);

I

51

/*
** cpnrmlQ — compute normal in y—space, store it in ynrmlU;
*♦ returns 0: if successful,
** 1: if numerical error occured,
— 2: if Bh[,] is singular;
•* called by aspwlfQ.
V

cpnrml (rgn)

register RGN •rgn;

double det;
short dep;
register int i, err=0;

compBh(Bh,rgn,0); /• compute matrix Bh[,] V
/* compute alfah[] •/
for (i=0; i < dim; i++)

sol[i] = D[i*hyp+kk]; /• use solU as alfa[] •/
if (!imsl) \

transp(Bh,Bht,dim,dim);
lineqn(Bht,alfah,sol,dim,0.&det);

else {
leqt2f.(Bh.&imsl,&dim,&dim,sol,&sigdgt,wk,&ier);
if (ier > 128) | /* numerical error ♦/

if (pflg) error(5,"cpnrml()",rgn,kk,Bh);
rowech(Bh,wk,dim,dim,&det,&dep);
if (dep == 0)

err = 1;
else

Page 7of aspwlf.c

aspwlf.c aspwlf.c

err = 2; /• Bh[,] is singular •/
i
else

for (i=0; i < dim; i++)
alfah[i] = sol[i];

if (!err) \
itr++;
for (i=0; i < dim; i++) |

ynrml[mxcnt*dim+i] = alfah[i];
markx[mxcnt*dim+i] = rgn->px[i];

if (aflg) |
printf("\n* CPNRML: hyp->id: %d",kk);
printf("\n mxcnt=%d",mxcnt);
printf("\n markx[]: ");
prdvctr(markx+mxcnt*dim,dim,FORHATl);
printf("\n ynrml[]: ");
prdvctr(ynrml+mxcnt*dim,dim,FORHATl);
printf("\n Bh[.]:");
prdmtrx(Bh,dim.dim,F0RMAT3);

mxcnt++;

Page 8 of aspwlf. c

init.c init.c

/*

•• init.c — contains 7 routines:
•* initQ: call rest routines to initialize.
•• nrmlizQ: normalize D[,] & e[].
*• phgrpsQ: find parallel hyperplane groups.
•• dtrmnzQ: compute trgn, rj.
•• dsubQ: compute x[J & bd[].
•♦ lodrgnQ: load all region information.
*• cmputyQ: compute yu=pwlf(x[}).
♦/

finclude "aspwlf.h"

int trgn; /* total # of regions •/
int *bd; /• 6d[tron][/ivp] •/
double *x; /* ^tron]faXmJ •/
int *dcol; /* dcol[hyp] */
int ♦ngrph; /• narpnfdtm] •/

/•

** initQ — takes care of all necesary initializations described
•• in STEP 0; called by mainQ.
*/

init 0
I

register int i, j, k;

pwlf(); /• initializing pwl function •/
prtccef(); /• print coefficients •/

for (i=0; i < 4; i++) (/* allocate spaces */
WTil = (RGNQ •) pallcc(sizeof(RGNQ));
W'i'->head = W[ij->tail = RNIL;
" ' j->n = 0;w _1

Q = (QLST ♦) paUoc(sizeof(QLST));
Q->head = Q->tail = QNIL;
Q->n = 0;
dcol = (int •) palloc(hyp*sizeof(int));
ngrph = (int *) palloc(dim*sizeof(int));

nrmlizQ; /* normalize J3[,] and eU •/
phgrpsQ; /• find parallel hyperplane groups */

trgn =1; /• compute trgn V
for (i=0; i < Q->n; i++)

trgn •= ngrph[i];

♦• allocate space for *[]; if 0->n < dim, then those
•• unassigned x[trgn]\j], j > Q->n, will stay 0.
V

j = trgn*dim;
x = (double *) malloc(j*sizeof(double));
if (Q->n < dim) for (i=0; i < j; i++)

x[i] = 0;

/*
•• allocate space for bd[\; all entries of bd[] are
** initialized to zero.
•/

j s trgn*hyp;

Page 1 of init.c

init.c init.c

bd = (int •) malloc(j*sizeof(int));
for (i=0; i < j; i++)

bd[i] = 0;

dtrmnxO; /* determine *[] & 6d[] in each region */
lodrgnO; /* load all information for each region •/

if (pflg) prtq();

/* free spaces */
free(x); free(bd);

/*
♦• nrmlizQ — for hybrid representation, each column of L{,]
** should contain one and only one nonzero entry; this routine
•♦ checks D[,] and normalizes E{,] and e[] by devidxng e[] the
*• corresponding nonzero entry in the columns of £{,] and set
** that entry to 1; called by initQ.
•/

nrmliz ()

register int i, j, fiag;
register double *dtmp;

for (j=0; j < hyp; j++) (/• scan D by column */
flag = 0;
for (i=0; i < dim; i++) (/• for each row in a column */

dtmp = &D[i*hyp+j];
if (*dtmp != 0) \

if ('flag) \ /* the only nonzero */
flag++;
/• normalizing V
if (*dtmp != 1.0) \

e[j] /= *dtmp;
•dtmp = 1.0;

dcol[j] = i; /• the i—th row in the j—th
column is nonzero ♦/

else /• >= 2 nonzero entries •/
error(1,"nrmliz()");

i '
/• all entries in column j are 0 •/
if (!flag) error(l,"nrmliz()");

/•

•• phgrpsQ — identical columns in E{,] represent parallel
*♦ hyperplanes; this routine groups those columns in sets
•• (each set corresponds to a HYPQ), allocates spaces for
♦♦ each HYPQ and puts those HYPQs on the QLST Q; called by
•♦ initQ.
•/

phgrps 0

int flag, n, *tested;
register int i, j, k, count;

Page 2 of init.c

init.c init.c

register HYPQ *hq;
register HYP *h;

tested = (int ♦) palloc(hyp*sizeof(int));
for (i=0; i < hyp; i++)

tested[i] = 0;

i = 0;
count = 0;
while (count < hyp && i < hyp) {

/* allocate space & initialization */
hq as (HYPQ ♦) palloc(sizeof(HYPQ)); *
hq->head = hq->tail = HNIL;
hq->n = 0;
hq->axis = dcol[i];

h = (HYP •) palloc(sizeof(HYP));
h—>id = i; /• assign id •/
puthyp(hq,h); /• put on list */

tested[i]++;
count++;
flag = 0; /• reset fiag */
k = -1; /• reset k •/
/•
•* find parallel columns by searching for the same
•• dcol\j].
V

for (j=i+l; j < hyp; j++)
if (ItestedQ]) \ /* if not tested ♦/

/• if parallel */
if (dcol[j] == dcol[i]) \

h = (HYP •) palloc(sizeof(HYP));
h->id = j;
puthyp(hq,h);
tested[i]++;
count«f+;

{
/♦ get the 1st nonparaUel untested column */
else if (!tested[j] && !flag) \

k = j;
flag++;

n = hq->n + 1; /* save the length •/
puthq(Q,hq); /• put list on Q */
ngrph[Q->n-l] = n;

if (Q->n > dim) /* fatal error */
error(l,"phgrps()");

if (k == -1)
break; /• all are parallel V

else
i s k; /* ib = 1st nonparaUel column */

/•
♦♦ dtrmnxQ — this routine is called by initQ and does the following
** things:
•* 2. compute rj for each HYPQ;
•* 2. find rjmax;
+* 3. call dsubQ to compute «[] & 6d[j;

Page 3 of init.c

init.c init.c

♦* 4. sort Q so that the rj for each HYPQ on Q is in increasing
*• order.
V

dtrmnx ()

HYPQ ♦gethqO, nmp;
double *dtmp;
register int i, j, k, n, period;
register HYPQ ••vhq;

rjmax = 0; /* initialize */
n = Q->m /* save the length •/

/• vhq\\ contains pointers of HYPQ •/
vhq = (HYPQ •*) palloc(n*sizeof(int));

period =1; /• starting period •/
for (i=0; i < n; i++) {

vhqTi] = gethq(Q);
vha[i]->rj = trgn/ngrphTi]; /* compute rj */
if (rjmax < vhqTi]->rj)

rjmax = vhq[ij—>rj; /* get maximum, */
dsub(vhq[i] .period);
period *= ngrph[i]; /* change period */

/• SHELL sorting so that vhqU->rj is in increasing order •/
for (k = n/2; k > 0; k /= 2) (

for (i=k; i < n; i++)
for (j = i—k;

j >= 0 && vhq[j]->rj > vhqD+k]->rj;
j -= k) |

tmp = vhq[j];
vhq[j] = vhqlj+k];
vhqTj+k] = tmp;

i

/• put sorted objects back to Q */
for (i=0; i < n; i++)

puthq(Q,vhq[i]);

♦♦ dsubQ — use SHELL sort to sort a HYPQ so that the
•• corresponding e[] (i.e. beta) is in increasing order;
** compute x[\ & 6d[j. note that x[] is actually x[trgn][dim],
** only trgn x[][i]'s, 0 <= i <= dim-l, are assigned each time
** this routine being called by dtrmnxQ.
V

dsub (hq, p)

I
i:

\

HYPQ ♦hq;

int p;

HYP ♦gethypO, ••vh. Imp;
double *xi;
register int i, j, k, axis, n, r;

Page 4 of vnit. c

init.c

n = hq—>n; /• save the length */
vh = (HYP ♦♦) palloc(n*sizeof(int));
xi = (double ♦) palloc((n+l)*sizeof(double));
for (i=0; i < n; i++)

vh[i] = gethyp(hq);

axis = dcol[vh[0]->id]; /• save cutis */

/* SHELL sorting so that beta is in increasing order •/
for (k = n/2; k > 0; k /= 2) {

for fi=k; i < n; i++)
for (j = i—k;

j >= 0 && e[vh[j]->id] > e[vh[j+k]->id];
j -=k) I
tmp = vhffi;
vhfj] = vhlj+k];
vh[j+k] = tmp;

\

/* compute «t[] */
xi[0] = e[vh[0J->id] - 1.0;
for (i=l; i < n; i++) (

j = vh[i-l]->id;
k - vhTi]->id;
if (efj] == e[k])

error(2,"dsub0");
else /* middle points */

xi[i] = (e[j] + e[k]) / 2.0;

xi[n] = e[vh[n-l]->id] + 1.0;

/• assign xQ & 6d[] */
r = 0;
while (r != trgn) \

for (i=0; i <= n; i++)
for (j=0; j < p; j++) \

x[r*dim+axisj = xi[ij;
k = r*hyp;
if (i == 0)

bd[k+vh[i]->id] = 1;
else if (i == n) /* right-most •/

bd[k+vh[i-l]->id] = 1;
else I

bd[k+vh[i-l]->id] = 1;
bd[k+vh[i]->id] = 1;

r++;

/• left—most point */

/* right-most point ♦/

/• trgn counter */

/• left-most •/

♦* put sorted hyp's back to hq in the alternating order:
•• '1.3,5,7,....,2,4.6,8,....'
•/

for (j=0; j < 2; j++)
for (i=j; i < n; i+=2)

puthyp(hq,vh[i]);

init.c

Page 5 of init.c

init.c init.c

/•

** lodrgnQ — allocate space for each RGN; compute the sign
" sequence; assign bdry, px, py, id; place RGN on the
♦• queue W[0].
V

lodrgn ()

int Sgn();
register int i, j, k, m, n;
register RGN *rgn;

if (aflg) printf("\nRegions' information: - lodrgn()\n");

for (k=0; k < trgn; k++) \
/* allocate spaces */
rgn = (RGN •) palloc(sizeof(RGN));
rgn->sgnsq = (int *) pallcc(hyp*sizeof(int));
rgn->bdry = (int ♦) palloc(hyp*sizeof(int));
rgn->px = (double *) palloc(dim*sizeof(double));
rgn—>py = (double •) palloc(dim*sizeof(double));

m = k*dim;
n = k*hyp;
for (i=0; i < dim; i++) /• assigm rgn->pa:n V

• rgn->px[i] = x[m+i];
for (j=0; j < hyp; j++) /* assign rgn->bdryU V

rgn->bdry[jj = bd[n+j];
/•

** compute sign sequences.
** note that since columns of D[,] are unit vectors,
** only one component of rgn—>px[] is needed.
V

for (j=0; j < hyp; j++) \
rgn->sgnsqQ] = Sgn(rgn->px[dcol[j]]-e[j]);

cmputy(rgn); /• compute rgn->pyU V
rgn->id = k + 1; /• set region id V
if (pflg) | /* print regions */

printf("\n» region %d",k+l);
prtrgn(rgn,":");

putrgn(W[0],rgn); /* piace region on W[0] */

/♦
•• cmputyQ — compute y[] = pwlf(xU) for each given region;
" called by lodrgnQ.
V

cmputy (rgn)

register RGN *rgn;

register int i, j, k, m, n;

for (i=0; i < dim; i++) {
rgn->py[i] = a[i];
m = i*dim;
n = i*hyp;
for (j=0; j < dim; j++)

rgn->py[i] += B[m+j] • rgn->px[jj;

Page 6 of init.c

init.c

for (k=0; k < hyp; k++) \
rgn—>py[i] += C[n+k] * rgn—>sgnsq[k]

• (rgn->px[dcol[k]]-e[k]);

init.c

Page 7 of init.c

queue.c queue.c

/♦

*• queue.c — containing 6 queue-lists manipulating routines:
♦♦ putrgnQ, getrgnQ, puthypQ, gethypQ, puthqQ, gethqQ.
♦•

** putrngQ & getrgnQ: RGNQ.
*♦ puthypQ & gethypQ: HYPQ.
♦• puthqQ & gethqQ: QLST.

^include "aspwlf.h"

/•

** putrgnQ — places RGN at the end of RGNQ, it always assumes
•* queue is not empty.
V

putrgn (rgnq, rgn)

register RGNQ *rgnq;
register RGN *rgn;
I

rgn->link = RNIL;
/• if queue was initially empty •/
if (rgnq->head == RNIL) {

rgnq—>head = rgn;
rgnq—>tail = rgn;

I
/* if queue was not empty, append at the end •/
else {

rgnq—>tail—>link = rgn;
rgnq—>tail = rgn;

rgnq->n++;

/•

*♦ getrgnQ — grets one RGN from the front of RGNQ and returns
*♦ a pointer to that RGN; it returns NIL if the RGNQ is empty.
V

RGN *getrgn (rgnq)

register RGNQ *rgnq;

register RGN *rgn;

rgn = RNIL; /* if queue is empty, return NIL */
/• if queue is not empty, get one from the front */
if (rgnq->head != RNIL) {

rgn = rgnq—>head;
rgnq—>head = rgnq—>head—>link;
rgnq->n—;

return(rgn);

/♦

♦* puthypQ — places HYP at the end of HYPQ, it always assumes
** cjrueue is not empty.
V

Page 1 of queue, c

queue. c queue.c

puthyp (hq, h)

register HYPQ *hq;
register HYP 'h;

h->link = HNIL;
/• if queue was initially empty V
if (hq->head == HNIL) {

hq—>head = h;
hq—>tail = h;

I
/♦ if queue was not empty, append at the end */
else {

hq—Mail—>link = h;
hq—>tail = h;

hq->n++;

/*
** gethypQ — gets one HYP from the front of HYPQ and returns
** a pointer to that HYP; it returns NIL if the HYPQ is empty.
•/

HYP *gethyp (hq)

register HYPQ *hq;
I

register HYP *h;

h = HNIL; /* if queue is empty, return NIL */
/• if queue is not empty, get one from the front •/
if (hq->head != HNIL) |

h = hq—>head;
hq—>head = hq->head->link;
hq->n—;

retum(h);

/•
•* puthqQ — places HYPQ at the end of QLST, it always assumes
*♦ queue is not empty.
V

puthq (qlst, hq)

register QLST *qlst;
register HYPQ *hq;

hq->link = QNIL;
/* if queue was initially empty V
if (qlst->head == QNIL) J

qlst—>head = hq;
qlst—>tail = hq;

/* if queue was not empty, append at the end */
else }

qlst—>tail—>link = hq;
qlst—>tail = hq;

qlst—>n++;

Page 2 of queue, c

queue, c queue.c

** gethqQ — gets one HYP from the front of QLST and returns
♦* a pointer to that HYP; it returns NIL if the QLST is empty.
V

HYPQ *gethq (qlst)

register QLST ♦qlst;

I
register HYPQ *hq;

hq = QNIL; /* if queue is empty, return NIL */
/* if queue is not empty, get one from the front */
if (qlst->head != QNIL) {

hq = qlst—>head;
qlst->head = qlst—>head—>link;
qlst—>n—;

return(hq);

Page 3 of queue, c

print, c print,c

** print.c — containing 4 printing routines:
•* prtcoefO, prtrgnQ, prthqQ, prtqQ.
•• •

• Routine "prtcoefO" < for printing the coefficients
•* of the piecewise-linear function; prtrgnQ, prthQ &
** prtQO °m called if the "pfig" fiag is set.
V

^include "aspwlf.h"

*• prtcoefQ — print coefficients of the pwlf(.).
V

prtcoef ()

printf("\nCoeflicients of the piecewise-linear function:");

printfO'NnNnafrNt");
prdvctr(a,dim,FORMATl);

printf("\n\nB[,]:");
prdmtrx(B,dim,dim,FORMATl);

printf("\nC[,]:");
prdmtrx(C,dim,hyp,FORMAT1);

printf(,\nD[,]:");
prdmtrx(D,dim,hyp,F0RMAT2);

printf("\ne[]:\tM);
prdvctr(e,hyp,FORMATl);

printf("\n");

/•
*• prtrgnQ — print the sign sequence, boundaries x[] and yU
•* tn the given region.
V

prtrgn (rgn, str)

register RGN *rgn;
register char *str;

register int k;

printf("%s",str);

printf("\nsign sequence: ");
for (k=0; k < hyp; k++)

printf("%2d ".♦(rgn->sgnsq+k));

printf("\nboundries: ");
for (k=0; k < hyp; k++)

printf("%2d ".♦(rgn->bdry+k));

printf("\nx[]: ");
prdvctr(rgn->px,dim,FORMATl);

Page 1 ofprint, c

print, c print,c

printf("\ny[]: ");
prdvctr(rgn->py,dim,FORMATl);

printf("\n");

/•
♦• prthqQ — print the given HYPQ.
V

prthq (hq, str)

register HYPQ *hq;
register char *str;
I

HYP ♦gethypO;
register HYP *h;
register int nhq;

printf("\n%s—queue: ",str);
nhq = hq—>n;

while (nhq != 0) {
h = gethyp(hq);
printf("%d,",h->id);
puthyp(hq,h);
nhq—;

printf("\n");

** prtqQ — print the id of each hyperplane on the structure QLST.
V

prtq ()

HYP •gethypO;
HYPQ •gethqO;
register HYP •&;
register HYPQ #hq;
register int nq;

printf("\nQ-list:");
nq = Q—>n;
while (nq != 0) j

hq = gethq(Q);
printf("\n* n=%d, rj=%d",hq->n.hq->rj);
prthqfhq,"* hyp");
puthq(Q,hq);

i nq";
printf("\n");

Page 2 of print, c

error, c error, c

/*

** error.c — prints error messages.
V

#include "aspwlf.h"

error (flag, str, rgn, hid, mtrx, vctr)

register int fiag, hid;
register char *str;
register double *mtrx, *vctr;
register RGN *rgn;
\

if (flag < 3)
printf("\n\n"ERROR: [in routine: %s]:\n\t",str);

printf('\n\n#*WARNING: [from routine: %s]:\n\t",str);

switch (flag) \
case 0: /* in aspwlf() */

printff'can not recover numerical error.");
printfr\n\toccured atNtregion: %d;",rgn->id);
printf("\thyperplane: %d",hid);
break;

case 1: /* in nrmlizQ & phgrpsQ ♦/
printfC'Matrix D[,] is not compatible with ");
printf("hybrid representation.");
break;

case 2: /* tn dsubQ */
printf("Vector e[] is not compatible with");
printf("hybrid representation.");
break;

case 3: /• tn aspwlfQ V
printf("betah = 0");
printf("\n\toccured at\tregion: %d;".rgn->id);
printf("\thyperplane: %d",hid);
printf(*'\nah[] = ");
prdvctr(vctr,dim,FORMATl);
printf("\nBh[.]:");
prdmtrx(mtrx,dim,dim,FORMATl);
break;

case 4: /* in sgntstQ & aspwlfQ ♦/
printfC'region %d is- a degenerate region.\n",rgn->id);
break;

case 5: /• tn cpnrmlQ •/
printf("matrix Bh[,] ");
break;

case 6:
printf("Jacobian matrix J[,] ");
break;

\

switch (flag) \
case 5:
case 6:

if (ier == 129)
printf("is algorithmically singular.");

else if (ier == 131) \
printff"is too ill-conditioned for iterative\n");
printf("\t\timprovement to be effective.");

printff [from IMSL]");
printfr\n\toccured at\tregion: %d;",rgn->id);
printf("\thyperplane: %d",hid);

Page 1 oferror, c

error, c error, c

printf("\nmatrix:");
prdmtrx(mtrx,dim,dim,F0RMAT3);
if (flag == 6)

printf("\n»*-:< solution not computed >-*•");
break;

if (flag > 2)
printf("\n**-< program continued >—•*\n");

else i
printf("\n\n**-< program aborted >-**\n");
exit(l);

Page 2 of error, c

support, c support,c

/•

** support.c — contains supporting routines to the ASPWLF
•* programs:
•• AbsQ, SgnQ, inprdctQ, transpQ, prdmtrxQ,
— privctrQ, prdvctrQ, lineqnQ, rowechQ, paUocQ.
V

/•
** AbsQ — find absolute value with type double argument.
•/

double Abs (x)

double x;

if (x >= 0.0)
return(x);

else
return(—x);

/•
*• SgnQ — determine sign of a type double argument.
V

int Sgn (x)

double x;

if (x > 0.0)
return (1);

else if (x < 0.0)
return (—1);

else
return (0);

/*
♦• inprdctQ — inner product of 2 vectors: c - <x,y>
♦/

double inprdct (px, py, dim)

register double *px, •py;
register int dim;
\

register int i;
double sum=0;

for (i=0; i < dim; i++)
sum += px[i] ♦ py[i];

return(sum);

/*
** transpQ — find trasnpose of a given matrix.
*/

transp (pa, pat, row, col)

Page 1 of support.c

support.c support.c

register double *pa, *pat;
register int row, col;

register int i, j;

for (i=0; i < row; i++)
for (j=0; j < col; j++)

pat[j*row+i] = pa[i*col+j];

•• prdmtrxQ — print a double precision matrix.
V

prdmtrx (pm, row, col, format)

register double *pm;
register int row, col;
register char *format;

register int i, j;

for (i=0; i < row; i++) (
printf("\n\t");
for (j=0; j < col; j++)

printf(format,pm[i*col+j]);

printf("\n");

*♦ privctrQ — print an integer vector.
V

privctr (pv, dim, format)

register int •pv, dim;
register char *format;
I

register int i;

for (i=0; i < dim; i++)
printf(format,pv[i]);

/•

•• prdvctrQ — print a double precision vector.
*/

prdvctr (pv, dim, format)

register double *pv;
register int dim;
register char *format;
I

register int i;

for (i=0; i < dim; i++)
printf(format,pv[i]);

\

Page 2 of support.c

support, c support,c

/*

•• lineqnQ — solve linear system Ax = o.
•/

lineqn (pa, px, pb, dim, flag, deta)

register double *pa;
double •px, *pb, *deta;
int dim, flag;
I

int axcol, err;
register double *pax;
register int i, j, m, n;

axcol = dim+1; /• # of cols in AXUU V
pax = (double •) malloc(dim*axcol*sizeof(double));

/• append *[] to the last column of AUU => AXQ[] */
for (i=0; i < dim; i++) |

m ss i*axcol;
n ss i*dim;
for (j=0; j < dim; i++)

pax[m+j] = pafn+j];
pax[m+dim] = pb[ij;

/* compute 'row-echelon form of AX{][} •/
rowech (pax,pax,dim,axcol,deta,&err);

/♦ if nan—singular, start back substitution */
if (!err) for (i=dim-l; i >= 0; i—) |

m ss i*axcol;
px[i] = pax[m+dim];
for (j=dim-l; j > i; j—)

px[i] -= px[j] • pax[m+j];

/• if fiag /= 0 then return A[]Q in its row-echelon form ♦/

if (flag != 0) for (i=0; i < dim; i++) {
m = i'axcol;
n = i*dim;
for (j=0; j < dim; j++)

pa[n+j] ss pax[m+j];

free(pax); /• free spaces ♦/

return(err);

/•
•• rowechQ — Reduce matrix A to the row echlon form,
*• The pivot element is chosen to be the maximum, in that
•♦ column.

•/

rowech (pa, pr, arow, acol, deta, dep)

register double *pa, •pr;
double *deta;
int arow, acol, *dep;

double Abs(), max, tmp;

Page 3 of support.c

support.c support,c

int row, col, maxrow, stop;
register int i, j, m, n;

for (i=0; i < arow, i++) (/• copy A to R •/
m = i*acol;
for (j=0; j < acol; j++)

pr[m+j] = pa[m+jj;

stop=0; row=0; *deta=1.0; ' /* initialize •/

while (!stop) {
for (col=0; col < acol; col++) (

/♦

•• find the maximum, element in the column as the
•* pivot element.
♦/

max =s 0.0;
for (issrow; i < arow; i++) {

tmp ss pr[i*acol+col];
if (tmp != 0.0 && Abs(tmp) > Abs(max)) \

maxrow = i;
max = tmp;

if (max != 0.0) \
m = maxrow*acol;

. n = row'acol;
if (maxrow != row) |

/* interchange "maxrow'' and "row" */
for (j=col; j < acol; j++) (

tmp = pr[m+j];
pifm+i] = pr[n+j];
pr[n+j] = tmp;

(♦deta) •= (-1.0);

/• normalize pivot element */
(•deta) ♦= max;
pr[n+col] = 1.0;
for (j=col+l; j < acol; j++)

pr[n+j] /= max;

row++; /• increment row •/
if (row < arow) {

/*

•• reduce entries in "col" below "row" to 0.
•/
for (i=row; i < arow; i++) {

tmp s= pr[i*acol+col];
if (tmp != 0.0)

for (j=col; j < acol; j++)
pr[i*acoi+j] += pr[(row-l)*acol+j]

* (-tmp);
\

\

stop = 1; /* terminate iteration •/

Page 4 of support, c

support, c support,c

/• find first linear dependent column */
•dep = 0;
j = (arow < acol) ? arow : acol;/* j = min(arow,acol) */
for (is=0; i < j; i++) j

if (pr[i*acol+i] != 1.0) {
•dep ss i+i;
break;

/•

•• police () — C storage allocator, it calls "mallocO" to get 4096
•• bytes (2K words) at a time and re—distributes them to its
•• caUer. The purpose is to reduce the number of calls to
•• "maUocQ". If the number of bytes left is less than needed,
•* those spaces are waisted
•/

#define PAGESIZ 4096

char *palloc (nbytes)
unsigned nbytes;

static char *pgtop; /* page top •/
static char *cptr; /• current pointer position •/
static char *nptr; /• next pointer position •/
static unsigned tlngth; /• total length used •/
static int flag;

if (nbytes > PAGESIZ)
return ((char •) malloc(nbytes));

if (Jflag) |
pgtop ss (char •) malloc(PAGESIZ);
nptr = pgtop;
tlngth = 0;
flag++;

if (nbytes <= (PAGESE-tlngth)) f
cptr ss nptr;
tlngth += nbytes; /• update used length •/
nptr +ss nbytes; /• advance nptr •/
return(cptr);

else (/• not enough space left •/
flag ss 0;
return(palloc(nbytes));

Page 5 of support.c

interac. c interac.c

/*

•• interac.c — outputs a C-program which defines an N—dimensional
*• piecewise—linear function "pwlfQ'; the input is taken
*• from user's terminal.
•/

^include <stdio.h>

#deflne pf printf /* abbreviations. •/
#define fpf fprintf
^define spf sprintf

FILE *fp;
int dim, hyp;
char str[BUFSIZ];

a
char cc
char lib
char flgl
char flg2
char flg3
char flg4

main (argc, argv)

L

c

I

int argc;
char *argv[];

= "/bin/cc -p -0";
= "Alib -limsld -1F77 -U77 -lm";
= "\t'-i': use IMSL routine\n";
= "\t'-f: test solution\n";
s »\t'-p': print hyp & rgn\n";
= "\t'-a': print all iteration details\n";

FILE ♦fopenQ;
char *ctime(), *1 get(), *s_getO, buf[BUFSIZ];
int i_get(), tim[2j;
register char •str, HI;
register int k, trgn;

if (argc == 1 || (fp = fopen(argv[l]. "w")) = NULL)
pf("Usage: interac file.c\n");
exit(l);

pf("\nEnter Utle: ");
U = s_get();

time(tim);
fpf(fp,"/*\t- %-s -\n", argv[l]);
fpf(fp."**\n»* %s\n**\n** %24.24s\n*An\n". U,ctime(tim));

pf("\n** Enter coefficients of the PWL function ♦•");
pf("\n\tEnter the row dimension of a[]: ");
dim = i_get();
pf("\tEnter the column dimension of D[,]: ");
hyp = i_get();
fpf(fp,"\nint\tdim=%d, hyp=%d;\n",dim,hyp);
fpf(fp,"\ndouble\t*a, •B, *C, *D, •e;\n");

fpf(fp,"\npwlf ()\n|");
subl("a","double"."dim"."l");
subl("B"."double"."dim","dim");
subirC^^oubl^^dim'V'hyp");
subl("D,,,"double","dim"."hyp");
subl("e",,,double","hyp","l");
fpf(fp,"\n");

pf("\n Enter vector a[]:");
sub2(l."a",dim,0,0);

Page 1 of interac.c

interac.c interac.c

pf("\n Enter matrix B[,]:");
sub2(2,"B".dim.dim,0);
pf("\n Enter matrix C[.]:");
sub2(2,"C",dim,hyp,0);
pf("\n Enter matrix D[,]:");
sub2(2,"D",dim,hyp,0);
pf("\n Enter vector e[]:");
sub2(l.,,e",hyp,0,0);

fpf(fp,"\n\tprintf(\"\\n%s\\n\");\n{\n", tl);
fclose(fp);
pf("\n»* output file is %s ••\n", argv[l]);

/• continue excution •/
pf("\nContinue to excute ? [y,n] ");
str ss l_get();
if (•str !ss Y) exit(l);

/• compiling •/
spf(buf,"%s %s %s".cc,argv[l],lib);
pf("\n%s\n", buf);
system(buf);

/• excutmg ♦/

pf("\n\C07Ready to excute, command line flags are:\n");
pfr%s%s%s%s",flg I.flg2,flg3,flg4);
pf("mvoke flag(s): ");
str =5 s_get();
spf(buf,"./a.out %s", str);
system(buf);

/•
•• sublQ — iwrite to the output program the lines containing
•• "maUocQ".
•/

subl (si, s2, s3, s4)

register char •si, •s2, •sS, *s4;

fpf(fp,,,\n\t%s ss (%s ♦) malloc(35s*%s*sizeof(%s));",
Sl,s2,s3,s4,s2);

{

•• sub2Q — write to the output program the lines of arrays.
V

sub2 (fig, s, row, col, rgn)

char *s;
register int row, col, rgn;

double d_get();
int i_get();
register int i, j;

switch (fig) \

Page 2 of interac. c

interac. c interac.c

case 1: /*<*[]. «[] */
for (i=0; i < row; i++) (

pf("\n\t%s[%d] = ",s,i+l);
fpf(fp,"\n\t%s[%d] ss %l6.9e;".s.i.d_get0);

case 2: ' /• 5[.], C[,], D[,] •/
for (issO; i < row; B-+) \

pf("\n row %d:",i+l);
for (j=0; j < col; j++) {

pf("\n\t%s[%d,%d] = ",s,i+l,j+l);
fpf(fp,"\n\t/* %s[%d,%d] •/",s,i+l,j+l);
fpf(fp," %s[%d] s= %l6.9e;",s,i«col+j,d-get0);

default: ' /• x[.], 6d[,] •/
for (jssO; j < col; j++) (

pf("\n\t%s[%dj ss ",s,j+l);
fpf(fp,"\n\t/» %s[%d.%d] •/",s,rgn+l,j+l);
if (fig ss 3) /• for x ♦/

fpf(fp," %s[%d] = %16.9e;",s,rgn*dim+j.d_get0);
else /• for bd •/

fpf(fp," %s[%d] = %d;",s,rgn*hyp+j,i_getO);

break;

fpf(fp,"\n");

/•
•• ijgetQ — get an integer from input.
•/

int i_get 0

int atoi();

fgets(str,sizeof str.stdin);
return(atoi(str));

/•
*• djgetQ — get a double precision number from input.
V

double d_get 0
\

double atofO;

fgets(str,sizeof str.stdin);
return(atof(str));

/•

♦♦ IjgetQ — get a line from input.
•/

char *1 get ()

register char *c;

Page 3 of interac.c

interac.c interac.c

c = (char •) malloc(BUFSIZ*sizeof(char));
fgets(c,sizeof cstdin);
return(c);

J

/•
** sjgetQ — get a string (without NL) from input.
•/

char *s«get ()

register char *c;

c ss (char •) malloc(BUFSIZ*sizeof(char));
gets(c);
return(c);

Page 4 of interac. c

Makefile Makefile

File maintenance for ASPWLF programs.

CFLAGS = -0 -p
E ss ex.c

FILE = Makefile\
aspwlf.h mainx aspwlf.c init.c print.c queue.c error.c\
interac.c supportc

OBJS = main.o aspwlf.o init.o print.o queue.o error.o support.o

AUb: 8(0BJS)
ar ru Alib S(OBJS); ranlib Alib

main.o: aspwlf.h mainx
aspwlf.o: aspwlf.h aspwlf.c
inito: aspwlf.h init.c
print.o: aspwlf.h print.o
queue.o: aspwlf.h queue.c
error.o: aspwlf.h error.c
support,o: support.c

interac:
cc —0 —o interac interac.c; strip interac

run:

cc S(CFLAGS) 8(E) AUb -limsld -1F77 -1177 -lm

Page 1 of Makefile

	Copyright notice 1981
	ERL-81-54

