

Copyright © 1981, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

A DECENTRALIZED TERMINATION PROTOCOL

by

Dale Skeen

Memorandum No. UCB/ERL M81/50

8 July 1981

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

A Decentralized Termination Protocol*

Dale Skeen

Computer Science Division
EECS Department

University of California
Berkeley, California

Abstract

The smallest recoverable unit of work in a distributed database system is a tran
saction. Whenever site failures leave the processing of a distributed transaction
in a (potentially) unsafe state, a termination protocol is invoked to restore the
database to a safe state enabling operational sites to proceed with future tran
sactions. In this paper we propose one such termination protocol and sketch a
proof of its correctness. The protocol is an example of a decentralized protocol,
where each site assumes an equal and symmetric role. The proposed protocol is
resilient to all combinations of site failures that do not partition the network.

1. Introduction

The smallest recoverable unit of work in a distributed database system is a

transaction. Whenever site failures leave the processing of a distributed tran

saction in a (potentially) unsafe state, a terrnination protocol is invoked. The

goal of a termination protocol is to move the database to a consistent state by

either backing out the transaction at all participating sites or by (recoverabiy)

installing the updates at all operational sites.

In this paper we propose one such termination protocol and sketch a proof

of its correctness. The protocol is an example of a decentralized protocoL In a

decentralized protocol, each site assumes an equal and symmetric role. This

can be contrasted with the more popular centralized protocols where

master/slave relationships exist among the sites.

This research wassponsored by the U.S. Air Force Office of Scientific Research Grant 78-3596,
the U.S. Army Research Office Grant DAAG29-76-G-0245, and the Naval Electronics Systems Command
Contract N00039-78-G-0013.

Decentralized Termination Protocol Dale Skeen

The remainder of the paper is organized as follows. In the second section,

we develop the necessary background material which includes defining and dis

cussing termination and decentralized protocols. In the third section we intro

duce an example of a nonblocking commit protocol. The example is included for

two reasons. First, an understanding of commit protocol is essential toward an

understanding of termination protocols. Secondly, it is a good example of a

decentralized protocol. In the fourth section, we present a decentralized termi

nation protocol which is resilient to arbitrary site failures. As long as a single

site remains operational, the protocol is guaranteed to terminate the transac

tion in a consistent state. We also sketch a brief proof of correctness. The fifth

and last section summarizes the attributes of the proposed protocol.

Throughout the paper, we assume that the underlying communications net

work provides point-to-point communications between any two operational sites

(however, we do not require that messages be received in the order sent). We

also assume that the network can detect and verify site failures by timeouts and

by observing unsuccessful attempts at retransmission.

In addition to site failures, the proposed protocol can be made resilient to

network partitions, arbitrary message loss, and to uncertainty in the type of

failure observed. These extensions are outside the scope of this paper, but are

discussed in [SKEE81c].

2. Background

By definition a transaction on a distributed database system is a (logically)

atomic operation: it must be processed at all sites or at none of them. Designing

protocols for transaction management that are resilient to various failures,

including arbitrary site failures and partitioning of the communications net

work, is a very difilcult problem. We now discuss some of the aspects of resilient

transaction management.

-2-

Decentralized Termination Protocol Dale Skeen

Preserving transaction atomicity in the single site case is a well understood

problem [LIND79, GRAY79]. The processing of a single transaction is viewed as

follows. At some time during its execution, a commit point is reached where the

site decides to commit or to abort the transaction. A commit is an uncondi

tional guarantee to execute the transaction to completion, even in the event of

multiple failures. Similarly, an abort is an unconditional guarantee to back out

the transaction so that none of its results persist. If a failure occurs before the

commit point is reached, then immediately upon recovery the site will abort the

transaction. Both commit and abort are irreversible.

The problem of guaranteeing transaction atomicity is compounded when

more than one site is involved. Assuming that each site has a local recovery stra

tegy which provides atomicity at the local level, the problem becomes one of

insuring that the sites either unanimously abort or unanimously commit. A

mixed decision results in an inconsistent data base. Protocols for preserving

transaction atomicity are called commit protocols. Several commit protocols

have been proposed ([ALSB76, ELLI77, GRAY79, HAMM79, LAMP76. UND79,

SKEE81b. ST0N79]).

For many applications it is intolerable for operational sites to be forced to

indefinitely block the progress of a transaction until a failed site has recovered.

Instead, it is preferable that the operational site abort the transaction (ifneces

sary) so that the locks required by the transaction can be released. Commit

protocols that never leave transaction processing in a state where operational

sites must wait until the recovery of a failed site before a consistent commit

decision (e.g. abort or commit) can be reached are called nonblocking. Non-

blocking protocols have been proposed in [HAMM79, SKEE81b]. In Section 3 we

review a nonblocking commit protocol and its properties.

-3-

Decentralized Termination Protocol Dale Skeen

Termination Protocols

Termination protocols are used in conjunction with nonblocking commit

protocols. A termination protocol is invoked when occurrences of site failures

render the continued execution of the commit protocol impossible. The purpose

of the termination protocol is to identify the operational sites and move them

toward a commit decision which is consistent with both operational sites and

failed sites. It is the responsibility of a nonblocking commit protocol to always

leave transaction processing in a state such that the termination protocol can

proceed. The major contribution of this paper is the termination protocol

presented in Section 4.

Decentralized Protocols

In a (completely) decentralized protocol, as the name suggests, there is no

hierarchical ordering of the sites. Instead, each site communicates with every

other site, and each site assumes a symmetric role.

A decentralized protocol consists of successive rounds of message inter

changes where every operational site participates in every round. Within a sin

gle round, a site sends identical messages to all of the other participating sites,

and then waits to receive a message from each of them. Of course, a site may

fail while sending its messages during a round and only send to a subset of its

intended receivers.

A very simple example of a decentralized protocol is the simple decentral

ized commit protocol which is the decentralized analog of the centralized two-

phase commit protocol. Assuming that a transaction has been sent to each site

for processing, the protocol consists of a single message round where each site

sends its vote ("yes" to commit, "no" to abort) to all of the other sites. After a

site has collected votes from all of the other sites, it will commit only if all votes

were "yes". Like the two-phase commit protocol, this protocol is functionally

-4-

Decentralized Termination Protocol Dale Skeen

correct but not very robust.

Decentralized protocols require n(n - 1) point-to-point messages during a

round, where n is the number of participants. If a broadcast facility is present,

then this reduces to n broadcast messages. Therefore, decentralized protocols

are attractive only in networks where messages are cheap or a broadcast facility

is available. Fortunately, one or both of these conditions are likely to be true in

a high speed local area network (e.g. ETHERNET [METC76]). Because of their

inherent symmetry, decentralized protocols tend to be easier to understand and

to implement than centralized protocols.

3. A Nonblocking Decentralized Commit Protocol

We illustrated a simple commit protocol in the previous section. Unfor

tunately, it is not a very robust protocol: it often blocks the progress of a tran

saction when sites fail. We now present a nonblocking commit protocol. In addi

tion to serving as another, more complex example of a decentralized protocol, it

will also introduce the common properties of all nonblocking protocols. These

properties are used in the design of termination protocols.

The nonblocking decentralized commit protocol was first introduced in

[SKEE81b].

The Protocol

The nonblocking protocol is derived from the simple protocol by adding

another message round and delaying the commit point of a transaction until the

end of the second round.

In the simple commit protocol, a site would commit at the end of the single

message round if all sites had voted yes. In the nonblocking version of the pro

tocol, an all yes vote would trigger a second round of messages, where each site

sends prepared to commit messages and waits. Upon receiving prepared to

-5-

Decentralized Termination Protocol Dale Skeen

commit messages from all of its cohorts, a site will then commit the transaction.

(The protocol is given in its entirety in Figure 1.)

Whenever a site detects the failure of another site while executing the com

mit protocol, it will invoke a termination protocol. The detection of the failure

and the subsequent invocation can occur during either message round.

Properties of Nonblocking Commit Protocols

Finite state machines provide a convenient formalism for discussing com

mit protocols and for describing their properties ([SKEE81a]). In the nonblock

ing commit protocol, we can identify five distinct states in processing a transac

tion. These states are illustrated in Figure 2. Briefly, they are: an initial state

(q) where the site is waiting to receive the transaction; a wait state (w) where

the site has voted "yes" and is waiting for all of the other votes; a prepared state

(p) where the site has sent "prepared to commit" messages and is waiting for a

similar message from all cohorts; and two final states, aoorr (a) and commit (c).

In the state diagram in Figure 2, messages are doubly subscripted: the first

subscript names the sender; the second, the receiver. During a state transition

Initial Phase. Transaction is sent to all sites.

Rrst Round. Each site broadcasts its vote, yes or no, for the transaction.
If a site receives all yes votes during this round, then a second round is
initiated. Otherwise, the site aborts the transaction.

Second Round. Each site broadcasts a prepared to commit message.
Upon receiving a prepared... message from each of its cohorts, a site
commits the transaction.

figure 1. The nonblocking decentralized commit protocol.

-6-

Decentralized Termination Protocol Dale Skeen

Site i (i =l,2, ••• n)

yes,, — yes
ni

preparen-. prepare
in

©
prepare, prepare

ni

Figure 2. Anonblocking decentralized commit protocol.

a site receives messages from the network (these appear above the horizontal

line) and new messages are sent (these appear below the line). Although it is

convenient to consider a state transition as an instantaneous event, we will

assume that a site can make a partial transition when it fails. Only a subset of

the intended messages are sent during such a failure.

The transaction states of any commit protocol can be partitioned into two

sets: committable and noncommittabie. A state is called committable if

-7-

Decentralized Termination Protocol Dale Skeen

occupancy of that state by any site implies that all sites have voted "yes" on

committing the transaction. A state that is not a committable state is called

noncornmittable.1 In the nonblocking commit protocol presented above, both

the prepare state and the commit state are committable states; the remaining

states are noncornmittable.

All nonblocking protocols exhibit the following properties (see [SKEE81b]):

(1) all operational sites occupy committable states before the transaction is

committed at any site,

(2) all operational sites occupy noncornmittable states before the transaction

is aborted at any site.

4. A Decentralized Termination Protocol

A termination protocol must guarantee that every operational site ter

minates the transaction in a consistent state. The correct execution of a termi

nation protocol depends on the properties of commit protocols described in the

previous section.

Two issues complicate the design of a termination protocol. First, it must

be resilient to subsequent site failures; secondly, sites may detect a given

failure at different points in their protocol. For example, some sites may detect

a failure in round one of the nonblocking decentralized protocol while others will

not detect it until the second round.

First, we will present a simple decentralized termination protocol that is

not resilient to further site failures during its execution. This will serve to intro

duce the basic ideas used in a decentralized termination protocol.

We will then present an extension of the simple protocol that is resilient to

all combinations of site failures that do not partition the network. Normally the

lTo call noncornmittable states abortable would be misleading, since a transaction that is not in
a final commit state at any site can still be aborted.

-8-

Decentralized Termination Protocol Dale Skeen

resilient termination protocol will require two rounds of message interchanges;

however, additional site failures during the execution of the protocol may cause

additional rounds. The maximum number of rounds is equal to the initial

number of operational sites.

To simplify notation, we will speak as though sites sent messages to them

selves during a round. We will also refer to operational sites simply as the parti

cipants.

A Simple Termination Protocol

The protocol consists of a single round of messages. During this round, the

message sent by a site is determined solely by its current transaction state.

There are three possible messages:

abort if the transaction state is a final abort state,

committable if the transaction state is a committable state, and

noncornmittable if the transaction state is neither a committable state nor
an abort state.

Upon receiving messages from all the participants, a site will move directly

to a final state according to the following rule:

Simple Commit Rule. If at least one committable message is received,
then commit the transaction; otherwise, abort it.

As an example of using the protocol, consider invoking it from the non-

blocking decentralized commit protocol described in Section 3. A site will send

an abort message if it currently occupies the abort state; it will send a committ

able message if it currently occupies either the prepared state or the commit

state; and it will send a noncornmittable message if it occupies either the initial

state or the wait state.

It is straightforward to argue the correctness of the protocol. We observe

that the transaction is committed if and only if one of the participants is initially

-9-

Decentralized Termination Protocol Dale Skeen

in a committable state. From the properties of nonblocking commit protocols

given in Section 3, we know that occupancy of a committable state at any site

implies that all sites can commit the transaction; furthermore, it implies that no

site has aborted the transaction. Therefore, we conclude that the simple termi

nation protocol is correct.

This protocol is not very robust as is demonstrated in the following scenario

involving three sites. Let Site 1 be the only site in a committable state upon

entry into the termination protocol, and let Site 1 fail after sending a committ-

able message to Site 2. At the end of the first message round. Site 2 would have

received one committable message (from Site 1) and one noncornmittable mes

sage (from Site 3). Site 3 would have received no messages from Site 1 and a

noncornmittable message from Site 2. Clearly, Site 3 cannot safely proceed

until it queries Site 2 as to the state of the failed site. If Site 2 fails at this point,

then Site 3 must block the transaction.

The protocol cannot be made more robust by changing the commit rule.

For example, if the rule was to commit only after all sites had sent committable

messages, then a blocking scenario that is the mirror image of the above

scenario could be contrived. It is fairly intuitive (and can be shown formally)

that no "single round" termination protocol is resilient to arbitrary site failures.

A Resident Termination Protocol

The design of a resilient "multiple-round" termination protocol is compli

cated by two subtle issues. The first issue is that an operational site may fail

immediately after making a commit decision (and therefore be unavailable to

participate in subsequent message rounds). This was the case in our previous

scenario where Site 2 failed after committing the transaction. The second issue

is that often a given site does not know the current operational status (Le. "up"

or "down") of the other sites. In particular, upon entry into a termination

-10-

Decentralized Termination Protocol Dale Skeen

protocol, the identities of the other operational sites may not be known.

The second issue can lead to very subtle problems. Again, consider the

scenario where Site 1 sends a committable message to Site 2 and then crashes.

Site 2 sends out noncornmittable messages, receives the committable message
*

from Site 1, commits, and then promptly fails. Now, Site 3 receives a single non

cornmittable message (from Site 2). Let us assume that Site 3 was not aware

that Site 1 was up at the beginning of the protocol (a reasonable assumption).

Then, Site 3 would not suspect that the messages it received were inconsistent

with those received by Site 2, and it would make an inconsistent commit deci

sion.2

We have argued that a resilient protocol requires at least two rounds. The

protocol that we now present requires exactly two message rounds when no site

failures occur during its execution. Unfortunately, in the worst case, each site

failure may require an additional message round.

The protocol presented is an extension of the simple protocol. The same

three messages —abort, committable, and noncornmittable —will be used again

in the first round and in all subsequent rounds.

The sending of messages during the first round proceeds as before: a site

examines its transaction state and sends the appropriate message. However,

the actions triggered by the receipt of the messages differ from before.

To define the remainder of the protocol we must specify:

(1) the rules for the messages sent during the subsequent rounds,

(2) the rules for moving to a final transaction state (i.e. either commit or

abort), and

^This illustrates that single round protocols sometimes make inconsistent decisions whenboth
additional site failures occurandthe information concerning the status of operational sites is incom
plete. Furthermore, the inconsistent decisions go undetected unless additional message rounds are
added.

-11-

Decentralized Termination Protocol Dale Skeen

(3) the rules for terminating the protocol (this is closely linked to (2)).

These rules are obviously interrelated, but we will treat them sequentially.

The rules for sending messages are simpler and will be discussed first. The

messages sent by a site in the second round and subsequent rounds will be

determined solely by the messages received during the previous round. The

reader is reminded that during a round a site sends the same message to all

(operational) participants, including itself. This message to itself, as any other

message, will be used in determining the next round of messages.3

There are three cases which are treated in the next three paragraphs. The

rules for sending messages are summarized in Figure 3a.

The receipt of an abort message by a site during any round implies that the

sender has aborted the transaction. Therefore, in subsequent rounds the site

will send abort messages.

The receipt of a single committable message during the first round implies

that the transaction was committable at the sender, and therefore, is committ

able at all sites. The receiver of the committable message, being informed that

the transaction is committable, should send committable messages during all

subsequent rounds. Similarly, a committable message received during a subse

quent round implies that all sites can commit, and will trigger the sending of

committable messages in all of the later rounds.

If only noncornmittable messages are received during a round, then the site

must send noneornrnittable messages in the next round.

From the above three rules, we infer:

Lemma 1. Once a site begins sending a committable (abort) message, it
will send that message in all subsequent rounds.

*This is the only way that the previous state of the site plays a role in determining the next
state.

-12-

Decentralized Termination Protocol Dale Skeen

We now turn our attention to rules for committing and aborting the transac

tion. Clearly, if a site ever receives an abort message, it should immediately

abort the transaction because the transaction has been aborted at other sites

(in particular, it was aborted by the sender of the message). However, commit

ting a transaction is not so straightforward.

First message round:

type of transaction state

final abort state
committable state

all other states

Second and subsequent rounds:

message received from previous round

one or more abort messages
one or more committable messages
all noncornmittable messages

a. Summary of roles for sending messages.

The transaction is terminated transaction if:

condition

receipt of a single abort message
receipt of all committable messages
2 successive rounds of messages
where all messages are noncornmittable
and no site failures occur

"b. Summary of commit and termination rules.

message sent

abort
committable

noneo mmittable

message sent

abort

committable
noneommittable

final state

abort

commit
abort

Figure 3. Summary of the resilient decentralized termination protocol.

-13-

Decentralized Termination Protocol Dale Skeen

Recall that a major flaw with the simple termination protocol is that a site

commits after receiving a single committable message. We require a rule analo

gous to property (1) of nonblocking commit protocols, which states that all sites

must be in a committable state before any site commits. This leads us to the

following rule:

Commit Rule. A transaction is committed at a site only after the receipt
of a round consisting entirely of committable messages.

Before continuing with the termination rules for the protocol, it will be

instructive to look at a "worst case" execution of the protocol. The execution is

worst case in the sense that the maximum number of message rounds is

required before the transaction is committed. Only the rules previously dis

cussed are used.

The worst case execution for five participants is illustrated in Figure 4. (In

the figure the messages received by a site during a round comprise a vector,

where the Ith component is the message received from the i**1 site. C, A and N

are abbreviations for committable, abort, and noncornmittable. A dash (—) indi

cates that no message was received from that site.)

Initially, the first site is the only one in a committable state. It fails after

sending a single message that is addressed to the second site. In general, dur

ing the k**1 round the k^ site fails after sending a single committable message

(to the k^+l site). Therefore, during each round one more site becomes aware

that the transaction is committable. This continues until the fifth round, where

Site 5 is the sole remaining operational site and it commits the transaction.

Now let us consider the problem of correctly terminating the protocol. If a

site eventually receives at least one abort message or eventually receives com

mittable messages from all sites, then there is no problem. However, it is possi

ble for the transaction to progress to a state where all sites are sending non-

-14-

Decentralized Termination Protocol Dale Skeen

MESSAGES RECEIVED

SITE 1 SITE 2 SITE 3 SITE 4 SITE 5

initial committable non non non non
state

round 1 (1) CNN NN -NNNN -NNNN -NNNN
round 2 FAILED (1) - CNNN --NNN --NNN
round 3 FAILED FAILED (1) -- CNN NN
round 4 FAILED FAILED FAILED (1) CN
round 5 FAILED FAILED FAILED FAILED c

NOTE: (1) site fails after sending a single message.

Jlgure 4. Worst case execution of the resilient termination protocoL

committable messages. The protocol must be able to detect this situation and

abort the transaction. We will use the following rule to terminate such transac

tions.

Termination Rule. If a site ever receives two successive rounds of non
cornmittable messages and it detects no site failures between the
rounds, then it can safely abort the transaction.

We will justify this rule later.

We can make one final enhancement to the protocol. Notice that all sites

may not decide to abort at the same time. For example, let there initially be

only one site in an abort state, and let the remaining participants be in a non

cornmittable state. If the site in the abort state fails while sending messages in

the first round, then those participants receiving an abort message will immedi

ately abort the transaction, while the others will continue with subsequent mes

sage rounds. To expedite the abortion of the transaction at all sites, those sites

aborting the transaction during the first message round should participate in

latter rounds. Therefore, we will always require a site to participate in one

-15-

Decentralized Termination Protocol Dale Skeen

additional message round after aborting the transaction. Note that this is only a

"performance" enhancement; the protocol will eventually abort the transaction

at all sites irrespective of whether the sites aborting the transaction participate

in the additional message round.

The commit and termination rules are summarized in Figure 3b.

Correctness Argument

To demonstrate correctness we must show (1) that the protocol always ter

minates, and (2) that it terminates in a consistent state. We will show termina

tion first.

Let n be the number of participants at the beginning of the protocol. Let

Nj(r) be the set ofsites sending noncommittable messages to site i during round

r.

We have:

Lemma2. N^r+1) c N,(r)

Proof. This follows directly from Lemma 1: for a site to send a noncorn
mittable message in round r+1, it must have sent a noncommittable
message in round r. •

Lemma 3. If Nj(r+1) = Nt(r) 7s 0, then all messages received by site i
during both rounds r and r+1 were noncommittable messages.

Proof. Without loss of generality assume that site i is operational. The
argument proceeds by contradiction. Let N.(r+1) = Nf(r) and let round r
contain messages other than noncommittable messages. We will only
discuss the case where committable messages appear. There are two
subcases depending on the message sent by i during round r:

Case 1. Site i sends a noncommittable message during round r. In round
r+1, it will send a committable message because it received a committ
able message during round r (by assumption). This contradicts the
eiaiml^(r+l) = H(r).
Case 2. Site i sends a committable message during round r. Since site i
did not fail in round r, all sites received a committable message (from i)
during that round. Therefore, in round r+1 all sites will send committ
able messages. Again this is a contradiction. •

-16-

Decentralized Termination Protocol Dale Skeen

Lemmas 2 and 3 show that the number of sites sending noncommittable

messages either monotonically decreases toward zero with each round, or two

rounds will occur with the same number. In the former case, the transaction

will be terminated by the time the number reaches zero (and this requires at

most n rounds). In the latter case, the transaction will be aborted because of

the termination rule.

To show that a consistent state is reached, we require the following results:

Lemma 4. During any message round, abort and committable messages
may not both be sent.

Proof. The proof for the first round follows directly from the properties
of nonblocking commit protocols: it is never the case that one site is in
an abort state while another site is in a committable state.

From the rules for sending messages, we know that a round can include a
certain type of message only if that message type was present in the pre
vious round. (This follows from the observation that a given message
type must be received by a site, before it will be sent by a site in the
next round.) By induction, a message type can appear in a later round
only if it was present in the first round. This observation proves the lem
ma. •

Lemma 4 proves that it is never the case that some sites are trying to abort

the transaction by sending abort messages, while others are trying to commit

the transaction by sending committable messages. The commit rule insures

that sites begin to commit only after all operation sites are aware that the tran

saction is "committable." Finally, the properties of a nonblocking commit proto

col insure that no site has aborted the transaction after a single site has entered

a committable state. Collectively, these results imply the correctness of the

protocol.

5. Conclusions

We have presented a termination protocol that is resilient to arbitrary site

failures that do not partition the network. In [SKEE81c] this protocol is

extended to handle network partitions.

-17-

Decentralized Termination Protocol Dale Skeen

The proposed termination protocol is an example of a decentralized proto

col These protocols have several advantages over centralized protocols —not

ably they tend to be much simpler and easier to implement. Both of these

advantages are derived from the symmetry inherent in all decentralized proto

cols.

The major disadvantage of decentralized protocols is the number of mes

sages exchanged during a round (the number of messages is quadratic in the

number of participants). In network environments where either control mes

sages are cheap or a broadcast facility is available or both (e.g. an ETHERNET),

the message cost is reasonable. Moreover, in realistic environments a site

failure should be a rare event; therefore, the cost of the termination protocol

should not be a significant issue.

Since message rounds are costly, an important design goal for any decen

tralized protocol is to minimize the number of rounds. It is easy to show that

any resilient protocol requires a minimum of two message rounds before it can

commit a transaction and, in the worst case, requires an additional message

round for each failure detected ([SKEE81c]). The proposed protocol meets

these lower bounds. In particular, it requires exactly two rounds when no addi

tional site failures occur during its execution. Furthermore, a worst case execu

tion of the protocol is extremely rare in practice.

Finally, the proposed protocol is an optimistic protocol —it will commit the

transaction whenever it is safe to do so —and it can be used in conjunction with

any nonblocking commit protocol. In environments where messages are expen

sive, it is reasonable to run a centralized commit protocol and the proposed

decentralized termination protocol.

-IB-

REFERENCES

[ALSB76] Alsberg. P. and Day, J., "A Principle for Resilient Sharing of Dis
tributed Resources," Proc. 2nd International Conference on
Software Engineering, San Francisco, Ca., October 1976.

[ELLI77] Ellis, C.A.. "A Robust Algorithm for Updating Duplicate Data
bases," Proceedings of the Second Berkeley Workshop on Distri
buted Data Management and Computer Networks, 1977, pp. 146-
158.

[GRAY79] Gray, J. N., "Notes on Database Operating Systems," in Operating
Systems: An Advanced Course, Springer-Veriag, 1979.

[KAMM79] Hammer, M. and Shipman, D., "Reliability Mechanisms for SDD-1:
A System for Distributed Databases," Computer Corporation of
America, Cambridge, Mass., July 1979.

[LAMP76] Lampson, B. and Sturgis, H., "Crash Recovery in a Distributed
Storage System," Tech. Report, Computer Science Laboratory,
Xerox Pare, Palo Alto, California, 1976.

[LIND79] Lindsay, B.G. et al., "Notes on Distributed Databases," IBM
Research Report, no. RJ2571 (July 1979).

[SKEE81a] Skeen, D. and M. Stonebraker, "A Formal Model of Crash
Recovery in a Distributed System," IEEE Transactions on
Software Engineering, (to appear).

[SKEE81b] Skeen, D., "Nonblocking Commit Protocols," SIGMOD Interna
tional Conf. on Management of Data, Ann Arbor, Michigan, 1981.

[SKEESlc] Skeen, D., "Crash Recovery in a Distributed Database System,"
Ph.D. Thesis, University of California, Berkeley (in preparation).

[ST0N79] Stonebraker, M., "Concurrency Control and Consistency of Multi-
pie Copies in Distributed INGRES," IEEE Transactions on
Software Engineering, May 1979.

-19-

	Copyright notice 1981
	ERL-81-50

