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ABSTRACT

Given a partial order G. it is shown that the problem to deter
mine the minimum number of total orders whose intersection
forms G is NP-complete

1. Introduction

In 1941 Dushnik and Miller [2] introduced the notion of the dimension of a
partial order : the smallest number of total orders whose intersection is the ori
ginal order. Since then the area of problems related to the concept of dimension
has been intensively investigated (see e.g. [l] for a literature survey). However,
up to now, the inherent complexity of determining the dimension of a partial
order remained unsolved and is listed as an open problem in the textbook of
Garey and Johnson [3].

Only for the special case of dimension ^ 2it is known that we can recognize
these graphs in polynomial time. This is possible due to a characterization of
partial orders of dimension 2 obtained by Baker, Fishburn and Roberts [l] and
an 0(n3) -algorithm for comparability graph recognition (where nis the number
of nodes) found by Golumbic [4]: Apartial order Gisof dimension <;2 iff a transi
tive orientation can be assigned to the incomparability graph of G.

In this paper we show that determining the dimension of a partial order is
an NP-complete problem and thus with regards to its complexity equivalent to a
lot of combinatorial problems like e.g. finding a maximum size clique in a graph
or finding a satisfying truth assignment for a boolean formula (for the notion of
NP-completeness see Karp [5] and Garey, Johnson [3] ). This NP-completeness
result gives strong evidence that the task of determining the dimension of a
t On leavenrf absence from the University of Paderborn, 4780 Paderborn. West-Germany.
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partial order is inherently hard, i.e. no polynomial time algorithm is likely to be
found.

2. Definitions

Given a finite set V together with a binary relation < on V. If < is asymetric

(Le. x<y->y^x) and transitive (Le. x < y, y <z => x <z ) we call (V,<) a
"partial order". If we define now a set E := ( (x,y) \ x,y e V, x < y J we can

represent the partial order as a directed, acyclic graph G=(V,E) with node set V

and edge set E.

A partial order G=(V,E) is called a "total" (or "linear") order iff (xty) e E err
(y,x) £ Efor all x,y e V, Le. every two elements of V are "comparable". It is easy

to see that a total order is the transitive closure of a graph which can be drawn

as a chain.

The "dimension" of a partial order G=(V,E) is the minimum number n of

total orders GMV.Ej, Gz=(V.Ez), • • • ^-(V.Ej,) such that (x,y) e E <=>
(x.y)<=Ei , l^i^n.

This defintion suggests that we call G the intersection of GXtGzt • • • ,$».

To illustrate the notion of dimension we give a simple example:

Let G =

then G is of dimension 2 because it is the intersection of G\ and G% with

(?!= @ >© KB) X©

Gz= © Kg) KD KS

Like other combinatorial optimizations the problem of minimizing the

number of total orders needed for the intersection can be transformed into a

language recognition problem, Le. rather than to determine the dimension of a

partial order we are given a partial order G together with a number d and have

to answer with "yes" if d is the dimension of G and with "no" otherwise. Because
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we can deduce the value for the dimension by a series of these yes-no questions

(using binary search) it can be argued that, if the language recognition problem

is inherently hard then the corresponding optimization problem is also

inherently hard.

3. NF-Completeness

We shall design a reduction from the following problem, called SET-

PARTITION:

Instance: A collection M of n sets Sv S2, • • • Sn c (i,£,...,raj.

Question: Does there exist an index set / C \l,2,...,n\ such that

U Si = U Si ={1.5....,mj,
iel i$I

Le, is there a partition of M into two collections M\ and J/2, which both cover all

the elements ?

This problem is also known as SET-SPLITTING or as HYPERGRAPH 2-

COLORABILITY (a vertex corresponds to a set S, containing as elements all

hyperedges which it is incident to) and has been shown to be NP-complete by

Lovasz [l].

From M we will construct an acyclic digraph G=( V,E) and a number d such

that:

M has a partition into Mit M2 <=> G is of dimension d.

If M has n sets covering m elements then G will have 2n + 4m nodes and

will be bipartite, Le. the node set V is the union of two disjoint sets Vx and 72

such that E c Vx x Vz. For a better understanding of the following construction

we will call the nodes in V\ "black nodes" (and draw them dark: • ) and call the

nodes in 72 "white nodes" (and draw them light: O ).

Now let M = 5lf S2t .... Sn c [1.2,....mj be given. Without loss of generality

we can assume that for each pair of elements j,k there are sets 5,7* € M, such

that jeS,j$T,ke.T,k$S, because otherwise we could identify,;* with k.

Define the following node sets:

The black nodes:

BS:- \ BS[i]\ l^i^n]

BL := \ BL[i] | 1 ^ i as m J

BR := \ BB[i] | l^i^m]
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The white nodes:

WS:=\ WS[i]\ l^i^n]

WL:-\ WL[i]\ l^i^m]

07?:= j WR[i]\ i^i^mj

For 1 <s i <; n, call (BS[i\, WS[i]) the "set-pair i", for 1 <; i <s m, call (5Z[i]t

JKL[i]; the "left-pair i", for 2 ^ i«s m, caU (5!/?[i], JW?[i]; the "right-pair i". The
set-pairs, left-pairs and right-pairs are also refered to as "vertical pairs".

Define the following edge sets:

Ex := BL x (WS u WR)

E2.-BRx (WSv WL)

E3 := i (BS[i], WS[j]) | J ss <j as n, i * j]

EA := \ (BS[il WL\j])t (BS[i], WR\j]) \ l^i^n, l*j*m, j $ St J

Now set 7;= BSu BLu BRu WS u WL u WR, E := ^u^u^u E4, d:=n

and the construction for the acyclic digraph G=(V,E) is completed. (For a

visual description see figure 1).

c

c

WL OO

m left-pairs
no connections

BL ••

plus, for j $ Si

left-pair j

O

set-pair i

OO O WR )
m right-pairs

no connections

• BR )

right-pair j

Figure 1: The graph G, constructed from the set collection M
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The following terms are useful to formulate the proof:

Given a partial order G=(V,E).

A pair of nodes (a,b) is in "forward relation" iff (a,6) e E, it is in "backward

relation" iff (6 ,a) e E.

A pair of nodes is "comparable" iff it is either is forward relation or in back

ward relation, otherwise it is "incomparable".

Two pairs of nodes (a,6) and (c.d) are "connected by a crossover", ifl

(a.d) c E and (c ,6) e E:

All edges in the graph G=(V,E) constructed from the set collection M are

called "fixed edges", in contrast to the "specifying edges", which have to be

introduced (in addition to the fixed edges) within the total orderings to make

the incomparable pairs from G also incomparable within the intersection.

Notice now, that two incomparable pairs (a,b) and (c,d) from G which are

connected by a crossover, must within the total orderings

1.) both once be set into forward relation and once be set into back

ward relation

2.) not be set in backward relation in the same total ordering, since

this would create a cycle.

This is the basic tool in our construction and it applies to two set-pairs, to a

left-pair with regard to a right-pair and to the set-pair i with regard both to the

left-pair j and the right-pair j if j $ •%.

Now we are ready for the proof. Given the set collection M and the con

structed digraph G=(V,E). We show first:

G is of dimension n => M has a partition into Mx and M2

Proof: If G is of dimension n, there are n total orderings G\, Gz G* whose

intersection forms G. These total orderings make all incomparable pairs from G

incomparable in the intersection and therefore especially each vertical pair in G

is set once into forward relation and once set into backward relation. Since all
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(incomparable) n set-pairs are pairwise connected by a crossover in G, it follows
that in each of the total orderings Gx , Gz, .... G^ exactly one set-pair is set into

backward relation.. Without loss of generality let it be the set-pair i which is in
backward relation in Q.

We will now interpret the backward relation of the left-pair j in Q as the
meaning, that the set Si has been chosen for the Mi collection to cover the ele

ment j and the backward relation of the right-pair j in G? means that the set Si
has been chosen for the Mz collection to cover the element j. Since each left-

pair is connected to each right-pair by a crossover, it follows that in each of the

linear orderings a left-pair and a right-pair cannot be in backward relation at

the same time. Since the set-pair i is connected by a crossover to each left-pair j

and right-pair j with j £ Si, all these (left- and right-) pairs are forced to be in

forward relation when the set-pair i is in backward relation.

This implies, that in G* only those left-pairs j or right-pairs j (but not both)
can be in backward relation, which correspond to an element j with j e 5^.

Since each left-pair is at least once in backward relation, it follows that

each element j is covered by a set chosen for Mi and since each right-pair is at

least once in backward relation, it follows that each element is covered by a set

chosen for Mz- Since a left-pair and a right-pair can not be in backward relation

at the same time, it follows that no set S is chosen both for Mx and M2.

Thus we can define a partition for M by

M\ := ( Si | there is a left-pair in backward relation in Q j

Mz := \ Si | there is a right-pair in backward relation in (^ \.

Now we show:

M has a partition into Mx, Mz => G is of dimension n

Proof: Let the two partitions Mi and M2 and the constructed digraph
G=(V,E) be given. We have to construct n total orderings
Gi=(V,Ei), Gz=(V,E2) Gn=(V,En) whose intersection forms G. This means the
n total orderings must have the property

I) fab)eE => (a,b)<E. Eifor l<zi^n

II) fab) $ E and (b,a) £ E => there are i.j e \l,2,...,n\, i * j such
that (a,b) eEi. (b.a) e Ej .

First we describe how the total orderings Git G2 G„. can be obtained and
then we show that their intersection is G.
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figure 2: The relaUons for the vertical pairs are shown by arrows
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To construct Q, we will augment G according to the diagram shown in

figure 2, Le. we will add specifying edges to the fixed edges of G. Thus Ei will con

tain E and property I is fulfilled automatically.

The total order d will represent the fact, that the set Si has been chosen

either for Mi or for Mz and that Si, within its partition, covers some elements.

In order to construct G% assume now, that 5t belongs to partition Mv (If S<

belongs to Mz. the diagram can be used after changing the role of left and right,

Le. after substituting the letter "R" for "L" and "L" for "R").

Define the following subsets of 7, which all depend on the index i:

BSi := f BS[i] j

BS0 := i BS[j] I i sSj ss n, j * i j

BRi:=[BR[j]\jzSil

BR0:=\BR\j]\j$Sil

BLi.-=\BL\j]\jzSi\

BL0~\BL[j]\j$Sil

WSi := ( WS[i] {

WS0 := \ WS{j] \l^j<n,j*i\

WRX:=\ WR[j]\jeSi\

WRQ:={ WR\j]\3$Si\

WLX:=\ WL[j]\jzSi]

WL0:=\ WL[j]\j$Sil

Clearly, this is a partition of the nodes of V into 12 disjoint sets. Now, using

the diagram shown in figure 2, construct a digraph Gt':=(V,Ei') by defining

Ei' := \ fay) | x,y € V, the set which contains x appears in the

diagram below the set which contains y J .

Obviously Q' is an acyclic graph and, moreover, Ei. contains E, since it can

be verified that all fixed edges from G lead in the diagram from a lower level to a

higher level.

Now transform the partial order Q' into a total order d by introducing any

set of additionel edges which creates no cycles (e.g. by sorting Q' topologically).

It remains to show that property II is fulfilled, Le. we have to show, that

each incomparable pair from G is once set into forward relation and once set

into backward relation.
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First, as the arrows in the diagram show, this is true for the vertical pairs:

The set-pair i is in backward relation in Q, otherwise it is in forward rela
tion.

Since for each element ; there is a set 5t € Mx and a different set Sk e M2
which both cover j, it follows: The left-pair j is in backward relation in ^ and in
forward relation in Q.. The right-pair j is in backward relation in Gk and in for
ward relation in Q.

Now notice, that the two incomparable black nodes and the two (incompar
able) white nodes of two vertical pairs (a,b) and (c.d) which are connected bya
crossover, are therefore also made incomparable:

a 0 © c

(a.6) in backward relation => c < a and b < d

(c.d) in backward relation => a < c and d <b

We will classify the remaining incomparable pairs from Gaccording to their
membership in the node sets BS, BL, BR, WS, WL, WR. These sets are

represented in figure 3 as nodes and an edge is provided between two classes if

they contain some of the remaining incomparable pairs. Referring to the label
of the edge from a set A to a set B we will decscribe how an incomparable pair
(a,6) with a € Aand b e B is made incomparable in the intersection. (In the fol
lowing wewrite X < Y for sets X, Y, iff* <y for alla: eX,y e Y).

1) For each l^j^m holds:

There is 5< € Mi with; e S<. => in Q : WL\J] e WLX, and WLX < WS.
There is St e Mwith; £ Sk. => in Q. : WL{j] € WLQ, and WLQ > WS

2,4) For all 1 sS k,l <s m holds:

There are Sit S5 e Mwith* c Sit k $ Ss , I $ Sit I e Sf. =>
in Q ; WL[k] € fl^ < FKZo a FKi[i] and ££[>] e BLX < BLQ BL[l]
in Gj : WI$k] e JTC,0 > WLX 9 FKZ[J] and BL[k] e 5L0 >^ BL[l]
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3) For each 1 ^ ;' ^ m holds:

There is Si € Mx with; € S^ => in d : WL\J] e WLX, and WLX < BL.

There is Sk £ M, with; 4: Sk. => in Q. : JTi[j] e WL0, and JFI0 > #£•

5) (Only meaningful for BS[i] versus WL[j] if ; € Si, because otherwise

BS[i] and WL[j] are comparable ). So define L(i): = WL[j] \;' € Si .
For each BS[i] holds:

In d : BS[i] e £$i > WZ,! = L(i)

In each Gy with; * i : BS[i] € BSQ < WL DL(i)

6) For each BS[i] holds:

In Q : BS[i] e 5^! > BL

In each Gy with; ?* i : 55[i] € £S0 < f?Z,

Cases 7 to 12 are analogous to cases 1 to 6 and can be considered by substi

tuting the letter "R" for "L" and "Mz" for "Mi". This completes the proof.

Figure 3 : Node classes containing unrelated pairs

4. Conclusion.

We have shown that, given a partial order G and a number d, it is an NP-

complete problem to decide whether the dimension of G is d. Since in our

reduction the value n depends on the size of the set system M this proofs the

NP-completeness of the dimension problem only for an arbitrary value of n. So

besides the dimension 2 problem (which has a polynomial time solution) the

complexity for the dimension k problem if k is fixed (e.g. k=3 ) remains open.
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