

Copyright © 1981, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

APPLICATION OF RESTRUCTURING TECHNIQUES

TO THE OPTIMIZATION OF PROGRAM BEHAVIOR

IN VIRTUAL MEMORY SYSTEMS

by

Jehan-Fran9ois Paris

Memorandum No. UCB/ERL M81/44

18 May 1981

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Application of Restructuring Techniques
to the Optimization of Program Behavior

in Virtual Memory Systems

By
Jehan Francois Paris

Engineer (Free University of Brussels) 1970
Grad. (University Faculties of Our Lady of Peace, Belgium) 1972

Grad. (University of Paris VI) 1974

DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Engineering

in the

GRADUATE DIVISION

OF THE

UNIVERSITY OF CALIFORNIA, BERKELEY

y •/ /I Chairman ^? n ..DaJate

y>

Application of Restructuring Techniques to the
Optimization of Virtual Memory Systems

Copyright 8 1981 by Jehan-Francois Paris

Application of Restructuring Techniques to the Optimization

of Virtual Memory Systems

Jehan-Francois Paris

Ph. D. in Engineering
Electrical Engineering and Computer Science

^aA/M^-. Y**
I

Professor Dbmenico Ferrari
Chairman of Thesis Committee

Abstract

One of the most effective ways of obtaining a better performance from vir
tual memory systems consists of improving the behavior of programs in such
environments. Program restructuring attempts to achieve this goal by rear
ranging the block-to-page mappings of programs.

The best existing restructuring algorithms take into account the dynamic
behavior of the program to be restructured and attempt to minimize either its
page fault frequency or its mean memory occupancy, which are both partial
indicators of program performance.

In this thesis, we present a new class of restructuring algorithms that
attempt to minimize a global index of program performance, namely its space-
time product. The primary motivation of these algorithms is to avoid situations,
where a significant improvement of one index of program performance would be
accompanied by a comparably sized deterioration of another index. Hence the
name of "Balanced Algorithms" given to our algorithms.

Balanced Algorithms essentially attempt to minimize a restructuring-time
estimate of the space-time product of the restructured program. Since they fol
low a common scheme, they can be easily tailored to a wide range of variable-
space memory policies, including Working Set, Sampled Working Set, Global LRU
and Page Fault Frequency.

We prove that BWS, the balanced algorithm tailored to Working Set environ
ments, effectively minimizes a linear combination of the number of page faults
and of the mean memory occupancy of all programs whose behavior can be
described by a chain having a steady-state solution and which have at most two
blocks per page.

In order to evaluate the performance of balanced algorithms under various
memory policies and to compare it to those of other restructuring algorithms, a
series of trace-driven experiments simulating the behavior of programs before
and after restructuring were conducted. These simulations show that BWS, the
balanced algorithm tailored to Working Set environments, performs significantly

-2-

better than the two best existing restructuring algorithms. Similar results were
found with the balanced algorithm tailored to Sampled Working Set environ
ments. BPSI, the balanced algorithm tailored to Global LRU environments, exhi
bited only a marginal superiority over its rivals, while no clear winner emerged
for the Page Fault Frequency environments.

Another consequence of our choice of a global indicator of program perfor
mance as restructuring criterion is to allow our approach to be extended to seg
mentation environments, or which no efficient restructuring algorithms have
been proposed.

Here too, we prove that BTWWS, the balanced algorithm tailored to Time-
Window Working Set environments, minimizes a linear combination of the
number of segment faults and of the mean memory occupancy of all programs
whose behavior can be described by a chain having a steady-state solution and
which have at most two blocks per segment.

Experimental evidence is also presented showing that BTWWS can
significantly improve the segment fault frequency of a program without causing
any comparable increase of its memory occupancy. On the other hand, our
simulations indicate that BSFF, the balanced algorithm tailored to Segment
Fault Frequency environments, does not bring any improvement to either
indices of program performance.

TABLE OF CONTENTS

Acknowledgements iii

1. Virtual Memory Concepts 1
1.1. Introduction 1

1.2. Virtual Memory Management 1
1.2.1 Paging v. Segmentation 2
1.2.1.1. Paged Virtual Memory 2
1.2.1.2. Purely Segmented Virtual Memory 2
1.2.1.3. Paged and Segmented Virtual Memory 3
1.2.2 Fetch Policy 3
1.2.3 Replacement Policy 3
1.2.3.1. Local Fixed Partition Policies 4

1.2.3.2. Global Policies 4

1.2.3.3. Local Variable Partition Policies 5

1.3. Performance Considerations 5

1.3.1. The Locality Principle 5
1.3.2. Sources of Performance Degradation 6
1.3.3. Evaluating Virtual Memory Performance 6
1.3.4. Local Indices of Virtual Memory Performance 7
1.3.5. Two-Dimensional Representations 8
1.3.6 The Space-Time Product 9
1.3.7 Virtual Memory Tuning 11
1.4. Concluding Remarks 12

2. The Restructuring Approach 13
2.1. Introduction 13

2.2. Organization of Program Restructuring Procedures 13
2.3. Analysis of the Clustering Phase 14
2.3.1. Defining Affinities between more than Two Blocks 14
2.3.2. Algorithm Complexity Issues 15
2.3.3. Conclusion 15

2.4. Analysis of the Restructuring Phase 16
2.4.1. Static Algorithms 16
2.4.2. Dynamic Algorithms 16
2.4.3. Review of Dynamic Algorithms 17
2.5. Strategy-Oriented Restructuring 18
2.5.1. Critical Algorithms 18
2.5.2. Minimal Algorithms 19

11

2.5.3. Influence of the Memory Management Strategy 20
2.5.4. Extension to P.F.F. Environments 21
2.5.5. The Choice of the Performance Indicator 21

3. Balanced Algorithms for Paging Environments 23
3.1. The Motivations of Balanced Algorithms 23
3.2. Derivation of an Algorithm Scheme 23
3.2.1. Implementation Considerations 24
3.3. Analytical Study of Balanced Algorithms 25
3.3.1. Stochastic Models of Program Behavior 25
3.3.2. Analysis of the BWS Algorithm 27
3.3.3. Extension to Other Memory Policies 30
3.4. Empirical Study of Balanced Algorithms 32
3.4.1. Empirical Study of the Balanced Working Set Algorithm 33
3.4.2. Empirical Study of the Balanced Sampled Working Set Algo
rithm 36

3.4.3. Empirical Study of the Balanced PSI Algorithm 39
3.4.3. Empirical Study of the Balanced PFF Algorithm 42
3.4.5. The Tuning of Balanced Algorithms 47
3.5. Concluding Remarks 48

4. Balanced Algorithms for Segmentation Environments 49
4.1. Introduction 49

4.2. Derivation of an Algorithm Scheme 50
4.2.1. Influence of the System's Memory Policy 51
4.2.2. Formal Definition of Balanced Algorithms 52
4.2.3. Implementation Considerations 53
4.4. Analytical Study of the BTWWS Algorithm 54
4.4. Experimental Results 56

4.4.1. Balanced TWWS Algorithm 56
4.4.2. Balanced SFF Algorithm 60
4.4. Concluding Remarks 62

5. Conclusion 64

5.1. Summary 64
5.2. Directions for Further Research 65

Bibliography 66

ACKNOWLEDGEMENTS

It is a pleasure and a privilege for me to thank here Professor D. Ferrari,
my thesis advisor, for his untiring support and encouragements. He intro
duced me to program restructuring and provided an environment in which
working has been a pleasure.

I want to thank also Professor A. J. Smith for his numerous suggestions
and encouragements.

I am also very grateful to Professor D. R. Brillinger for having served on
my thesis committee.

I gratefully acknowledge the support of an "Aspirant" Fellowship and of a
travel fellowship, both from the "Fonds National de la Recherche
Scientifique," Brussels, Belgium. The support for the typing of an earlier ver
sion of Chapter III came from the NSF grant MCS78-24618.

Finally, I would like to thank all my friends, inside and outside the
PROGRES group, for their support. Special mentions here—in chronological
order—to Edwin Lau, Makoto Kobayashi, Ozalp Babaoglu. Newton Faller and
Luis Cabrera.

in

CHAPTER I

VIRTUAL MEMORY CONCEPTS

1.1. INTRODUCTION

The first full implementation of a virtual memory architecture was the Ferranti
ATLAS computer [Foth6l] [Kilb62] [Bayl68]. The main feature of this machine was a
special address translation hardware that performed dynamic relocation of fixed size
blocks of code and/or data in the main memory. This hardware was aided by a set of
supervisor routines providing automatic transfer of blocks between the main memory
and a secondary store. As a result the ATLAS processor was able to access a two-level
storage system consisting of the "real" memory and the secondary store by way of a
single linear address space, known today as the "virtual memory" [DenP70] [Dora76].

During the last two decades, virtual memories have progressively emerged as the
major tool for managing memory hierarchies. They constitute today a main feature
of the majority of medium and large scale computer systems, and play a central role
in most data base systems. The reason for this success is simple: Virtual memories
allow an efficient use of the memory resources, while taking away from user programs
the burden of managing the data transfers between the various levels of the memory
hierarchy. From a user's viewpoint, everything happens, indeed as if programs were
stored in a very large one-level memory.

A consequence of a "transparent" memory hierarchy is that the system's perfor
mance can be strongly affected by factors not directly under the user's control. The
two most important of these factors are the system's memory management policy
and the referencing behaviors of programs.

1.2. VIRTUAL MEMORY MANAGEMENT

In a virtual memory system, programs are typically executed without having
their whole address space permanently residing in memory. It will be the responsibil
ity of the virtual memory management routines to bring and to keep in memory all
the information currently accessed by each running program. Every time a program
attempts to access a portion of its address space not residing in memory at that
time, a fault condition is said to occur: the execution of the program is interrupted
while the required information is brought into memory from the secondary store. If
no space is available in memory at that time, some other portions of the program
address space will have to be removed from memory and returned to the secondary
store.

In the scheme we have just described, any given set of memory locations can
contain different portions of a program's address space during the execution of this
program. Thus the translation of virtual—i. e. program—addresses into the physical
memory addresses will need to be done immediately before the execution of each
instruction. This task will require the existence of special-purpose dynamic reloca
tion hardware, which will have to consult a mapping table updated every time any
transfer of information takes place within the memory hierarchy.

Memory management itself essentially consists of deciding what information to
transfer, when to perform this transfer and where to store the transferred informa
tion. Some of the specific issues to be considered are

-2-

— the size of the blocks transferred within the memory hierarchy (fixed vs. variable
size or paging vs. segmentation),

— the algorithm used to decide which blocks should be brought into memory and
when (fetch policy),

— the algorithm used to decide which blocks should be removed from memory and
when (replacement policy).

1.2.1. Paging v. Segmentation

The most apparent difference between the existing virtual memory systems lies
in the choice of the size of their transfer and allocations units. Some systems use
only fixed-size entities.better known as pages, while other systems leave each pro
grammer free to organize his/her addressing space into as many segments as
wanted.

1.2.1.1. PagedVirtual Memory

In the ATLAS system, all memory allocation decisions and ail exchanges of infor
mation between memory and secondary store only involved system-defined fixed-size
entities. The address space of each program was logically partitioned into pages con
taining each 512 consecutive words of code or data. Similarly, the physical memory
was subdivided into equal size page frames. Each time a page was fetched into
memory, the system first attempted to find an empty page frame and to allocate it to
the incoming page. If no page frame was available at that moment, one had first to be
freed, possibly by returning its content to the secondary store.

This form of virtual memory organization is known as paging. Its main advantage
lies in the much greater ease of performing the memory allocation tasks when one
has only to consider equal size entities. Since the page size on a binary machine will
normally be a power of two, dynamic translation of virtual addresses into physical
addresses is also simplified. On the other hand, the partitioning of the virtual address
space into fixed size pages almost never reflects the program's logical structure.
Therefore, unrelated blocks of code or data will often share a common page while
other blocks will overlap a page boundary.

1.2.1.2. Purely Segmented Virtual Memory

In segmentation architectures, each user program defines the number and the
sizes of the segments composing its own address space. This partition of the
program's address space is totally under the user's control. To reference a particu
lar element within a segment, programs will have to specify the segment name as well
as the address of the element within the segment. Segments will not only constitute
the transfer units used by the virtual memory management; they will also help pro
grammers to structure their address space and serve as a basis for the implementa
tion of sharing and protection mechanisms.

Segmentation, unlike paging, ensures that the virtual address space of each pro
gram will be subdivided into entities reflecting the program's own logical structure.
Since segments only contain information that is logically correlated, one may expect
a better utilization of memory space by segmentation systems than by paging ones.

, On the other hand, memory allocation is a much more difficult job for arbitrary
size'segments [DenP70] [Knut73]: Each time a segment is brought into memory, it will
be placed into a space that is greater than or equal to its size. This will result in the
fragmentation of the free memory space into domains often too small to be allocated
to incoming segments and thus lead to inefficient use of the memory. As a result,
paging still remains today the more widely used organization for virtual memory sys
tems.

-3-

1.2.1.3. Paged and Segmented Virtual Memory
As we said before, motivations for providing a segmented address space extend

well beyond the need for defining transfer and allocation units in virtual memory sys
tems. A possible solution for avoiding the fragmentation problems associated with
pure segmentation architecture, while keeping its advantages, will thus be to subdi
vide segments into fixed-size pages. The best known example of this paged and seg
mented architecture is the MULTICS system [0rga72] [DenJ65].

The scheme unfortunately complicates the address translation process. Each
segment name will have first to be transformed into a segment number that will be
used as an offset in a segment table pointing to the corresponding page table. The
virtual address within the segment will then be mapped into a page number and a
page offset. In this scheme, segment sizes will always be multiples of the page size
and will tend to be much larger than in a purely segmented virtual memory.

1.2.2. Fetch Policy

In both paging and segmentation systems, the purpose of the fetch policy is to
determine which page(s) or segment(s) should be brought into memory and when this
task should be performed. At least three techniques may be used to perform the
fetching task; they are demand fetch, prefetch, and initially loaded demand fetch
[Lau79].

Because of its simplicity, demand fetch remains still today the most popular
fetch policy. It consists of bringing into memory pages or segments one at a time and
only when a missing page or segment causes a fault. (In paged segmentation archi
tectures, only the the missing page is brought into memory.)

One may envision other policies aimed at reducing the frequency of faults by pre
fetching pages or segments before they are referenced and cause a fault. These poli
cies would have essentially to predict future program behavior. The most general of
these prefetch policies would be able to anticipate future page faults and decide when
it would be time to bring a given page or segment in memory. Such policies would
require collecting a lot of information on the behavior of each program and would
thus be quite difficult to implement. Their rate of success in terms of the number of
faults correctly predicted and anticipated remains still to be determined.

A more feasible approach would be to prefetch page(s) or segment(s) only at
fault times. This technique is known as demand prefetching. It has been imple
mented in some systems—among which VAX VMS [DEC 78]—but experimental data are
still inconclusive about its merits [Jose70] [Smit78b] [Smit78d] [Lau79].

Finally, one can restrict prefetching to the time before execution begins. The
corresponding policy, called initially-loaded demand fetch or warm start, consists of
bringing into memory before the program's execution begins a set of prespecified
pages or segments. Once execution has begun, a pure demand fetch or a prefetch
policy is followed [Kubo76] [East78],

1.2.3. Replacement Policy

The purpose of the replacement policy is to decide which page(s) or segment(s)
should be removed from memory and when should this event occur. Replacement
policies are without any doubt the area of virtual memory management that has been
studied the most extensively. Among the several replacement policies that have been
proposed or implemented, one may distinguish the local fixed partition policies, the
global policies and the local variable partition policies.

-4-

1.2.3.1. Local Fixed Partition Policies

Afirst set of replacement policies apply when the system allocates to each active
program a fixed partition of memory. Each time a fault condition occurs, a page (or
one or more segments depending on their sizes) must thus be removed from the par
tition assigned to the faulting program in order to free enough space for the page (or
the segment) that will be fetched.

One example of such policies is the First-In-First-Out (FIFO) algorithm, which
removes from memory the pages or segments that have been residing in memory for
the longest time interval. This requires the system to maintain a page ordering based
on the memory loading times of the pages or segments. Since this ordering is
updated only upon a fault, the procedure can be performed efficiently by software
and the algorithm requires no special hardware. Unfortunately, the time that a page
or a segment has spent residing in memory is a poor indicator of the future reference
behavior of that page or segment.

Considerably more efficient is the Least-Recently-Used (LRU) policy, which
selects as candidates for removal the page(s) or segment(s) that have not been refer
enced for the longest time interval. For this algorithm, the system must maintain,
for each running program, a stack ordering of all pages or segments residing in
memory according to the time of their last reference. This stack must be updated
each time the page or the segment referenced is not the same as the last one.
Efficient execution of this operation requires thus special stack updating hardware.

The size of the partition allocated to each running program is an important-fac
tor of the performance of all fixed-partition replacement algorithms. Since the
memory requirements of programs may widely differ within a typical workload,
proper tuning of the virtual memory normally requires a different partition size for
each program—or each class of programs.

A more important problem occurring with fixed partition policies is that the
memory requirements of a program often vary during its execution. A better solution
should thus consist of allowing the memory space allocated to each program to vary
dynamically during its execution. This can be realized either by global policies or by
local variable partition policies.

1.2.3.2. Global Policies

Global policies allow any faulting program to obtain more space by reclaiming
space previously allocated to itself or to any other program. Examples of such stra
tegies are Global LRU and Global FIFO. As these algorithms manage the whole
memory as a single pool, they actually implement a variable partition scheme.

Like its local counterpart, the Global LRU algorithm requires a special stack
updating hardware; such a feature was indeed developed for the CDC STAR system,
which implemented a Global LRU replacement policy [Requ78]. Because of this
requirement, other system designers have rather chosen to develop alternative
replacement policies similar to Global LRU but easier to implement [East79].

The best known of these policies is the Clock-1 replacement policy implemented
in MULTICS [Corb68] [East79]. In this system, all page frames have a use bit set by
hardware each time any information contained in the page frame is referenced. When
a page fault occurs, a software pointer starts scanning the use bits of all page frames.
If the bit is on, it is turned off; if the bit is off, the scan stops and the page frame con
tent is returned to the secondary store. The current location reached by the pointer
is remembered and will be used as the starting point for the next scan.

Unlike their local counterparts, global policies provide no direct way for control
ling the amount of memory allocated to each individual program. The only possible
way for tuning the system is by acting on the number of jobs allowed to compete at

any time for memory, i. e., on the multiprogramming level.

1.2.3.3. Local Variable Partition Policies

Local variable partition algorithms are somewhat more ambitious: They attempt
to evaluate the memory requirements of each program and to ensure that these
requirements will be met for all currently active programs.

The best known example of such algorithms is the Working Set policy developed
by Denning for paging environments [DenP66] [DenP68a] [DenP72] [DenPSO]. This
policy uses a control parameter t, known as the window size, and defines the working
set of a program at time t as the set of all pages that have been referenced in the
interval [fcr+l.t]. It stipulates that all pages members of the current working set
must reside in memory while the others may be returned to the secondary store.

Several extensions of the working set algorithm to segmentation environments
have been proposed by Denning and Slutz [DenP78]. The Time-Window Working Set
policy (TWWS), for instance, removes segments when they have not been referenced
for T time units; it is quite similar to the original paged working set policy with a win
dow size t=T+1 [DenP78]. Another such extension is the Space-Time Working Set
strategy (STWS), under which any segment of size sx is removed from memory as soon
as the duration of the interval since the last reference to it reaches T/ sz time units.

The original working set policy and all its extensions to segmentation environ
ments need special hardware to detect when a page or a segment has not been refer
enced for a given time interval. Some variants of the working set policy have been
aimed at systems lacking this special hardware but having use bits. Let us mention
here the Sampled Working Set policy [Rodr73] [Ferr75] which samples periodically
the use bits of all pages residing in memory and expels then all pages that have not
been referenced for a given number of sampling intervals.

Another example of a local variable partition policy is the Page Fault Frequency
Algorithm (PFF) developed by Chu and Opderbeck [Chu072] [0pde74] [Chu76]. This
algorithm defines its control parameter T as a critical inter-fault interval, and states
that pages will be expelled at fault time if and only if

(a) they have not been referenced since the last fault time, and

(b) the time interval between the two faults is greater than T.
Thus, the PFF algorithm automatically increases the memory occupancy of pro

grams at fault time as long as their fault frequency exceeds 1/T. On the other hand,
its attempts to reduce their memory occupancy when this frequency falls below l/T.
The purpose of this feedback mechanism is to allow the algorithm to adapt to
dynamic changes in program behavior during execution. As we will see later, this
scheme has also some unfortunate consequences on the stability of the algorithm. In
particular, Franklin, Graham and Gupta have found that an increase in T may some
times increase the page fault frequency of programs, rather than decreasing it as
expected [Fran78].

1.3. PERFORMANCE CONSIDERATIONS

1.3.1. The Locality Principle

Virtual memory systems essentially provide users with a computing environment
where the memory requirements of each program are reduced at the cost of an
increase of its I/O activity and a slowdown of its execution. The quality of the trade
off obtained will of course depend on the effectiveness of the system's memory
management policies. A second factor, less obvious but even more important, is the
referencing behavior of the programs constituting the system's workload.

-6-

Consider, for instance, the case of a program accessing in a random way all por
tions of its address space. Suppose that ail program addresses have the same proba
bility to be the next reference. Let Vbe the size of the program's address space and
S the size of the memory space allocated to it. Then, for any realizable combination
of fetch and replacement policies, the probability that a given reference will cause a
fault will be equal to K-(5/ V). Thus, if 30% of the program's address space resides in
memory, one may expect that 70% of its references will result in a fault condition.
Such fault rates would bring the average access time of the virtual memory very close
to the one of the secondary store and are thus not acceptable.

Fortunately enough, the vast majority of programs do not exhibit this kind of
referencing behavior. They tend rather to concentrate their references in a rela
tively small, reasonably stable subset of their address space and this subset is largely
made up of addresses in close spatial proximity. This property has been described by
Denning [DenP68b] as the locality principle. It implies basically two things. First,
there is a high probability that the next reference of a program will be to an address
in close spatial proximity with the addresses that have been recently referenced. If
the program is executed in a virtual memory system, this address will be probably
contained in a page or a segment already fetched into memory. This is termed spa
tial locality. Second, the composition of this subset of preferred addresses will
remain rather stable over any short interval of time. Thus, the same pages or seg
ments will tend to remain referenced during relatively long periods of time. This is
known as temporal locality.

1.3.2. Sources of Performance Degradation

The locality principle states that efficient operation of a virtual memory system
can only be achieved if each active program is allowed to keep in memory all the
pages or segments it is currently referencing. If this condition.is not fulfilled, the
rate of transfer of pages or segments between the memory and the secondary store
will rapidly increase and eventually exceed the capacity of the I/O channel. The
phenomenon has been described by Denning as thrashing [DenP68b]. It results in an
underutilization of the CPU because the system will spend a considerable amount of
its time in a state where all active program will be waiting for a missing page or seg
ment and thus will be unable to run. Prevention of trashing will then essentially con
sist of ensuring that a sufficient amount of memory can be allocated to each active
program.

Another source of performance degradation can be overgenerous allocation of
memory to programs. If an excessive amount of memory is allocated to one or more
programs, then the total number of programs allowed to reside simultaneously in
memory will be reduced below the optimum. This, in turn, can cause CPU underutili
zation either directly or by increasing the amount of job swapping.

1.3.3. Evaluating Virtual Memory Performance
Because of the strong influence of program behavior on virtual memory perfor

mance, one cannot evaluate the performance of any virtual memory without relating
it to the characteristics of the programs constituting its workload. One cannot com
pare, for instance, two replacement policies without defining first the set of programs
for which the comparison will be carried out. Moreover, the validity of the com
parison will strongly depend on the extent to which these programs are representa
tive of the system's real workload.

Ideally, the performance of any virtual memory should always be evaluated in
terms of its contribution to the overall performance of the system as measured by
the system's throughput, its response time for a given job or a given class of jobs, and
so forth. This approach, however, raises several problems. First, it supposes that we

-7-

know what constitutes a "typical" workload for the system under study. Second, it
requires that we are able to reproduce, for each experiment, all environmental fac
tors like the system's initial state, the pattern of job arrivals and so forth. Finally,
the multiplicity of factors that must be taken into account complicates the interpre
tation of the results of the evaluation study [SmitSO] [SmitBl].

Asimpler alternative exists. It consists of evaluating the performance of the vir
tual memory on a per program basis. We will thus monitor-or simulate-the execu
tion of a given program in the virtual memory environment under study and measure
the performance of the virtual memory for that job. The procedure will be repeated
for several "typical" programs and the obtained values will then be used as indicators
of the global performance of the virtual memory. The approach has one main draw
back. It assumes implicitly that all memory management decisions can be made on a
per program basis and that interactions between concurrently executing programs
do not affect significantly the overall performance of the virtual memory. This
assumption holds more or less for local replacement policies but is totally unrealistic
for the global ones. On the other hand, we get a much clearer picture of the indivi
dual behavior of each program. This is especially valuable when one wants to com
pare the performances of several versions of the same program.

1.3.4. Local Indices of Virtual Memory Performance
When a program executes in a virtual memory environment, the performance of

the virtual memory for that program can be directly expressed in terms of the
memory space allocated to the program and the cost of the information transfers
between memory and secondary store.

Evaluating the memory space allocated to a program running under a fixed parti
tion replacement policy is a trivial matter: the space allocated to the program is
given by the size of the partition in which it is running. Problems arise with variable
partition policies when one attempts to define an "average" memory occupancy
First, no average value of memory occupancy can account for the dynamics of the
memory allocation process. Smith has indeed pointed out [Smit76] that the presence
of sharp peaks in the memory occupancy curve can trigger unnecessary deactivations
of other processes by the system. The presence and the intensity of these peaks is
thus a factor of the system's overall performance that does not show up in the mean
memory occupancy. Second, one can even argue on the procedure to be used for
computing this mean memory occupancy. Should it take into account only the times
during which the program is running or include the times during which it is waiting
for a missing page or segment? The first alternative at least guarantees that the final
value will not depend on any estimates ofpage or segment wait times.

Evaluating the cost of information transfers between the memory and the secon
dary store will also involve some approximations. Auniversal one is to neglect the
cost of transfers from memory to the secondary store. These transfers occur each
time the replaced page or segment has been modified during its residence in
memory. Yu s study [Yu76] has shown that these "write-backs" made practically no
difference when comparing memory management policies.

In paging systems without prefetching, each page fault brings exactly one page
into memory. Since all pages have the same size, the number of faiilts occurring dur
ing the execution of the program-or their frequency-constitutes a natural indicator
of the cost of information transfers within the memory hierarchy. Because of unequal
segment sizes, the same assumption is not true for segmentation systems where the
average time required to service a fault is indeed a linear function of the size of the
segment causing the fault. More precisely, if s< is the size of the faulting segment
the average time Tw required to service the fault will be given by

r« = 71 + 7i.st (1.1)

-8-

where 7j is the mean access time of the secondary store and Tt the mean time to
transfer one unit of data—for example, one byte.

The swapping load Ls will then be defined as the sum of all delays occurring at
segment fault times and caused by the secondary store latency or the segment
transfer times. Representing by r the number of faults occurring during the execu
tion of the program and by Nbtin the total number of bytes brought into memory, one
can thus write

L8 =r . Tt+NbAn . Tt (1.2)

This expression also applies to systems implementing demand prefetching as
long as all pages or segments fetched at any fault time are fetched in one I/O opera
tion.

1.3.5. Two-Dimensional Representations

Memory occupancy and swapping load express two complementary aspects of the
local performance of a virtual memory. It has thus become customary to represent
this performance by a two-dimensional curve L=L(S) relating the swapping load L to
the corresponding value of the program's memory occupancy. Figure 1.1 represents
one such curve collected for an APL interpreter running under a pure Working Set
policy with a page size of 2 Kbytes. As it is customary in paging environments, the
swapping load has been expressed in terms of the program's average page fault
rate/.

Another popular representation of the local performance of a virtual memory is
the program's lifetime curve, which is the function g(S)=l/f(S) defined for all
5 > 0 and returning the mean time between faults when the mean memory occupancy
is 5. Figure 1.2 displays the lifetime curve of the same APL interpreter, running
again under a Working Set policy with a page size of 2 Kbytes. Typical lifetime curves
exhibit knees, i. e., points at which g(x)/x is locally maximum. The most pro
nounced one, known as the primary knee, is geometrically defined as the highest
point of tangency between a ray from the origin and the curve; it corresponds also to
the global maximum of g(S)/ S.

By putting together the curves corresponding to the same program and two
different memory policies, one can decide which one is the better and for which range
of memory occupancies. Similarly, one can compare the performances of two ver
sions of the same program.

This leaves, however, open the problem of comparing two operating points of a
program. Suppose, for instance, that we want to compare two versions of the same
program under the same memory policy with the same value of the control parame
ter (for instance, the window size for the Working Set policy or the number of page
frames for the Local LRU policy). We will run the two versions of the program and
obtain a memory occupancy Sx and a swapping load Ll for the first version of the pro
gram and corresponding values S2 and L2 for its second version.

If we have Sj <£ 52 and LY < L2 (but not Sx = S2 and Lx = L2), we can state that
version 1 of the program performs better. Similarly, we will say that version 2 is
better if we have Sx ^ S2 and Ll^ L2 (but not Sx = S2 and Ll- L2). In all other
cases, we cannot say that one version of the program is clearly better than the other.
To do so, we would need to be able to express the performance of the virtual memory
by a single performance index. This index indeed exists and is called the Space-Time
Product.

9-

RPL - WS PSIZE=2K

H.OD

d&l? KoKflbY (AS) "•" ** " "

Figure 1.1

1.3.6. The Space-Time Product.

By definition [Bela69], the space-time product C characterizing the behavior of
a program running in a virtual memory environment during a real time interval (0,f)
is given by the integral

C=f S(u)du,
o

(1.3)

where S(u) is the number of memory page frames occupied by the program at time
u.

As we have just defined it, this criterion expresses the storage costs correspond
ing to the effective memory occupancy of the program during the interval (0,f).

COO JO .OB

- 10

APL - WS PSIZE=2K

16,00
*Sry axJ^Rty

Tigure 1.2

jc.oc

(pfiaes)
KJOD «U£ «JX flDJOD

Being defined as a real time interval, (0,?) includes the times during which the pro
gram was actually running as well as the dead times during which its execution was
suspended. In a multiprogramming environment, these dead times may result from
two causes: the faults that may occur during program execution and the parallel exe
cution of other programs.

In order to eliminate this extraneous influence and to keep only the intrinsic fac
tors characterizing the program behavior in a given environment, we should only take
into account the delays caused by faults [Chu072].

The space-time product characterizing the behavior of the program being exe
cuted in a segmentation environment during a virtual time interval (0,t) will thus be
given by

-11-

C= f S(u)du + 2 S(ti).(Tl +Ti.8i), (1.4)
o i=l

where r is the total number of faults occurring during (O.r), tj the time of the j-th
fault and Sj the size of the segment(s)- or the page(s)-brought into memory at time

In paging environments without prefetching, a single page is brought into
memory at each page fault and the expression reduces to

C=/ S(u)du + J S(t,).Tw (1.5)
0 jm

Especially in paging environments, the space-time product is often approximated
by

C = S.(l+f.Tw), (1.6)

where 5 is the mean memory occupancy, t the virtual time and / =r/f the fault fre
quency. Though easy to compute, this approximation is not very accurate: Graham
[Grah76] and Lau [Lau 76] have found that it is not consistently higher or lower than
the true value of C, and can sometimes be in error by as much as 20%.

1.3.7. Virtual Memory Tuning

Another problem, closely linked with these performance issues, is how to adjust
the control parameters of a virtual memory in such a way as to maximize the system
performance for a given workload.

As we said earlier, virtual memories implementing a global replacement policy
have only one control parameter, namely the system's multiprogramming level. Tun
ing the virtual memory will thus consist of determining an optimal multiprogramming
level for the system. In general this optimum varies with the workload; hence an
adaptive control scheme is needed to readjust it periodically. Several of these have
been proposed so far. Among them, the L=5 criterion, which states that the optimal
multiprogramming level is reached when the system's overall mean-time-between-
fault is equal to the mean fault service time [DenP76a], and the 50% criterion, which
recommends to keep the utilization of the paging device around (50+d)%, where d is
a constant less than 10 [Lerou76] [DenP76b].

Local replacement policies, on the other hand, permit individual tuning of the
memory space allocated to each program residing in memory. This indeed allows
each program to be run at its minimum space-time product for that policy, but poses
also the problem of selecting the proper value of the control parameter for each run
ning program.

An elegant construction has been proposed by Denning and Kahn for solving that
problem. Since the primary knee of a program's lifetime curve g(S) corresponds to
a maximum of g(S)/ S, it also minimizes S/g(S). By definition of the lifetime curve,
we have g(S) =l/f(S) and S/g(S) can be rewritten as S.f(S), where S stands for
the program's mean memory occupancy and /(S) for its fault frequency f-r/t.
Recalling equation (1.6), one can thus see that operating a program at the primary
knee of its lifetime curve will minimize the component of its space-time product due
to segment or page faults. When Tw is large, this will also approximately minimize the
program's space-time product.

- 12-

Define the virtual-to-real time ratio of a program as the quotient

h(S)'t/(t+L,) (1.7)

where t stands for the total virtual execution time and Z* for the swapping load.
(Recall that, in paging environments, L, is equal to r.Tw.) Consider now the curve
h(S) relating the virtual-to real time ratio of a program to its mean memory occu
pancy. This curve has a shape similar to the one of the lifetime curve. Its primary
knee will correspond to a maximum of h(S)/S. i. e., to a minimum of S. (t+L8), which
is proportional to the approximate expression of the space-time product given by
equation (1.6). Thus, running a program at the primary knee of h(S) will ensure that
the program is running very close to its optimum space-time product.

In order to ensure that the exact maximum is reached, one should take into
account for the computation of the program's mean memory occupancy the time
intervals during which the program has been waiting for a missing page or segment.
Let us represent by 5 the mean memory occupancy computed this way. Then the pri
mary knee of h(S) will correspond to a minimum of S.^+Iy), which is by definition
the space-time product C of the program.

1.4. CONCLUDING REMARKS

Despite all advances made in understanding the problems of virtual memory
management, obtaining an acceptable level of performance from a virtual memory
remains a non-trivial task. The classical approach to this problem has essentially
consisted of tuning the virtual memory management policies. As we have seen, this
approach has resulted in the design of better replacement policies, the implementa
tion of better load control mechanisms, and so forth.

Another approach is possible. It consists of improving the behavior of programs
and adapting program structure to the requirements of virtual memory systems.
From a user's viewpoint, this approach offers the main advantage of not requiring any
modifications to the operating system. As we will see, this does not prevent it from
being quite often surprisingly efficient.

-14-

- Phase II: A restructuring algorithm produces a graph model of the program.
Each node i of this graph will represent a block and each edge joining two nodes
i and j will have a label a^- that will express some measure of the desirability of
placing the two blocks into the same page. These ay will be referred to as
affinities. The precise definition of the affinities will depend on each particular
restructuring algorithm.

- Phase III: A clustering algorithm is applied to the restructuring graph. This
algorithm will attempt to minimize the sum of the affinities between blocks
belonging to different clusters while enforcing the condition that each cluster
must fit into one single page. Thus blocks with the strongest mutual affinities will
tend to be gathered into the same page.

- Phase IV: Blocks are relocated in the program's virtual address space according
to the results of the clustering algorithm. At the end, one will normally attempt
to fill gaps left by clusters the size of which is not exactly equal to one page.

2.3. ANALYSIS OF THE CLUSTERING PHASE

The aim of the clustering phase is to find a partition of blocks into pages that
will group together the blocks exhibiting the strongest mutual affinities. The search
for this ideal partition will lead to two main problems. First, one has to precisely
define the notion of mutual affinity between n blocks when n is larger than 2.
Secondly, one has to find a relatively efficient algorithm to perform the task of finding
the partition that will effectively maximize the intra-cluster affinities.

2.3.1. Denning affinities between more than two blocks

Like in many other clustering problems, the problem of defining affinities—or any
other nearness index—between more than two blocks remains an open question, even
complicated, in this case, by the fact that the restructuring graph is not a totally
accurate model of the program behavior.

Consider, for instance, the case of a restructuring procedure whose objective is
to minimize the number of page faults occurring during the execution of the pro
gram. It is then natural to define the affinity between two blocks i and j as the
number of times a page fault could be avoided if the two blocks i and j were stored
in the same page.

Suppose that we have now to evaluate the affinity between a block i and the clus
ter containing the two blocks ; and k. The affinity between i and \j,k) must express
the number of times a page fault can be avoided by storing block i and cluster \j,k J
into the same page. Now it can happen that storing blocks j and k into the same
page did not avoid any of the page faults that would be avoided if j or A: were stored
with i. Then the affinity a^j can be defined as

However, it can also happen that some of the page faults that can be avoided by stor
ing i with j or k have been already eliminated by storing j and k together. Then

and we have no ways of estimating the number of these page faults. The only alterna
tive would be to drop our graph representation of program behavior in favor of a more
complex model taking into account interactions between more than two blocks. This
would greatly increase the time and space requirements of the restructuring pro
cedure, which explains why no attempts have been made to pursue any further this
approach.

-13-

CHAPTERII

THE RESTRUCTURING APPROACH

2.1. INTRODUCTION

As we have seen, the vast majority of the efforts devoted to the optimization of
virtual memory systems have been directed to the design of more efficient, and often
more complex, memory management algorithms. Considerably less attention has
been paid, on the other hand, to the alternative way of obtaining a better perfor
mance of virtual memory systems, namely by increasing the degree of locality of the
programs to be executed [Braw68] [Braw70] [Baer72].

An obvious solution should be to teach programmers to write more local pro
grams. This approach has proved quite effective in areas like numerical analysis. For
instance, one can rewrite matrix manipulation algorithms having in mind to increase
the degree of locality of references within each matrix. This approach is systemati
cally used in the UNPACK mathematical subroutines package [Dong79].

A similar technique consists of modifying the implementations of large data
structures. For instance, one may replace the traditional column—or row—storage of
matrices by a submatrix storage where each matrix is partitioned into equal-size
square submatrices occupying each one page or one segment [McKe69] [Fisc79].

Rewriting programs in order to improve their locality is not always that easy.
Besides, it offers the serious drawback of going against the objective of keeping the
memory hierarchy transparent to the system's users.

A possible alternative is then offered by program restructuring [Come67]
[Tsao72] [Hatf7l] [Ferr73] [Ferr78]. Unlike other methods, program restructuring
deals with programs already written and essentially consists of rearranging the order
in which the various blocks of code and data constituting a program are stored in the
program's virtual address space. Program restructuring thus operates in a way that
is totally transparent to the program authors, maintainers and users. It even tends
to work better for programs consisting of many relatively small modules.

For several reasons, primarily historical, program restructuring has been almost
exclusively applied to programs running in paging environments. The two following
chapters will thus discuss program restructuring as a tool for improving the behavior
of programs in paging environments, while a special chapter will be devoted to the
specific problems of segmented virtual memories.

2.2. ORGANIZATION OF PROGRAM RESTRUCTURING PROCEDURES

With very few exceptions [Babo77], all restructuring procedures share the same
organization in four phases [Ferr74c]:
- Phase I: The program to be restructured is partitioned into blocks, the size of

which should ideally be less than or equal to one half of the page size. Each of
these blocks can be any piece of code or data. The relocation process is however
much simplified if they are chosen to be the various relocatable object modules
constituting the program.

-15-

Several attempts have been made to find experimentally the best definition of
the affinity between two clusters of blocks. Masuda et al. [Masu74] found that a
"modified average" method taking into account the sizes of the two clusters per
formed best. Achard et al. [Acha78] experienced even better results using a Jacquard
index defined as

S(CltC2) = s(Cy,C2) / {u(CltC2)+v(CltC2))
where s(Cj,C2) is the sum of all o^ such that ieCi and j e Cz, u(CltC2) the sum of
all ay such that i € Cx and ; £ C2, and v(CvC2) the sum of all ay such that i £ Cx
and j e C2.

One should however remember that the performance of a clustering algorithm
using any of these definitions of the affinity between two clusters will strongly depend
on the idiosyncrasies of the affinities produced by the restructuring algorithm.

Recall, for instance, our argument on the fact that the affinity between two clus
ters is not merely the sum of affinities between all elements of the first cluster and
all elements of the second. This argument was introduced assuming that the affinity
between two blocks i and ; was the number of page faults that could be avoided by
storing i and j into the same page. It does not necessarily hold for other definitions
of inter-block affinities, like, for instance, that which calls the affinity between two
blocks the number of times the two blocks have been consecutively referenced during
the execution of the program.

2.3.2. Algorithm Complexity Issues

Assume, for the sake of simplicity, that the affinity between two clusters of
blocks has been defined as the sum of the affinities between all blocks of the first
cluster and all blocks of the other one. Now, the problem of finding the partition of
blocks into pages grouping together the blocks with the strongest mutual affinities
reduces to the problem of finding the partition maximizing the sum of affinities
between blocks sharing the same page. In the general case where more than two
blocks can reside in the same page, this problem can be proven to be NP-hard.

Consider indeed a restricted case where each node of the graph represents a
block of size 1 and each edge has a label equal to 1. Assume now that we want to max
imize the sum of inter-cluster edges and that the maximum cluster size is 3. This
problem is known as partitioning a graph into triangles and has been found to be NP-
complete [Karp75]. It follows then that the general clustering problem must be NP-
hard.

One can thus safely conjecture that no polynomial time algorithm will ever be
able to determine an optimal block to page mapping for an unrestricted restructur
ing graph. Polynomial time algorithms however exist if we assume that there will
never be more than two blocks per page; the clustering problem then becomes a
weighted matching problem, which can be solved in 0(nz-5) time [Even75].

Because of the high cost of optimal clustering algorithms, program restructuring
procedures uniformly resort to near-optimal algorithms. Almost all algorithms util
ized are in fact variants of the same hierarchical clustering algorithm which starts by
assigning a separate cluster to each block and merges at each step the two clusters
having the strongest mutual affinities until all clusters have reached their maximum
size [Ferr75d] [Masu75] [Acha78].

2.3.3. Conclusion

The clustering phase raises several problems for which no satisfactory answers
exist. As a result, we will be generally unable to obtain an optimal block-to-page map
ping.

-16-

Fortunately enough, this shortcoming does not seem to affect unduly the global
performance of the restructuring procedure. Ferrari has pointed out that there is
typically a small subset of blocks characterized by large mutual affinities and playing
a crucial role in the clustering phase (as reported in [Lau 79]). The bulk of the
improvement of program performance obtained by the restructuring procedure
depends on the arrangement of these blocks and one may conjecture that only slight
additional improvements could result from optimal clustering with respect to any
sub-optimal solution properly grouping these crucial blocks.

2.4. ANALYSIS OF THE RESTRUCTURING PHASE

Being responsible for constructing the restructuring graph, the restructuring
algorithm constitutes the key part of any program restructuring procedure. Quite
often, it will indeed be the most time-consuming part of the procedure; in any case, it
will be the key factor of the overall performance of the restructuring procedure.

2.4.1. Static Algorithms

Earlier algorithms based their definitions of affinities on an analysis of the static
structure of the program: blocks calling or referencing each other, blocks nested
inside loops, and so forth. These algorithms were the natural offspring of algorithms
previously developed for the automatic generation of overlay structures [Rama66]
[Lowe70] [VerH7l].

A more recent example of such static algorithms is the AFFINF algorithm pro
posed by Snyder [Snyd78]. This algorithm uses a directed graph and defines the
affinity ay between two nodes as the sum of the raw number of source references
from i to j plus ten times the number of source references inside a loop in block i to
block j. References that occur in a nested loops count geometrically, i. e. as 10n,
where n is the depth of the nesting.

The main interest of these static algorithms resides in their ease of implementa
tion and their relatively low cost. On the other hand, a static restructuring graph
misses the whole dynamic behavior of the program, e. g. how often and when a block
is effectively referencing and calling another block. For this reason, static algorithms
appear now to be outclassed by the so-called dynamic algorithms which take into
account the behavior of programs at execution time, as represented, for instance, by
their reference strings.

2.4.2. Dynamic Algorithms

Dynamic algorithms base their definition of affinities on data collected during
one or several "typical" runs of the program to be restructured. In general dynamic
algorithms are more expensive than static ones but work much better provided it is
possible to define such thing as a "typical" execution of the program to be restruc
tured, that is to come up with "typical" input data. This task can be very difficult for
certain types of programs, the behavior of which is strongly data dependent. Strong
experimental evidence exists however showing that the behavior of many interesting
types of programs—like compilers—is reasonably insensitive to input data as far as the
restructuring process is concerned.

The primary cost of a dynamic restructuring algorithm is the one of collecting
data on the dynamic behavior of the program to be restructured. Gathering of such
information normally involves simulating or monitoring one or more executions of the
program one wants to restructure. The cost of this procedure essentially depends on
the hardware tools available—generally none—and on the accuracy of the measure
ments. A trace of procedure calls and returns can be obtained by instrumenting the
program to be restructured either at the source or at the linking level. On the other

- 17-

hand, obtaining a full trace of program execution including all data references will
normally require running the program through a software interpreter.

These cost considerations have the unfortunate effect of reducing the field of
application of dynamic restructuring algorithms to programs which are often exe
cuted, like compilers, text processors, and so forth. This restriction is however much
less severe than it appears because these programs constitute the bulk of the system
load in many installations. Moreover, this limitation can be somewhat relaxed for
hybrid restructuring algorithms like Babonneau and Achard's RELIEUR [Acha75]
[Babo77] [Acha78], which also takes into account the static structure of the program.

2.4.3. Review of Dynamic Algorithms

An early example of dynamic algorithms is the Nearness Method developed by
Hatfield and Gerald [Hatf71]. Like most other dynamic algorithm, it assumes that we
have collected a block reference string of the program to be restructured. This block
reference string will consist of the sequence of all blocks b it bg, 6n referenced dur
ing an execution of the program-

Suppose that block i often appears after block j in this block reference string.
This means that the two blocks are often referenced one after the other. A block-to-

page mapping in which the two blocks would be stored into the same page would thus
increase the locality of the program and probably avoid several page faults. A possi
ble measure of the affinity—or nearness—between two blocks i and j is then given by
the number of times these blocks have been consecutively referenced during the exe
cution of the program.

The matrix A = (a*/) representing the restructuring graph can thus be con
structed in three steps:

(i) For all i and j do o^isO od;
(ii) For all t from 2 to n do

"*»-|.»i := °*t-vbt +l
od;

(iii) For all i and j <i do Oy := a^ := a^ + a;i od.
The last step of the algorithm ensures that the matrix is symmetrical and

represents thus a non-directed graph.

The most obvious flaw of the Nearness Method consists of only taking into
account interactions between blocks that are referenced directly one after the other.
Suppose, for instance, that blocks a, b and c are successively referenced in the order
aabbbaaabbc. One may then expect that grouping blocks a and c together would have
the same beneficial effect as grouping b and c together. This is not recognized by the
Nearness Method, which does not detect any affinity between a and c.

In order to overcome this limitation, Ryder [Ryde74] has proposed a scheme
where the affinity between two blocks i and j is incremented by a0 when the two
blocks are referenced immediately one after another, by al when references to
blocks i and j are separated by a reference to another block, by a2 when they are
separated by references to two other ones, and so forth. Ryder reports good results
obtained with increments a^ decreasing linearly with the number of blocks separat
ing the two references up to a distance of 4, i. e. a0=5, a1 =4, a2 =3, a3 =2 and a4=l,
but admits that these values are absolutely arbitrary.

The Nearness Method and Ryder's algorithm both attempt to store within a single
page the blocks that are the most often referenced one after the other. The
beneficial effect of the restructuring process should thus be a reduction of the page
fault frequency of the restructured program and, perhaps, some decrease of its
memory occupancy.

- 18-

An alternative solution consists of aiming the restructuring algorithm at reduc
ing the working set size of programs for some window size t more or less arbitrarily
chosen. This approach has been followed by Masuda, Noguchi and Okhi [Masu74].
Their algorithm evaluates periodically the working set of blocks of the program to be
restructured during one or more executions. This working set of blocks is defined as
the set of all blocks that have been referenced during the last t references. The
affinity a^ between two blocks is then the number of times the two blocks have been
members of the same working set.

When Masuda*s algorithm is applied to a program being executed under a work
ing set replacement strategy, any reduction in the program's working set size will
automatically cause an equal reduction of its memory occupancy, provided that the
restructuring algorithm and the replacement policy have used the same window size.
Masuda's experiments, backed by our own, indicate that similar beneficial effects may
be expected from the restructuring procedure as long as the window size used by the
replacement policy remains larger than the one selected by the restructuring algo
rithm. The picture becomes however less clear when the replacement policy behavior
significantly departs from the one of a working set strategy with a large window size.

A significant contribution was thus made by Ferrari [Ferr73] [Ferr74a] [Ferr74b]
[Ferr74c] [Ferr75] [Ferr76a] [Ferr76b] [Ferr77a], who introduced the concept of
strategy-oriented restructuring and proposed a method to define affinities which

— is explicitly based on a measurable indicator of the program's performance, like
its page fault frequency or its mean memory occupancy, and

— takes into account the memory management strategy of the system in which the
program will be run.

2.5. STRATEGY-ORIENTED RESTRUCTURING

Unlike other restructuring algorithms, each strategy-oriented algorithm is
characterized by the performance index it attempts to optimize and by the replace
ment policy for which it is tailored.

2.5.1. Critical Algorithms

Critical Algorithms attempt to minimize the page fault frequency of programs
being executed under several replacement policies. The Critical Working Set algo
rithm (CWS) [Ferr74b], which is probably the best known example of these algo
rithms, attempts for instance to minimize the page fault frequency of programs
assuming that they will run under a working set replacement policy.

Under a working set policy with window size t, all pages that have been refer
enced at least once during the last t references are kept in memory. Thus the only
references that are susceptible to cause a page fault are the ones referring to a block
that has not been referenced during the last r references. We will call these refer
ences Critical References. The set of blocks that are guaranteed to be present in
memory when the t-th reference is issued will be called the Resident Set of Blocks
Rb(t) of the program at time t. (We will assume that Rb(O)=0 and that Rb(l) contains
the first block referenced. This definition is slightly different from the one adopted
by Ferrari and Kobayashi, according to which /?b(l)=0.) thus, under a working set
strategy, R*(t) contains all blocks that have been referenced at least once during the
t last references, including the current one.

Since the purpose of the restructuring algorithm is to reduce the page fault fre
quency of programs, the best measure of the affinity between two blocks i and j is
given by the number of page faults that could be avoided by storing the two blocks
together. This quantity can be estimated by counting the number of times a critical

-19-

reference to i or j occurs while the other is a member of the Resident Set of Blocks
at time (t -1).

Let thus blf b2, bn be a block reference string collected during one execution
of the program we want to restructure. The matrix C=(ci;) representing the restruc
turing graph will have initially ail zero entries and will be constructed in the following
way:

(a) For all t from 1 to n do
if bt £ Rb(t-1) then (*block fault*)
increment by one all c^-'s such that i €. Rb(t) and j = bj

od;

(b) For all i and j <i do
cij := cji := ctf + cji

od.

Other Critical Algorithms have been developed and tested for LRU (CLRU
[Ferr78b]),FIF0 (CF1F0 [Ferr76b]), Sampled Working Set (CSWS [Ferr75][Ferr76a])
and global LRU environments (CPSI [Ferr77a]). They can be derived from the CWS
algorithm by modifying in an appropriate manner the definition of the Resident Set of
Blocks Rb(t). For instance, the Critical LRU algorithm, which applies to programs
running under a Local LRU policy, is essentially identical to the CWS algorithm with
the only difference that the Resident Set of Blocks for a LRU policy with a partition
size of m pages is made of the last m blocks that have been referenced [Ferr75].

2.5.2. Minimal Algorithms

Unlike Critical Algorithms, Minimal Algorithms [Ferr76] attempt to minimize the
memory occupancy of restructured programs. To achieve this goal, they attempt to
store within a common page blocks that will be often simultaneously residing in
memory. Thus, the algorithm will evaluate at fixed sampling intervals during a simu
lated execution of the program its current Resident Set of Blocks and increment by
one all edges of the restructuring graph corresponding to a pair (i,j) of blocks simul
taneously members of Rb(t).

Let bit b2, 6n represent again a block reference string collected during a run
of the program to be restructured. Assume that the algorithm will update the res
tructuring graph each K references. Then, the matrix M=(m^) representing the res
tructuring graph will have initially all zero entries and will be constructed in the fol
lowing way:

(a) For all t from 1 to n do
if t mod K - 0 then (* sampling time *)

increment by one all m^'s such that i €. Rb(t) and j C Rb(t)
fi

od;

(b) For all i and all j <i do

TTlvf := 77l« := T7Ly + ?7l«

od.

Minimal Algorithms have been developed and tested for various memory policies,
including Working Set (MWS) [Ferr76b], Sampled Working Set (MSWS) [Ferr76b] and
Global LRU (MPSI) [Ferr77a]. Like their Critical counterparts, they differ from each
other only in the way their Resident Set of Blocks is defined.

-20-

2.5.3. Influence of the Memory Management Strategy

As we said above, the only difference between two Critical or two Minimal Algo
rithms tailored to two different memory policies lies in the way their Resident Sets of
Blocks are defined. Thus, obtaining the Critical or the Minimal Algorithm tailored to a
given memory policy only requires the update of the routine evaluating Rb(t).

This task is quite easy when the memory policy allows one to predict, at restruc
turing time, which blocks will be guaranteed to be present in memory at any time of a
program's execution. Examples of such policies are the Local LRU and the Sampled
Working Set policies.

We have already mentioned that the Resident Set of Blocks of a program run
under a Local LRU policy with a partition size m contains the m last distinct blocks
referenced by the program. Now, in the case of the Sampled Working Set Policy, we
recall that the window size is an exact multiple of the time interval at which the page
use bits are sampled. Let us assume a sampling interval of Lreferences and a window
size r equal to KI references. Then the Resident Set of Blocks at time t can be defined
as the set of all blocks that have been referenced at least once during the the last K
sampling intervals excluding the current one. Thus Rb (t) is made of all blocks refer
enced within the time interval [I(t div I - K), t], where the symbol div represents
integer division.

The problem becomes somewhat more difficult when the memory policy does not
allow us to predict accurately the Resident Set of Blocks of a given program. Such is
the case with all global policies, including Global LRU and its variants.

Global policies allow indeed any faulting program to obtain more space by claim
ing space previously allocated to itself or to other programs. Thus, the paging activi
ties of programs that execute concurrently may strongly interfere with each other
[01iv74][Smit80]. As a result, programs that require many pages in a short time
interval tend to steal page frames from other programs. The Resident Set of Blocks
of a given program will then depend on the paging behaviors of all programs con
currently residing in memory.

Fortunately enough, the resultant of these influences for Global LRU environ
ments can be expressed by a simple model due to Bard, who has successfully tested it
with the CP-67 system [Bard73] [Bard75]. Bard's model is based on the following
observations: Under a global policy, programs can lose pages only when their execu
tion is suspended. Interruptions of program execution take place when a page fault
occurs, when the program issues an I/O and waits for its completion, or when the
program's time quantum has expired. When the overall system paging activity is low,
the inactive pages of a program will tend to remain in memory even after a relatively
large number of interruptions. On the other hand, higher system paging activities will
result in faster removal of unreferenced pages. One can thus summarize the global
effect of these influences on the paging behavior of a given program by a single
parameter $, called the Page Survival Index (PSI), which is defined as the average
number of interruptions that an unreferenced page can "survive" before being
expelled from memory.

Ferrari and Kobayashi thus proposed [Ferr77a] to define the Resident Set of
Blocks of a program being executed under a Global LRU policy as the set of all blocks
that have been referenced at least once during the time interval covering the last ^
interruptions of program execution. (Since one does not know, at restructuring time,
which block faults will cause a page fault, one must assume that each block fault will
result in a page fault and thus an interruption. This pessimistic assumption is con
sistent with the definition of Rb(t) as the set of blocks whose presence in memory at
time t is guaranteed.)

-21-

It becomes thus possible to compute the Resident Set of Blocks of a program
running under a Global LRU policy with a given ^ and to define critical and minimal
restructuring algorithms aimed at programs to be run in Global LRU environments.
Ferrari and Kobayashi found that the performances of these two algorithms—
respectively named Critical PSI and Minimal PSI —were excellent but not appreciably
better than those of CWS and MWS.

2.5.4. Extension to PFF Environments

As we said before, the PFF policy bases all its memory allocation decisions on the
page fault frequencies of programs. Whenever the page fault frequency of a program
exceeds a given critical level l/T, all pages causing faults are brought into memory
without replacing any other pages. On the other hand, once a page fault occurs after
an interfault interval larger than T, all the program's pages that have not been refer
enced during this interval are returned to the secondary store.

Contrarily to what happens with other local memory policies, one cannot com
pute Rb(t) by simulating what would happen if the replacement policy would apply
directly to the program's blocks, rather than to its pages: One would then get a block
fault frequency that would generally be much larger than the program's page fault
frequency and the Resident Set of Blocks of the program would be grossly overes
timated. Our approach will then be somewhat different. Since the PFF algorithm
always keeps in memory all pages that have been referenced since the last page fault,
all blocks that have been referenced since the last block fault must also reside in
memory. Moreover, the PFF algorithm expels pages only when a page fault occurs
after an interfault interval larger than T. Thus, all pages—or blocks—that have been
referenced during the last T time units will always reside in memory. The Resident
Set of Blocks of a program running under a PFF policy will thus contain all blocks that
have been referenced at least once since the last block fault or during the time inter
val [t-T, t].

Using this definition, one can then design critical and minimal restructuring
algorithms tailored to the PFF memory policy. The performances of these algorithms
will be discussed in the next chapter.

2.5.5. The Choice of the Performance Indicator

Although they are very sound indicators of program performance in virtual
memory environments, page fault frequency and mean memory occupancy are not
the only criteria that can be chosen for constructing restructuring algorithms. One
could envision .for instance, algorithms aimed at improving some dynamic aspects of
the program performance, like smoothing the peaks of its memory occupancy curve
or distributing more evenly page faults during the total virtual execution time.

We experimented briefly with such algorithms, getting quite disappointing
results, especially with the algorithm attempting to spread more evenly page faults.
This can retroactively be explained by the fact that the program investigated—a WAT-
FIV compiler—had the vast majority of its page faults occurring at locality transitions.
Clusters of page faults were thus a "natural" result of the program organization and
almost impossible to break.

The real problem with page fault frequency and mean memory occupancy is
different: they share the common drawback of being only partial indicators of the glo
bal performance of a program in a paging environment. This basic flaw is enhanced
by the well known fact that these two indicators vary in opposite directions when the
program's performance is not too far from its optimum. Hence, attempts to minim
ize one indicator may worsen the performance of the other.

The solution adopted by Ferrari when using a critical algorithm has been to take

-22-

the page fault frequency as the optimization criterion for the restructuring pro
cedure, while checking afterwards for a possible increase in the mean memory occu
pancy. (Similarly, when running a minimal algorithm, one has to check afterwards for
a possible increase in the page fault frequency.) In the majority of cases (see
[Ferr76b]), this very simple procedure has been found to perform quite satisfactorily.

We feel, however, that this procedure does not constitute a complete solution to
the problem and does not allow any control over what is happening during the res
tructuring process. A more satisfactory solution would be to choose, as optimization
criterion for our restructuring algorithm, a performance indicator that would depend
simultaneously on the page fault frequency and the mean memory occupancy of the
program it characterizes.

Among the possible criteria, the most interesting one appeared to us to be
[Pari76] the space-time product criterion. We will show how this criterion can be used
to construct a new family of strategy-oriented restructuring algorithms-the so-called
Balanced Algorithms and, later, how the same approach can be extended from paging
to segmentation environments.

-23-

CHAPTER m

BALANCED ALGORITHMS FOR PAGING ENVIRONMENTS

3.1. THE MOTIVATIONS OF BALANCED ALGORITHMS

The Balanced Algorithms constitute a new family of program restructuring algo
rithms aimed at reducing the space-time product of the programs. Like their Critical
and Minimal counterparts, they differ from each other in the replacement strategy
for which they are tailored. Here too, the replacement strategy affects only the way
the Resident Set of Block is defined within each algorithm. Unlike other strategy-
oriented restructuring algorithms, Balanced Algorithms attempt to optimize a global
index of program performance in a paging environment, namely the space-time pro
duct of the program. As we said before, this criterion was selected because it offers
a natural way to combine the page fault frequency and the mean memory occupancy
criteria into a single performance indicator, and has, in addition, a direct physical
interpretation of its own.

Let now S(u) denote the memory occupancy of a program at a given time u and
(0,r) be the program execution interval. Our optimization criterion will then be (see
equation 1.5)

C= / S(u)du + 2 5^). 7^ (3.1)
o y=i

where r is the total number of page faults occurring during (0, t), tj the time of the j-
th page fault and 7^ the average page wait time.

Note that this expression only depends on the instantaneous memory occupancy
S(x) of the program and on the page faults which occur during the virtual time inter
val considered.

3.2. DERIVATION OF AN ALGORITHM SCHEME

The easiest, and probably most natural way, to infer a program restructuring
algorithm from a performance indicator taken as a cost function is to consider margi
nal costs. These marginal costs represent the contribution of undesirable events, like
a page fault, to the performance indicator; conversely, they express also the quantity
by which the performance indicator is decreased each time one of such events is
avoided thanks to the restructuring process.

In our case, we have to consider two kinds of events susceptible of influencing
our performance indicator, namely the occurrence of a page fault and the need for an
additional page frame during a given time interval. From (3.1), we can deduce
— that the marginal cost of a page fault is S(tf).Tw where S(tf) is the number of

memory page frames occupied by the program during the page wait interval, and

— that the marginal cost of one additional page frame during a time interval ht is
equal to bt.

Given these marginal costs, the affinity between two blocks i and j may simply
be defined as the sum of the marginal costs of all undesirable events that would not
occur if blocks i and j were stored in the same page.

-24-

For instance, it is obvious that, if blocks i and j are simultaneously present in
main memory during a time interval Ar, storing both blocks in the same page will
tend to reduce the program's memory occupancy. Similarly, if block i is currently
residing in memory while a reference to a previously inactive block causes a "block
fault" condition, one way to avoid the page fault that could result from this reference
to an inactive block is to store blocks i and j in the same page.

Hence the following general scheme, which applies to all program restructuring
algorithms based on the space-time product criterion.

Let us denote by

(61,62,...,bn) a block reference string corresponding to one run of the program
to be restructured,

5(0 the number of memory page frames allocated to the program after execu
tion of the t-th reference,

Tm the mean inter-reference time interval, and

Tw the mean page-wait time.

Here again, Rb(t) will represent the resident set of blocks, i.e. the set of blocks
that will be present while the t-th reference is processed.

The restructuring matrix, 4 =(ai;), has all zero entries initially and is con
structed in the following way:

(a) For all t from 1 to n do

if bt £ Rb(t-1), then increment by a = S(t).Tw all ay's such that
i e/?6(r-l) and j = bt;
increment by 0=Tm ail ay's such that i e Rb(t) and; e Rb(t)

od.

(b) For all i and ; <i do

°tf := aji •= a-ij + Oji
od.

Let us remark that what we have defined is not a single program restructuring
algorithm but rather a family of restructuring algorithms, the Balanced Algorithms,
each of which will be tailored to a particular memory management strategy. For
instance, there will be a Balanced Working Set algorithm aimed at programs to be run
under a "pure" Working Set policy, a Balanced Sampled Working Set algorithm aimed
at programs to be run under a Sampled Working Set policy, a Balanced Page Fault
Frequency algorithm aimed at programs to be run under a Page Fault Frequency pol
icy, and so forth.

3.2.1. Implementation Considerations

A few problems arise when one attempts to implement the above scheme. In
general, it will not be possible to evaluate the quantities 5(0 during the matrix con
struction phase since these quantities depend on the final block mapping. The sim
plest solution will then be to replace these 5(0 by a constant value S that will be an
estimate of the average number 5 of memory page frames occupied by the program.
Note that a similar solution has been adopted by Prieve and Fabry in their optimal
variable-space page replacement algorithm VMIN [Prie76].

Another problem concerns the cost of running the algorithm. One can expect
from any reasonable replacement strategy that the number of block faults will be
considerably lower than the total number of references. One can thus neglect, as a
first approximation, the contribution of the block fault handling routine to the run
ning time of the algorithm. The critical part of the algorithm is then the one that

-25-

requires that, at each reference, all the elements ay's of the restructuring matrix
corresponding to a pair of blocks i and j e Rb(t) be incremented by Tm.

Let 77i represent the number of blocks constituting the program being restruc
tured. Then, the processing of each reference in the program's block reference
string will require 0(m2) operations, which lead to a total running time of 0{n.mz) for
the algorithm. In order to reduce this cost, one can resort to a sampling technique
and perform the aforementioned routine each K memory references. In this case,
the running time of the algorithm will become 0(n.m2/ K) and the quantity by which
the affinity between the two blocks will be incremented will become K.Tm. The
approximation remains acceptable as long as the sampling interval Ta-K.Tm is rela
tively small compared to the average memory residence time of a page.

Keeping the same notations as before, the final version of our algorithm will then
become:

(a) For all t from 1 to n do

if bt £ Rb(t-1) then (* block fault *)
increment by a =§.7^ ail ay's such that i e Rb(t-1) and j=bt;

ft:

if t mod #=0 then (* sampling time *)

increment by §-K. Tm all ay's such that i e Rb(t) and j e Rb(t)
fi

od;

(b) For all i and all j <i do
ay := afi := ay + a;i

od.

Since a and /? are now constant, the modified algorithm scheme then has the nice
property of defining a restructuring matrix that is a linear combination of the
matrices obtained by the corresponding Critical (ot=1,0=0) and Minimal Algorithms
(a=0,/9=l).

3.3. ANALYTICAL STUDY OF BALANCED ALGORITHMS

3.3.1. Stochastic Models of Program Behavior

Several probabilistic models of program behavior in virtual environments have
been developed during the last fifteen years. These models differ by their complexity,
their accuracy and their tractability. All these models were aimed at describing the
behavior of programs in terms of page references. Since we are here primarily
interested in block references, we will apply these models to block rather than to
page references as it is usually done.

Let us assume that a program consists of a given number m of blocks whose
indices are denoted by 1, 2, m. Mwill then be the set of block indices, i. e. M = jl,
2, mj. Let... bf_i, bt, bt_lt ... be an infinite block reference string generated by the
program. bt thus represents the index of the block referenced at discrete virtual
time t.

The simplest model of program behavior one can envision is probably the so-
called Independent Reference Model (IRM) [DenP66] [Aho7l] [King7l] [Coff73]. The
IRM assumes that each block i of a program is referenced with a fixed probability pi
which does not depend on the previously referenced blocks. Obviously, one must have

-26-

i=l

The main interest of the IRM is its simplicity and its tractability. The p* parame
ters are relatively easy to evaluate and the model is well suited to analytical treat
ment. For instance, Ferrari [FerrBO] (see also [Lau79]) has shown that CWS and MWS
were effectively optimal with respect to programs whose behavior can be described by
an independent reference model and which have at most two blocks per page. The
simplicity of the IRM has however one drawback: Since it assumes that the probability
of referencing a given block does not depend on the past history of the program, the
model does not conform to the locality principle and thus is not a realistic represen
tation of program behavior [Coff73].

Another popular model of program behavior is the LRU Stack Model (LRUSM) ori
ginally proposed by Shemer et al. [Shem66] [Cofl73]. This model assumes that the
probability of referencing a block at a given time only depends on the number of dis
tinct blocks that have been referenced since the block was referenced last. LRUSM
thus maintains a stack ordering of blocks according to the times they were refer
enced last. Let (slt s2, sm) denote the content of this stack and st the i-th most
recently referenced block. To each level i in the stack is associated a given probabil
ity a\ that the block at that level will be the next reference. If we have
dx> d2> • - > dn, blocks that have been recently referenced will tend to be also
the most often referenced ones in the near future. The LRUSM thus conforms to the
locality principle. On the other hand, it cannot model the behavior of a program dur
ing transitions between phases or keep track of the individual behaviors of blocks.
This last limitation makes the LRUSM virtually useless in modeling program behavior
for restructuring purposes.

A better solution is to use a first-order Markov chain whose states correspond to
the indices of the last referenced blocks. The transition probability matrix of the
chain can then be written as P = (pt/), where ptj = Pr [bt=j 16^=1]. We naturally
have

m

£py =l, i =l,2 m.

Assuming that the chain is homogeneous, irreducible and aperiodic, one can compute
its limiting state probability vector X= (X1,X2>...,Xm). This vector X is the eigenvector
of matrix P and each Xi represents the steady-state probability of referencing block i.

This first-order chain—often referred to as the Markov model—can simulate the
behavior of programs having one or more disjoint phases with different degrees of
locality [Fran74] [Cour76]. It has been used by Lau to model the behavior of pro
grams being restructured by the CWS algorithm [Lau79], Lau has indeed proved that
CWS is optimal with regard to all programs whose behavior could be described by the
Markov model and which have two blocks per page.

Despite its modeling power, the Markov model has however the major drawback
of requiring m2 parameters. This prohibits practical application of the model to
programs consisting of numerous pages-or blocks. To circumvent this difficulty, Eas-
ton has introduced a special first-order Markov model that takes only into account
consecutive references to the same block and requires only n+1 parameters. The
transition probabilities of Easton's model are given by

p«=r+(l-r)Xi

Py=(l-r)Xy. i*j,
where O^r <1 and X<>0 for i = 1 m. Since

one must have necessarily

-27

^Pij —1. i =l,...,m,
>=i

Ext=i.

Note that r represents the probability that bt=bt^v The Xi are the eigenvalues of the
transition probability matrix and are thus the steady-state probabilities of referenc
ing a given block.

The relative simplicity of Easton's model does not prevent it from being some
times surprisingly accurate. For instance, Kobayashi has found that Easton's model
could be almost as good as the Markov model for estimating the average and the dis
tribution of working set sizes [Koba79].

3.3.2. Analysis of the BWS Algorithm

Because of the approximations introduced in the computation of inter-block
affinities, the BWS algorithm does not effectively attempt to minimize an exact
expression of the space-time product but rather a linear combination of page fault
frequency and mean memory occupancy. We will examine here the version of the
algorithm for which the coefficients a and /? are kept constant during the whole res
tructuring" process and the sampling interval T8 is taken equal to Tm in order to avoid
sampling errors.

As we pointed out in chapter II, a restructuring matrix is not a complete
representation of all interactions between the various blocks of a program. In partic
ular, it does not provide any information on the possible interactions involving more
than two blocks. Because of this limitation, we have to restrict pur analytical study of
the Balanced Working Set Algorithm to the case of programs which contain at most
two blocks per page.

Let us consider one of these programs. Assume that it consists of m blocks occu
pying a total of n pages. We must have necessarily m^2n. Note that m=2n would
only hold if there were exactly two blocks per page. This will not be true in general
since m can be odd or some blocks can be too large to share a page with another
block.

For convenience purposes, we would like to have always exactly two blocks per
page. If this is not the case, we will add to the m original blocks 2n-m fictitious
blocks of size 0, which will never be referenced. Since these blocks will never cause a
page fault or occupy any memory space, they will not alter the performance of the
program. Besides, they will appear in the restructuring matrix as empty rows and
empty columns without any influence on the clustering process.

Taking into account these fictitious blocks, one can assume that each page i con
tains two blocks numbered ix and i2. The infinite sequence bv bt_lt bt, ot+1, ... will
represent an infinite block reference string produced by the program. In a Working
Set environment, page fault frequency and mean memory occupancy can be written
in terms of block reference probabilities and of the probability that a given block is in
the Resident Set of Blocks Rb(t), if these probabilities do indeed exist. Rather than
restricting our analysis to a specific class of stochastic models, we will assume that
the program's behavior can be described by a stochastic model that has a steady-
state solution. Under these assumptions, the steady-state probability that page i
causes a fault at time t exists and is equal to the probability that either block ix or i2
is referenced at time t given that neither of them is a member of Rb (t -1). Thus,

Pr[i causes a fault at time t] =

-28-

Pr[ix=bt \ix £ Rb(t-1) and i2 £ Rb(t-1)]

+ Pr[i2=bt\i2£Rb(t-l) a.nail£ Rb(t-1)]\
and the page fault rate f is given by

/ = EfM*i=&Jii *#*(*-!) andi2£#b(*-l)]

+ Pr[i2-bt \i2 £ Rb(t-1) a.ndix £ Rb(t-1)]\

Similarly, the probability that page i is in memory at time t exists and is equal to

Pr[ix e J?&(0 ori2ei?6(0]

The mean memory occupancy of the program is then given by

5=2 Pr[ix e/?6(0 or i2£Rb(t)]
i = l

LEMMA 3.1: The CWS algorithm minimizes the number of page faults of all programs
whose behavior can be described by a chain having a steady-state solution and which
have at most two blocks per page.

Proof:

Assume without loss of generality that each page contains exactly two blocks. In
the CWS algorithm, each element cy of the restructuring matrix is then proportional
to

Pr[i=bt\i £ #6(r-l) and; e/?6(r-l)]

+ Pr[j =bt\j £ Rb(t-1) and i zRb(t-l)]

By clustering two blocks per page with the objective of maximizing the sum of intra-
page affinities, we attempt to find

n

maxJ] cil>ig =
i = l

max2 [Prli^bt \ix £ Rb(t-1) andi2 £ Rb(t-1)]
i=i

+ Pr[i2=bt \i2 £ Rb(t-1) and ix £ J?„(r-l)]J

This maximum is evaluated on the set of all possible block-to-page mapping rejecting
those where the sum of the sizes of the two blocks would be greater than the page
size.

Observing that

Pr[i=6t|i£ #<>(*-l)and; Z Rb(t-1)] =

Pr[i =bt\i£ Rb(t-1)]

- Pr[i =bt \i £ Rb(t-1) and; £ Rb{t-1)]

we can thus rewrite our objective function as

max£ [Prli^bt^^ Rb(t-1)]
i=l

+ Pr[i2-bt\i2 £ Rb(t-1)]

-29

-Pr[ix=bt |ij £Rb(t-l) and i2£Rb(t-l)]

-Pr[i2=bt\i2£ Rb(t-l) and ix£ Rb(t-1)]\

Since all non-negative terms are independent of the block-to-page mapping, the
objective can be reformulated as

min£ fPr[ii=bt|ii£ Rb(t-1) and i2 £ Rb(t-1)]
<=1

+ Pr[i2=bt \i2 £ Rb(t-1) and^ £ Rb(t-l)]l

which is equivalent to minimizing the program's page fault frequency f.
•

LEMMA 3.2: The MWS algorithm minimizes the mean memory occupancy of all pro
grams whose behavior can be described by a chain having a steady-state solution and
which have at most two blocks per page.

Proof:

Assume without loss of generality that each page contains exactly two blocks. In
the MWS algorithm, each element my of the restructuring matrix is then proportional
to

Pr[i €Rb(t) and; e Rb(t)]

By clustering two blocks per page with the objective of maximizing the sum of intra-
page affinities, we attempt to find

n

max £mi 4 =
i = l

n

max£ Pr[ix e Rb(t) and i2 e Rb(t)]
i = l

Observing that

Pr[i e Rb(t) and; e Rb(t)] =

Pr[i e Rb(t)] + Pr[j eRb(t)]

-Pr[i e Rb(t) or j €Rb(t)]

we can thus rewrite our objective function as

maxf; lPr[ix €Rb(t)] +Pr[j e Rb(t)]
t=i

- Pr[i z Rb(t) or j e/?6(0]i

Since all non-negative terms are independent of the block-to-page mapping, the
objective can be reformulated as

n

min2 \Pr[ix e Rb(t) ori2 €i?d(0]j
t=i

which is equivalent to minimizing the mean memory occupancy 5.
•

THEOREM 3.1: The BWS algorithm minimizes a linear combination of the number of
page faults and of the mean memory occupancy of all programs whose behavior can

-30-

be described by a chain having a steady-state solution and which have at most two
blocks per page.

Proof:

Assume without loss of generality that each page contains exactly two blocks. In
the version of BWS we analyze, each element ay of the restructuring matrix is then
proportional to

S.Tw.Pr[i=bt\i £ Rb(t-l)andj zRb(t-l)]
+ S.Tw.Pr[j=bt\j £ Rb(t-l) andi eRb(t-l)]

+ Tm.Pr[i zRb(t) and;' e Rb(t)]

If Cy and my represent the corresponding CWS and MWS restructuring matrices, we
have then

Oy = 5. Tw .Cy+Tm .my

By clustering two blocks per page with the objective of maximizing the sum of intra-
page affinities, we attempt to find

n

maxSa*,.i!

which is equivalent to

<=! -Z

max£ (5 7^.0, ,+ T^.m* ,J
i = l

Using the results of Lemmas 3.1 and 3.2, we can rewrite our objective as

rnaxf) \S.TW.M*i=&* |i, £ Rb(t-1)]
i = l

+ S.Tw.Pr[i2=bt \i2£ Rb(t-1)]

-S.Tw.Pr[il=bt\il£ Rb(t-1) and i2 £ Rb(t-1)]

-STw.Pr[i2=bt\i2£ Rb(t-1) and ^ £ Rb(t-1)]

+ Tm.Pr[iiZRb(t)]

+ Tm.Pr[i2zRb(t)]

- Tm.Pr[ix e Rb(t) or;2 € Rb(t)]\

Observing again that ail positive terms of the summation do not depend on the block-
to-page mapping, we can reformulate our objective as

n ^
min£f5. Tw.Pr[ix=bt \ix £ Rb(t-1) and i2 £ Rb(t-1)]

i = l

+ S.Tw.Pr[i2=bt \i2 £ Rb(t-1) andix£ Rb(t-1)]

+ Tm.Pr[i z Rb(t) or j e Rb(t)]\

-31-

which is equivalent to

min'S.Tvt.f + TmS

where f stands for the program's page fault frequency and 5 for its mean memory
occupancy.

Consider now a two-dimensional representation of program performance (5, /),
where 5 stands again for the program's mean memory occupancy and f for its page
fault rate. Define as the BWS curve the set of points in the (5,/) plane corresponding
to the performance of a given program restructured by the BWS algorithm with the
same window size but different 5. Tw/ Tm ratios. We have then the following corollary.

COROLLARY 3.1: If the behavior of a program can be described by a chain having a
steady-state solution and if the program has at most two blocks per page, then the
BWS curve of this program is the set of all points corresponding to block-to-page map
pings for which it is impossible to improve either the page fault frequency or the
mean memory occupancy without worsening the other criterion.

Proof:

Let (5j, /Jbea point on the BWS_curve of a given program. By definition of the
BWS curve we know that 5. Tw.f x+ Tm.S is minimum for some values of 5.7^ and Tm.

Assume now that it is possible to restructure the program so as to obtain a
better page fault frequency f'<fx while keeping the same memory occupancy 5. We
would thus have

S.Tw.f'+ Tm.S <S.Tw.fx + Tm.S

which contradicts our hypotheses. Since the same conclusion would hold for 5, it is
indeed impossible to improve either the page fault frequency or the mean memory
occupancy of the program without worsening the other criterion.

•

This situation is known as a Paretian optimum with respect to the page fault fre
quency and the mean memory occupancy.

3.3.3. Extension to Other Memory Policies

As the reader has probably noticed, the proofs of the optimality of CWS. MWS and
BWS did not take into account the composition of the Resident Set of Blocks Rb (t) for
the Working Set policy. These proofs would thus hold for any strategy-oriented res
tructuring algorithm minimizing the same performance indices as long as
[i] the probability that a block i belongs to the Resident Set of Blocks at time t,

Pr[ieRb(t)], has a stationary distribution for all blocks;
[ii] the probability that a page resides in memory is equal to the probability that at

least one of the blocks it contains belongs to the current Resident Set of Blocks;
in other words,

/V[page i in memory] = Pr[ix e Rb(t) or i2 e Rb(t)].

This second condition is the more restrictive: it assumes that the probability that a
page resides in memory does not depend on the composition of the other pages. This
is not true for the FIFO, LRU, Global LRU and PFF replacement policies and, more gen
erally, for all policies where the page fault timing triggers the replacement decisions.

For LRU, Global LRU and PFF policies, we have seen that one can construct a
Resident Set of Blocks Rb(t) such that all pages containing at least one block belong
ing to the current Resident Set of Blocks will necessarily reside in memory while

-32-

some pages resident in memory may not contain any block belonging to the set. One
has thus

Prfpage i in memory] ^ Pr[ix e Rb(t) or i2 G Rb(t)].

As a consequence the page fault rates / generated by these policies have an upper
bound / max given by

fwx=t \Pr[ix=rt\ix£ Rb(t-1) and i2£ Rb(t-1)]
t=i

+ Pr[i2-rt \i2 £ Rb(t-1) andi, £ /?b(r-l)]j

Using the same proof as for Lemma 3.1, one could then prove that CLRU, CPSI and
CPFF minimize an upper bound of the number of page faults of all programs running
under the corresponding memory policy provided that the behavior of the program in
that environment can be described by a Markov chain having a steady-state-solution
and that the program has at most two blocks per page. (For the CPSI algorithm, one
must add the supplementary condition that the Global LRU environment in which the
program is to run can be modeled by Bard's Page Survival Index Model.) These results
generalize a similar finding made by Lau [Lau79] for the CLRU algorithm under IRM
program behavior assumptions.

Unfortunately, the same approach cannot be applied to Minimal Algorithms.
Since some pages may be resident in memory without containing any block belonging
to the current Resident Set_of Blocks, one could only compute a lower bound for the
mean memory occupancy 5. One could therefore only prove that MPSI and MPFF
minimize a lower bound of the program's mean memory occupancy. Results relative
to Balanced Algorithms would be even less interesting.

3.4. EMPIRICAL STUDY OF BALANCED ALGORITHMS

A series of trace-driven simulations were conducted in order to evaluate the per
formance of Balanced Algorithms and to compare their performance with those of the
corresponding Critical and Minimal restructuring algorithms.

The traces we used for our experiments were full traces (instruction and data
references) of a WATFIV compiler, an FFT program and an APL interpreter, all col
lected on an IBM 360/91 at the Stanford Linear Accelerator Center. Block sizes were
1024 bytes for the WATFIV and APL traces, 512 bytes for the FFT trace. Trace lengths
varied between one and three million references.

Besides the program, other factors considered in our study were

— the memory policy ("pure" Working Set, Sampled Working Set, Global LRU and
Page Fault Frequency)

— the control parameter of the policy (window size for Working Set and Sampled
Working Set, estimated page survival index for Global LRU and critical interfault
interval T for PFF),

— the a and 0 coefficients used by each balanced algorithm,

— the number of blocks per page (2 or 4).
Preliminary experiments convinced us that we would need at least three or four

different values of the control parameter to cover each memory policy. Besides, the
"interesting" values of this control parameter—i.e. these for which the program will
not thrash or execute without paging— were also dependent on each individual trace.
These considerations made a full factorial experiment unpractical. Rather than

-33-

selecting an a priori incomplete factorial design, we decided in favor of a more empir
ical "exploratory" design where already performed experiments would influence the
design of the next ones.

In order to limit the cost of our simulations, it was also necessary to use
compressed versions of the traces. The reduction algorithm used to generate the
compressed traces replaced each trace by a sequence of "reference sets", each con
taining the blocks being referenced at least once during a sampling interval of 1,173
references. Since the algorithm preserves the ordering of the first references to
each block within each sampling interval, the quality of the reduced trace [Lau79] is
somewhat superior to the quality of the reduced traces obtained by the "Snapshot
Method" analyzed by Smith [Smi77].

Ail simulations of balanced algorithms were performed using fixed values for a
and § for each run of the restructuring procedure. The algorithm's sampling interval
Ts was always taken equal to the sampling interval of the compression algorithm, i. e.,
1,173 references.

3.4.1. Empirical Study of the Balanced Working Set Algorithm.

Three distinct restructuring algorithms applicable to a working set environment
were thus considered: the Critical Working Set (CWS) algorithm , the Minimal Working
Set (MWS) algorithm, and the Balanced Working Set Algorithm (BWS). The assumed
page sizes for our experiments were 1024, 2048 and 4096 bytes, the first value apply
ing only to the FFT trace.

We have conducted our experiments with window sizes varying between 10 and
150 sampling intervals. Each of these intervals corresponded to 1,173 references
from the original trace. For each window size, we have measured the performance of
the non-restructured program (NR) and those of the program restructured by CWS,
MWS and BWS. In order to evaluate experimentally the optimal combination of a and
/S corresponding to each window size, we have simulated repeated executions of the
BWS. algorithm for each window size using a/(3 ratios varying between zero and
infinity.

The results of our simulations for WATFIV with a page size of 2048 bytes are sum
marized in Figure 3.1, where the mean memory occupancies are represented on the
horizontal axis and the page fault frequencies on the vertical axis.

As can be seen, the set of points corresponding, for a given window size, to the
performance of the program after restructuring is shaped like a segment of a hyper
bola, the two extremes of which respectively correspond to the program restruc
tured by CWS and MWS and where the intermediate points correspond to BWS. For all
four window sizes, the point corresponding to the Minimal Algorithm is the uppermost
one, while that one corresponding to the Critical Algorithm, is the rightmost one. One
can also notice that the lower portions of the four curves arer almost horizontal.
Thus, the marginally better performance of the CWS algorithm in terms of page fault
frequency appears to go together with large increases of the memory occupancy and
BWS appears to be clearly superior to CWS for all four window sizes. The result of the
comparison between MWS and BWS is somewhat mitigated by the fact that MWS seems
to operate fairly well for large window sizes.

We decided thus to measure the space-time products of all versions of the pro
gram, assuming a mean inter-reference time Tm equal to 1 ms and a page-wait time
7^ of 20 ms. Looking at the space-time product curves corresponding to each window
size (see Fig. 3.2), one can see that BWS perform significantly better than CWS and
MWS for the four windows considered. One should however note one discrepancy
between these results and the theory. When we derived our algorithm, we found the
optimal a//? ratio to be equal to S.TW/K.Tm. With an average memory occupancy

-34-

WflTFIV WS - PSIZE=2K

fljB mjao icflff flcaftJb (pSS:

Figure 3.1

varying between 25 and 40 pages, a mean inter-reference time of 1ms, and a page
wait time of 20ms, one would thus expect to find the minimum of each space-time
curve to correspond to values of a//? varying between 500 and 800. In fact, these
minima occurred at a//? ratios in the range between 75 and 250. A possible explana
tion for this phenomenon could be that the BWS algorithm, like all Balanced Algo-
rithms,_does not take into account the fact that minimizing the mean memory occu
pancy 5 also minimizes the individual contribution S(tf).Tw of each page fault to the
space-time product. Thus the part of the algorithm attempting to minimize the
program's memory occupancy has a stronger influence than expected on the space-
time product and this will be reflected by smaller a/ § ratios.

In order to check if the same conclusions would hold if there were more than two
blocks per page, we repeated the same simulations assuming now a page size of 4
Kbytes, and thus four blocks per page. We observed basically the same program

J0'

•110-

janc

PJB

-35-

WflTFIV WS - PSIZE=2K

N08lft OCoftJbr (B9lS

Figure 3.2

4 MR

XHS= 80S. I.

♦ KSr 30S.I.

ZKS= 60S.I.

XHSslOOS.I.

behavior, although the beneficial effects of the restructuring process were much
stronger for BWS, CWS and MWS (see Fig. 3.3).

Results obtained for the APL trace and a page size of 2048 bytes are very similar
to the ones obtained with the WATFIV trace (see Fig. 3.4 and 3.5). Here too, the
observed minima of the space correspond to values of a//3 varying between 75 and
250 pages, thus well below the theoretical optimum S.TW/K.Tm.

Results obtained with the FFT trace and a 1024 byte page size (see Fig. 3.6) indi
cate a very good performance of MWS and a rather disappointing performance of BWS,
which is only outperforming MWS for two window sizes (20 and 100 sampling intervals).
In order to see if this could be attributed to the smaller page size, we repeated our
experiments with a page size of 2048 bytes (see Fig. 3.7). The results of these experi
ments were much flattened curves showing no clear superiority of any method,
except for the smallest window size where BWS dominates MWS and CWS. Looking at

•KDC

awc-

J«X>-

J«C-

JHT-

^ JOOO-
-!

jar
u.oc

—i—
13 .DC WJK

-36

WATFIV WS - PS12E=HK

—T
18.00 HB&" OCcJPrJiCY CpJfels

Rgure 3.3

4 MR

X HS= 205.1.

♦ MS= 20S.I.

5 KS= 60S.I,

M HSrlDOS.I.

—I—
u.oo n.oc COD KJOD

space-time product figures (see Fig. 3.8), BWS appears however to perform
significantly better than CWS for all window sizes while its advantage over MWS at 20,
50 and 100 sampling intervals is only marginal.

To summarize our findings, BWS appears to clearly outperform both MWS and
CWS for small window sizes—i.e. up to 50 sampling intervals for WATFIV and APL, up to
10 sampling intervals for FFT. It remains generally superior to CWS and MWS for
larger window sizes although its superiority over MWS becomes much less significant.

3.4.2. Empirical Study of the Balanced Sampled Working Set Algorithm

For convenience of implementation, the Working Set policy can be approximated
by measuring the working set periodically instead of at every reference. This replace
ment algorithm is known as the Sampled Working Set, or SWS. For convenience,
assume that the sampling interval 1 is a submultiple of the window size r. In other

2SC

\ MWS

aax-

jaoc-

JODC-

JBOC-

smoc

s.tx coo

37-

APL WS - PSIZE=2K

4NR

XHS= 2DS.I.

♦ HS= 60S.I.

X HS= 75S.I.

X WSrlOOS.l.

MWS

CWS

CWS

0.00 Hp5r? OCClftfCY tpSf?S]
*.00 t.OC m.oo WJX

Figure 3.4

words, r=k.I, with k integer. The SWS algorithm works then in the following way: Each
time a page fault occurs, the missing page is added to the program's resident set of
pages. At the end of each sampling interval, all pages that have not been referenced
during the last k sampling intervals are expelled from memory. As a result, the
program's resident set of pages will then only contain those pages that have been
referenced at least once during the last k.I=r time units. As program execution
resumes, the size of this window will increase linearly with time until it reaches r + I
time units at the end of the next sampling period. The SWS algorithm is thus essen
tially equivalent to a "pure Working Set algorithm with a window varying periodically
between k.I and (k+l).I time units.

We decided to run our simulations of the BSWS algorithm assuming that the sam
pling interval of the replacement algorithm was always equal to its window size. This
ensured that we would observe program behaviors as different as possible from those

-38

APL WS - PSIZE=2K

«j3£ ocgJRS:
mjDD

figure 3.5

observed under a "pure" Working Set policy. Besides, the I=r hypothesis makes the
SWS algorithm much easier to implement: The algorithm only requires then one use
bit per page that is automatically set to one each time the page is referenced. (As a
last extremity, this use bit can be simulated by software [Baba79].) At the end of the
sampling interval, all pages with a use bit set to one will have their use bit reset to
zero, while other pages will be expelled from memory.

We ran our simulations of the BSWS algorithm using the WATFIV trace and assum
ing a page size of 2048 bytes (see Fig 3.9). As one can see, comparing Fig. 3.1 and 3.9,
the switch from a pure Working Set to a Sampled Working Set Policy does not alter
the basic behavior of the restructuring algorithm. A program running under a SWS
replacement policy seems indeed to behave as if it were running under a pure Work
ing Set policy with a window size oscillating between r and t + I time units.

39

FFT WS - PSIZE=1K

UM K^ocoftS:
mm

Figure 3.6

We thus felt to have collected enough evidence to assert that the BSWS algorithm
is not behaving differently from its "pure" Working Set counterpart-BWS, and decided
against any further simulations.

3.4.3. Empirical Study of the Balanced PSI Algorithm
Despite the clear superiority of local variable-space strategies, global policies,

like Global LRU and its variants, still remain widely used because of their simplicity
[0U74]. As we said before, the paging behavior of a program running in a Global LRU
environment can be approximately described by a single parameter *, which
represents the average number of interruptions that an unreferenced page can "sur
vive" before being expelled from memory. This Page Survival Index (PSI) allows us in
turn to define the Resident Set of Blocks of a program as the set of all blocks that
have been referenced at least once during the time interval covering the last ^

IJO
"T
•JOD

40

FFT WS - PSIZEr2K

"" ** <cM Kofife i?m
UJD

Figure 3.7

interruptions of program execution.
Exact simulation of the PSI model assumes that we possess all the necessary

information for scheduling properly all interruptions. Since this was not the case, we
had to make several assumptions. As our traces did not contain any information on
the I/O activity of each program, we decided not to take into account program interr
uptions caused by I/O waits. Interruptions resulting from time quantum expiration
were assumed to be uniformly distributed between 0 and 400 sampling intervals.
Because of the compression process, the traces only contained the first references to
each block within each sampling interval. We had thus to guess how further refer
ences to the same block would be distributed within each sampling interval. We
decided that the best would be to assume that every block referenced during any
given sampling interval would be continuously referenced during that sampling inter
val. In other words, a block would be assumed to reside in memory as long as less

00000~

fJOB
-I

• JO
-1
1M

-41

FFT WS - PSI2E=2K

—I
• JOD td^ ocaFricY tpfefsi

Figure 3.8

+1*

XHSs 10S.I.

♦ MS= SOS.I.

Z USr SDS.I.

X KS=100S.I.

1CJDD BJJO
—I

MJOO iBjaa

than * blocks faults or time quantum expirations had occurred since the last sam
pling interval during which the program had been referenced.

We ran our simulations of BPSI, CPSI and MPSI algorithms for values of the Page
Survival Index * varying between 8 and 15 interruptions. This range was chosen in
accordance to Bard's measurements of a CP-67 system, which had found 13 to be a
reasonable value for * [Bard73]. Results of these simulations for the WATFIV trace
and a page size of 2048 bytes are summarized in Fig. 3.10. They show a mediocre per
formance of BPSI, CPSI and MPSI without any evidence that any of the three methods
clearly dominates the other two. The same conclusions also hold for the APL trace
which exhibits again a behavior similar to the one of WATFIV.

Results obtained with the FFT trace and a page size of 2 Kbytes were not very
different although the three restructuring algorithms performed somewhat better
(see Fig. 3.11). One should however point out the erratic performance of PSI for *=8,

iflDC

J9X-

jno-

j«c

j ax

_ jooc-

t

JDWC -

jbbdc

S.00 f4.0C .00

42

WRTF1V SWS- PSI2E=2K

flB.OC he££ flcoffer cpfeS:

Figure 3.9

X HS= 20S.I.

<» HSs SOS.I.

X NS= 755.1.

X HSslOOS.I.

—I—
JB.OC

—I—
36 JOD mjoa «.oc

probably due to the clustering phase. These results were not totally unexpected
since Ferrari and Kobayashi had already found no clear winner in their comparison of
CPSI and MPSI applied to a Pascal compiler [Ferr77a].

3.4.4. Empirical Study of the Balanced PFF Algorithm
The last environment we considered in our simulation study was the page Fault

Frequency policy [Chu072] [0pde74] [Chu076]. The PFF policy generated a great deal
of interest at its introduction because it is easy to implement and it also claims to be
less sensitive than Working Set to a detuning of the control parameter. Since then,
this latter claim has been disputed by Graham [Grah76] and by Franklin and Gupta
[Fran78]. Moreover, PFF has also been found to exhibit-like FIFO-anomalous
behaviors where an increase in the memory occupancy of a program could also

jm

JJOD-

•UOD-

.iar>-

jnoD-

•flBOC-

43

WRTFIV PSI- PSIZE=2K

ie5^ 8CCUP&Y (P&&

Figure 3.10

• JX

X PSI=10

♦ PSI=12

X PSIslS

XPSlslS

tl.00 «JO

increase the page fault frequency of the program. Despite these facts, the simplicity
of PFF makes it a strong candidate for implementation on all machines having
hardware use bits.

In our simulations of the Critical PFF, Minimal PFF, and Balanced PFF Algorithms,
the Resident Set of Blocks was always defined as the set of all blocks that had been
referenced at least once during the last T time units or since the last block fault. We
experimented with more sophisticated definitions of Rb(t) and found that they did not
result into any improvement in the performance of any of the three restructuring
algorithms. As in our simulations of a PSI environment, we had to take into account
the fact that our traces only contained the first reference to each block within each
sampling interval. Here too, we assumed that every block referenced during any
sampling interval would be continuously referenced during the whole sampling inter
val.

44

FFT PSI - PSIZE=2K
JSX

5 jud-

.300C-

JDTC

«Jt BJD „.« «« Kjftff jtoftfcy (fftB]

Figure 3.11

4 MR

XPSIs 8

♦ PSIslO

X PSI=12

X PSU15

CPSI

10.00
—I
CD.00 £1.00 £2.00

The results of our simulations of BPFF, CPFF and MPFF for the WATFIV trace and
a page size of 2048 bytes are summarized in Fig. 3.12. The main surprise was the
excellent behavior of CPFF for all values of T: our measurements indicated that CPFF
is indeed better than BPFF for T equal to 10 sampling intervals and only marginally
worse than BPFF for T equal to 20 and 50.

Results obtained with the FFT trace and a page size of 1 Kbyte were even more
surprising (see Fig. 3.13): Two out of the three curves corresponding to the program
restructured by BWS at various a/ § ratios are almost identical to the demand curve
for the non-restructured program. For the third, corresponding to T equal to 10 sam
pling intervals, the leftmost point of the curve, which minimizes simultaneously the
page fault frequency and the memory occupancy, corresponds to the program res
tructured by CPFF while MPFF leads to a higher fault frequency and a much higher
memory occupancy. The same simulations were repeated assuming a page size of 2

JVC-

«2SB-

•3CDD-

JlflD-

JODD-

JB&i-

JD7DC-

JMQD-
ajos

—I—
19 JB

MPFF

—1—

45-

WflTFIV PFF- PSIZE=2K

mjoo
leSSS ocoRScy (pSS;]

Figure 3.12

4 NR

XT= 1QS.I.

♦ T= SOS.I.

XT= SDS.l,

CPFF

»JE WJB «JS k.03

Kbytes, and thus four blocks per page. We observed then almost identical curves for
BPFF at the three values of T and no clear winner among MPFF, CPFF and BPFF. (see
Fig. 3.14).

This abnormal behavior of CPFF, MPFF and BPFF becomes less paradoxical if one
considers the mechanism used by the PFF algorithm to reclaim memory space: Idle
pages are only expelled at fault time and this occurs if and only if the last fault
occurred more than T time units ago and the page considered for possible expulsion
has not been referenced during that interval.

Suppose now that the new block-to-page mapping produced by the restructuring
process results in the suppression of the k-th page fault previously occurring during
the execution of the program. Depending on the timing of this page fault, several
things can happen. First, this page fault could have been initiating the expulsion of
several idle pages. The removal of the fault would then result in an increase of the

«£OCC
tux UJK IB.K.

46-

FFT PFF - PSIZE=1K

+ m

XT= 10S.I.

♦ Ts 80S.I.

XTs SOS.I.

MPFF

CPFF

" idSrf? Kcdh&Y (Pfees!
eejx aojoo MA

Figure 3.13

f»JD

program's memory occupancy since the idle pages would stay in memory at least
until the next page fault. In other cases, the disappearance of a page fault can cause
an increase of the interfault time interval over the trigger level T. This would then
result in the possible expulsion of several pages at the next page fault, causing then a
reduction of the program's memory occupancy and the possible occurrence of addi
tional page faults later in the future. Finally, it may also happen that the page fault
eliminated by the restructuring process caused the resetting of the use bits of
several pages that would not be referenced again until the next page fault. Should
this page fault occur more than T time units later, the removal of the preceding page
fault would have actually prolonged by at least T time units the survival of all these
pages in memory.

In conclusion, it appears than the strong coupling existing in the PFF algorithm
between the timing of page faults and the memory allocation decisions makes any

jn-

jn-

U9DD-

U«B-

uat-

UiflC-

janc
•JC

t MPFF

VDJ3C

CPFF

—I
11 JC

-47

FFT PFF - PSIZE=2K

—I
VtJB i©$#? ocaftSbr (pfeS;

Figure 3.14

+ NR

XT= 10S.I.

♦ T= 20S.I.

X T= sos.r.

vjz
—1—
17.00 MA It JO

consistent prediction of the performance of a restructuring algorithm very difficult.
The restructuring process must then be performed on a trial and error basis and the
search for a near-optimal solution may require a lot of tuning. It should be pointed
out, however, that these problems appear to be more linked to the nature of the PFF
algorithm than to the restructuring process itself.

3.4.5. The Tuning of Balanced Algorithms.

Unlike their critical and minimal counterparts, Balanced Algorithms have one
control parameter, namely their a/ /? ratio. This gives the algorithm much more flexi
bility but requires also some tuning. As we pointed already out for the BWS algorithm,
the values of the a/ /S ratio that actually correspond to a minimum space-time pro
duct for a given value of the policy control parameter are not those predicted by the
theory. Moreover, they appear to depend mostly on the relative performances of the

-48-

corresponding critical and minimal algorithm.

In general, it will then be necessary to try several a//? ratios before selecting the
proper one. This procedure is much less cumbersome than it appears at first glance
because

— the most expensive part of a dynamic restructuring algorithm is the gathering of
the block reference trace;

— any efficient implementation of a balanced algorithm will construct simultane
ously the corresponding critical and minimal restructuring matrices and use
these two matrices to construct each balanced matrix;

— space-time product curves obtained by varying the a/ § ratio for a given value of
the control parameter are rather flat near the optimum, making an exact deter
mination of the optimum ratio unnecessary;

— the optimum ratio observed for each program and each policy seems to be rela
tively insensitive to variations in the policy's control parameter.

3.5. CONCLUDING REMARKS.

We have presented here a new family of program restructuring algorithms aimed
at reducing the space-time product of programs being executed under various
memory management policies. The overall performance of these algorithms has
been found to be significantly better than those of the two best existing restructuring
algorithms. Since the new algorithms are not more difficult to implement than Criti
cal and Minimal algorithms, they should be the first technique to be considered for
improving the behavior of all programs having a sufficient frequency of use to justify
the cost of the procedure.

-49-

CHAPTERIV

BALANCED ALGORITHMS FOR SEGMENTATION ENVIRONMENTS

4.1. INTRODUCTION

As we have seen in the two last chapters, program restructuring can substan
tially improve the behavior of programs in paged virtual memory systems. On the
other hand, very little effort has been devoted to the extension of this approach to
segmented virtual memory systems and the results obtained so far have been rather
disappointing [Chen74].

The reasons for this situation are quite simple. In a paging environment, the
linear output of compilers is often a block-to-page mapping that destroys the locality
naturally present in the block reference string. Since nothing similar happens in seg
mentation environments, there is not the same need for a corrective action. Also,
existing program restructuring algorithms rely heavily on the fact that, in paged vir
tual memory systems, all exchanges of information between the main memory and
the secondary store involve only fixed size pages. Therefore, the problem of finding a
better arrangement of blocks in the program's address space is essentially a matter
of finding a better biock-to-page mapping. This can be done by constructing first a
restructuring matrix expressing the costs of keeping each pair of blocks i and j
within separate pages and then applying a clustering algorithm to this matrix. The
result of the clustering algorithm will be a new block-to-page mapping that will group
together blocks having the highest interblock costs—or affinities— and, therefore,
minimize the sum of costs corresponding to blocks actually stored in distinct pages.

The various restructuring algorithms differ essentially from each other in the
way they define these interblock costs. In all cases, there is never any penalty associ
ated to the storing of two blocks in the same page; thus, interblock costs are essen
tially positive quantities.

The same basic assumptions cannot be made for segmented virtual memory sys
tems. Segment sizes, and their number, can arbitrarily vary. Therefore, the decision
of storing two blocks in the same segment is bound to affect the segment size; this
will in turn have an influence on the costs of bringing the segment into main memory
and keeping it there. There will thus be cases where merging two blocks will actually
decrease the program's performance. As a first consequence, affinities cannot be
considered as being essentially positive any more. Any program restructuring algo
rithm neglecting this fact will produce unacceptable block-to-segment mappings.

Consider, for instance, the case of a restructuring algorithm having as objective
to minimize the number of segment faults occurring during the execution of the pro
gram. This algorithm would be a segment-oriented version of one of the so-called
"Critical Algorithms," which are among the best known restructuring algorithms for
paging environments. Applied to a program being executed in a segmentation
environment, this algorithm will lead to the trivial solution of gathering all blocks con
stituting the program into a single segment. On the other hand, any algorithm
attempting to minimize the main memory occupancy of the restructured program
will lead to the fragmentation of the program into as many segments as feasible.

The failure of the two approaches we have just sketched can be explained by the
fact that, in both cases, we attempted to optimize only one indicator of the program's
performance. While being quite successful in that regard, we achieved an

-50-

unacceptable overall result because of the drastic deterioration of other program
performance indicators. A possible solution could be to introduce some additional
constraint on the new block-to-segment mapping obtained by the clustering algo
rithm that will ensure that no unacceptable mapping will ever be produced by the res
tructuring algorithm. This was indeed the solution adopted by Chen and Gallo
[Chen74]. Their algorithm attempts to minimize the total number of cross-references
between segments while enforcing the condition that the total number of segments
must remain constant. This condition ensures that none of the pathological block-to-
segment mappings we have discussed above will ever occur. On the other hand, it
introduces also an artificial constraint on the block ordering produced by the res
tructuring algorithm. It is intuitively clear that this constraint will lead to the rejec
tion of otherwise perfectly acceptable block orderings and, thus, may significantly
degrade the algorithm's performance.

A more sensible approach to the problem of program restructuring in segmented
environments would be to base the definition of interblock costs on some global index
of the program's performance. A well known example of such performance index is
the Space-Time Product criterion proposed by Belady and Kuehner [Bela69]. We have
already shown that this criterion could be used for constructing various "Balanced"
restructuring algorithms tailored to different paging environments. We want to show
here how the same approach can be extended to segmentation environments and how
efficient strategy-oriented restructuring algorithms can be derived from the space-
time product criterion and tailored to various segment replacement policies.

4.2. DERIVATION OF AN ALGORITHM SCHEME

Balanced Algorithms differ essentially from other program restructuring algo
rithms in the way the elements of the restructuring matrix A are computed. Each
element a^ of the restructuring matrix will represent the increase of the space-time
product that would result from the decision of keeping blocks i and j in separate seg
ments; a negative entry in the matrix will then correspond to the situation where
storing the two blocks in the same segment would have a detrimental effect on the
space-time product of the restructured program. The procedure used to evaluate
these ay's will essentially consist of using a trace of memory references, collected
during a previous run of the program, in order to simulate, as closely as possible,
block referencing behavior during the program's execution. This will enable us to
predict under what circumstances the storing of two blocks in the same segment
could have beneficial or detrimental effects on the space-time product of the restruc
tured program; the algebraic sum of these effects for each pair of blocks will be, by
definition, the entry of the restructuring matrix corresponding to that pair of blocks.

In terms of space-time product, the main difference between paging and segmen
tation environments lies in the fact that, in a segmentation environment, the average
time required to service a segment fault is a linear function of the size of the segment
causing the fault. More precisely, if st is the size of that segment, the average time
Tw required to service the fault will be given by

Tw = Tt + 7f.Si

where Ti is the mean access time of the secondary store and Tt the mean time to
transfer one unit of data.

Let now S(u) denote the memory occupancy of a program at a given time u.
The space-time product characterizing the behavior of the program being executed in
a segmentation environment during a virtual time interval (0,t) is given by

c =f s(u)du + £5(*>).(ri+rl.s,) 4.1
0 j=i

-51-

where r is the total number of segment faults occurring during (0,0. tj the time of
the j-th segment fault and xj the segment causing that fault.

As we said before, the decision of storing two blocks in the same segment can
have both beneficial and detrimental effects on the performance of the program.
These effects will be directly reflected by corresponding variations of its space-time
product. The resultant of these variations can be evaluated for each pair of blocks i
and j by examining the program's reference patterns. That value will be, by
definition, the element a^ of the restructuring matrix.

Suppose, for instance, that block j is referenced after a long interval of inac
tivity. Suppose also that block j is stored in a segment containing only blocks that
have also been inactive for a while. Then, the segment containing block j will prob
ably not be present in memory and a segment fault will occur. On the other hand,
should block j have been stored in a segment containing at least one recently refer
enced block, the segment would have probably been present in memory and the
potential segment fault avoided. This would be reflected in the space-time product of
the restructured program as a saving of

a=5(0.(7| + Tt.Sj)
space-time units, where S(t) is the current memory occupancy of the program and s;-
the size of block j.

Suppose now that block i has been stored in a segment k containing other blocks
and that some of these blocks are active during a time interval At during which block
i is inactive. Then, block i will be resident in memory, along with the other blocks in
segment k, during that time interval although its presence in memory is not neces
sary. This will be reflected in the space-time product of the program as a waste of

space-time units.

Similarly, each time the segment will be brought into memory because some
block of that segment, different from xit is referenced after having been inactive for a
while, there will be a need for transferring s4 data units and this will result in an
increase of the program's space-time product by

y=S(tf).Tt.Si

additional space-time units. However, when the secondary storage is a disk-like dev
ice, i. e. a device characterized by a significant access time and a high transfer rate
1/ Tt, this increase remains limited.

4.2.1. Influence of the System's Memory Policy

So far, we have carried our discussion assuming that a segment containing only
blocks that have been inactive "for a while" will be no more resident in memory. To
be more specific, we have to take into account the memory policy of the system in
which the restructured program will be executed and introduce the concept of the
Resident Set of Blocks [Ferr74c] [Ferr76b]. By definition, the resident set of blocks
Rb(t) of a program at a given time t of its execution in a well defined environment is
the set of all blocks that will be present in memory at time t regardless of the block-
to-segment mapping. As a corollary of this definition, any segment containing at least
one block member of that resident set at time t will be necessarily present in
memory at that time. By analogy with the concept of segment fault, we will say that a
block fault occurs at time t when the referenced block at time t is not a member of
Rb(t-1).

Like in paging environments, evaluating the resident set of blocks of a program
at time t is a more or less difficult task depending on the system's memory policy. To

-52-

each memory policy, one can associate a specific definition of Rb(t) and thus a partic
ular balanced restructuring algorithm that will be tailored to that policy. Therefore
one can speak of a Balanced Time-Window Working Set Algorithm (BTWWS), a Balanced
Space-Time Window Working Set Algorithm (BSTWS), a Balanced Segment Fault Fre
quency Algorithm (BSFF), and so forth.

4.2.2. Formal Definition of Balanced Algorithms.

Let us denote by

(61.O2 &n) a block'reference string collected during one run of the pro
gram to be restructured,

st the size of block i,

S(t) the memory space occupied by the program while processing the t-th
reference (this size obviously depend on the block-to-segment mapping),

Rb(t) the Resident Set of Blocks at time t, i. e. while processing the t-th
reference (we assume Rb(l)~\bx\),

Tm the mean inter-reference time,

Ti the mean access time of the secondary store,

7j the mean time to transfer one data unit.

The restructuring matrix A= (ay) has all zero entries initially and is constructed
in the following way:

(a) For all t from 1 to n do

if bt £ Rb (t -1) then (* block fault •)
increment by a=S(t).(Tt + Tt.sbt) all a^'s such that i e Rb(t) and j =bt;
decrement by y=S(t).TtSi all ot '̂s such that i £ Rb(t) and j =bt

fi;

decrement by /S=si.7'm all ct '̂s such that i £ Rb(t) and; e Rb(t)
od;

(b) For all i and all j<i do

od.

In other words,

[a] each time a block fault occurs, the algorithm
attempts to avoid the occurrence of a segment fault by incrementing all the
entries of A that correspond to the pairs of blocks containing a block
already in memory and the block causing the block fault, and

attempts to avoid any increase in the size of the segment to be brought into
memory by decrementing all the entries of A that correspond to the pairs of
blocks containing a block not residing in memory and the block causing the
block fault;

[b] at each reference, the algorithm decrements all the entries of A corresponding
to the pairs of blocks one of which resides in memory and the other does not.

Note that the algorithm we have described can be applied to all memory policies
for which it is possible to construct the Resident Set of Blocks Rb(t) and to determine
the memory space S(t) occupied by the program at time t. To obtain the restructur
ing algorithm tailored to a specific memory policy, like the Balanced Time Window
Working Set for the Time-Window Working Set policy or the Balanced Segment Fault
Frequency for the Segment Fault Frequency policy, one has only to specify the proper

-53

expressions for Rb(t) and S(t).

4.2.3 ImplementaUon Considerations
A few problems arise with fKfl w

depends on the «n,i t, , f restructuring time as thP1 ^ wUI be generally
rit^m. Th^pWSSK^fff maPPing P-^Pdrbnhme™Tu7tOOCUPanCysome e«?Hmaf« « T^ auiuuon Js then to replace SM k„ „ /,ne restructuring also-

ess'enUaSTe Vte ^T'' mean »-»^ Sc^?fw^Ue §"^ ^ bevariable-space M8?1S the one ^opted by Prieve anri PI *aPProximation is
Anoth b P ement ^S^ithm VMIN [Prie?6] '" their °ptimal

»*»cki £ IT)' n",^e ei?mfnts V* °f the restructuring m.» "?"" "^'^8 that, at
Let mrePreSenrtha I'*(° "* *™S!r?? COrr^°"^g to a

for the algorithm h, « 2°Pfrations and one can assume'• ™ execution trace will
nique and perform the »f " l° redUCe this oost. onecTrlT??g Ume of °(* ™8>this case, the Se(iafore^ntioned routine once evervT l° asamP«ng tech-
-hich the toSKthe «^»rlthm becomes o7n^VB3n™7t?,erenc-«- '»the s;2 fthe b(ockknc-jn°cf the t , ^ ^^(^ /*) «dtt. quantity
long as the sampling interval fcr "){• The approximation remain* =„ ? mes3*«« ~y. terVa' *f- 1S relat-ly smaU oomp^^I^^
^B^^^^S^^^r^SS^^"a—like
**- of the -s^ajtsrjs:asts i^s^s^ss^

shr!;re-same notations as in the ,ast sectio-the ~—- ~*-(a; For all t from 1 to n do

u°«**»(f-l)then (• block fault •)
fl; »«-»^r.-8.rl^v.nichlhat4ej!i{0(iiid^!
If' mod ^r=0 then (-sampling time-)

decrement by B=s K r aii

od;

(b) For all land all j<i do

-54-

4.3. ANALYTICAL STUDY OF THE BTWWS ALGORITHM

As we did before for pages, we will assume that segments can contain a maximum
of two blocks. In order to simplify our proof, we will add to the m blocks of sizes
sxs2...,sm constituting the program m fictitious blocks of sizes sm +1=...=s2m=0 that
will never be referenced. Since these blocks will never cause a segment fault or
occupy any memory space, their presence will not alter the performance of the pro
gram.

Because of these dummy blocks, we may assume that our program will consist of
exactly m segments and that each segment i will contain two blocks ix and i2. The
infinite sequence bx, bt-x, bt, 6j +1, ... will represent an infinite block reference
string produced by the program. The segment fault rate in a TWWS environment can
be written in terms of block reference probabilities and of the probability that a given
block is in the Resident Set of Blocks Rb(t-1). Assuming that we use a stochastic
model that has a steady-state solution, the segment fault rate f is given by

/ = Z[Pr(il =bt\ix£ Rb(t -1) and i2 £ Rb(t-1))
t=i

+ Pr(i2=bt\i2£ Rb(t -1) and ix £ Rb(t-1))]

Similarly, the mean memory occupancy of the program is given by

i=i x 8

THEOREM 4.1: The BTWWS algorithm minimizes a linear combination of the number of
segment faults and of the mean memory occupancy of all programs whose behavior
can be described by a Markov chain having a steady-state solution and which have at
most two blocks per segment.

Proof:

In the version of BTWWS we analyze, all elements o^ of the restructuring matrix
are proportional to

S.Tt.Pr(i =bt\i £ Rb(t-1) and; etf6(f-l))

+ STi.Pr(j=bt\j £ Rb(t-l)andi etf6(*-l))

-Si.TmPr(i £ Rb(t) and ; e/?6(0)

-Sj.TmPr(j £Rb(t)andi £ Rb(t))

By clustering two blocks per segment with the objective of maximizing the sum of
intra-segment affinities, we attempt to find

m

maXSCti1.<2 =
i = l

m ^

max£ \S. Ti.Pr{ix-bt \ix £ Rb(t-l) and i2 € Rb(t-1))
i-l

+ S.Tt.Pr(i2=bt \i2 £ Rb(t-1) andix e Rb(t-1))

- Sil.Tm.Pr(ix £ Rb(t) and i2 € Rb(t))

-siz.Tm.Pr(ix €/?5(0 and i2 £ Rb(t))]

-55-

Observing that

Pr(i =bt \i £ /?6(r-l)and; etf„(f-l)) =

Pr(i=bt\i £ Rb(t-l))

-Pr(i =bt\i £ Rb(t-1) and; £ Rb(t-1))

and

Pr(i £ Rb(t) and; € Rb(t)) =

Si.Tm.Pr(i € Rb{t) or ;' etf6(0)

Si-Tm.Pr(j z Rb(t))

we can rewrite our objective function as

max£ \S.Tt.Pr{ix =bt\ix£ Rb(t-1))
i = l

+ S.Tt.Pr(i2=bt\i2£ Rb(t-1))

+ sil.TmPr{i2zRb(t))

+ siz.Tm.Pr(ix£Rb(t))

-S.Tt.Pr(ix =bt\ix£ Rb(t-1) andi2£ Rb(t-1))

-S.Tl.Pr(i2=bt\i2£ Rb(t-1) andix£ Rb(t-1))

-su.Tm. Pr(ix <ERb(t) ori2€Rb(t))

"Si2.rm. Pr(ix € Rb(t) or i2 e Rb(t))\

Since all non-negative terms are independent of the block-to-segment mapping, the
objective can be reformulated as

min£ \S.Ti.Pr(ix =bt\ix£ Rb(t-\) and i2 £ Rb(t-1))
i = l

+ S.Ti.Pr{i2~bt \i2£ Rb(t-1) andix £ Rb(t-1))

+Si^Tn.Priii e Rb(t) or i2 e Rb(t))

+siz.Tm.Pr(ix e /?*(0 or i2 € /?„(0)i

which is equivalent to

min(S.Ti.f + rm.5)

or

min^./ + K2.S)

where Kx and A"2 are constants.

-56-

4.4. EXPERIMENTAL RESULTS

In order to evaluate the performance of balanced algorithms under two different
memory policies, we developed trace-driven program behavior simulators for time-
window working set and segment fault frequency policies. The trace used in our
experiments was a block reference string that had been obtained from an instru
mented PASCAL compiler by Ferrari and Lau [Ferr76a].

The PASCAL compiler from which the traces were obtained is running on a CDC
6400 at the University of California, Berkeley. It is 17,945 60-bit words large and
counts 139 procedures. Assuming that a 60-bit word corresponds roughly to eight
bytes, its size, expressed in bytes, would then be 143,560 bytes. The sizes of the pro
cedures vary between a maximum of 665 words (5,320 bytes) and a minimum of 18
words (144 bytes) with an average of 129 words (1,032 bytes).

The reference string we used in our experiments was collected while the com
piler was compiling parts of its source code. The total execution time, including
instrumentation overhead, was 163.508 s, which corresponds to a run time of 9.318s
for the standard, non-instrumented version of the compiler. Because of the instru
menting procedure utilized, only instruction references were collected. The lack of
data references is not however a major drawback since the instruction and the data
portions of a program can be restructured independently provided that instructions
and data are stored in different segments. Besides, working-set environments have
the property that the presence of one segment in memory at any time does not
depend on the behavior of other segments and, therefore, the block-to-segment map
pings and the performance improvements obtained by restructuring the instruction
portion of a program do not depend on the reference patterns or on the organization
of its data portion.

In order to reduce the cost of our simulations, we decided to use a compressed
version of the original trace for driving our two simulators. The trace reduction algo
rithm utilized to produce the compressed trace has been described by Lau [Lau 79]
and is essentially a variant of Smith's "Snapshot Method" [Smit77]. It replaced the
original reference string by a sequence of 32,702 "reference sets", each containing
the instruction blocks referenced during a 5 ms interval; because of the instrument
ing overhead, each of these sampling interval corresponds on the average to 0.28494
ms of execution time for the non-instrumented version of the program.

4.4.1. Balanced Time-Window Working Set Algorithm.
We performed our simulations of a Balanced Time-Window Working Set (BTWWS)

algorithm for four window sizes between 20 and 150 ms. For each simulation, the
Resident Set of Blocks Rb(t) at time t before processing the t-th reference was thus
defined as the set of all blocks that have been referenced at least once during respec
tively the last 20, 50, 100 or 150 ms. The algorithm's sampling interval for evaluating
the negative components of interblock costs -K.Tm- was set to 18 reference sets, i. e.
approximately 5 ms. Since the restructuring process primarily involves the gradual
merging of the program's original segments into larger units, we were interested in
measuring the algorithm's performance at various stages of^this merging process.
Therefore, we decided not to use one fixed segment fault cost S. Ti in our experiments
but rather to repeat each simulation for selected fault costs varying between 5000
and 107 bytes * sampling intervals, i. e. between 1.425 and 28,494 bytes * seconds.

For each window size and for each segment fault cost selected, we simulated the
application of a BTWWS algorithm to the PASCAL compiler and evaluated the perfor
mance of the restructured program under the same set of inputs. Being primarily
interested in the phase of the restructuring process where the restructuring matrix
was built, we decided to use a simple, but efficient, clustering algorithm analogous to
the one described by Ferrari in [Ferr74c]. The only significant adjustment we made

-57

to the algorithm consisted of removing any limitation related to cluster sizes.
Former experiments with restructuring algorithms in paging environments had con
vinced us that more sophisticated clustering algorithms would not necessarily per
form better.

JBBK
T

JBSQO

PfiSCflLl - TWWS

+ w?

X KS= 20KS

♦ M5= sons

XKSslOOMS

X KSslSOKS

*" •Ofe«YJ?&Ur1H^BYTCsnxi0 «P U ODD

Figure 4.1

For each run, we measured the number of segment faults, the total number of
bytes brought into memory and the mean memory occupancy of the program before
and after restructuring. Figures 4.1 and 4.2 summarize these results. On both
figures, the curve labeled "NR" corresponds to the non-restructured version of the
program and each individual point of the curve represents a different window size.
Each of the four other curves on each figure corresponds to a given window size and
varying segment fault costs. The uppermost point of each curve corresponds to the
limit case of a segment fault cost equal to zero. For that particular value, the struc
ture of the program remains unchanged during the restructuring process.

o

.»«C-

.1000-

JJEOD JPOC
—1—

JOWO

-58

PASCAL1 - TWKS

3C -flwBp jooe jwnr nyiff

HLrtWYT&jpflronfBYTESTTxio n^

Figure 4.2

+ HR

XHS= 2DKS

♦ KS= 5QKS

XKS=100KS

XKS=150KS

"T
aoao

—t—
am •1HJ0

Looking at Figure 4.1, one can see that the restructuring process can decrease
the number of segment faults observed during an execution of the program by at
least 50% without causing any significant increase of its memory occupancy; this
increase becomes appreciable only when the segment fault cost parameter a
becomes superior or equal to 105 bytes * reference set, i. e. 28,494 bytes * ms. Figure
4.2, on the other hand, shows clearly that the total number of bytes swapped in
decreases much more slowly than the number of segment faults. This observation is
easy to explain if one remembers that the restructuring process consists essentially
of merging the program's original segments into larger units. Therefore, one can
expect to have, for a given memory occupancy, less segment faults but a higher byte
traffic between the memory and the secondary store.

The global effect of this reduction in the number of segment faults and this
increase of the byte transfer rate for a given memory occupancy can be evaluated by

59

computing the swapping load Lg of the program. By definition, this swapping load I*
is the sum of all delays occurring at segment fault times and caused by the secon
dary store latency or the segment transfer times. Keeping the same notations as in
section 4.2.2 and representing by Nb & the total number of bytes brought into
memory during the execution of the program, one can thus write

Ls = r . Tt + Nib.in

PflSCflLl -- TWWS

1 4 HR

X WS= 20KS

♦ KSz SDKS

2 KS=100KS

vooo-

i

X KS=150MS

JTffT «

! I

3QQDC-

8BSD-

{•000-

IflDOD-

i %

laxc-
< yV

V30C-

• -

ja sc
—-1

JBCC
—1
JTOD

'""1 1 1 r r
«9«P J»x aaoo am) .if

Figure 4.3

Figure 4.3 displays the values of this swapping load computed for a latency time
7j= 107ris and a transfer time rt = 10"8 s/byte.

For these values, which correspond to a reasonably fast secondary store, the
contribution of the latency times to the swapping load is so preponderant that one
could almost neglect the influence of the segment transfer times and assume a swap
ping load Ls proportional to the number of segment faults r. Since this phenomenon

60-

will only grow stronger when the latency time increases, one can safely assume that
the beneficial effects of the restructuring process will remain as important for a wide
range of secondary stores.

•fiOD-

.I«X-

o

5 Aim h

.1SDC-

A*C-i

.iioc-

JOTO-

JJHB-f-
JBX.

PASCALI - TWWS

AS
Ti h • '

Figure 4.4

+ HR

XT* 2DKS

e Ts sons

X Txl00«

XTMSDKS

.1BX

Similar conclusions could be reached by computing the program space-time pro
duct C as given by equation 4.1. Figure 4.4 displays the values of this space-time
product computed for a latency time 7^ =10ms and a transfer time Tt =10"6 s/byte.

4.4.2. Balanced Segment Fault Frequency Algorithm
The same experiments were repeated for a Segment Fault Frequency memory

policy using the same PASCAL compiler. We ran our simulations of a Balanced Seg
ment Fault Frequency restructuring algorithm (BSFF) for various values of the seg
ment fault cost and three values of the SFF T parameter, namely 10, 20 and 50 ms.

nc.-

IflOC.-

leoc.-

c.
JBEK jqbqc

61

PASCAL1 - SFF

X«S= 10KS

♦ ws= eons

ZKS= 6QK3

"feMW^jm^rimtrf^io «P J™ •""

Figure 4.5

UOD

In this case, however, the results were quite different. As Figure 4.5 shows, the
number of segment faults achieved by the various restructured versions of the pro
gram were never much better than the ones obtained, for the same memory occu
pancy, by the non-restructured program. These results are even more disappointing
if we compute the various swapping loads -see Figure 4.6. In conclusion, one can
safely affirm that the restructuring process has no beneficial effects on the overall
behavior of the program.

As we pointed already out in the preceding chapter, the Page Fault Frequency
algorithm is known to exhibit some anomalies [Fran74]. In this case, however, we
think that a much simpler explanation exists. Since the Segment Fault Frequency
algorithm expels idle segments only at segment fault times [Chu072], any decrease of
the segment fault frequency below 1/T will result in an increase of the program's
memory occupancy.

62

PASCALI - SFF

~ CTOOC

UDGC-i

Figure 4.6

+ NR

X T= 10HS

♦ T= 20KS

XT: S0K3

uud UfiB

4.5. CONCLUDING REMARKS

The limited experimental evidence we have gathered seems to indicate that pro
gram restructuring can significantly improve the performance of programs executed
in a segmented environment characterized by a time-window working set policy and a
disk-like secondary store. Further investigations in the field of restructuring algo
rithms for segmentation environments should basically involve:
— the gathering of more experimental evidence;

the study of possible modifications in the definition of interblock costs;
investigations of the influence of the clustering algorithm on the performance of
restructured programs;

-63-

investigations of the portability of restructuring algorithms (what would happen
if some parameters of the system's memory policy were to change?) and of their
data dependence (to which extent will the behavior of the restructured program
be influenced by its input data?).

-64-

CHAPTER V

CONCLUSION

5.1. SUMMARY

One of the most effective ways of obtaining a better performance from virtual
memory systems consists of improving the behavior of programs in such environ
ments. Program restructuring attempts to achieve this goal by rearranging the
block-to-page mappings of programs. Considerable experimental evidence exists sup
porting the effectiveness of this approach for paged virtual memory systems. This
evidence also suggests that the most critical part of a program restructuring pro
cedure is the criterion used to decide which blocks should be mapped to the same
page and which not: The most efficient restructuring algorithms base their decisions
on the run-time behavior of the program to be restructured and take also into
account the memory policy under which the program will run.

Existing restructuring algorithms either had no quantifiable objectives or
attempted to minimize a partial indicator of the performance of the restructured
program-like its page fault frequency or its mean memory occupancy. Our contribu
tion to field has been to introduce a new class of restructuring algorithms that
attempt to minimize a global index of program performance, namely the program's
space-time product. Our primary motivation was to avoid situations where a
significant improvement of one index of program performance would be accompanied
by a comparably sized deterioration of another index. Hence the name of "Balanced
Algorithms" given to our algorithms.

Balanced Algorithms essentially attempt to minimize a restructuring-time esti
mate of the space-time product of the restructured program. Since they share a
common algorithm scheme, they can be easily tailored to a wide range of variable-
space memory policies, including Working Set, Sampled Working Set, Global LRU and
Page Fault Frequency.

We were able to prove that BWS, the balanced algorithm tailored to Working Set
environments, effectively minimizes a linear combirfation of the number of page faults
and of the mean memory occupancy of all programs whose behavior can be described
by a chain having a steady-state solution and which have at most two blocks per page.
Arguments were also presented showing why the same claim would not hold for the
balanced algorithms tailored to the Global LRU and Page Fault Frequency policies.

In order to evaluate the performance of balanced algorithms under various
memory policies and to compare it to those of other restructuring algorithms, we
conducted a series of trace-driven experiments simulating the behavior of programs
before and after restructuring under several experimental conditions. The parame
ters studied were the system's memory policy, the control parameter of this
memory policy and the page size. In each case, the two other restructuring algo
rithms simulated were a strategy-oriented algorithm minimizing the page fault fre
quency of programs running under that policy and another one minimizing their
mean memory occupancy.

These simulations show that BWS, the balanced algorithm tailored to Working Set
environments, performs significantly better than the two other algorithms. Similar
results were found with the balanced algorithm tailored to Sampled Working Set
environments. BPSI, the balanced algorithm tailored to Global LRU environments,

-65-

exhibited only a marginal superiority over its rivals, while no clear winner emerged
for the Page Fault Frequency environments.

Another consequence of our choice of a global indicator of program performance
as restructuring criterion is to allow the extension of our approach to segmentation
environments, for which no efficient restructuring algorithms were known.

Here too, we were able to prove that BTWWS, the balanced algorithm tailored to
Time-Window Working Set environments, minimizes a linear combination of the
number of segment faults and of the mean memory occupancy of all programs whose
behavior can be described by a Markov chain having a steady-state solution and which
have at most two blocks per segment.

Experimental evidence was also presented showing that BTWWS can significantly
improve the segment fault frequency of a program without causing any comparable
increase of its memory occupancy. On the other hand, our simulations indicated that
BSFF, the balanced algorithm tailored to Segment Fault Frequency environments, did
not bring any improvement to either indices of program performance.

5.2. DIRECTIONS FOR FURTHER RESEARCH

Several questions concerning the behavior of Balanced Algorithms remain open,
among which the analytical modeling of the Balanced Sampled Working Set Algorithm
and the sensitivity of Balanced Algorithms to changes in the program's input data or
to readjustments of the memory policy control parameter. In the latter case, previ
ous experimental data concerning other strategy-oriented restructuring algorithms
suggest however that the performance of Balanced Algorithms would not be too
strongly affected by these two factors [Ferr76a] [Ferr76b].

Another way of looking at the problem would be to design strategy-independent
balanced algorithms following the approach pioneered by Kobayashi [Koba77]. It is
however not yet clear which underlying model of program behavior should be chosen
and how localities should be defined.

Future research in the field of program restructuring algorithms tailored to seg
mentation environments should first be concerned with the gathering of more experi
mental evidence. Other directions of research would be essentially similar to the
ones sketched above for the paging environments and have been enumerated at the
end of chapter IV.

Another goal for further research would be the design of restructuring algo
rithms tailored to fixed-space segmentation policies. The only optimization criteria
in this case are the segment fault frequency and the swapping load. The most difficult
problem lies in the fact that the restructuring algorithm should then be able to evalu
ate which segments risk to be expelled from memory each time two blocks are
merged in order to form a larger segment. Approximate solutions probably exist for
LRU environments but it is difficult to assess the performance of these algorithms
without any experimental evidence.

A last research direction—and probably the most promising one— would be to
apply Balanced Algorithms to the problem of optimal prefetching in paging environ
ments. Rather than attempting to decide at run-time which pages should be fetched
when a fault occurs, one could define off-line clusters of pages that would always be
fetched into memory and returned to the secondary store as a single entity. This
problem is essentially equivalent to the one of finding the best block-to-segment map
ping for a program to be executed in a segmentation environments and very similar
techniques could be used.

-66-

BIBLIOGRAPHY

[Acha75] Achard, M.S., J. Y. Babonneau and G. Morisset, "Segmentation Automatique
des Programmes Inde'pendamment des Langages de Programmation," Rapport de
Recherches No. 125, IRIA-LAB0R1A. Le Chesnay, France, May 1975.

[Acha78] Achard, M. S., J. Y. Babonneau, M. Carpentier. G. Morisset and M. B.
Mounajjed, "The Clustering Algorithms in the OPALE Restructuring System," in
Performance of Computer Installations (D. Ferrari ed.) North Holland. Amster
dam. Netherlands. 1978, pp. 137-163.

[Aho7l] Aho, A. V., P. J. Denning and J. D. Ullman. "Principles of Optimal Page
Replacement," /. ACM 18, 1 (Jan. 1971), 80-93.

[Baba79] Babaoglu, 0., W. Joy and J. Porcar, "Design and Implementation of the
Berkeley Virtual Memory Extension to the Unix Operating System," University of
California, Berkeley, (1979).

[Babo77] Babonneau. J. Y., M. S. Achard, G. Morisset and M. B. Mounajjed, "Automatic
and General Solution to the Adaptation of Programs in a Paging Environment,"
Proc. 6th. ACM Symp. on Oper. Sys. Prin. (Nov. 1977), 109-116.

[Baer72] Baer. J.-L. and G. R. Sager. "Measurement and Improvement of Program
Behavior under Paging Systems." in Statistical Computer Performance Evalua
tion (W. Freiberger ed.). Academic Press. New York, 1972,pp. 241-264.

[Baer76] Baer. J.-L. and G. R. Sager, "Dynamic Improvement of Locality in Virtual
Memory Systems," IEEE Trans. Softw. Engrg. SE-2. 1(Mar. 1976). 54-62.

[Bard73] Bard, Y.. "Characterization of Program Paging in a Time-sharing Environ
ment." IBM J. Res. Develop. 17. (Sept. 1973), 387-393.

[Bard75] Bard. Y.. "Application of the Page Survival Index (PSI) to Virtual Memory
System Performance." IBM J. Res. Develop. 19. 3 (May 1975). 212-220.

[Bats76] Batson, A.. "Program Behavior at the Symbolic Level." Computer 9, 11 (Nov.
1976), 21-28.

[Bayl68] Baylis, M. H. J., D. G. Fletcher and D. J. Howarth, "Paging Studies made on
the l.C.T. Atlas Computer," Information Processing 68, Proc. 1968 IFIP Congress,
pp. 831-837.

[Bela66] Belady. L. A., "A Study of Replacement Algorithms for a Virtual Storage
Computer," IBM Sys. J. 5, 2 (1966), 78-102.

[Beia69] Belady. L. A. and C. J. Kuehner. "Dynamic Space Sharing in Computer
Systems," Comm. ACM 12, 5 (May 1969), 282-288.

-67-

[Benn77] Bennett, B. T. and P. A. Franaczek, "Permutation Clustering: An Approach
to On-Line Storage Reorganization," IBM J. Res. Develop. 21, (Nov. 1977), 528-
533.

[Braw68] Brawn, B. and F. Gustavson, "Program Behavior in a Paging Environment,"
1968 AFIPS FJCC, AFIPS Conf. Proc, Vol. 33, 1019-1032.

[Braw70j Brawn, B. S., F. G. Gustavson and E. S. Mankin, "Sorting in a Paging Environ
ment," Comm. ACM 13, 8 (Aug. 1970), 483-494.

[Chen74] Chen, P. S. and A. Gallo, , "Optimization of Segment Packing in Virtual
Memory," in Computer Architecture and Networks (E. Gelenbe and R. Mahl Eds.),
North Holland Publ., 1974.

[Chu72] Chu, W. W. and H. Opderbeck, "The Page Fault Frequency Paging Algorithm,"
1972 AFIPS FJCC. AFIPS Conf. Proc, Vol. 41. Pt. 1. 597-609.

[Chu076] Chu. W. W. and H. Opderbeck. "Program Behavior and the Page-Fault-
Frequency Replacement Algorithm," Computer 9. 11 (Nov. 1976), 29-38.

[Coff73] Coffman. E. G. and P. J. Denning, Operating Systems Theory, Prentice-Hall,
Englewood Cliffs, NJ, 1973.

[Come67] Comeau, L., "A Study of the Effect of User Program Optimization in a Pag
ing System," ACM Symp. on Oper. Sys. Prin., (Oct. 1967), Gatlinburg, Tenn.

[Corb68] Corbato, F. J., "A Paging Experiment with MULTICS System." Memo Mass.C-
M-384. Project MAC, M.I.T., Cambridge. MA. 1968.

[Cour76] Courtois, P. J. and Vantiiborgh. K. "A Decomposable Model of Program Pag
ing Behaviour," Acta Informatica 6 (1976), 251-275.

[DEC78] Digital Equipment Corporation, VAX 11/780 Technical Summary. Maynard,
Mass., 1978.

[DenP66] Denning. P. J. "Memory Allocation in Multiprogrammed Computer Systems,"
MIT Project MAC. Computation Structures Group Memo 24, Mar. 1966.

[DenP68] Denning, P. J., "The Working Set Model for Program Behavior," Comm. ACM
11, 5 (May 1968), 323-333.

[DenP68b] Denning, P. J., "Thrashing: Its causes and Prevention," 1968 AFIPS FJCC,
AFIPS Conf. Proc, Vol 33, 915-922.

[DenP70] Denning, P. J., "Virtual Memory," Computing Surveys 2, 3 (September 70),
153-189.

[DenP72] Denning, P. J. and S. C.' Schwartz, "Properties of the Working Set Model,"
Comm. ACM 15, 3 (Mar. 1972), 191-198. Corrigendum: Comm. ACM 16, 2 (Feb.
1973), 122.

[DenP76a] Denning, P. J., "An L=S Criterion for Optimal Multiprogramming," Proc.
Int. Symp. Computer Performance Modeling, Measurement and Evaluation, ACM
SIGMETR1CS and IFIP WG 7.3, Mar. 1976, pp 219-229.

-68-

[DenP76b] Denning, P. J.. K. C. Kahn, J. Leroudier, D. Potier and R. Suri. "Optimal Mul
tiprogramming," Acta Informatica, 7, 2 (1976), 197-216.

[DenP78] Denning, P. J. and D. R. Slutz, "Generalized Working Sets for Segment
Reference Strings," Comm. ACM 21, 9 (Sept. 1978), 750-759.

[DenPSO] Denning, P. J.. "Working sets Past and Present," IEEE Trans. Softw. Engrg.
SE-6, 1 (Jan. 1980). 64-84.

[DenJ65] Dennis, J. R., "Segmentation and the Design of Multiprogrammed Computer
Systems," /. ACM 21. 4 (Oct. 1965), 589-602.

[Dida79] Diday, E., "Problems of Clustering and Recent Advances," Rapport de
Recherches No. 337.IR1A-LAB0RIA, Le Chesnay, France. Jan. 1979.

[Dong79] Dongara, J. J., J. R. Bunch. C. B. Moler and G. W. Steward. UNPACK User's
Guide. SIAM. Philadelphia. PA. 1979.

[Dora76] Doran, R. W.. "Virtual Memory." Computer 9, 10 (Oct. 1976), 27-37.

[East75] Easton, M. C, "Model for Interactive Data Base Reference Strings," IBM J.
Res. Develop., 19, (Nov. 75), 550-556.

[East77] Easton, M. C. and R. Fagin, "Cold-Start v. Warm-Start Miss Ratios." Comm.
ACM 21. 10 (Oct. 1978). 866-872.

[East78] Easton. M. C. . "Model for database Reference Strings Based on Behavior of
Reference Clusters," IBM J. Res. and Dev. 22, 2 (March 1978). 197-202.

[East79] Easton. M. C. and P. A. Franaczek, "Use Bit Scanning in Replacement Deci
sions," IEEE Trans. Comput.. C-28, 2 (Feb. 1979), 133-141.

[Ferr73] Ferrari. D.. "A Tool for Automatic Program Restructuring," Proc. 1973 ACM
National Conf., Atlanta, GA, 223-228.

[Ferr74a] Ferrari. D., "Improving Program Locality by Strategy-Oriented Restructur
ing," Information Processing 74, Proc. 1974 1FIP Congress, pp. 266-270.

[Ferr74b] Ferrari, D.. "Critical-Set Algorithms for Program Locality Improvement,"
Proc 12th Atherton Conf. on Circuit and Systems Theory, Monticello.. 1L. (Oct.
1974), 641-648.

[Ferr74c] Ferrari, D. "Improving Localities by Critical Working Sets," Comm. ACM 17 ,
11 (Nov. 1974), 614-620.

[Ferr75] Ferrari, D., "Tailoring Programs to Models of Program Behavior," IBM J.
Res. Develop. 19, 3 (May 1975), 244-251.

[Ferr76a] Ferrari.D. and E. Lau, "An Experiment in Program Restructuring for Per
formance Enhancement," Proc 2nd Int. Conf. on Software Engineering, San
Francisco, Calif. (Oct. 1976), pp.203-206.

-69-

[Ferr76b] Ferrari, D., "The Improvement of Program Behavior," Computer 9, 11 (Nov.
1976), 39-47.

[Ferr77a] Ferrari, D. and M. Kobayashi, "Program Restructuring for Global LRU
Environment," Conf. Proc. of Int. Computing Symp., Liege, Belgium. April 4-7,
1977.

[Ferr77b] Ferrari, D. "An Approach to the Design of a Learning Memory Manager,"
Proc 1977 SIGMETRICS / CMC VIII Conf. on Computer Performance: Modeling,
Measurement and Management, Washington, D. C, Nov. 29-Dec. 2.

[Ferr78] Ferrari, D. Computer Systems Performance Evaluation, Prentice-Hall,
Englewood Cliffs, NJ, 1978.

[Ferr80] Ferrari D., private communication (June 1980).

[Fisc79] Fischer. P. C. and R. L. Prower, "Storage Reorganization Techniques for
Matrix Computation in a Paging Environment," Comm. ACM 22, 7 (July 1979),
405-414.

[Foth6l] Fotheringham, J., "Dynamic Storage Allocation in the ATLAS Computer,
Including an Automatic Use of Backing Store," Comm. ACM 4, 10 (Oct. 1961), 435-
436.

[Fran74] Franklin, M. A. and R. K. Gupta, "Computation of Page Fault Probability
from Program Transition Diagram," Comm. ACM 17, 4 (Apr. 1974), 187-191.

[Grah76] G. S. Graham, "A Study of Program and Memory Policy Behavior," Ph. D.
Dissertation, Dept. of Comp. Sci.. Purdue U., W. Lafayette, Ind„ Dec. 1976.

[Haik78] Haikala, I., "Ohjelman Uudeleenryhmittely Segmentoivassa Ymparistossa"
(Program Restructuring in a Segmented Environment), TKOL (Department of
Computer Sciences) series C 70/78, University of Helsinki, Finland.

[Hatf7l] Hatfield, D. J. and J. Gerald, "Program Restructuring for Virtual Memory,"
IBM Sys. J. 10 , 11 (Nov 1971). 39-47.

[Hoag79] Hoagland, A. S., "Storage Technology: Capabilities and Limitations," Com
puter 12, 5 (May 1979). 12-18.

[Jose70] Joseph, M., "An Analysis of Paging and Program Behavior," Computer J. 13,
1 (Feb. 1970), 48-54.

[Karp75] Karp, R. M., "On the Computational Complexity of Combinatorial Problems,"
Networks 5 (1975), 45-68.

[Kilb62] Kilburn, T., D. Edwards, M. J. Lanigan and F. Sumner, "One-level Storage Sys
tems," IRE Trans. EC-11, Vol. 2 (April 1962), 223-235.

[King7l] King, W. F. III. "Analysis of Demand Paging Algorithms," Proc. IFIP Congress
71, Ljubjana, Yugoslavia (Aug. 1971), TA-3-155 to TA-3-159.

-70-

[Koba77] Kobayashi, M., "A Set of Strategy Independent Restructuring Algorithms,"
Software-Practice and Experience 7, 5 (1977), 585-594.

[Koba79] Kobayashi, M. "The Working Set Distribution of the Markov Program
Behavior Model," Memorandum No. UCB/ERL M79/46, Electronics Research
Laboratory, University of California, Berkeley, Calif., July 1979.

[Knut73] Knuth, D. E., The Art of Computer Programming, Vol. 1: Fundamental Algo
rithms, 2nd. ed., Addison-Wesley, Reading, Mass., 1973.

[Kubo76] Kubo, H. and M. Kobayashi, "Evaluation of Optimal Page Size and Initial
Loading under a Systemwide Criterion," NEC Res. Develop. 41 (Apr. 1976), 27-37.

[Lau 79] Lau, E., "Performance Improvement of Virtual Memory Systems by Restruc
turing and Prefetching," Ph. D. Dissertation. Department of EECS. University of
California, Berkeley. 1979.

[Lerou76] Leroudier, J. and D. Potier, "Principles of Optimality for Multiprogram
ming," Proc. Int. Symp. Computer Performance Modeling, Measurement, and
Evaluation, ACM SIGMETRICS and IFIP WG7.3, Mar. 1976,pp. 221-218.

[Lowe70] Lowe, T. C. "Automatic Segmentation of Cyclic Program Structures Based
on Connectivity and Program Timing," Comm. ACM, 13, 1 (Jan. 1970), 3-9.

[Madi76] Madison, A. W. and A. P. Batson, "Characteristics of Program Localities,"
Comm. ACM 19, 5 (May 1976), 285-294.

[Mars79] Marshall, W. T. and C. T. Nute. "Analytical Modelling of 1979 Conf. on Simula
tion, Measurement and Modeling of Computer Syst., 65-72.

[Masu74] Masuda, T., H. Shiota, K. Noguchi, and T. Ohki, "Optimization of Program
Performance by Cluster Analysis," Information Processing 74, Proc. IFIP 1974
Congress, 226-270.

[Masu79] Masuda, T., "Methods for the Measurement of Memory Utilization and the
Improvement of Program Locality," IEEE Trans. Softw. Engrg. SE-5, 6 (Nov.
1979), 618-631.

[Matt70] Mattson, R. L.. J. Gecsei. D. R. Slutz and I. L. Traiger, "Evaluation Techniques
for Storage Hierarchies," IBM Sys. J. 9, 2 (1970).78-117.

[McKe69] McKellar. A. C. and E. G. Coffman, "Organizing Matrices and Matrix Opera
tions for Paged Memory Systems," Comm. ACM 12, 3 (Mar. 1969), 153-165.

[01iv74] Oliver, N. A. "Experimental Data on Page Replacement Algorithm," 1974
AFIPS NCC, AFIPS Conf. Proc, Vol. 43, 179-184.

[0pde74] Opderbeck, H. and W. W. Chu, "Performance of the Page Fault Frequency
Algorithm in a Multiprogramming Environment," Information Processing 74,
Proc. IFIP 1974 Congress, 235-241.

[0rga72] Organick, E. I. 77ie Multics System, MIT Press, Cambridge, Mass., 1972.

-71-

[Pari76] Paris, J.-F., "Strategies Optimaies en Restructuration de Programmes," R.
P. 14/76. Institut d'Informatique. Faculte*s Universitaires de Namur.

[Pari78] Paris, J.-F., "Application of the Space-Time Product Criterion to the
Definition of a New Family of Program Restructuring Algorithms," R. P. 4/78,
Institut d'Informatique, Facult^s Universitaires de Namur.

[PariBl] Paris, J.-F., "Program Restructuring in Segmenting Environments," in
Experimental Computer Performance Evaluation (D. Ferrari and M. Spadoni
eds.) North-Holland, Amsterdam, Netherlands.pp 249-264.

[Prie76] Prieve, B. G. and R. S. Fabry, . "VMIN-An Optimal Variable Space Page
Replacement Algorithm," Comm. ACM 20, 5 (May 1976), 295-297.

[Rama66] Ramamoorthy, C. V., "The Analytical Design of a Dynamic Look-Ahead and
Program Segmenting System for Multiprogrammed Computers," Proc. 1966 ACM
National Conf, 229-239.

[Rand69] Randell, B., "A Note on Storage Fragmentation and Program Segmenta
tion," Comm. ACM 12, 7 (July 1969),365-369 and 372.

[Requ78] Requa, J. A. "Virtual Memory Design Reduces Program Complexity," Com
puter Design 17, 1 (Jan. 1978), 97-106.

[Rodr73] Rodriguez-Rosell, J. and J. P. Dupuy, "The Design, Implementation, and
Evaluation of a Working Set Dispatcher," Comm. ACM 16, 4 (Apr. 1973), 556-560.

[Rodr76] Rodriguez-Rosell. J., "Empirical Data Reference Behavior in Data Base Sys
tems," Computer 9, 11 (Nov. 1976), 9-13.

[Ryde74] Ryder, K. D. "Optimizing Program Placement in Virtual Systems," IBM Sys.
J. 13, 4 (April 1974), 292-306.

[Salt75] Saltzer. J. H. and M. D. Schroeder, "The Protection of Information in Com
puter Systems," Proc IEEE 63, 9 (Sept 1975), 1278-1308.

[Shem66] Shemer, J. E. and B. Shippey, "Statistical Analysis of Paged and Seg
mented Computer Systems," IEEE Trans. Comp. EC-15,6 (Dec. 1966), 855-363.

[Smit76] Smith, A. J., "A Modified Working Set Paging Algorithm," IEEE Trans. Comp.
C-25, 9 (Sept. 1976), 907-914.

[Smit77] Smith, A. J., "Two Simple Methods for Efficient Analysis of Memory Trace
Data," IEEE Trans. Softw. Engrg. SE-3 . 1 (Jan. 1977). 94-101.

[Smit78a] Smith. A. J.. "A Comparative Study of Set Associative Memory Mapping and
Their Use for Cache and Main Memory," IEEE Trans. Softw. Engrg. SE-4, 2 (Mar.
1978), 121-130.

[Smit7Sb] Smith, A. J., "Sequentiality and Prefetching in Data Base Systems." ACM
Trans. DBS 3, 3 (Sept. 1978), 223-247.

-72-

[Smit78c] Smith, A. J., "Bibliography on Paging and Related Topics." Oper. Syst.
Review 12, 4 (Oct. 1978), 39-56.

[Smit78d] Smith, A. J., "Sequential Program Prefetching in Memory Hierarchies."
Computer 11, 12 (Dec. 1978), 7-21.

[SmitBO] Smith, A. J., "Multiprogramming and Memory Contention," Software-
Practice and Experience, 10 (1980), 531-552.

[Smit8l] Smith. A. J., "Internal Scheduling and Memory Contention." IEEE Trans.
Softw. Engrg. SE-7. 1 (Jan. 1981). 135-146.

[Snyd78] Snyder. R. G. "On A Priori Program Restructuring for Virtual Memory Sys
tems," in Operating Systems Theory and Practice (D. Lanciaux ed.), Proc.
Second Int. Sympos. on Operating Systems Theory and Practice, Rocquencourt.
France, October 2-4, 1978, North Holland, Amsterdam, The Netherlands, 1979. pp.
207-224.

[Spir72] Spirn, J. R. and P. J. Denning, "Experiments with Program Locality," 1972
AFIPS FJCC, AFIPS Conf. Proc, Vol. 41. 611-622.

[Spir76] Spirn, J. R., "Distance Strings Models for Program Behavior," Computer 9. 11
(Nov. 1976). 14-20. .

[Spir77] Spirn, J. R., Program Behavior: Models and Measurements, Elsevier North-
Holland, New York 1977.

[Triv77] Trivedi. K. S.. "On the Paging Performance of Array Algorithms," IEEE
Trans. Comp. C-26, (October 1977), 938-947.

[Tsao72] Tsao, R. F., L. W. Comeau and B. H. Margolin, "A Multi-Factor Paging Experi
ment: I. The Experiment and the Conclusion," in Statistical Computer Perfor
mance Evaluation (W. Freiberger ed.), Academic Press, New York, 1972,pp. 103-
134.

[VerH7l] Ver Koef, E. W., "Automatic Program Segmentation Based on Boolean Con
nectivity." 1971 AFIPS SJCC, AFIPS Conf. Proc, Vol. 38, 491-495.

[Yu 76] Yu, F. S., "Modeling the Write Behavior of Computer Programs," Ph. D.
thesis, Dept. of Computer Sci., Stanford U., Palo Alto, Calif.. May 1976.

	Copyright notice 1981
	ERL-81-44

