
 

 

 

 

 

 

 

 

 

Copyright © 1981, by the author(s). 
All rights reserved. 

 
Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 
lists, requires prior specific permission. 



ON THE CONVERGENCE OF FUZZY

CONTROL PROCESSES

by

Jerzy Kiszka

Memorandum No. UCB/ERL M81/43

23 February 1981



ON THE CONVERGENCE OF FUZZY

CONTROL PROCESSES

by

Jerzy Kiszka

Memorandum No. UCB/ERL M81/43

23 February 1981

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



ON THE CONVERGENCE OF FUZZY CONTROL PROCESSES

*

Jerzy Kiszka
Visiting Scholar

Department of Electrical Engineering and Computer Sciences
and the Electronics Research Laboratory

University of California, Berkeley, California 94720

ABSTRACT

The feedback system is described by means of fuzzy state equations.

Its synthesis is discussed. This leads to a further discussion of con

vergence of the fuzzy control algorithm. The notions of metric space

fuzzy sets and of the convergence of a sequence of fuzzy sets are intro

duced. A fundamental theorem about convergence of fuzzy systems is proved

Its application is shown. Several examples of convergent and nonconver-

gent fuzzy control processes are illustrated. The iterative method for

the solution of equation X = XOR is proposed. The relation between the

convergence and control!ability of fuzzy control processes is mentioned.

On leave from the Institute of Automatic Control, Technical University of
Kielce, Al. Tysiaclecia Panstwa Polskiego 7, 25-314 Kielce, Poland.



1. INTRODUCTION

Since its introduction [4] fuzzy set theory has successfully been ap

plied to a wide variety of problems. The work by L. A, Zadeh [5] started

a new line of the theory of control, namely the theory of fuzzy control.

After the introduction of the fuzzy logic controller by E. H. Mamdani [2],

the problem of its implementation raised many difficult issues. In par

ticular, the design of a fuzzy logic controller based on a given fuzzy

model of a plant and a fuzzy model of a closed loop system remained a cen

tral task to be resolved [1,3]. The above mentioned problem requires com

petence in solving fuzzy relational equations. A method of solution of

these fuzzy relational equations based on an iterative approach is pro

posed in this paper. This method seems to be interesting because the

problem of the controllability of fuzzy control processes may be solved

if the condition of convergence is fulfilled. The computer method of de

signing fuzzy control systems seems especially convenient. Section II

considers the synthesis of fuzzy control processes and section III shows

the proof of a theorem about the convergence of a fuzzy control algorithm

and its applications, as well as a discussion of controllability. The con

cluding section contains a discussion of the remaining problems of trans

formation and solution of equivalent fuzzy relational equations.

2. SYNTHESIS OF FUZZY CONTROL PROCESSES

Consider the simple system shown in Fig. 1, Letfi= {e.}; j =
j

l,2,...,p be a multidimensional finite discrete space of control error.

Let y~ tYj}; J=l,2,...,q be amultidimensional finite discrete space

of outputs. Let^'fr..}; j=l,2,...,s be amultidimensional finite

discrete space of set points. Assume that the error e, the output y, and
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the set point rare fuzzy sets defined onS.^jand^ respectively. Fur

ther assume that the dynamic behavior of the comparator is governed by

the following discrete time equation:

e* = r
t*t o G (2.1)

Here t is a time process. rtyt denotes a fuzzy set on the Cartesian pro

duct space R x Y, and G a fuzzy relation given by

G:R x Y x E + [0.1] (2.2)

where R= {rt>, Y= {yt} ,E= {et> are finite families of fuzzy sets,

dim G = sxqxp, 0- denotes max-min composition. The error detector

may also be described by means of the extension principle: Let e* = r* - y.

that is et = f(rt,yt) Then

t z rt,yt= f (et
[V (0~ U <y)].
) rt yt

(2.3)

LetQA= {u.}; j= l,2,...,n be a multidimensional finite discrete space of
j

control quantity and Q = {q->; j = l,2,...,n be a multidimensional finite
j

discrete space of the states of the controller. Assume that the control

action u and the state q are fuzzy sets defined onQiand Q respectively.

Then the dynamic behavior of the controller may be described as follows:

qt+l = qtet ° Hc

qt ° G.

where

(a)

(b)

Hc: Q x ExQ- [0,1]

Gc: Q xu - [0,1]

(2.4)

(2.5)
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Q= (qt> and U= {ut> are finite families of fuzzy sets, dim HQ = n x pxn;

dim G = n x m. The dynamic behavior of the controller-comparator is

governed by the following discrete time equation:

«t+l =Wt ° Fc

% ° G.

here:

(a)

(b)
(2.6)

qt»Vyt is a fuzzy set on the Cartesian product space Q x R x Y;

Fc: QxRxYxQ* [0,1] (2.7)

dim F=nxsxqxn.
\0

From equations (2.1) (2.4)

Fc = G o Hc (2.8)

Let9^= to.-} ;j • 1,2 n be a multidimensional finite discrete

space of the states of a plant. Assume that the dynamic behavior of the

plant is governed by the following equations:

xt+l • xtut ° Fs

*t = xt ° G<

Ca)

0>)

Here X= {xt> is a finite family of fuzzy sets defined on96

Fs :Xxu xX + [0.1]

Gs : X x Y [0,1]

(2.9)

(2.10)

dim Fs = n x m x n, dim G = n x q. The equations of the fuzzy control

process are the following:
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xt+l = xtc"t ° Fi (a)

Vi = xtVt ° h (b)

yt = xt . g, (c)

(2.11)

Assume that the relations F ,Gs, Fc (G,Hc), Gc are given. We would like

to find F, jF^sG-, based on these relations. From equations (2.6) (b) and

(2.9) (a) we have

xt+l = xt*t ° Gc ° Fc

Comparing (2.12) with (2.11) (a) we obtain

Vt ° Fl = H% ° 6c ° F(

By virtue of this we have

Fl " Sc • Fs

From (2.9) (b), (2.11) (c)

ytsxtoGs = xtoGr h

we have

Gn = G
1 s

Substituting (2.9) (b) for (2.6) (a) we obtain

<H+1 =Wt ° 6s ° Fs

Equations (2.17), (2.11) (b)

xtVt ° F2 = xtVt ° Gs ° Fs
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imply

F2 =Gs • Fs (2.19)

Conclusion: If we have the fuzzy relations of the controller and the plant,

then the model of the fuzzy control process is given by equations (2.11) and

(2.14), (2.16), (2.19). We need only execute the composition of fuzzy rela

tions (2.14), (2.16) respectively. Now let us suppose that we have the con

trary situation, namely, we are given the fuzzy equations of the closed loop

system (FpFg.G-j) and the plant. We would like to find the fuzzy equation

of the controller (FCGC). This problem is very important from the practi

cal point of view.

Let us consider the equation (2.9) (b). Suppose that

Gs ° Ks = X (2.20)

where, I is the unit matrix. Then

xt =^toKs ' (2.21)

Substituting (2.21) for (2.11) (b), we have

qt+l =Wt ° Ks ° F2 (2.22)

Comparing (2.22) with (2.6) (a), we obtain

Vl =Wt ° Ks ° F2 =Wt ° Fc =^t+1 (2-23)

From (2.23) we have

Fc = Ks ° F2 (2.24)

In order to obtain Fc, we must first solve equation (2.20) with respect to

K2 and next compose it with F2 (2.24). Now consider equation (2.14)

-6-



Let

Fs ° Ls = l (2.25)

then

Gc = Fl ° Ls (2.26)

If we solve equation (2.25) with respect to Ls and compose it with F1,
then we obtain the fuzzy relation G .

Conclusion: If we are able to solve the fuzzy relational equations

(2.20) and (2.25) then the problem of the synthesis of a fuzzy controller

will be resolved. Generally speaking, we should show a method of solving

the relational equation

X o A = B. (2.27)

For the moment, we will concentrate on a different equation, namely

X = X o R. (2.28)

The connection between the two will be discussed. For convenience, we

will investigate the equation

xt+1 = xtut o R (2.29)

where, dim x^ut = n x m and dim R = n x m x n. If we make the substitution

t + 1 = n, then

xn = xn-lun-l ° R; n= 1»2,3,... (2.30)

We will also investigate the possibility of carrying out process (2.29)

*from a given initial point XQe X to a final point X ex. This problem is

yery important from the practical point of view because in many cases for
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a given R a fuzzy control action sequence under which the fuzzy control

process is controllable does not exist.

3. THE CONVERGENCE OF A FUZZY CONTROL PROCESS

Let X= {X..} , i = l,2,...,m be a family of fuzzy sets defined on a

multidimensional dinite discrete space 9(= {x-} ;j= 1,2,...,n.
j

Definition 1. A fuzzy metric space is the pair of elements (X,p) such

that p: X x x R* is a mapping (to be called metric) which satisfy the

following conditions:

Ci) p(X19X2) =0 *> X1 = X2 (in a fuzzy sense)

(ii) pCxrx2) =p{xz,x}); x19x2 ex

(iii) p(XvX2) <p(XrX3) +p(X3,X2); X1,X2,X3ex,

where

x - Cartesian product in the classical sense.

R* - set of real nonnegative numbers.

Example 1

Let X1 =[u^), ux2(x2),...,yx2(xn)]; X2 =[^(x,), uX2(x2),...,

uX2^xn^ denote tw0 fuzzy sets defined on9C The expressions

P2CXpX2) = max |y„ (x.) - yx (x_.)
i<j<n Al J A2 J

are metrics.

Definition 2. Q is said to be a fuzzy neighborhood of fuzzy set X. e x

^ X1 eg, Cvv Mvq ).
Definition 3. The sequence of fuzzy sets {Xn> converges to fuzzy set
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(point) XQ if and only if for each neighborhood Qalmost all terms of {Xj
satisfy X cQ,

limXn = XQ, orXn + XQ,

in other words,

[Xn •* x0] oVQ of XQ, 3ken, vn>k(Xn cQ) where N-set of natural
numbers exclusive of zero.

Definition 4. Fuzzy sequence {Xn> of terms of fuzzy metric space X is

said to be a Cauchy fuzzy sequence iff V e > 03 ke N, V n > kV m > k,

p(Xn,Xm) <e or lim p(X ,Xm) =0, or V e >03 kGN, Vn>kVm>k,
n,m-*»

p(Xn»Xm) <e.

Theorem 1, Every fuzzy convergent sequence is a Cauchy sequence.

Proof.

Let Xrt •+ Xrt.
n o

Based on (iii) def. 1 we may write:

p(Xn,Xj < p(Xn,Xj + p(Xm,Xj,
n m — n' o' KV m o'

Because p(X.Xj + 0 and p(Xm,Xj -* 0 then p(X„,Xj -»• 0. *

Observation 1. Definition 4 may be rewritten as: p(Xn,Xn+ )->• 0, VD n "*• °°

This means that Ve>0] kSN, V e NVn> k, p.(Xn,X )<e. (*)

Definition 5. If in fuzzy metric space (X,p) every Cauchy fuzzy sequence

converges to an element of this space then it is called a fuzzy complete

metric space.

Theorem 2. Let (X,p) be a fuzzy complete metric space and R : X x U x x

-»• [0,1] be a fuzzy relation such that

Xn = Xn^ Un-1 o R; n= 1,2,3,... (3.1)

and

pfX^oR.XgUgoR) < Xp(x1,X2); VXpXg € X; VU-,,U2 S U, X6 [0,1) (3.2)
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•k *

then there exists one and only one fuzzy point (set) X e x and U e U,

that

X* = X* U* oR (3.3)

Proof.

Let XQ e X, UQ e u be initial fuzzy points of fuzzy complete metric spaces

(X,p), (U,p) respectively. We will demonstrate that expression (3.1) is

a Cauchy fuzzy sequence. First of all we must prove that

Pl\i-l»V -a"~1 p(Xo'VUo°R) ^ n=1,2,... (3.4)

Condition (3.4) is true for n=1, X] =X0UQoR, X° =1; p(XQ,X1) =

X pCX0,X0UQoR)t Suppose that it is true for n= k, we wtll prove that

(.3,4) is satisfied for n = k + 1,

p(Xk-1,Xk) <X^1 p(X0,X0U0oR), (n =k) (3.5)

Based on (3.1), (3.2) and (3.5) we have p(Xk9XR+1) »ptt^U^oR,

XkUkoR) <Xp(XM, Xk) <X-XM p(X0,X0U0oR) =Ak p(X0,X0UQoR).
Therefore,

P(XklXk+1) <Xkp(X0,X0U0oR) (3.6)

This means that (3.4) is true for n= k+ 1. By induction we prove that

(.3.4) is true Vne N. Now consider p(Xn,X )for n=1,2,... Based on
def. 1 cond. (iii) and (3.6) we have

"<VW 1P(VW +•••♦ P^Vp-rVp) ^
<xn p(x0x0uoor) +... +x"+p-i p(x0,x0,u0oR) =

=P(X0,X0U0.R) [Xn+ ... +A^P'1] =

• X" "^ <>'CVWR> i& P(Xo'XoVR)-
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From here

P(Xn/Xn+p)-0if n-coforVp.

The condition (*) of observation 1 is satisfied and this neans that {X }
n

is a Cauchy fuzzy sequence. Since our metric space is complete, then
*

Xn -»- X . Considering (3.2) we may write

* *

p(XnUnoR, XU or) <x p(Xn,X )

x„un<
n n

>R -*»

* *

X u oR,

Because

Xn+1 -»•

*

X

and

p(xn+1,x*) <p(xnxn+1) +p(Xn,X*) +0
then

P(X*,xVoR) <p(X*,Xn+1) +p(Xn+1,X*U*oR) =
= p(X*,Xn+1) +p(XnUnoR, xVoR).

we know that

p(x*,xn+1) -0
and

p(XnUnoR, xVoR) -0.
From here

• * *

X = X U oR.

Now we prove that there exists one and only one point X (proof by con

tradiction). Let X1 ? X2) and X-, = X^-joR, X2 = X2U2<>R. We have

p(X-,,X2) = pfX^^R, X2U2°R <Xp(XrX2) (3.7)

Because X1 f X2 then p(X-j,X2) f 0, Dividing (3,7) by p(XlsX2) we have

1 £ X. This contradicts assumption (3.2). Similarly we demonstrate that
*

for a given X and an attainable X there exists one and only one sequence
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*«

of fuzzy control quantity U ,U,,U2,.,,,U and U0,U-, ,U2,. ,.,U - which
*

carry the fuzzy control process from X to X .

X, = XnU oR
I O 0

X2 = X^^R

• (3.8)

* * *

X = X U oR

Uo * V Ul * ul---u * U

Based on (3.8) and (3.9) we have

X.U oR = XJJ oR
0 0 0 0 -n

X-jUyR = X^oR

Jit it * it it

X U oR = X U or

L 0 0

X2 =X^^R

* * *«
X = X U oR

J

(3.9)

(3.10)

(3.II)

Equations (3.II) are true for a special case when R = I, This means that

'o' Ul =UiUrt =u' U, =u\,...,U* =U*'

and there exists one and only one sequence of fuzzy control quantity, n

Conclusions:

(I) The theorem 2 is also true when the sequence of fuzzy control quan

tity and/or the sequence of states are determined, that is (see Fig.

2.)

II» u = u.

t
otherwise

yx(x) =
l, x = xt

otherwise

(2) For given XQ,X ex we may construct a fuzzy relation R (fuzzy con

troller) such that there exists one and only one sequence of fuzzy
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control quantity U^U-j ,U2,...,[) which carries the fuzzy control pro

cess from an initial fuzzv point XQ exto afinal fuzzy point X* ex
Theorem 2 gives the condition of controllability of fuzzy control pro

cess (2.28).

(3) If the conditions of theorem 2 are satisfied then the fuzzy relation

al equation X = XqR has one and only one solution. This solution may

be found by means of successive approximation.

Example 1: Consider the process Xt+, = Xt<>R. where

R =

0. 0. .5 1. .5 .5 1. .5 0. 0, 0. 0.
0. 0. .5 .5 .5 .5 .5 .5 0. 0. 0. 0.
0. 0. .5 .5 .5 0. 0. 0. 0. 0. 0. 0.
0. 0. .5 1. .5 0. 0. 0. 0. 0. 0. 0.
0. 0. .5 1. .5 0. 0. 0. 0. 0. 0. 0.
0. 0. .5 .5 .5 0. 0. 0. 0. 0. 0. 0.
0. 0. .5 1. .5 0. 0. 0. 0. 0. 0. 0.
0. 0. .5 .5 ,5 0. 0. 0. 0. 0. 0. 0.
0. 0, .5 ,5 .5 ,5 .5 .5 0. 0. 0. 0.
0. 0, .5 1. .5 ,5 1. .5 0. 0, 0. 0.
0. 0. .5 .5 .5 .5 .5 .5 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

(3.12)

Suppose that for t = 0 we have X =[0. 0. 0. 0. 0. 0. 0. 0, 0, .5 1. .5 0.]

then X1 = XQoR = [0. 0. ,5 1, .5 ,5 1. ,5 0. 0, 0. 0.]
X2 = X-,°R = [0.0..5 1. .5 0. 0. 0. 0. 0. 0. 0.]

X3 = X2oR = E°' °' '5 1# *5 °' °« °' °* °' °' °'3
X2 =X3 =X* =[0. 0. .5 1. .5 0. 0. 0. 0. 0. 0. 0.]

Let for t = 0 be XQ = [1. .5 0. 0. 0. 0. 0. 0. 0. 0, 0. 0.] - then

X-j = XQoR = [0. 0. .5 1. .5 .5 1. .5 0. 0. 0. 0,]
X2 = X^R = [0. 0, .5 1, ,5 ,5 1. ,5 0, 0, 0, 0,]
X3 = X2°R = [0. 0. .5 1. .5 ,5 1. .5 0. 0. 0. 0.]
X2 =X3 =X* =[0. 0. .5 1. .5 .5 1. .5 0. 0. 0. 0.]

Let for t=0 to be XQ = [0. 0. 0. 0. 0. .5 1. .5 0. 0, 0. 0.] then
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X1 = XQ°R = [0. 0. .5 1. .5 0. 0. 0. 0. 0. 0. 0.]

X2 = X.,oR = [0. 0. .5 1. .5 0. 0, 0. 0. 0. 0. 0,]

X1 =X2 =X* =[0. 0. .5 1. .5 0. 0. 0. 0. 0. 0. 0.]

Process (3.12) is convergent. If we start from any initial point X e X
*

then the final point X is always obtained. The conditions of theorem 2

are satisfied. This example shows the iterative method of solving the

*

equation X = X ° R. In this case the solution is X . This means that

there exists a control action (in this case non-fuzzy) which carries the

process from any initial point XQ e x to a final point X e X. This pro

cess is controllable (in the sense of conclusion (2)).

Example 2. Let

R =

1. .5 .5 1. .5 0. 0. 0. 0. 0. 0, 0.
.5 .5 .5 .5 .5 0. 0. 0. 0. 0. 0. 0.
0. 0. .5 .5 .5 .5 .5 .5 .5 .5 .5 0.
0. 0. .5 1. .5 .5 1. ,5 .5 1. .5 0.
0. 0. .5 .5 .5 .5 .5 .5 .5 .5 .5 0.
0. 0. 0, 0. 0. 0, 0. 0. .5 .5 .5 0.
0. 0. 0. 0. 0. 0. 0. 0. .5 1. .5 0.
0. 0. 0. 0. 0. 0. 0. 0. .5 .5 .5 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

Suppose that for t=0we have XQ = [1. .5 .5 1. .5 0. 0. 0, 0. 0. 0, 0.]

then

xl = x0oR = C°- °- *5 ""• -5 °- °- °- °- °- °* °«J
X2 = X-joR = [0. 0. 0. 0, 0, ,5 1. .5 0. 0. 0, 0.]
X3 = X2oR = [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] = (J) - empty

fuzzy set.

Let for t = 0 be XQ = [0. 0. .5 1. .5 0. 0. 0. 0. 0. 0. 0.] then

X1 = XqoR = [0. 0. 0. 0. 0. .5 1. .5 0. 0, 0. 0.]
X2 = X3 = X^R = [0. 0. 0. 0. 0. 0. 0, 0. 0. 0. 0. 0,] - empty fuzzy

set.
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Let for t=0 be XQ = [0. 0, 0. 0, 0, 0. 0. 0. ,5 1. ,5 0.] then

X2 = Xl = X0oR = £°* °* °' °- °- °« °- °- °< °- °- °«] e^ty fuzzy
set.

This process is nonconvergent. Any initial point XQ exleads to an empty

fuzzy set which is not a solution for given relation R, The conditions of

theorem 2 there are not satisfied. This means that there does not exist

any sequence of control quantity which carries the process from any X e x

to X . Process (3.13) is noncont.rollable (in the sense of conclusion (2)).

4, CONCLUSION

The problem of designing a fuzzy controller based on a given fuzzy

model of plant and closed loop system has been shown. It requires the

solution of a fuzzy relational equation. Under conditions of theorem 2 the

solution of equation X = X ° R may be found. In order to apply this suc

cessive approximation to equation X ° A = B we must transform the latter

to the form X = X ° R, but under the condition that both equations have

the same solution. Theorem 2 seems to be useful from a practical point

of view because it enables the construction of a fuzzy controller which

has the controllability property. If conditions of the theorem are ful

filled, then the process is carried from the initial point to a final

point under an action of fuzzy sequence of control.
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