

Copyright © 1981, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

COMPARING USER RESPONSE TIMES ON

PAGED AND SWAPPED UNIX

by

Luis Felipe Cabrera and Jehan-Fran^ois Paris

Memorandum No. UCB/ERL M81/39

1 June 1981

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Comparing User Response Times on Paged and Swapped UNIX

by the Terminal Probe Method

Luis Felipe Cabrera

Department of Mathematics
and

Electronics Research Laboratory
University of California, Berkeley

Berkeley, CA 94720

Jehan-Francois Paris

Department of Computer Sciences
Purdue University

W. Lafayette, IN 47907

ABSTRACT

In this paper we present a comparison of user response times on paged
and swapped versions of the operating system UNDC for the DEC VAX 11/7B0.
The technique used was to construct a script that periodically evaluated the
system's work load and measured the system's response times to a set of
benchmark programs.

These measurements, collected at two different sites, show that differ
ences of responsiveness observed between the two systems depended much
more on the workloads and the configurations than on the operating systems
themselves.

Since we only used standard UNDC tools to build our scripts, they are
highly portable and can be installed on any standard UNDC system in a matter
of minutes without bringing the system down.

1. INTRODUCTION

A change from one version of an operating system to another one always

constitutes a difficult problem for the management of a computer installa

tion. The problems of updating the software while attempting to keep the

user's interfaces as unchanged as possible are well known. We will address

here another problem, namely 'the.performance implications of the change.

Numerous tools already exist with the purpose of predicting or measur

ing the performance of a computer system. In contrast to many of these

tools, the method we present here requires no special hardware and very lit

tle effort*for modeling the system or estimating its work load. The technique

used, which applies to all interactive systems, essentially consists of con

structing a script that periodically evaluates the system's work load and

measures the system's response times to a set of benchmark programs. As

we will see, the only drawback of the method is that systems with highly vari

able work loads will require longer data gathering periods.

Since standard UNDC tools were used to build these scripts, they are

highly portable and can be installed on any standard UNDC system in a matter

of minutes without bringing the system down. Moreover, the philosophy of

the method is by no means specific to UNDC systems and could be applied to

other interactive systems.

Section 2 of this paper presents those features of the UNDC operating sys

tem which are relevant to our problem. In Section 3 we introduce the data

gathering method. In Section 4 we present and analyze diagrams which com

pare the performance of the installations under the different versions of the

operating system. Section 5 discusses some general issues about comparing

distinct operating systems. Section 6 has our conclusions.

2. THE UNDC SYSTEM

UNDC is a trademark for a family of time-sharing operating systems

developed at Bell Laboratories during the last twelve years [Ritc74, KernBl].

The first version of UNDC was implemented in 1969 on a PDP-7. Since then,

several versions of UNDC have been developed at Bell Laboratories. They were

primarily aimed at various members of the PDP-11 family of minicomputers

and, in 1978, Bell Laboratories released a version of UNDC aimed at the new

VAX 11/780. Despite the fact that the VAX hardware was designed to support

a paged virtual memory system (DEC'S own VMS), the successive versions of

UNDC developed at Bell Laboratories did not support paging. This motivated a

group at the University of California, Berkeley, to implement a virtual

memory extension to UNDC for the VAX [Baba79]. This extension used a Global

LRU page replacement strategy with use bits simulated by software and is

now an integral part of what is known as the "Berkeley UNDC."

One of the most remarkable features of UNDC is its user interface. On log

ging in, each user is assigned a special process containing a command inter

preter that listens to the terminal. This command interpreter, known as the

shell [Bour78], parses the input line decoding the command requested, its

flags, and the arguments passed to it. The shell then exec's the command.

The shell also has a redirection mechanism that allows it to read command

lines stored in files. Users can thus define sequences of shell commands,

known as shell scripts, and store them in files awaiting later invocation. The

versatility of these scripts is greatly enhanced by the fact that the shell

language also contains control-flow primitives, string-valued variables and

even simple arithmetic facilities. Thus, building a sequence of commands

that will be repeatedly executed at fixed time intervals is on UNDC a nearly

trivial task.

The portability of our tools was also facilitated by the fact that UNDC han

dles automatically all file allocation decisions. UNDC files are accessed

through a hierarchy of directories and the typical user is not aware of the

physical location of the files he or she manipulates.

3. THE DATA GATHERING METHOD

Our strategy for monitoring each system's responsiveness was the same

one used in [Cabr80]. It consists of running periodically a set of predefined

benchmarks in a totally automatic way. This was achieved by writing a shell

script that is essentially a loop containing the benchmarks together with

commands that gather statistics about the work loads and measure the time

it takes each benchmark to complete. Each time the script has cycled

through the execution of these commands, it executes a sleep command that

suspends its execution and then wakes it up after a predetermined number

of seconds. This script is then run as a background job (with the same prior

ity as any user process) during the operation time of the system.

This data gathering method can be categorized as a time-sampling

method [Ferr78] and in fact is very similar to Karush's terminal probe

method [Karu69]. By using it, we measure the work load of the system as

well as the dependency of our performance indexes on the underlying equip

ment. We are thus evaluating the performance of an installation.

Although running a script affects the load of the system—and thus its

responsiveness, it was felt that this would not affect the validity of our com

parison study since each system would be presented with the same script.

The main purpose of our comparison experiment was precisely to observe

how each system reacted to this stimulus.

Our commitment to use only standard UNDC tools decided us upon the

usage of the time command for measuring the completion time of each

benchmark. The time command returns, upon completion of the command

it prefixes, three measurements; response time, system time and user time.

Response time is only accurate to the second (time truncates, does not

round off). This low resolution of time, together with our desire that no indi

vidual measurement be off by more than 10%, led us to restrict ourselves to

benchmarks that would never take less than five seconds to complete.

4. THE MEASUREMENTS

The design of a comparison study like ours is faced with many con

straints and trade-offs. There are basically three main areas in which major

decisions have to be made: the selection of the benchmarks, the length of

the data gathering period and the representation of the data.

Since our method measures the performance of an installation, i.e., the

work load is also included in the observations, a desirable goal is to use as

benchmark a task representative of the user's tasks. At the same time, one

must try to capture the work load through some characterization. Then, the

response time of the task is plotted against the characterization of load.

Kfe have chosen tasks which exercise the system in a "natural" way (i.e.,

we did not run tasks which would a priori perform better in a paged environ

ment or in a swapping environment) and which were representative of the

user's activities at the time. This led us to use, in both sites, the command

man man, which retrieves and formats the entry for the manual page out of

the on-line copy of the UNDC Programmer's manual. This task is interesting

because the entry is retrieved from disk using the widely used formatting

program nroff. To avoid screen output problems when running the script,

110 '
90-percentile

o 75-percentile

Number of Users

Figure 1 Median, Mean, 75 and 90 percentiles for man man
Swapped UNDC

the output of man man was sent to /dev/null instead of sending it to a real

terminal. This had the effect of discarding the already formated text of the

retrieved page. The length of each data gathering period was determined at

each site and will be discussed in the next two subsections. As for the display

of the data, after an exploratory analysis of our measurements it was

decided to use 75-percentile curves. In Figures 1 and 2 we display four

curves for the task man man using the number of logged in users as charac

terization of load. The four curves are the median (50-percentile), mean,

75-percentile and 90-percentile of the distribution of response times per

6

value of our work load characterization.

Figure 1 displays these curves for the swapping system and Figure 2 for

the paging system. In them we may appreciate how the influence of the

outliers becomes apparent in the 90-percentile curve. We may also notice

that the median of the response time samples are consistently lower than

the mean of the samples. This happens in any distribution which is skewed

towards the lower range values or, whose outliers lie in the higher range of

the values. These two characteristics were common to all our data. To

90 ••

80 -
CO

§ 70
<u
CO

. 90-percentile
o 75-percentile
+ mean

50

cu
CO
e
o
a
CO
cu

60 -

50 "

30 <•

20

10

*• f

10 11 12 13

Number of Users

Figure 2 Median. Mean, 75 and 90 percentiles for man man
Paged UNDC

14

deemphasize the effect of outliers we chose to use the 75-percentile curve to

display our data. This decision was partially motivated by unavailability of

abundant data from one of the sites.

We decided on two single-variable characterizations of load: number of

users logged in and number of user processes. This latter index represents

the number of processes which have been generated by user commands. It

does not include any system generated processes.

4.1. The Berkeley Measurements

This analysis was based in 431 data points for the swapping system and

1455 points for the paging system generated during the second half of 1979.

Throughout the data gathering period the system's hardware remained unal

tered. The work load, however, underwent a substantial change (by very

large programs such as the VAX version of the algebraic manipulation system

MACSYMA [Fate79]) to thoroughly exercise the memory management capa

bilities of the new kernel.

Given the small amount of main memory the system had at the time

these large address space programs did influence significantly the work load

of the system. The hardware configuration of the system was a VAX 11/780

CPU, 512K bytes of main memory, 16 ports, two RP06 disk drives with a DEC

disk controller and one TE 16 tape drive.

We shall present data for three tasks: the command man man, the exe

cution of a cpu-bound job and the compilation of a short C program. The

choice of the cpu-bound job was motivated by our desire to observe the

effect paging had on a task that would almost never be swapped out: its size

is 2K bytes.

10 11 12 13 14

Number of Users

figure 3 Response Time 75-percentile vs Number of Users
for the man man command

90 ' + Swapping

(seconds) oo

o Paging

0)

£60 J
•

§50
o
a
CO

eg 40

30 4

20

10

t i | | i i i i i i i i i i i i i i i » i i ' ' » > ' '—•"
l 5 10 15 20 25

Number of User Processes

Figure 4 Response Time 75-percentile vs Number of User
Processes for the man man command'

Figures 3 and 4 display the 75-percentile curves of the response time for

the command man man. On both figures we see that the swapping system

performs slightly better than the paging system at higher load levels. This

difference can be justified by the dramatic change in the workload which

occurred when the paging system was brought up. Since we do not have data

from stand-alone measurements, we cannot rate the two systems solely on

these data, but it becomes apparent that none outperforms the other one

throughout all the values of load.

+ Swapping

** 40 < o Paging
•o
e
0
y
<u
CO

v^

§ 30
•H

H

CU
CO
C
o

8*20 -
cu

Q*

10 *

11 12 13

Number of Users

figure 5 Response Time 75-percentile vs Number of Users
for the CPU-bound job

10

^ 40
•o
e
o
o
cu
CD

cu 30
E

cu
CO
e
o

a 20

2

+ Swapping

° Paging

11

10 ••

j I i i t i | i i I I i I l I t 1 1 t » * ' * * * * *

1 5 10 15 20 25

Number of User Processes

figure 6 Response Time 75-percentile vs Number of User
Processes for the CPU-bound job

figures 5 and 8 display our data for the CPU-bound job. This job con

sists of two nested loops and an inner block of statements. A 9 statement

sequence of integer arithmetic operations is executed 100,000 times. The

size of the object code is only 2Kbytes~i.e. four 512 byte pages- and thus its

probability of being swapped out is quite smalL It is quite interesting to

observe that the paging system outperforms the swapping system under both

characterizations of the workload. This can be explained in terms of the

additional I/O activity existing in the paging system. Indeed, since our job is

very small in size and performs no 1/0, the only impediments that may block

12

it to run to completion are time-quantum expirations and multiprogramming

delays. Thus our cpu-bound job is either running or in the ready queue. In

the paging system it gets more often the CPU because of other jobs being

blocked by page faults. This fact makes us believe that trivial tasks should

perform better in the paged version of UNDC

Figures 7 and 8 display our data for the Ccompilation of a small Cpro

gram. This is the only observed task where the swapping system appears

superior. This is specially clear in Figure 8 where the number of user

90 -

| 80
§
o

8 70

+ Swapping
o Paging

•+•

1110 11 12 13

Number of Users

figure 7 Response Time 75-percentile vs Number ofUsers
for the C compilation

14

90"

n

•g 80
o
o
cu

>5 70

cu

5 60

cu

g 50
o
a
CO

£40

30 +

20

10

+ Swapping
o Paging

•I t l I I l I I I I I I 1 l—I i 1 I ' ' » '

10 15 20

13

I I 1 I \ » l

25

Number of User Processes

figure 8 Response Time75-percentile vs Number of User
Processes for the C compilation

processes characterization of load is used. We believe that the difference in

performance observed in this case is mostly due to the change in workload

which occurred in the system. The execution of processes whose size was

much larger than the available memory created high contention for memory.

Thus medium size processes like the Ccompiler would always be losing their

used pages and paging in those pieces of code needed for further processing.

Their resident set would never be allowed to remain at any reasonable size.

The effect of large processes was quite noticeable at the time, specially when

processes like VAX1MA [Fate79] would do garbage collection through a 2

14

Megabyte address space. At those points, response time for all commands

would degrade ostensibly.

4.2. The Purdue Measurements

These experiments were performed during the Summer of 1980 on the

VAX 11/780 of the Department of Computer Sciences at Purdue University

when the Department decided to switch from UNDC version 7 to Berkeley UNDC.

At that time, the machine had 3 Megabytes of main memory, 56 ports, three

RM03 disk drives on Massbus 0 and one TE16 tape drive on Massbus 1.

We chose to run as benchmarks the UNDC command man man, which for

mats and displays the entry of the UNDC manual describing the command

itself as well as a small script containing "man man" and several small tasks.

As said before, this choice was motivated by the fact that text processing

constituted then the application concerning the greatest number of users.

In UNDC version 7, the man command is implemented as a shell script while

Berkeley UNDC uses directly executable code. Since this latter alternative is

inherently much faster than a script, which must be interpreted by the shell

at each execution, a direct comparison of the response times for the man

man command would have been grossly unfair to the version 7. We thus

decided to run the version 7 script in place of the original man command in

our measurements with the Berkeley UNDC. As a result, the response times

for the man man command measured at Purdue were much higher than

those observed at Berkeley, where the same problem did not occur.

Because of the short interval of time left between our decision of run

ning the script and the scheduled switch from swapped to paged UNDC we

were only able to collect 152 measurements with the swapped version of UNDC.

This left us with about ten observations for each load level, as expressed

15

either by the number of users logged in or the total number of user

processes. These values were obviously much lower than those required to

obtain acceptable estimators of the 75 percentiles of the response time.

Faced with the same problem, but on a much smaller scale, one of the

authors [CabrBO, CabrBl] decided to cluster neighboring load levels with

insufficient numbers of observations. For instance, if 30 was the minimum

acceptable sample size and there were 19 observations corresponding to 15

users logged in and 12 observations corresponding to 16 users, the two sets

of observations would be merged into a single set of 31 observations and this

set made to correspond to a work load of (l5+16)/2 = 15.5 users. The same

approach applied to our Purdue data would unfortunately resulted into too

little load levels after clustering. We decided therefore to use a scheme in

which the 75 percentile for the load level i would be computed taking in

account all the measurements at load levels i-1, i and i+1. This filtering

greatly reduced the influence of outliers on the 75 percentiles. It has, how

ever, the unfortunate side-effect of introducing a positive correlation

between neighboring values on the percentile curves and therefore should

not be considered as a substitute for more measurements

Figure 9 and 10 display the 75-percentile curves of the response time for

the script version of the man man command. As one can see on both figures,

the response times for the swapping version of UNDC appear to be somewhat

higher than those corresponding to the paging UNDC and exhibit also a more

erratic behavior. These results apparently do not agree with those observed

on the Berkeley VAX. One should however point out that the Purdue VAX had

a much larger memory and that all our measurements relative to the paging

version of UNDC were made during the month immediately following the

9 10 11 12 13

Number of Users

figure 9 Response Time 75-percentile vsNumber ofUsers
for the script version of man man

16

140"

130"

~ 120 f
09

8 no
0)
CO

•

« 100+
A
H 90 +
cu
CO

o. 80 f
CO

&
70 t

60 ••

50 •

40 "

30 '

20 "

10

+ Swapping
o Paging

10

17

1211 12 13 14

Number of User Processes

figure 10 Response Time 75-percentile vs Number of User
Processes for the script version of man man

conversion to Berkeley UNDC, thus before any change in the working habits of

the users could have occurred.

18

Another point to mention is that the curves representing the 75-

percentiles of the response time against the number of user processes are

somewhat better behaved than those corresponding to the number of users.

This suggests that the number of user processes is a better estimator of the

system's workload.

5. DISCUSSION

One can conclude from our measurements that the switch from UNDC ver

sion 7 to Berkeley UNDC did not alter significantly user's response times on

any of the two monitored installations. This conclusion, however, depends on

the work loads observed on the two machines and is by no means an answer

to the question: "Which one of the two systems is better?"

Paging was introduced, more than twenty years ago, in order to allow

bigger jobs to run on machines then characterized by very small main

memories. It became later a nearly universal feature of large-scale multi

access systems because it allowed to keep more jobs simultaneously residing

in main memory, thus avoiding swapping delays. As it was quickly noticed,

paging unfortunately never comes for free: it requires special hardware,

introduces a fair amount of software overhead and performs very poorly with

programs exhibiting scattered reference patterns.

One may then question the efficiency of paging at a time where main

memory is so cheap that it becomes possible to keep residing in memory

enough conversational users to saturate the CPU of a machine like the VAX.

Would this be the normal case, jobs would typically run without having been

ever swapped out during their execution. This would remove any incentive

for implementing a paging scheme. Moreover, it would even make straight

swapping more effective than paging since it is usually more efficient to

19

bring into memory the whole address space of a program in a single I/O

operation than by successively fetching faulting pages.

This argument does not, however, stand against the well-known fact that

larger address spaces have always resulted in larger programs. In fact, one

of the strongest motivations of the Berkeley UNDC was to provide the larger

address space required by algebraic manipulation programs. Our measure

ments on the Berkeley VAX show indeed that the switch from swapping to

paging has significantly altered the system's work load by allowing bigger

jobs to run on the machine. Although it did not appear in our data, the same

phenomenon also occurred on the Purdue VAX, whose current work load is

strikingly different from the one existing before the switch to Berkeley UNDC.

The main advantage of one operating system over the other one is thus

more a question of increased capabilities than faster response times. As a

cynical observer could point out, the switch to a better system might be

accompanied by an increase of the average response time resulting from the

increased demands placed on the system's hardware.

6. CONCLUSIONS

We have presented here a simple method for comparing user response

times on two versions of an operating system. The method can be very easily

implemented on UNDC and UNDC look-alike systems. It does not require the sys

tem to be brought down and does not affect the normal operation of the

installation.

Results concerning a paged and a swapped versions of the VAX 11/780

UNDC system show that the observed differences of responsiveness between

the systems depended more on the workloads and the configurations than on

the operating systems themselves.

20

Thus our methods should not be construed as a technique for comparing

the inherent merits of two operating systems, but rather as a tool giving

prompt quantitative answers on the responsiveness of any particular installa

tion.

Acknowledgements

The work reported here was supported in part by the NSF grant MCS 80-
12900. The authors express their gratitude to their respective departments
for having provided the facilities used in this study.

References

[Baba79]
Babaoglu, 0., W. Joy and J. Porcar, "Design and Implementation of the
Berkeley Virtual Memory Extension to the UNDC Operating System,"
Department of EECS—Computer Science Division, University of Califor
nia, Berkeley, (1979).

[Bour78]
Bourne, S. R., "The UNDC Shell," The Bell System Technical J. 57, 6 Part
2 (Jul.-Aug. 1978), 1971-1990.

[CabrBO]
Cabrera, L. F., "A Performance Analysis Study of UNDC," Proceedings of
the 26th Meeting of the CPEUG, Orlando, FL, October 1980, pp. 233-243.

[Cabr81]
Cabrera, L. F., "Benchmarking UNDC: A Comparative Study," in Experi
mental Computer Performance Evaluation (D. Ferrari and M. Spadoni
eds.) North-Holland, Amsterdam, Netherlands.pp 205-215.

[DEC78]
Digital Equipment Corporation, VAX 11/780 Technical Summary. May-
nard, Mass., 1978.

[Fate79]
Fateman, R. J.. "Addendum to the Mathiab/MIT MACSYMA Reference
Manual for VAX/UNDC VAXIMA," Department of EECS-Computer Science
Division, University of California, Berkeley (Dec. 1979).

[Ferr78]
Ferrari, D. Computer Systems Performance Evaluation, Prentice-Hall,
Englewood Cliffs, NJ, 1978.

[Karu69]
Karush, A. D., "The Benchmarking Method Applied to Time-Sharing Sys
tems," Rept. SP-3347, System's Development Corporation, Santa Monica,
CA, August 1969.

21

[KernBl]
Kernighan, B. W. and J. R. Mashey, "The UNDC Programming Environ
ment," Computer 14, 4 (Apr. 1981), 12-24.

[Ritc74]
Ritchie, D. M. and K. L. Thompson, "The UNDC Time-Sharing System,"
Comm. ACM 17, 7 (Jul. 1974), 365-375. A revised version appeared in The
Bell System Technical J. 57, 6 Part 2 (Jul.-Aug. 1978), 1295-1990.

[Ritc78]
Ritchie, D. M., S. C. Johnson, M.E. Lesk and B. W. Kernighan, "The C Pro
gramming Language," The Bell System Technical J. 57. 6 Part 2 (JuL-
Aug. 1978), 1991-2019.

	Copyright notice 1981
	ERL-81-39

