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ABSTRACT

The need for research of reproducibility of fuzzy systems has been

established. The definition of reproducibility has been given. The

necessary and sufficient conditions of reproducibility of regular fuzzy

sets are given. The concept of fuzzy interval has been defined. The

theorems stating the necessary and sufficient conditions of reproducibility

of fuzzy intervals have also been given. The connection between

reproducibility of regular fuzzy sets as well as fuzzy intervals is

illustrated by a theorem. The above theorems are illustrated by

examples.
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1. INTRODUCTION

One of the basic problems in the theory of fuzzy control is the

construction of fuzzy models for objects and controllers. This issue

is based on the building of fuzzy relations. In the papers [20,21] the

definition of fuzzy relation, the means of fuzzy model constructions

and possible applications have been shown.

The problem of fuzzy relation properties with respect to fuzzy

controllers has been discussed in [1,16,17,19]. The quality assessment

of fuzzy models as well as the technique of such model construction for

actual objects have been researched in [13,14,15].

The issue of fuzzy implications, composition rule of inference

and fuzzy relations have been investigated in [2,3,5,10,11,12,18].

The good mapping property, stability, sensitivity, controllability

and convergence of fuzzy relations in light of analysis and synthesis

of fuzzy systems have been studied in [4,6,7,8,9].

On the basis of the results cited above, intuition and experience

in designing of controllers and fuzzy models it has been established

that in many cases fuzzy relation is an adequate description of an

object if it has property of reproducibility with respect to certain

classes of fuzzy sets.

In an informal way one can say, that by reproducibility we

mean such feature of fuzzy relation which is based on maintenance by

output sets of certain properties of fuzzy sets being inputs.

It is known that the form of fuzzy sets which constitute labels

of certain physical quantities is connected to their qualitative

aspects. For example, if we say that the temperature of boiler is

"about 150°C", we mean fuzzy set as on Fig. 1.1a. The current intensity
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of d.c. motor described as "medium" is illustrated in Fig. 1.1b.

The pressure of steam boiler described as "negative big" is shown in

Fig. 1.1c. To show that the speed of d.c. motor is equal to

"1250 r.p.m."we use fuzzy singleton as on Fig. 1.Id.

Let us notice certain common properties of fuzzy sets shown on

Fig. 1.1 which are linguistic description of physical quantitites. All

of membership functions are unimodals and achieve the maximal value of

one.

If the membership function of a fuzzy set achieves the maximal

value of one then such a set we call a regular set.

If the membership function of a fuzzy set is an unimodaled one,

then such a set we call a fuzzy interval.

If the relation does not have reproducibility property with

respect to a certain class of fuzzy sets though from an intuitive point

of view it should have, it can either indicate an improper interpretation

of linguistic description of object or errors made during the construction

of relation.

One can assume that such a relation will not be a realistic description

of the object.

If we take under consideration the system described by the equation

Y = X • R and allow that the input and output of such a system are as

in Fig. 1.2a then in view of earlier observation the relation R has

property of reproducibility with respect to fuzzy intervals and

regular sets.

The situation shown on Fig. 1.2b, i.e. input is a fuzzy singleton

and output is a fuzzy interval (an especially interesting case from

the point of view of applications) is desired phenomenon. If input

of system is fuzzy set Xg and output is Y~ then relation does not
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have property of reproducibility with respect to regular sets. Fuzzy

set which is not regular set is difficult to interpret linguistically

i.e. is quite difficult to prescribe to it a linguistic label naming

physical quantity which this set represents. One thinks that there has

occured a loss of information and the description of the object is

incomplete. The situation in this case becomes even more complicated

when irregular set is the input for another system e.g. control action

for object. Of course linguistic description of cooperation of objects

becomes extremely difficult.

Suppose that for input X4 (Fig. 1.2d) the system reacted as Y^.

It is clear that input is fuzzy interval and regular set, but the output

of system does not have those properties, i.e. fuzzy relation R

has reproducibility properties neither with respect to regular sets

nor fuzzy intervals. In this case it is quite difficult to find the

determined value of fuzzy sets. The search for determined value through

the center of area of Figure Y, is not convincing. As in the case of

irregular sets it is difficult to attribute a linguistic label to a

set which is not an interval.

The property of reproducibility of fuzzy intervals is an analogue

to continuity as shown by the following

Lemma 0

If a function f : IR •+ IR has not discontinuities of second kind

then it is continuous if and only if the image of each interval is

an interval.

Example 1. The following function has discontinuoities of first

kind and image of the interval [x0,x-j] is the union of disjoint intervals

[y0»yi] and Ly2,y3). (Fig. 1.3)
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Figure 1.2e shows another example of reproducibility of desired

characteristics of input set. Questions concerning other features of

system like stability, sensitivity etc. become very doubtful when

fuzzy relation R does not have reproducibility property.

The subject of this paper will be fuzzy dynamic systems described

by equations Xt+1 = Xt • R, Xt+1 = XtUt • Rand fuzzy static systems

described by Y = X • R; where X.-fuzzy state at instant t, U.-fuzzy

input at instant t; X,Y-input and output of static system.

There have been given the definitions of reproducibility of

regular sets and fuzzy intervals in Section II.

Theorems giving conditions for reproducibility of fuzzy intervals

and regular sets and connections between reproducibility of regular sets

and fuzzy intervals have been shown in the same section.

II. THE REPRODUCIBILITY PROPERTY OF FUZZY RELATIONS

F will denote the family of all fuzzy sets defined on a

set X. All fuzzy sets we consider later will be defined on finite

sets. To better illustrate theorems we will draw pictures using fuzzy

sets defined on infinite sets.

Definition 1

A fuzzy set X is called regular if ux(x) = 1 for some xe X. «

The family of all regular fuzzy sets on X will be denoted by

Lemma 1

The Cartesian product of fuzzy sets X,,...,X is a regular fuzzy

set if and only if all fuzzy sets X-,,...,X are regular.

-5-



Proof

If X = X,x...*X is a regular fuzzy set then

1 n

Uv(x) = 1 for some x = (x ,...,x ).

19 n

1 = uY(x) = min(uY (x ),uY (x )»---»UY (x ))•

kk

Thus all fuzzy sets X.|,...,X are regular.

Assume that all fuzzy sets X.p...,Xn are regular. Then there
1 O n \f

exist points x ,x ,...,x such that uY (x ) = 1 for k = l,2,...,n.
Ak

1 9 n 1 ? t\
uY(x) = Hv((x ,x ,...,x )) = min(uY (x),yY (x ),...,yx (x )) = 1, what

A A An An A

implies that X is regular. n

Let R be a "maxmin" fuzzy relation represented by a matrix {rYV}.

R:Fx •> F X-»• Y=X•R, uY(y) =max min{ux(x),rxy}.
X^K

Let F c f and G c F be some families of fuzzy sets.

Definition 2

A fuzzy relation R has the reproducibility property with respect

to (V,G) (abbreviated as (F,G)-RP) if X • R e G for all X e F. n

Theorem 1

A fuzzy relation R has (F^,Fy)-RP if and only if

max rv = 1 for all x e x. (2.1)
yey xy

Proof

(i) Necessity .

Let us suppose that there exists x € x such that max r = a < 1.
yey xy

The fuzzy singleton {x} (denoted also 1/x) is regular. If 1/x • R = Y,

then max u„(y) = max r = a < 1.
yey Y y€/ Ay

This proves the necessity of condition (2.1).

kU„ (x ) = 1 for k = l,2,...,n.
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(ii) Sufficiency.
D

Let Xe Fw . There exists xQ£X such that Pv(xq) = 1.

By condition (2.1) there exists yQ € Vsuch that r

Let Y = X • R. Then
k0y0

= 1

UY(y0) = max min(ux(x),r )> min(yY(xn),r )= 1
Y u x€X A xy0 " x ° x0y0

Thus Y is regular. «

Remark 1

The theorem 1 states sufficient and necessary conditions for the

reproducibility of fuzzy regular sets. Each row of the fuzzy matrix R

must contain 1 to satisfy this property.

Example 2

Let

1. .5 .3 .ll

.9 .4 .2 1.

.6 1. .7 .0

.3 .4 1. .2

R =

I:

If for example X = [.2 1. .4 .3] then Y = X • R = [.9 .4 .4 1.] and Y

is a regular set. n

Let us assume that X bears the structure of linearly ordered set.

Let < denote the order in X.

Definition 3

A fuzzy set X e Fw is called a fuzzy interval if ii„(x) is a non-

decreasing function of x for x£ xQ and a nonincreasing function of x

for xQ £ x, where xQ is some point in X.

Remark 2

A fuzzy set representing classic interval is also a fuzzy interval.

Example 3

A fuzzy interval is shown in Fig. 2.1.
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Let X = X-|X...xXn, where {Xk> are linearly ordered sets. The

orders will be denoted by the same sign <. If xQ,x, e x then the set

of all points x=(x\x2,...,xn) exsuch that xk lies between x£ and
xk for all k(i.e. either xk <xk <xk or xk <xk <Xq) will be denoted
Xq,x,. Xq,x^ is an n-dimensional interval in classic sense.

Definition 4

A fuzzy set X£F is called a fuzzy n-dimensional interval (or
A

simply a fuzzy interval) if for all Xq.x^ e X and all xe xT73Tf we have

ux(x) >min(ux(x0),ux(x1)).

Example 4

A fuzzy 2-dimensional interval is shown in Fig. 2.2.

Remark 3

It is easy to see that Definition 3 is a special case of Definition 4.

Remark 4

A fuzzy set represeting a classic n-dimensional interval is a

fuzzy n-dimensional interval.

The families of all fuzzy n-dimensional intervals and all

n-dimensional intervals will be denoted by F* and F», respectively.

Lemma 2

The Cartesian product of fuzzy intervals is a fuzzy interval.

Proof

Let X.j,X2,...,Xn be fuzzy intervals and X= X,xX2x...xX G Fx.

Let also xQ,x, ,x e f and x€ xITxT.

By definition of xQ,x and assumption of the lemma we have

Ux (x )>min(ux (xQ),ux (xk)) for all k.
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By definition of Cartesian product of fuzzy sets we obtain

)) >min(min(ux (xk),jix (x\,
K K K

k k=min(min(ux(x0)), min(Ux (y^))) =min(yx(x0),]ix(x1))

yx(x) = min(uY (xK)) >min(min(uY (x£),yY (x?))
k Ak " k xk ° Xk *

£))'. min(Ux '--/Jc
k Ak ° k Xk

Remark 5

All fuzzy intervals involved in Lemma 2 can be taken fuzzy

multi-dimensional intervals.

Remark 6

The converse to Lemma 2 is also true: an n-dimensional interval

is a product of some fuzzy intervals.

Let X = X-jX...xXn be the Cartesian product of ordered sets,

/-an ordered set and let R :Fx -*• F be a "maxmin" fuzzy relation.

Lemma 3

Afuzzy relation Rhas the (FXiF*)-RP if and only if it has
(fJ.fJ)-rp.
Proof

Necessity is obvious since F^ cF*
To prove sufficiency let us assume that there exists a fuzzy

interval X€ F* such that Y=X•R£ F1.
x y

There exist y0»y-j and ye ysuch that yQ 1 y1 y-i and

uY(y) <min^yghnY^)) =a.

It implies existance of xQ,x, e X such that

min(ux(xQ),r )> aand minfu^),^ )>a.

Px(xQ) _> a and Ux(x-j) >a.

X is a fuzzy interval so ux(x)' >a for all x<= xTTxT.

a > yY(y) = max min(uy(x),r )> max min(uY(x),r ,)t x€X a xy -x€£^q- X xy
> max__min(a,r ) = min(a, max r ).
xGx0,xl xtf=x0'xi y
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The last inequality can be satisfied only if max r <a.
xoGvxTxy

Let Y-j =xQ,x1 • R.

Yl U x^X VX1 ° xy0 x^xy xy0~ VO"
Similarly yY (yJ 2. a-

UY (y) = max min(y—-rr-(x),r ) = max rvw< a.
Yl x©( xO'xl xy x^x0,x1 **

Thus Y, £ Fy, Y, =xTTxT •Rand xQ,x, € f The assumption that

Rhas not (fLf^)-RP leads us to the conclusion that Rhas not
(fJ.fJ)-rp.

Before formulation of next theorem we need some more definitions and

notation.

Let X = X.,x...>OL and Xn ex.
1 n 0

Definition 5

Points xQ,x, e xq are called Xg-close (xQ - x,(mod XQ)) if

x0'xl nxo ={Vxi}-
Example 5

In this case we have

^n "" \Xq,X j ,XpjXqJ"

xQ - x^mod XQ)

x1 + x3(mod XQ). (Fig. 2.3)
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Let R be a fuzzy relation, R : Fv + F„, where X = X,x...xx .
Ay In

X.j,X2,...,Xn and Vare linearly ordered.

Let us denote rY = max r . The set of all numbers r , x e X
* ygy W X

is finite.

Let they be called r}9r ,...,rk and assume that r1 >r2>... >rk.

Now for each s=l,2,...,k, let X^s' be the set of all points
x€ x such that rv > rs.

Theorem 2

A fuzzy relation Rhas the (F*,F*)-RP if and only if

(i) for all x e X the fuzzy set Y e f defined by

Vy) - rxy (2.2)
is a fuzzy interval and

(ii) for all s=l,2,...,k and all xQ,x, €X^s' which are
(s)

Xv -close the fuzzy set Y € F defined by
y

uy(y) =maxCr^.r^) (2.3)
is a fuzzy interval.

Example 6

In order to check if a fuzzy relation R has the (F.,,Fy)-RP one

should check whether images of fuzzy singletons (e.g. X,) are fuzzy

intervals and images of sets defined in part (ii) of theorem 2

(e.g. X«) are also fuzzy intervals, (see Fig. 2.4)

Remark 7

If condition (i) is satisfied then (ii) is equivalent to the

following condition

(iii) for all s=l,2,...,k and xQ,x1 ex's' which are X^-close
the fuzzy set Y, e F defined by

rs if max(r
xC

yY.M = (2.4)
0 otherwi se

r if max(r ,r ) > r"
x0y r
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is a fuzzy interval.

Proof

(11)-* (111)

If there exist yQ <y<y] with yy (y) <min(uY (yQ),uY (y-j)) then

PY(y) <rs =min(uy (y0),uY (y^) <min(uY(y0),uY(y1)).
(iii) => (ii)

If there exist yQ<y*<y*[ with uY(y*) < min(uY(yc),u(y1))

then by (i) and assumption Xq.x^ ex^s' the maximum of r and r
with respect to y are attained on opposite sides of y*, at y and

2

y3, say. Then uY (y2) =uY (y3) =rs and uY (y*) =0. n

To prove theorem 2 we will need the following

Lemma 4

If Xq.x^ € Xq c x then there exists a set of points (maybe empty)

z]9z2,...9zm eXQ such that xQ -z^mod XQ), z1 ~z2(mod XQ),...,

zm ~xl(mod xo^- Moreover, z1,z2,...,zfn can be chosen from XQ nxQ,xr
Proof

If xQ is not XQ-close to x] then x^TxJ nXQ =X1 ? {Xq.Xj}.

It is easy to see that if x3 f x4 and x4 ex^xj then x3 £x^\

Thus, by finiteness of X1 there exists z] such that xQ,z1 nx] ={x0,z,}

We can construct by induction asequence of points z,,z2,...,

such that zs,zs+1 n(1^ n^) ={zs.zs+l}"
It is not hard to see that the induction process must terminate

and z's constitute the desirable set of points. n

Proof of theorem 2

Necessity.

At first assume that (i) is not satisfied, i.e. there exists

xQ ex such that Ydefined by (2.2) is not a fuzzy interval. l/xQ

is a fuzzy interval and l/xQ •R= Y. This proves the necessity of (i).
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Now assume that (iii) is not satisfied. (Notice Remark 7). Let

Vxl eX^' x0 ~xi(mod x^) and let Yi defined by (2.4) be not a
fuzzy interval.

We will show that Y2 = xQ,x1 • R£ F .

Let yQ,y,y} e y9 yQ <y< y] and

0=uy (y) <min(yY (y0)^ (y^) =rs.

uv (yn) = max min(ii » (x),rxy ) = max r
Y2 ° xOC x0*xl ^0 x<gxo»xi °

i"x(Vo,Vo,iPYi(yo)BrS'
Similarly uv (y-,) > r .

Y2 ' "
]iY (y) =max min(p——(x^r ) = max r

Y2 x6X x0' 1 ** x©c0,x1 xy

= max( max rYV»rY v*rY JxSxQ.x^ixQ.x^ xy V xly
<max( max f ,r v,r v)

x^^Ix^x^} x V xly
<max(rS+1,max(rY v,r v)) <max(rs,rs) =rs.

This implies that Y2 £F*
Sufficiency.

Let us assume that there exists Xe F^ and Y1 = X•R£ F.

Let yQ,y},y e y, yQ <y< y} be such that

yY (y) <min(uY (y0),uY (y-,)) =a.

a < uv (yn) = max min(u„(x),r )
~ Yi u x€X A xy0

- ™(ux(x0),rVo) <r^ for suitable xQ.

Similarly a < r v for suitable Xt e X.
~ xlyl '
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rs =min(?v ,r )>min(r ,r )>a, for some s. xn,x, e x*s\
x0 xl x0y0 lyl " u '

a > uY (y) = max min(yY(x),r ) > max min(uv(x),r )
Yl x6X * xy ~xex0,x1 x xy

> max_min(min(yx(x0),ux(x1)),r )

_> max min(g,r ) = min(a, max r ).
x^Cq»x^ xeXftjX,

It follows that

max_ r < a (2.5)

x€Vxl
Let z1,z2,...,zm be picked as in Lemma 4. z,,z2,...,z e K^SK
The maximum of characteristic function of any of fuzzy sets corresponding

to xQ,z1,...,zk,x1 by (2.2) is not less than rs >a.

But the values of these characteristic functions computed at y

are all less than a by (2.5). Thus the maxima can be attained either

to the left or to the right from y.

It is easy to see that the maxima of r and r (with respect
X/\U x^u

to u) are attained at y3 <y and y- >y respectively.

There exist two points among xQ,z1,...,x1 which are X^-close
and such that the maxima of the characteristic functions of the

fuzzy sets corresponding to them are attained on the opposite sides

of y. The fuzzy set corresponding to this pair of points by (2.3)

is not a fuzzy interval. This contradiction proves sufficiency of

conditions (i) and (ii). n

The condition (ii) of theorem 2 is complicated in this general

setting. It becomes, however, much simpler in some special cases,

which seem to be interesting and important for applications.
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Example 7

Let

R =

"1. .5 0. 0. 0. 0. 0. 0. 0,

.5 .5 .5 .5 0. 0. 0. 0. 0,

0. .5 1. .5 0. 0. 0. 0. 0.

0. .5 .5 .5 .5 .5 0. 0. 0.

0. 0. 0. .5 1. .5 .5 0. 0,

0. 0. 0. .5 .5 1. .5 0. 0.

0. 0. 0. 0. .5 .5 .5 0. 0.

0. 0. 0. 0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. 0. 0. 0.

Suppose that X = [.8 1. .8 .0 .0 .0 .0 .0 .0]. It is a

regular set and a fuzzy interval. Then Y = X • R

= [.8 .5 .8 .5 .0 .0 .0 .0 .0] is neither fuzzy interval

nor regular set. Relation R has the reproducibility property

neither with respect to fuzzy intervals nor regular sets.

Example 8

Let

1. .5 0. 0. 0. 0. 0. 0. 0.

.5 .5 .5 .5 .5 0. 0. 0. 0.

0. 1. 1. .5 0. 0. 0. 0. 0.

0. .5 .5 .5 .5 .5 0. 0. 0.

0. 0. .5 1. 1. .5 .5 0. 0.

0. 0. 0. .5 .5 1. .5 0. 0.

0. 0. 0. 0. .5 .5 .5 0. 0.

0. 0. 0. 0. 0. 0. 0. 0. 0.

Let X be as above (ex. 7).

Then Y = X • R = [.8 .8 .8 .5 .0 .0 .0 .0 .0] is a

fuzzy interval, but is not a regular set. Relation does not have

the reproducibility property with respect to regular sets, but it

reproduces fuzzy intervals.

R =
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Two points xQ,x1 € X =X^...^ will be called adjacent if

XqjX-i - IXqjX-j/.

Theorem 3

If afuzzy relation Rhas the (F*,Fy)-RP then it has (F*,F*)-RP
if and only if

(i) for all x € x the fuzzy set Y e F. defined by

uY(y) =r^

is a fuzzy interval and

(ii) the fuzzy set Y defined by

uY(y) -maxfr^,^^)
if a fuzzy interval for all pairs xQ,x1 of adjacent points.

Example 9

Sets X-j and X2 correspond to pairs of adjacent points and are

the examples of inputs for which one need to check if their images

are fuzzy intervals (see Fig. 2.5).

Proof of Theorem 3

By Theorem 1 max r = 1 for all x e X. Thus k = 1 and the
x€X xy

condition (ii) of Theorem 2must be checked for all xQ,x, X-close.

It is easy to see that xQ and x1 are X-close if and only if xQ and x,
are adjacent. n

Remark 8

If X is a set of L elements, linearly ordered then there are

L-1 pairs of adjacent points. If Rhas the (f£,F*)-RP then in order
to check whether it has (F^F^J-RP one needs to check if 2L-1 fuzzy
sets described by conditions (i) and (ii) of theorem 3 are transformed

by R to fuzzy intervals.
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Example 10

Let

R =

1. .5 .5 .0 .0 .0 .0 .0 .0"

.5 1. 1. .5 .0 .0 .0 .0 .0

0. 0. 1. 1. .5 .5 0. 0. 0.

0. 0. 0. .5 1. .5 0. 0. 0.

0. 0. .5 1. 0. 0. 0. 0. 0.

0. .5 1. 1. .5 0. 0. 0. 0.

0. 0. 0. .5 1. .5 0. 0. 0.

0. 0. 0. 0. 1. 1. .5 0. 0.

0. 0. 0. 0. 0. .5 1. .5 0.

Suppose that X = [.0 .0 .2 .9 .8 .7 .2 .1 .0], then

Y = X • R = [.0 .5 .7 .8 .9 .5 .1 .0 .0] is a regular set and

a fuzzy interval.

Relation has the reproducibility property with respect to regular

sets and fuzzy intervals.

Exampl e 11

Consider the process X.+1 = X.U.-R, where

i. A .2 .2 37TT

.3 .7 .2 .7 .8 0.

.7 .8 .7 1. .8 0.

9. 0. 1. 5. .2 0.

.0 1. .2 0. 0. 0.

.7 1. .8 1. 1. 0.

.7 1. 1. 1. .7 0.

9. 1. .7 1. .7 0.

R •

.4 1. 1. .8 .2 .2

1. .6 1. 1. 1. .4

1. .6 .7 .6 .7 .1

.2 1. .5 .5 1. .4

.7 1. .7 1. .8 .2

1. .4 1. .7 .1 .7

1. .4 .3 .2 .5 1.

.7 1. .2 .2 1. .7

1. .7 .4 .8 1. .8

.8 .2 1. .3 .5 1.

.7 .0 .2 .0 .2 .7

I. .7 .0 .0 .2 1.

1. .0 .0 .2 .8 1.

.4 .0 .8 .2 .2 .7

.4 .0 .0 .0 .0 .0

1. .2 .0 .0 .0 1.
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Suppose that X =[.0 .0 .0 .0 1. .0] and Ut =[.0 .0 1. 0.]

are fuzzy singletons, then

vt =

0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 1. 0.

0. 0. 0. 0. 0. 0.

Therefore Xt+1 =[.0 .2 .5 .7 .7 .6]isa fuzzy interval, but

is not a regular set.

This 3-dimensional relation has the reproducibility property with

respect to fuzzy intervals, but it does not have the reproducibility

property with respect to regular sets.

Example 12

Let

1. .0 .0 .2 .8 1

.4 .0 .8 .2 .2 .7

.4 .0 .0 .0 .0 .0

1. .2 0. 0. 0. 1

I. .7 .4 .8 1. .8

8 .2 1. .3 .5 1

7 .0.2.0.2 .7|

I. .7 .0 .0 .2 .1

.7 1. .7 1. .8 .2

1. .4 1. .7 1. .7

1. .4 .3 .2 .5 1

.7 1. .2 .2 1. .7

). .8 1. .2 0. 0

7 1. .8 1. I. 0.

7 1. 1. .7 1. 0

.0 1. .7 1. .7 0.

4 1. 1. .8 .2 .2

p. .6I. 1. 1. .4

8 .7 .8 I. .7

2 1. .5 .5 1. .4

0 .3 .2 .2 0. 0,

3 .7 .2 .7 .8 0,

7 .8 .7 1. .6 0.

0 .0 1. .5 .2 0.

Suppose that Xt and Ut are as above (ex. 11). Then X.+] =XU. •R

= [.0 .2 .5 1. 1. .6] is a fuzzy interval and a regular set.

This relation reproduces fuzzy intervals and regular sets.

III. Concluding Remarks

Intention of this paper is to provide the method of checking

correctness of fuzzy relation being the model for a real system.

The algebraic criteriae of theorems given in this article allow

us to test if a fuzzy relation proposed by designer has the reproducibility

-18-



property with respect to fuzzy intervals and regular sets. Those criteriae

should be applied to test the relation correctness when intuition or

experience are prompting that real system has appropriate properties.

The authors suggest that fuzzy relation describing the object

characterized by a continuous mapping of input to output should have the

reproducibility property with respect to fuzzy intervals.
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