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ABSTRACT

Passivity is perhaps the most basic concept in circuit theory.

Unfortunately, the" existing definitions of passivity are too restrictive

and often contradict one another. In this paper, a new passivity defini

tion is proposed which is applicable to all n-port and (n+1)-terminal

devices — including time-varying, nonlinear, and distributed circuit

elements. This definition generalizes and reconciles several recent

conflicting definitions.

*

Research supported in part by the Office of Naval Research under Con
tract No. N00014-76-0572 and the National Science Foundation under
Grant No. ECS-80-20-640.

+P.J. Moylan is with the University of Newcastle, New South Wales,
Australia.
L.O. Chua and E.W. Szeto are with the University of California, Berkeley,
California.



1. INTRODUCTION

Several recent publications, see for example [1,2], have made it

clear that there is still not universal agreement on how the term

"passivity" should be defined. Because passivity is a long-standing and

often-used concept, it is undesirable that the word be used with several

different meanings. The purpose of this paper is to propose a defini

tion which, in effect, reconciles the differences among the existing

competing definitions. As a means to this end, it is necessary to look

very carefully at what is meant by a model of a device. In fact, there

are three concepts to be explored: (a) passivity of a state-space model;

(b) passivity of an input-output model; (c) passivity of a device. The

existing literature treats issues (a) and (b). Our aim here is to tie

together (a) and (b), and thence to look at (c). The bulk of this

paper is an extension of several results of the state-space theory, to

a situation where a state-space model need not exist.

Superficially, it would appear that one could define passivity via

the inequality

J v(t)Ti(t)dt >0 (1.1)
t0

The difficulty with this approach is that it does not account for

initial stored energy. One must require that (1.1) only hold when the

circuit is started in a "relaxed state" [3]; alternatively, one must

modify (1.1) to allow explicitly for stored energy terms, as in [4].
For the classes of circuits treated in [3] and [4] these two defini

tions are adequate and indeed equivalent. In general, though, it is

surprisingly difficult to state precisely what is meant by the terms

"relaxed state" and "stored energy," so that the definitions become

ambiguous [8].

A resolution of these problems has been presented in [2], but only

for the case where a state-space model can be written down. To allow

for the widest possible class of circuits, we need to work with what is

generally called an input-output model. This allows us to bypass the
concept of "state," and specify a device purely in terms of its admissi
ble signals (voltages and currents). A new complication, though , is
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that the input-output model implicitly assumes fixed initial conditions.
That is, it describes only one frame of the device, for the given or

implied initial conditions, rather than the whole device. (In contrast,
a state-space model automatically includes a specification of the effect
of initial conditions, via the parameter called initial state.) One

effect is that the input-output definition of passivity in [5] is not
equivalent to that in [4], although they look the same. Even the
stability properties of a "passive" circuit depend crucfally on which

definition of passivity one uses [6].

The approach in [1] and [6] does allow for the effect of initial
conditions, while in other ways retaining the spirit of the input-output

approach as in [5]. However the central results of [1,6] depend in an
essential way on the existence of a.state space. To our knowledge,

there is no treatment in the literature of device models with the gen

erality allowed by an input-output approach, retaining at the same time

the ability to describe initial condition effects. The present paper

provides such an approach. The main contributions are

(i) A framework (Section 2) which allows one to discuss initial

condition effects in an input-output setting;

(ii) The introduction of the concept of attainability (Section 3),
which is closely allied to the state-space notion of reachability;

and the extension (Theorem 3.5) to an input-output setting of an

important property of stored energy;

(iii) The reconciliation (Section 4) of several apparently conflicting

definitions of passivity.

Because we do not necessarily assume the existence of a state-space,

we need an extremely general definition of a "device." All that is

required is a description of the set of admissible signals at the device's
interface to the external world. In particular, the device might be an

n-port as in Fig. la, or an (n+1)-terminal device as in Fig. lb. In

those cases, the "signal" could be a vector of port or terminal voltages

and currents. Another possibility is a "distributed port" where voltage

and current are a function of space coordinates, so that the signal at

each time is an infinite-dimensional vector. Time-varying circuits

are allowed. It is not assumed that to each voltage there exists a

unique current, nor vice versa. Incidentally, we do not assume causality,
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for an important reason: in an electrical n-port, it is often not clear

which of the signal components (voltages and currents) should be called

"inputs," and which should be called "outputs." Circuit analysts

commonly make an arbitrary choice. To avoid such complications, we have

chosen simply to abolish the distinction between inputs and outputs.

2. DEVICE MODELS

In this section, we shall briefly discuss passivity for the case

where a state-space model is available, and then show how some of the

state-space properties can be carried over to a situation where only an

input-output description is available. Since our main interest lies

in looking at the input^output case, only an outline of the details for

the state-space case will be given; for a more rigorous treatment, the

interested reader should consult [2].

For reasons that will later become clear, we need to consider

devices with possibly variable parameters. Thus, with a device V we

associate a state-space model S(p) — or, more precisely, the collection

of all S(p) as p takes all values in some set P. That is, for each pep,

S(p) is a state-space description (satisfying the usual axioms — see

for example [2]), with state-space I , input space U, and output space

V. To keep the notation simple, we suppose that I ,(J and / do not
depend on p. For much of what follows, there is actually no need to

distinguish between inputs and outputs. Indeed, for many electrical .

circuits the designation of some port voltages and currents as "inputs"

and others as "outputs" creates an asymmetry which is somewhat artificial

It makes sense, then, to define a signal space S containing all signals

of interest. Most commonly, we will find that S can be decomposed into

the form S = S, xS«, because the "interesting" signals of an n-port tend

to occur in pairs (e.g., the voltage and current at each port). The

obvious choice is S = U*V; but, as the following examples indicate,

there are sometimes better choices.

(2.1) Example. For the nonlinear two-port described by

vi - vw
i2 = f2(irv2)
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we have a null state-space. If we want our mathematical model

to describe, say, voltages and currents which are continuous func

tions of time, then U=y= C2[0,~), where Cn[0,») is the space
of continuous n-vector functions of time. The variables i-j and
v« are inputs, and v1 and i« are outputs. But since the distinc
tion between inputs and outputs is irrelevant to our present

purposes, we can simply lump all four variables together as a

vector s<=s, where S=C4[0,«). Some ways of writing s(t) are
as sOO-tyO:) v2(t) 1,(1;) i2(t)]T, or s(t) =[v^t) i^t)
v2(t) i2(t)]T, or

s(t) =
v^t) i^t)"

v2(t) i2(t)
1 , / r~vi (tn r^tri

, or s(t) = i

9

c

V i-^t) i2(t)

or several other possibilities. Which of these is chosen is

purely a matter of notational convention, and does not affect

the basic theory. n

(2.2) Example. For the element described by

dt T \ dt /

A simple state-space description is

x-, = u

x2 = f(u)

with output equation

y =
L*2J

A diHere, u(= ^4- ) is a newly defined variable introduced solely
for the purpose of setting up state equations. We need u as

+There are many other devices which require a similar treatment. For
example, the higher-order elements defined in [9] with 3>0 or a < 3 < 0
belong to this class.
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a "signal of interest" in the state-space description. For a

port variable description, though, all we need is s(t) = [v(t)

i(t)] , so S = V in this case. n

(2.3) Example. All our examples so far have used voltages and currents

as signals, but this is not essential. If we wanted to use a

scattering description for a circuit, then a more likely choice

would be something like s(t) = [v(t)-i(t), v(t)+i(t)]T. «

For any consideration of passivity, an important quantity is the

energy entering the device . This is a function of the time interval

over which measurements are taken, and of the signals at the ports. Let

the energy supplied to the device over time interval [t0»t,] be denoted
E(s,tQ,t-j), where s^Sis the signal.^ For an n-port, an explicit formula is

tlEfs,^,^) =| v(t)Ti(t)dt
'0

where v(t) and i(t) are vectors of port voltages and currents, with the

usual sign conventions. To complete the definition, it is necessary to

specify how viand i depend on s.

Let (V(s(t)), I(s(t))) be a pair of functions such that

(v(t),i(t)) = (V(s(t)M(s(t))).

The pair (V(s(t)),I(s(t))) will be called the port voltage-current

readout map.

(2.4) Example. For the nonlinear two-port in Example (2.1), if we

had chosen

s(t) =[Vl(t) v2(t) 1,(1:) i2(t)]T,
we would have

v(.ct))-|j?83.(t)
and

Us(t)) -|o 003s^-
For the choice of s(t) in the scattering description of Example

(2.3), we have:

-6-



V(s(t)) = [ 1/2 l/2]s(t)

and

Ks(t)) = [-1/2 l/2]s(t) h

When the port readout map exists, the energy entering the device

in the time interval [tg,t,] is given by

t1
E(s,tn,t,) =( VT(s(t))I(s(t))dt

A standard assumption is thct for the device under consi

deration, the quantity in the integrand is integrable over any finite

interval in IR. This simply means that in any finite time interval,

the energy entering the device is finite, and is not at all a strong

restriction.

Most generally, though, we cannot guarantee the existence of a

readout map of the above form. Two practical examples are:

(a) Ifs(t) is a vector of voltmeter and ammeter readings, then at even

moderately high frequencies the meter dynamics cannot be neglected; so

s, v and i are related by differential equations. In this case a readout

map can still be defined (although not precisely in the form introduced

above), but v(t) and i(t) depend on the time evolution of s, rather

than on the signal s(t) at one point in time.

(b) In high-frequency circuits, and also in LSI circuits, the inter

connections between components are distributed in space, and there are no

well-defined "ports" or "terminals". In this case the voltages and

currents must be written in the form v(z,t) and i(z,t), where z is a

vector of space co-ordinates. Correspondingly, s(t) will lie in some

infinite-dimensional space. The above energy integral must then be

replaced by an integration over both space and time co-ordinates.

It would be a tedious matter to write down a single energy

formula which covered all such cases (together, perhaps, with cases which

have not occurred to the authors). Fortunately, the results of this paper

do not depend on the precise form of E (•,•»•)• We do require, however,

that the following properties hold.

-7-



(2.5) Assumption. For ewery s e S, and every tQ, t1, GIR such
that tQ <.tj, E (s, tQ, t^) is a well-defined number in IR u {-«>, +<»},
and

(a) E (s, tQ, tQ) =0

(b) E(s, tQ, t}) =E(s, tQ, t})9 for any s such that s (t) =s (t)
for all t € [tg,^]

(c) E(s, tQ, t2) =E(s, tQ, t.j) +E(s, tr t2) whenever t0£t. <t£,

Assumption (2.5) is trivially satisfied when a port readout map
exists, and is also satisfied in ewery other case known to the authors.

Another important quantity is the available energy:

EA((x0,p),tn) = sup {-Efs.t^tJ}
A u ° s GX((xQ,p),t0) ° ]

where X((xQ,p),tn)csis the set of all admissible signals consistent with
the initial condition x(tQ)=x0 and parameter setting p. (The extra
parentheses around (xQ,p) are for consistency with a more formal defini
tion to be given later). It is readily seen that this method of writing

E« is equivalent to the more usual definitions — see for example [1,2]

— where the signal space is split into separate input and output spaces.

The properties of EA are intimately linked with passivity [1,2], and in
fact the passivity definition in [2] is stated directly in terms of

finiteness of E-.

Most of what has been said, so far, works equally well in a state-

space setting or an input-output setting. However E^ is a function of
initial state; and input-output models lack the concept of initial state.
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Here we must face a fundamental distinction between a state-space model

and an input-output mapping: a state-space description implicitly des

cribes the admissible signals for every possible initial state. Input-

output descriptions, on the other hand, describe what happens for a

fixed initial state. So, for a device V for which we have a set of

state-space descriptions {S(p) =p€Ph the usual input-output model des

cribes, not P, but something like P(xQ,p) for fixed xQ and p. Frequently,
only the case xQ =0 is considered.

When no state-space model is available, what substitutes for

initial state? The answer is that the admissible signals of a device

depend on a variety of factors — for example, temperature, initial

capacitor charges, manual knob settings — which we can lump together

under the general name of "parameters." Let r denote the set of all

possible parameters, and let y^T denote the parameter value in any one

experiment. When we have a state-space model, it will usually be possi

ble to write r= £*P and correspondingly to partition y = (xQ,p),

where £ is the state space and P accounts for every parameter which is

not an initial state. Even when no state-space model is available, it

will sometimes be possible to divide the parameters into "initial condi

tions" and "everything else." In general, though, we cannot always

expect to be able to make this distinction.

If V is the device, then we can denote that instance of the device

with parameter setting y, and with observations starting at time tg, as
P(Y»tQ). (Initial time might, of course, also be a component of y; but
it will simplify our notation if tQ is displayed explicitly, even if it
already occurs as a component of y.) Mathematically, P(Y>t0) is just
a set of signals — i.e., it is a subset of S. It will be convenient

for us to call P(Y>tQ) a frame of device V. The set of all admissible
signals for device V is, of course, the set {0{y^)'. y^T ,tQ<=IR}.

(2.6) Example. Consider the linear capacitor described by

ft
P((q0>C),t0) = {(v,i):Cv(t) =qQ+ iMdx}

t0
Here a signal in S has two components, the voltage v and current

i, and their relationship (i.e., the admissible set of (v,i)

pairs) is affected by the parameters qQ and C. If we suppose that
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qQ is allowed to take any real value, and that — perhaps via a
manual knob setting — C can take any real value in the range

[C,,C2], then r= K*[C,,^]. (With one special proviso: if
C-, <0<C2, then the parameter combinations q0^0, C=0 should be
be excluded from r.) If, in some application, it is desirable

to make the parameter space a linear space, we can simply embed

r in the larger space f=lR2. (If this is done, then it is impor
tant to insist that rcf, and that parameters are allowed to take

values only in r, not in the whole of r.)

Ignoring the possibility C=0, for simplicity, there are at least
two obvious state-space models for this device:

(i) The equations q= iand v=C" q. Here we have I =1R and
p= [crc2].

(ii) The equations q=i, C=0, and v=C" q. In this case

I = IR x[c,,C2] and P is the empty set. n

(2.7) Example. For the time-varying capacitor

P(q0,tQ) ={(v,i): (2+sint)v(t) =qQ +

an obvious set of state equations is

i(T)dx}

q = i

v =
1

2 + sint M

An equally plausible choice is the second-order (nonlinear but

time-invariant) set

q = i

C =^|(l-(C-2)^)
v = q/C

In this latter case we must of course restrict the initial condi

tion such that C(tQ) =2+sin tQ. That is, the set of permissi
ble initial conditions is not the entire state-space. a
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(2.8) Example. The multi-valued resistor

P(Y.t0) ={(v,i):v2(t) +i2(t) =lfor all t}

has no state-space representation in the usual sense. Also,

the parameter y has no effect, so the choice of I* is irrelevant.

For simplicity, we can just pick I* = {0}. n

Examples (2.6) and (2.7) illustrate the point that the choice of J

and P can be somewhat subjective. The parameter space r is more funda

mental , because it does not depend on the choice of a state-space. The

examples also demonstrate that an initial state can be interpreted as a

parameter, or vice-versa. This is the reason why, even when a state-

space model is available, we lump xQ and ptogether as y = (xq,p), with
out making a strong distinction between "initial condition parameters'.1

and "other parameters."

Earlier, a semi-formal definition of the available energy Eft was
given. It is now possible to give aformal definition, in aform which
does not depend on existence of a state-space.

(2.9) Definition

The available energy for device V is

sup

EA(Y.t0) =s€P(Y,t0) {-EU.to.t^}
t!>t0

Notice that this reduces to the previously given definition, in the
case where astate-space model is available and r= I * P. Thus, we
have aframework which works equally well whether or not a state-space
model can be written down. Although y cannot properly be called a
"state," it serves essentially the same purpose.

(2.10) Example. For the capacitor of Example (2.6), astraightforward
calculation gives Ets.tg,^) *\ Cv (t^ -^ qQ if C^O, or
zero if C is zero. Therefore
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lcqo ' if C>0
EA((q0,C),tQ) = 0 , if C = 0

* , if C<0

Example (2.7) is a little more complicated. Consider the case

qQ =0, t0 =0. If we consider the admissible voltage waveform

v(t) =

0 , 0 <t <|
- cos t, j<t±jr

0 » I1 <t <2ir
and calculate the corresponding current, the result is E(s,0,2ir)

p
=-j . If the same waveform is repeated periodically for N
periods, then E(s,0,2Nir) can be made as negative as desired by

taking large enough N. This means that EA(0,0)=«>. A more de

tailed analysis will show that ^(Pq^o^ =co for a11 q0 and t0*
n

The fact, illustrated above, that EA(Y>tQ) need not be finite (for
some or all y and tQ) should be borne in mind in the following section.

3. ATTAINABILITY

A fundamental concept in state-space theories is the notion of

reachability of one state from another. To say that x-| is reachable
from xQ on the time interval [tost,] means that there exists a state
trajectory x(t) such that x(t0) =x0 and x(t1) =x1- (A more precise
definition is given in the Appendix.) If we consider the parameter y in

P(Y»tQ) as being comparable to a state, is there any sense in which we
can say yi is reachable from y0? The immediate answer is no, because
Y is a constant in each experiment. There is no yU) to connect Yq to
Y-i. That is, we can interpret y as being like an initial state, but

there is no analog of "state trajectory" in the input-output model.

However, we shall show that it is possible to define something close to

reachability. Before doing this, it is necessary to establish some

notation.
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(3.1) Notation

For any s€S, sr. + -, denotes the signal such that
LV 1J

s(t) , for tQ <_ t <_ t,

0 , otherwise
(t) =s[t0,tl]

tFor s€S and T^IR, QTs means the same as SpT \.

For a set XCS, QTX means {QTs:seX}.

(3.2) Notation

For a given signal s^S,

^(y^qJIs^ }T] ={sGP(Y,t0):s(t) =s(t) Vte[tQ,T]} °

That is, fl(Y>t0) sV T-i is that subset (it might be empty) of
P(Y*t0) such that all signals are equal to son the interval [tQ,T], but
are otherwise unconstrained. Figure 2 shows a diagrammatic representa

tion, for the slightly oversimplified case where s(t) is a scalar. For

some fixed YQGr, the solid lines are intended to represent signals in
p(Yn,tn) sr. + -i, and the dotted lines are intended to represent all

other signals in P(Yn,t0). Now, it might well happen that that portion
of the solid lines from t-, onwards coincides with the signals in P(Y-|>>t-j)
for some y^ev which may be different from y This motivates the following
definition.

(3.3) Definition

For device V, we say that (yi.1^) is attained from (YQ»t0) ¥25. s

iff QtlXYvV ""t^Mo) [t0,tl]

(3.4) Definition

For device V and energy measure E, (Y-pt-j) is attainable from
(Y0,t0) iff 3set?(Y(),t0) such that (y-,,^) is attained from (Yg>t0)
via s, and E(s,t0»t.|) is finite.

QT is often called the anti-causal truncation operator,
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If one thinks of y as the "state" of the device, then this is

somewhat like state-space reachability. The precise connection is given

in the Appendix. With the aid of this newly introduced concept, we are

now able to state one of the most important results of this paper.

(3.5) Theorem. The available energy EA has the properties

(i) EA(Y»tQ)>0

for all (Y»t(0 such that P(Y,t0) is nonempty,

(ii) For any tg.t-jeiR, any Y0»Y-|€r, and any sep(y0,t0) such
that (Y-i»t-|) is attained from (Yg»t0) via s

(3.6) EA(Y0.t0) +£(8.^) lE^.t,)

A proof is given in the Appendix.

Inequality (3.6) is reminiscent of the well-known inequality

t-

Es(x(t0),tQ)
1 T

v(t)'l(t)dt >E^x^J.t.,)
t0

for a passive circuit, where Es(x,t) is the stored energy of the circuit,
and x(t) is the state at time t. Suppressing the technical details, which

may be found in [1,2,7], we simply note that inequalities of the above

form are fundamental to any careful discussion of passivity. The signi

ficance of Theorem (3.5) is that, for the first time, it states this

dissipation inequality without requiring the existence of a state-space

model.

Note that Theorem (3.5) does not require any sort of passivity

assumption. It turns out, though, that finiteness of EA(Y,t) will
require some sort of passivity property to hold (see Section 4). Obvi

ously inequality (3.6) is interesting and useful only when all terms are

finite.

4. DEFINING PASSIVITY

The following definitions are taken from [1,2], with minor and

non-significant changes to be consistent with our present notation.
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(4.1) Definition

P(Y»t0) is externally passive iff E(s,t0,t-|) ^ 0 for all set?(Y,tQ)
and all t-. >_ tQ. n

(4.2) Definition

V{yttrs) is externally weakly passive iff there exists some finite

3GIR such that E(s9t0,t.|) +3 >. 0 for all s6p(Y,tQ) and all
t > t n

(4.3) Definition

A state representation S(p) with state-space I is internally passive

iff EA((x,p),t0)<« for all xe£ and all tQeiR. °

(4.4) Definition

Arelaxed state of S(p) at tQ is any x* such that
EA((x*,p),tQ) =0. «

(4.5) Definition

A state representation S(p) with state-space I is internally
strongly passive if it is internally passive, and there exists some

relaxed state x e^.

In a very crude sense, external weak passivity is comparable to
internal passivity, and external passivity is comparable to internal
strong passivity. However an exact comparison would be pointless, be
cause the "internal" and "external" versions really refer to different

concepts. Definitions (4.1) and (4.2) do not define passivity of a
device; they refer only to frames P(Y»tQ) of V. Definitions (4.3) and
(4.5) refer to the whole state-space, and therefore to the whole device
in the special case r = £, but are only applicable when a state-space
model is available. Our aim in this section is to supply a passivity
definition which applies to V rather than just one of its frames, and
which is applicable whether or not a state-space model is available.

The historical background to Definitions (4.1) and (4.2) is easy
to deduce. The inequality Ets.tg.tj) >0says that P(Y,tQ) can never
deliver more energy to the external world than it has received; this
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clearly agrees with the generally accepted intuitive notion of "passivity."

On the other hand, it takes no account of initially stored energy. The

term 3 in Definition (4.2) allows for the possibility that some energy

is stored in P(Y»tg) at time tQ. Trivially, external passivity implies
external weak passivity. A more significant connection between the two

definitions is given in the following theorem.

(4.6) Theorem. If iHYg^tg) is externally passive, then P(Y-|>t.j) is
externally weakly passive, for every (Yi»t,) such that (Y-j>t-j)
is attainable from (Yg»tg).

Proof. Choose any s such that (y^t-i) is attained from (Yg>tg) via s.
(The choice is not in general unique, but an arbitrary choice will

suffice for the proof.) From Definition (4.1) and Assumption 2.5

it follows that

E(s,trt2) + Ets.tQ,^) >0

for all s€p(Yg,tg) Spt t -,. From Definition (3.3), and the fact

(Assumptions 2.5 again) that E(s,t,,t2) does not depend on s(t) for
any t<t,, we can deduce that the same inequality must hold for all

s£P(y.|,t.j). Finally, note that E(s,tg,t,) is fixed once s has been
chosen, so we can set 3 = E(s,tg,t«.). a

Another important result is the following.

(4.7) Theorem. P^tg) is externally weakly passive iff
01 EA(Y»tg) <«, and externally passive iff EA(Y»tg) = 0.

Proof. It is obvious that external weak passivity provides an upper

bound for the "sup" in Definition (2.9); in fact we have EA(Y»tg)_<3.
For the converse, note that Definition (2.9) implies that EA(Y»tg)
>^ -E(s,tg,t,) for any t, >_ tQ and any set?(y,tg). Thus we can set
3= EA(Y»tg). For the final assertion of the theorem, simply repeat the
above proof for the case 3 = 0. H

These results suggest that the correct generalization of the "relaxed

state" idea is a pair (Y*»tQ) such that Ea(y »tg) =0. This is certainly
a logical extension of the definition of "relaxed operating point" in

Note that, although 3 is a constant for each y and tQ, it will in gen
eral vary with y and tQ.
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[8]. If a device V is to be called passive, then, we ought to have the

properties

(i) P(y »tQ) is externally passive, for all relaxed {y ,tg); and

(ii) P(Y>tQ) is externally weakly passive, for all y€T and all
tgSlR.

There is, unfortunately, a complication. A linear circuit always has a

relaxed state, but this property does not extend to the general nonlinear

case.

(4.8) Example. Consider the capacitor whose voltage-charge characteris

tic is given by v=eci. That is, we have

P(q0>t0) = {(v,i):v(t) =exp(qQ +
t

1(t) dx)}

to
The available energy is EA(q,t)=eq; so P(q0,tg) is externally
weakly passive for all qQeIR and tg^IR. But there is no
state of "zero stored energy." No matter what the initial qQ is,
some finite amount of energy can be extracted from this

capacitor. H

The capacitor in Example (4.8) should, one could argue, be called

passive on the grounds that one can never extract more than a finite

amount of energy at its terminals. But there are at least two grounds

for suggesting that it should perhaps not be called passive:

(a) How can one synthesize such a device? Whatever method is used,

some form of initial energy storage mechanism must be built into it.

This runs counter to the idea that one ought to be able to build any

passive device, at least in principle, using no energy other than that

which is dissipated in a non-electrical form (heat, etc.) during manu

facture.

(b) If the capacitor in question is connected in parallel with a 1 ohm

linear resistor, the resulting charge tends to -«> as time increases.

This is an example of the result in [6], which states that the stability

properties, which are generally believed to be associated with passive

circuits, do not extend to the (externally) weakly passive case.
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To get around this dilemma, we propose replacing the traditional

passive/active distinction by a three-way classification: strongly

passive, passive, and active. An active device can supply unlimited

energy to the external world. A strongly passive device can supply no

energy, other than — at most — the energy which was supplied to it in

driving it from a relaxed condition. The borderline case, which we

simply call passive, is where the device can supply energy to the external

world, but only a finite amount. The precise definitions are given below.

(4.9) Definition

V is passive iff fl(Y»tg) is externally weakly passive for all
Y^r and all tQeiR. n

(4.10) Definition

V is active if there exists yev and tg€lR such that P(Y.tg)
is not externally weakly passive. n

(4.11) Definition

V is strongly passive iff, for every y^T and t^lR, there exists
yQev and tQeiR such that (y-j.t^ is attainable from (Yg>tg), and
PfYg^tg) is externally passive. n

Notice that, by Theorem (4.6), strong passivity implies passivity.

One feature of the above definitions, which is perhaps not immediately

obvious, is illustrated in the following example.

(4.12) Example. Consider the two devices described by

tyvg.tg) ={(v,i):i(t) =4viil and v(tg) =vQ }

P2(i0,t0) ={(v,i):i(t) =̂ tl and i(to) =iQ }

Device P, is just a one-Farad capacitor, and it is strongly
I 12passive. Its available energy is EA(Vg,tg) =2 vQ . However

the available energy of ^2(ig,t0) is +<» for any iQ and tQ;
from Theorem (4.7), then, P2 is active. The reason is that
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the energy that can be extracted depends on v(tg), and, for
any fixed ig, t?2 contains (v,i) pairs with arbitrarily large
v(t0). n

The above result is not particularly surprising if one notes that

whereas V^ is just aone-Farad capacitor, P« is really av^ '-v '
"higher-order element" [9] having a constitutive relation

di(t) . d2v(t)
dt ~~ST"

subject to the initial condition:

i(tg) =ig v(t0) =arbitrary, ^vM

-19-

t-t =1°1 l0

This element can be realized by the linear "active" 1-port shown in

Fig. 3. To verify this, note that

• - d2vv2 = v = v *—£
* c2 c3 dr

and d

dl =_Ji =i __i =vdt dt 1c1 '2 v2

Equating these two equations, we obtain the desired constitutive relation.

The point of Example (4.12) is that two devices with the same consti-
_____________________——._———————————

tutive relation (here i=^-) can be totally different devices. Adevice
is specified in terms of its frames P(y,tg), and the parametrization y
forms part of the description of the device.

When a state-space model is available, the above complications do

not arise. Suppose that r=£*P where \ is the state space. It is

immediately evident, from Theorem (4.7), that

(a) V is passive iff S(p) is internally passive for all pep;

(b) V is active iff there exists some pep such that S(p) is not

internally passive.

It should also be clear, from the details given in the Appendix, that V

is strongly passive iff for each peP: (i)S(p) is internally passive;

(ii) there exists at least one relaxed state of S(p); (iii) for every

x-€£, there exists x2e£ which is equivalent to x- and reachable from



a relaxed state. With the obvious observability assumption, condition

(iii) simplifies to requiring that every state is reachable from at least

one of the relaxed states. If every state is reachable from every other

state, then (without requiring any observability assumption) V is

strongly passive iff, for every pep, S(p) is internally strongly passive

If the entire state space is reachable from some relaxed state,

there is no difficulty in seeing that Definition (4.11) agrees with

commonly accepted intuitive ideas about passivity. For an interesting

example, then, we need to look at a situation where some states are not

reachable from a relaxed state.

(4.13) Example. An ideal diode in series with a IF linear capacitor

can be described by

0(qo>to) = {(v,i) :v(t) =q(t) and i(t) > 0,

or v(t) <q(t) and i(t) = 0,

where q(t) =qn + i(x)dT}
Jt«^0

(A state-space description is also possible, but is a little more

complicated). Suppose r = IR; that is, we permit the initial

charge qQ to have any real value. The available energy is easily
computed to be

EA(q0,t0) = \%z> if V°
0 , if qQ>0

Note that this is not quite the same as what one would usually

call the "stored energy." (If qQ>0 then some energy is pre
sumably stored, but this can never be verified without breaking

open the device; the stored energy cannot be extracted at the

terminals). Every qQ_0 is a relaxed state. It is also easy
to see that (q-.»t,) is attainable from (q0»tg) iff q-j =qQ and
t, _tQ, or q1 >qQ and t->tQ. Therefore no qQ <0 is reachable
from a relaxed state. The conclusion is that the device is

passive, but not strongly passive. a

-20-



Is this a reasonable classification? We believe so, for the follow

ing reason: it is impossible to make the charge negative by any choice
of voltage and/or current at the terminals. The only way to achieve
qn<0 is to charge the capacitor during construction of the device (i.e.,
before the diode is placed in series with the capacitor). Electrical
energy is necessarily expended during construction of the device, and
this is why we choose not to call it strongly passive.

Suppose we disallowed charging of the capacitor before assembly of
the device. This would give us a different device, with the same rules
for deciding which (v,i) pairs are admissible, but with r = {0} or r = IR ,
depending on precisely what was allowed during construction. In either
case the above problem would disappear, and this new device would be

called strongly passive.
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APPENDIX

A. Attainability and Reachability

When a state-space description exists, and r=Jxp, then for each

pep there exists a state transition function i[» and a readout map r

such that

(A.l) x(t) =*p(t,t0,x(t0),S£t jt-j)

(A.2) s(t) =rp(t,x(t),s(t))

where x(t)e£ is the state at time t. This formulation is a little

unconventional in that it is more common to separate the signal s(t)

into two components called the input u(t) and output y(t); but this

change makes no difference to what follows, it is merely a notational

convenience. With y = (x(tg),p), and some specified s^S, equations
(A.l) and (A.2) can be solved for x if and only if sep (y.tg).

The following two definitions are, modulo a change of notation,

completely standard.

(A.3) Definition. Two states x^x^J are equivalent at tQ

iff Qt P((xrp),t0) =Qt t?((x2,p),t0) *

(A.4) Definition. State x-j is reachable from xQ on [t0,t|] iff there
exists sep((x0,p),tg) such that x] =^p(t1 »tg,Xg,S|-t ^ -j). *

Note that equivalence of x-| and x2 implies that there is no way, from
input-output measurements alone, to tell whether the initial state was

x-, or x2. An observable state-space model has the property that no two
states are equivalent; that is, equivalence of x-j and x2 at any tQ
implies that x, =x2-

Suppose now that ((x^p),^) is attained from ((Xg,p),tg) via s.
Then

,)\ fC^.P).^) -Qt/WVPl'toTCt,,.^]
=Qt 0((x2,p),t1)
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where x2 =i|) (t-j,tg,Xg,Spt t -i). This means that x2
reachable from xQ on [tg,l,], and equ

is means that x2 is a state which is
equivalent to x, at t-,. But equivalent

states are "effectively identical" as far as external measurements are

concerned. This means that what we have called "attainability" is the

closest one can come, in an input-output setting, to the state-space notion

of reachability. For observable state representations, attainability is

the same as reachability.

B. Proof of Theorem (3.5)

Property (i) of the theorem follows trivially from the definition

of EA and from assumptions 2.5. For property (ii), the definition
of E* ensures that

EA(Y0,t0) >-E(s,t0,t2)

= -E(s,tg,t|) -E(s,tlst2)

(where the second line follows from the assumptions on E(•»•,•))for all

sep(y0,tg), whenever tQ <_ t-, <. t«. In particular, then, we have

EA(Y0jt0)+E(s'W l-^'VV
for all s€p(y0,tg) srt t -i. We also hav

MW = fup x {-EU»Vt2)}

= sup {-E(x,t,,t9)},
sex - ' L

t2>tl

where X= ^(Y0»t0) Sr. . -j. This last replacement is possible because

of Definition (3.3) and Assumption 2.5(b). This leads immediately to

inequality (3.6). Q
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FIGURE CAPTIONS

Fig. 1. (a) An electrical n-port.

(b) An (n+1)-terminal device.

Fig. 2. Illustration of 0(Yg»tg) Xto.t,]

Fig. 3. Circuit for realizing the constitutive relation

diitl -d2v(t)
dt l?^"
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