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Abstract

Rapid advances in semiconductor and disk technologies over the last few years have
dramatically altered the role of computers in society. In particular, the use of computers
for the storage, control, and dissemination of data has become a major factor in our
modern economy. Traditionally, computers have not been design with data base applica
tions in mind, and only in recent years has a serious effort been made to design computing
hardware specifically for data base applications. Though some data base applications are
performed well with conventional machines, a large class of problems are still prohibitively
expensive. Through the use of parallelism, it is argued that greater performance improve
ments can be obtained for this class of problems than for the more traditional class.

The use of multiple processors closely cooperating to solve a single problem in the
data base environment is studied. A survey is made of other designs, including the Intel
study of the Relational Associative Processor (RAP), originally proposed at the University
of Toronto.

A structured approach is taken to develop a set of principles by which a data base
machine can be specified and designed. First the technological capabilities and constraints
for the 1980's are examined. Then a study is made of data base operations and the the
most critical ones are identified. Next one of these operations is examined to determine
how it can be implemented on a variety of processor topologies and the best topology is
determined for that operation. Then algorithms are developed for implementing the most
critical relational data base operation: join.

A number of new algorithms are developed for implementing the join operation, util
izing hashing methods, and a number of well-known, conventional algorithms are extended
to the multiple processor environment. The cost of these methods is determined in terms
of disk accesses and in terms of communication among the processors, and the algorithms
are compared under a variety of circumstances. The hashing algorithms are shown to be
superior to the more conventional algorithms, and are shown to be limited only by the
bandwidth of the disk.

The implications on the processor architecture are examined, and features are
identified to support the hashing methods well. No exotic technologies are proposed.

The approach is shown to be viable for the specification of the optimal data base
machine using the technology of the 1980's.
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1.1.2. The Thesis

Given the importance of the DBMS to the modern world, and the rapid

technological advances occurring in the computer field, it is important to take

a structured approach to the problem of designing a data base management

computing system. This involves the study of DBMS operations and algo

rithms to determine their requirements, the consideration of technology

trends to determine the potentials and constraints of the future, and the use

of a set of design principles for analyzing the performance of those tasks on

the postulated system. One of the main thrusts of computer architecture

currently is the search for methods which allow greater parallelism of opera

tions, because the current execution speeds for sequential methods have been

pushed to the point where further increases are extremely difficult. Thus the

problem is how to exploit parallelism of all kinds to provide high performance

data base management systems.

Certain types of data base operations are not widely performed today

because of their high cost. The performance of these operations contains a

great deal of inherent parallelism, however, and the potential for exploiting it

has yet to be realized.

In the specification of an architecture, it is important to consider the

algorithms to be implemented on the system. Different topologies of proces

sors may be optimal for different problems — or even different algorithms for

solving the same problem — so that in attempting to determine the best archi

tecture, both the algorithm and the structure must be considered. Thus it is

an extremely important, but complex, problem to design a large, high-

performance, highly parallel system for support of a large DBMS.



CHAPTER 1

Introduction and Background

1.1. Introduction

1.1.1. The Importance of Data Base Management Systems

The growth of data base applications for computer systems has been

extraordinary in the last few years. The rapid technological advances of recent

decades have made possible the use of computers for the storage and retrieval

of information over an incredibly broad range of applications. Dolotta

[Dolotta 76], quoted by Sibley [Sibley 77], predicted that in 1985 S233 billion,

based on 1970 US dollars, would be spent in this country alone for data pro

cessing. In 1975, Martin [Martin 75] cited evidence [Frost 73] that 20% of

the Gross National Product of the United States was devoted to the collection

and dissemination of data, with a rapidly increasing proportion of it being

accessible by computers. He also showed that computer storage is growing

exponentially, faster than any other area of computers, and predicted that the

exponential growth will likely continue for one to two decades.

Modern computer systems allow the rapid access of huge amounts of

data. Martin stated [Martin 75] that the first trillion bit on-line storage system

was available in 1975, and emphasized the major role that data banks will play

in the running of industry in the future. Among the most significant prob

lems in computer science today is the issue of implementing Data Base

Management System (DBMS) to provide high performance for an ever-

widening array of applications.



assumptions and constraints. This will include only a sub-set of all possible

DBMS machines, of course, and in particular will apply to those systems dom

inated by non-traditional queries of the type assumed.

1.1.4. Research Plan

The initial task must be to determine the constraints and define the

assumptions required. This is fairly straightforward for the technology, since

there is much agreement about the potentials for VLSI and magnetic disk

technology. However, defining user requirements of DBMS machines, quanti

tatively or even qualitatively, will prove to be much more difficult. To accom

plish this, models of DBMS operations will be developed to isolate the impor

tant functions and algorithms.

As an aid in developing many alternative hypotheses for structures and

algorithms, the past work in the design of special-purpose DBMS systems will

be studied in detail. Critical performance issues can then be studied by apply

ing the models, given the assumed constraints, to the possible hypotheses. In

particular, a few important, basic operations that control the performance will

be identified. The relative cost and performance of these critical operations

can then be studied to choose among the alternative hypotheses. This can be

done by analysis, simulation, or experiment, or some combination of these.

Once the best structure has been determined for the critical operations,

complete algorithms for the major DBMS functions can be determined. This

can then be used to specify the architectural requirements for the components.

The principles developed to guide the choice of the multiprocessor topology,

the design of the DBMS algorithms, and the components will then constitute

the desired principles of generic DBMS machines.



1.1.3. Goals of the Research

The primary goal of this work is to develop principles by which a DBMS

machine can be designed rather than to design a particular machine. The

technique employed to achieve this is inductive inference, in which alternative

hypotheses are devised and critical analysis or experiments are conducted to

exclude one or more of the hypothesized principles. This process can then be

applied repeatedly to select and refine the principles.

This technique is to be pursued under the constraints of current and pro

jected near-term technology and user requirements. The objectives are to

maximize the system performance/cost ratio, particularly for operations

currently recognized as desirable, but prohibitively expensive.

For the purposes of this investigation, the traditional hierarchal view of a

computer system is assumed in which the system is viewed as a collection of

components, interconnected to form a particular topological structure. The

system is expected to manipulate information according to algorithms selected

for it. This view allows the posturing of hypotheses regarding components,

structure, algorithms, and their interaction. In particular, for this research,

emphasis will be on the tight interdependence of algorithms and structure.

The first major goal is to determine the best topology for a multiproces

sor data base machine, given a set of constraints and assumptions. This must

include, of course, consideration of the algorithms and component capabilities.

The next major goal is to determine the critical functions and the best algo

rithms to perform these functions for the defined structures. Finally, the

functional and performance capabilities of the components can be determined.

The collection of principles governing each of these areas then serve to

define the generic architecture of DBMS machines that fall under the original



1.1.5.1.2. The Network Model

This is a generalization of the hierarchal model in that more

general graphs than a tree are allowed. It is more complex because

of the fact that it can no longer be laid out in linear space in a

straightforward way, but must rely on explicit pointers to define all

the edges of the graph. The proposal known as CODASYL

[CODASYL 71] provides a detailed definition of this model.

1.1.5.1.3. The Relational Model

This model, due to Codd [Codd 70], stores a set of records of a

given type in an unordered array known as a relation. Each record,

known as a tuple, contains fields, often called domains. More pre

cisely, a domain is the set of values that the field can take on. An

element in a field is known as a column value. Each record has a

unique value assigned to it, commonly known as the "tuple

identifier," or TID. The relational model makes no use of physical

positions of records to define the relationships among records, requir

ing explicit declaration of all such information.

The relational model, being the newest of the data base models,

as yet has been implemented in very few commercial products. How

ever, it has been the subject of intense study, both in academia and

in industry, in the last decade and numerous experimental versions

have been developed [Astrahan 76], [Stonebraker 76].

The difference in the organization of the data base means that certain

operations on the data base may be done in rather different ways. In par

ticular, the hierarchal and network models are characteristically accessed

through a so-called procedural language, where at any point in the



1.1.5. Terminology

A large number of terms have come into use with respect to data base

systems. In many cases the distinction between terms is largely historical with

no widely agreed upon distinction between the terms. Many corporations

have added to the confusion by introducing their own terminology for con

cepts widely known by other names. Thus it is necessary to define some

terms to be used, since their meaning is not universally recognized.

It is assumed here that a data base consists of one or more files, each

containing one or more types of records. A record of a given type contains the

same set of (possibly empty) fields. Each field contains one element from a

set defined for that field.

1.1.5.1. Data Base Organizations

The organization of data bases can be broadly classified in three

types [Date 75], though many implementations, particularly recently,

have been hybrids, created in an attempt to distill the desirable qualities

of each.

1.1.5.1.1. The Hierarchical Model

The oldest model for organizing and accessing the data is the

heirarchical model. In this method, the records are stored in linear

memory as a tree structure, usually in post-fix form. The relative

positions of the records are significant in that they convey implicit

information about the structure of the data. The IBM DBMS known

as IMS is the most widely recognized hierarchal system, though it has

now been enhanced to support the network model, discussed next, to

some extent [Date 75].
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relational model will be studied in more depth, some of the specific

operations allowed will be described.

1.1.5.2.1. Restriction

The operation known as restriction, or sometimes as selection,

is the specification which eliminates some of the records (tuples) of

the relation. That specification might be, for example, that the entry

in a certain field have a particular value. Referring to the telephone

book data base model, a restriction might be

List all ofthe entries for people named Nixon.

In many cases a single record may survive a restriction. For exam

ple, if all values in a given field are unique, then at most one record

will survive. On the other hand, a large number of records may sur

vive if, for example, the query is:

List all of the entries for people who live on Telegraph.

1.1.5.2.2. Projection

Projection is the elimination of certain fields of all records. In

many cases, a number of the fields contain information which is

irrelevant for the query, and these fields are deleted. This may have

the effect, however, of producing multiple, identical records, since

many records may be identical in a number of fields. The relational

data base model assumes that all records are unique. Thus in theory,

duplicates must be eliminated. In practice, because of the expense of

eliminating duplicates, this process is frequently either delayed or not

checked.



execution of the program a "current" position in the data base exists.

Thus it is possible to select a string of records, each being accessed on the

basis of its relation to the last. This approach is known as navigation.

In contrast, the relational model has no defined order for the

records, so no such navigation is possible, and all accesses must be made

by the selection of records meeting a set of criteria. This qualification is

known as selection. A language supporting such set selection is known as

non-procedural.

An important observation about these two approaches is appropriate

here. The procedural methodology encourages the use of language struc

tures which obscure the parallelism inherent in many data base opera

tions. Although a look at the program may reveal that a large number of

records are to be accessed, and the same sequence of operations is to be

performed on them, the low level accesses to the data base itself may

exhibit none of that potential parallelism, appearing simply as a stream of

requests for various records. While this may also be true for the rela

tional model at the lowest levels, the statement of the query as a set of

qualifications on the relation makes that inherent parallelism easier to

pass on to the access method responsible for retrieving the physical

records.

1.1.5.2. Operations on the Data Base

The accessing of selected portions of the data in a DBMS is con

trolled through the specification of a query. Those records which meet

the specification are said to qualify. Frequently the qualifying records are

returned as the result desired by the user. An alternative operation, how

ever, is to change some parts of those records which qualify. Because the
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once, two records occur for each possible pair of entries under that

phone number. Fig. 1.1 gives a simple example of such a join.

1.1.5.3. Support Structures

A wide range of methods have been developed for the rapid access

of records in a DBMS. Such support structures, called access methods,

perform the function of retrieving specified records efficiently. The most

common access methods involve the use of indices, which allow the rapid

determination of the address of a record based on the value of one or

more of its fields. The value used to access a particular record is known

as the key, and a field on which an index exists in known as a key field.

Typically, an index consists of a set of pairs whose first component is a

particular value of the key field, and whose second component is a pointer

to a component with such a value in that field. When multiple records

have the same value in a key field, however, the index entry may be a

list, rather than a pair, where all but the first entry are pointers to the

appropriate records.

A number of techniques exist for gaining rapid access to the

relevant portion of the index. There may be an index on the index, for

example, or the index itself may be stored as some kind of a tree struc

ture [Held 78]. The values in the index may be hashed to allow rapid

access to data which is non-random [Martin 75, pp. 291-311]. If the right

index exists, the simplest queries generally can be answered by retrieving

the relevant portion of the index, which may involve one or more disk

accesses, followed by a direct access to the record requested, which may

also require a disk access.



Frequently, restriction and projection are used together to fetch

only certain desired fields of a number of records. For example, in

the telephone directory model, a query requiring both a restriction

and a selection would be:

List all of the street names present in the directory.

If the list is to be ordered and non-redundant, then a sort and elimi

nation of duplicate entries will be required.

1.1.5.2.3. Join

The join operation, sometimes called equi-join, is the means by

which the information in different relations is combined. A join is

defined for two relations each of which has a field with a common

domain, i.e., a common set of possible values. The relation formed

by the join contains all the columns of each relation. The join rela

tion consists of some subset of the cartesian product of the two rela

tions. By far the most common subset is all those pairs of records

for which the value in the join fields of the two records is the same.

Although this is technically known as "equi-join," it is so common

that it is frequently termed simply "join." That will be the usage here.

The two relations participating in the join can in fact be the

same relation. Using the telephone directory model once again, con

sider the following query:

List all of the phone numbers listed more than once.

A join of the relation with itself using the phonejnunber field results

in a record containing two copies of an entry for each entry in the

directory. In addition, for every phone number present more than
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In the relational model, the tuples are not ordered explicitly. The

order in which they are stored, therefore, is of no consequence except in

terms of performance. In fact, the order in which they are stored has a

great bearing on the difficulty of responding to a particular query. If, for

example, all the records satisfying the query are on the same block on the

disk, then only one disk access need be made after they have been

identified. This property has been defined by [Blasgen 76] as clustering.

A relation is said to be clustered with respect to a particular index if a

scan of the relation itself reaches the records in the same order that they

are listed in the index when sorted by key value.

1.1.5.4. Hardware

Among the hard disks available today, two basic types are

identifiable: the fixed-head disk (FHD) and the moving-head disk

(MHD). The FHD has a set of read/write heads which are permanently

mounted and remain stationary while the magnetic surface moves beneath

it and which read and store the data. The MHD, on the other hand, has

an additional capability to move the head in and out on the surface to

access different sets of data. The arrangement is similar to a phonograph

record where there recording is a series of circular tracks rather than a

single long spiral. The FHD can only have a small number of such

tracks, since a separate head must be supplied for each. The MHD, on

the other hand, can be moved from one track to another to access

different sets of data. In addition, a series of such platters may be stacked

up, with space in between for a rod containing two heads to be inserted.

Often the FHD is also constructed of multiple platters with only one or

two heads associated with a surface of each platter. The arm, which con-



RELATION A
NAME ••• NUMBER

Goodman J >51-7067

Goodman J >94-2622

Goodman R U9-1223

Sheehan A 924-9792

Sheehan 0 '651-7067

Sheehan K 238-2S88

RELATION B
NAME • • • NUMBER

Goodman J 651-7067

Goodman J 494-2622

Tioodman R 849-1223

•

Sheehan A 924-9792

Sheehan D 651-7067

Sheehan S ... 238-2588

•

RELATION C (RESULT)
A A B B

NAME ••• DUMBER NAME • • • NUMBER

' Goodman J

£=r.
651-7067

494-2622

Goodman R 849-1223

Goodman J 651-7067

Sheehan A 924-9792

Sheehan D 651-7067

Sheehan D 651-7067

Sheehan K 238-2588

Goodman J

Goodman J

Goodman F

Sheehan E

Sheehan A

Sheehan D

Sheehan J

Sheehan K

651-7067

494-2622

849-1223

651-7067

924-9792

651-7067

651-7067

238-2588

Figure 1.1. The Join Operationin the Relational Data Base Model.

11
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It has been noted that the density of devices produced on a single sem

iconductor circuit has been increasing exponentially [Noyce 77], though a

moderate slowing in that trend has been perceived in the last few years

[Patterson 79]. Assuming a continuation of the recent trends, it has been

predicted that integrated circuits containing one million devices will be fabri

cated during the middle 80's or even earlier [Patterson 79]. The problem of

utilizing this quantity of devices to build complex functions within the

economic and technological constraints of the semiconductor industry poses a

serious challenge to the industry.

With the increasing complexity of functions being developed for a single

integrated circuit through the use of Very Large Scale Integration (VLSI)

technology, one approach proposed to handle large computer application prob

lems is the use of large numbers of "single-chip computers" [Despain 78].

Though the potential for high performance by exploiting such hardware tech

niques appears to be enormous, the problems of multiprocessor architecture

are numerous and difficult, particularly for designs using more than a handful

of processors. Many of the problems of using large numbers of processors

together are not well understood.

To satisfy semiconductor economic constraints, it is necessary to define a

small number of components which can be used as basic building blocks for

even very large computing systems. Suppose that the basic building block is

taken as one such component (or possibly several) which is, in many ways, a

computer in its own right. Given such a component, the important questions

then are:

(1) How should a large number of these components be connected together

if the computing environment envisioned is a data base application?
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sists of all rods, can be moved in and out, and for each position, every

head can access a different track. The set of tracks accessible through all

the heads at any one time is known as a cylinder. The set of all tracks

accessible to one head, which are all on the same side of a single platter,

is known as a surface.

When a piece of data is to be fetched, it is frequently necessary to

wait until the platter turns so that the data is under the read head. In the

case of the FHD, and for the MHD when the head is already situated in

the correct position, this time is known as the latency, and is equal to the

time for the platter to make half a revolution, on average, and a full revo

lution, worst case. In addition, for the MHD, if the arm is not properly

positioned, so that it must be moved, an additional delay is encountered,

and this time is known as seek time. Seek time is generally significantly

smaller for adjacent tracks than for those further apart, but the function is

not linear. Latency and seek time do not overlap. Thus the MHD pro

vides access to much more data than the FHD, but the time to access it is

generally slower, unless the arm happens to be in the correct position.

1.1.6. Technology Projections and Constraints

The rapid advances in computer systems in the recent past have been

due primarily to the technological advances in semiconductor technology, disk

technology, and other related areas. The architecture of these systems has

been driven by these advances, and they continue to be the predominant

influence in new designs. The resulting rapid reduction in the cost of comput

ing relative to alternative possibilities has resulted in a wide range of applica

tions which are influencing the architecture.



16

Thus a design which takes full advantage of the technology available

must find ways to exploit the capabilities of VLSI and magnetic disk. The

technology advances in these two areas will surely have a profound impact on

the architecture of computers over the next few decades, since so much of the

computer system is made up of these components.

1.1.7. DBMS User Requirements and Needs

One of the prime uses of computers today is for the control and storage

of textual information [Date 76]. The recognition of a need for controlling

access, maintaining integrity, and allowing sharing of this information has

resulted in very large systems programs, collectively known as a data base

management system (DBMS). The data base itself, composed of a wide

variety of possible kinds of data, may be as small as a few hundred entries, or

it may number in the millions. In addition, a wide variety of support struc

tures are frequently maintained to allow rapid access to the data under certain

conditions, hopefully those most often occurring. These structures, which

have a wide variety of names and implementations, are frequently quite large

themselves, sometimes as large as the data they support. [Martin 75], [Mailer

78].

The programs that control and manipulate the data may be extremely

large, rivaling, or even exceeding in size the operating system itself [Gray 78],

[Kerr 79]. (The INGRES system, for example, which is a university research

project, not a commercial product, and for which many features have not been

implemented, nevertheless comprises more than half a million bytes of source

code [Stonebraker80].) While in many applications the resulting performance

is satisfactory, in many other cases it is not. However, the recent explosion in

the use of data base management systems testifies to the fact that the market
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(2) What sort of algorithms can be applied in the answering of asingle large

query presented to the system, and how well would such a system per

form?

(3) What sort of functional capabilities are required of each component to

provide high performance execution of the algorithms.

Disk technology has shown rapid advances over the past several decades,

though its progress has recently been largely overlooked due to the even more

rapid advances in semiconductor technology. Nevertheless, disks are the

dominant technology for on-line mass storage today, and there is no indication

that any other technology threatens their position [Hoagland 76]. The density

of storage on disks has increased at an exponential rate since the 50's — an

improvement of more than three orders of magnitude — and indications are

that this growth rate will continue for some time [Hoagland 76]. Hoagland

states that nearly two more orders of magnitude improvement appear to be

feasible.

Though some improvement in seek time has occurred, Hoagland claims

that changes of an order of magnitude in the near future are neither feasible

nor worthwhile. Latency times are not expected to drop dramatically because

spinning disks are largely limited by the speed of sound in their rotational

velocity. Transfer rates will improve only in proportion to the square root of

density improvements, i.e., to linear density improvements, since they are res

tricted by the velocity of the disk.

The error rate of data read from disks today is quite low because detec

tion and correction of errors is standard. However, Hoagland predicts that

medium flaws in the magnetic material will cause an increase in the error rates

and require the capability for marking sections of the disk as defective.
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query made. Hawthorn [Hawthorn 79a] has characterized queries as "over

head intensive," for those queries for which determining how to access the

data and answer the query dominates the work, and "data intensive," for those

queries for which manipulations of the data itself limit the response. When a

DBMS is properly designed to handle the class of queries it receives, the

actual interaction with the data may be quite small — one or two access to

data possibly already residing in main memory. If, on the other hand, the

query received is not of a type anticipated in the design of the data base, the

response may involve arbitrarily complex interactions with the data base.

Though such operations are frequently not performed today because of the

expense, a substantial reduction in their cost will surely increase their use.

Any architectural innovations which can dramatically improve the

performance/cost ratio will have great appeal. Therefore, the past proposals

for innovative computer architectures will be analyzed with respect to their

ability to enhance the performance and lower the cost of data base manage

ment systems.

1.2. Background

1.2.1. A Survey of DBMS Hardware Designs

For some time now the special requirements of a DBMS machine have

been recognized [Slotnick 70],[Parker 71],[Parhami 72],[Coulouris 72]. The

functions consuming the bulk of the resources in a DBMS machine are very

different from the classical needs of numerical computation. While large

demands are placed on the system I/O (input/output), the CPU (central pro

cessing unit) is heavily taxed with chores such as sorting, merging lists, and

comparing strings, with only limited numerical computation required. [Hsiao
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for such systems is quite elastic [Martin 75].

In today's environment, many systems are unable to answer certain

questions, despite the fact that the desired information is present. The data is

not organized in a manner such that the answer can be found at an acceptable

cost. To demonstrate why this is true, consider the following problem: Given

the telephone directory as a data base, determine the name of the occupant at

a known address. Although the information is clearly present in the directory

it cannot be readily retrieved. If this question were to be asked frequently,

the problem could be solved by producing a secondary index of addresses so

that the data could then be fetched directly. It is not feasible to build such

so-called secondary indices for all possible queries, however, since those

queries can become arbitrarily complicated. For example, a much more

difficult question regarding the telephone directory model would be to deter

mine the names of all people whose telephone number is listed in the book

more than once. The only general solution is to be prepared to search the

entire data base — possibly many times.

As the size of the data base grows, these problems become worse. This

is due to a number of causes. For example, a sort becomes rapidly worse

once the file to be sorted no longer fits in main storage [Knuth 75]. Likewise

support structures to aid in efficient retrieval of records may not fit in main

storage if the data base is too large, resulting in a rapid increase in disk

activity. Yet the trend today, and the expectation of tomorrow, is that data

bases will continue to grow at a substantial pace [Martin 75].

The users of data base systems are difficult to define, in large part

because they are so incredibly diverse. It is possible, however, to characterize

the use of data base systems in broad categories according to the types of
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1.2.1.1. Head Per Track Devices

Although interest in special hardware has been demonstrated long

ago, [Goldberg 62] [Yau 66] [Dugan 66], much of the recent interest has

developed from the idea of using a head-per-track disk with peripheral

logic to create a quasi-associative memory. The idea is that if the data

coming under each head can be read and processed in real-time, then the

entire disk can be searched in one complete revolution of the disk. In

order to process the data at such a rate, special hardware is included for

each head to read the data and perform some filtering of the data. Thus

the disk may be thought of as an associative memory with a cycle time

equivalent to one revolution of the disk. Fuller et al [Fuller 65], first pro

posed the idea that a disk could be associatively searched. [Slotnick 70],

however, was the first to suggest that the logic-per-track idea might be a

generally useful concept in a range of applications. Interestingly enough,

he was motivated by the claim that "the cost of random access memory ...

has not been going down as rapidly as most buyers would wish." Early

designs using this idea were proposed in the early seventies by [Parker

71], [Parhami 72], [Coulouris 72], and [Minsky 72].

An interesting problem, first pointed out by [Minsky 72], is the

inherent serialization of the data on a disk track. If control information

about a record is to be stored with it, it may be necessary to access it

before the record itself is manipulated. On the other hand, it may not be

possible to determine the information to be entered until the whole

record has been read. For example, if the first field in the record was to

be modified based on a comparison of a string against the value in the

fourth field, it is necessary to read the fourth field, then modify the first.
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78]. As computers are increasingly being recognized as information manage

ment tools, increasing attention is being paid to these textual manipulation

functions. In particular, during the past decade, a number of researchers have

proposed new and very special hardware to effectively perform these functions

[Slotnick 70], [Parker 71], [Coulouris 72], [Heaiy 72], [Minsky 72], [Parhami

72], [Copeland 73], [Moulder 73], [Canaday 74], [Madnick 75], [Ozkarahan

75], [Banerjee 76], [Lin 76], [McGregor 76], [DeWitt 78], [Babb 79].

Several different approaches are possible to support DBMS applications

with special hardware. One is to build a special purpose computer to handle

the functions of the DBMS exclusively. It is usually attached to a more con

ventional system which provides user interface support and other computer

functions. This is known as a back-end system. Another approach is to build

special hardware which allows the general purpose computer to perform its

data base functions more efficiently. The line between these two approaches

is not distinct, however, since most proposals of the latter type include the use

of a sophisticated controller for the special hardware which, along with that

hardware, may be considered a special purpose computer.

A third approach is to build a computer system which is designed to per

form all the normal computing tasks demanded of it, but which is organized in

a way which allows it to support the DBMS requirements especially well. In

particular, a multiprocessor system might be organized so that many proces

sors could cooperate efficiently on a single data base query and so that the data

required from the disk could frequently be read directly by that processor

which requires it.

The past proposals considered can be grouped in three general classes

according to the unifying concept which characterizes them.
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1.2.1.1.1. CASSM

In 1972, Healy, Doty, and Lipovski [Healy 72] proposed a sys

tem which they called CASSM. A prototype of CASSM using a fixed

head floppy disk [Copeland 73] [Su 75] was proposed. Although the

claim has been made that the system was implemented [Lipovski 78]

it is not clear from a conversation with one of the principles [Cope

land 77] whether any hardware was actually assembled. The design.

Fig. 1.2, called for a number of cells, each cell containing one track

of a fixed head disk and some special logic. Each cell could directly

communicate with its two immediate neighbors and with a single

common controller through a bus. The controller alone communi

cated with the central processor, which was responsible for communi

cations with the users and general I/O. The design provided direct

support for a variety of data structures, such as trees, sets, graphs,

and relations. Garbage collection — the clearing out of portions of

the data base that have been deleted and the resulting compaction

possible — was performed by the hardware automatically.

CASSM provided support for variable length records and the

capability to do operations on very large records — even larger than

one track. Thus an entire tree could be dealt with as an entity. As a

result, CASSM provided nice capabilities for dealing with a heirarchi

cal or network model data base. It supported the relational data base

model for restriction and projection, and had several solutions for the

join problem. If the join field was quite narrow, the bit



21

Minsky solved this problem by introducing two heads per track, one for

reading and one for writing. He also suggested the alternate approach of

storing the control information in a separate, randomly accessible

memory. This allows the record and the control information to be read,

modified, then written. In addition to the considerable additional expense

that this solution entails, [Hoagland 76] has pointed out that shrinking,

mechanical tolerances associated with increasing disk densities make this

solution increasingly difficult and expensive. He predicts that the same

transducer will be used for both reading and writing data on standard

disks once the track density becomes sufficiently high. [Watson 74] pro

posed that the problem could be solved better by using two separate

tracks and transferring the data of the "logical track" alternately between

them with a buffer introduced for the needed delay time. [Copeland 74]

later showed that the same problem could be solved using only three phy

sical tracks for two logical tracks.

[Bush 76] proposed a novel solution by introducing a small random

access memory for each track to store a control bit to be modified on a

given revolution. On the following revolution the bit is stored at the

beginning of each record and a new one can be generated. Thus all of the

control bits are available at the beginning of the reading of the record.

Only one control bit could be modified, however. The example above,

for example, could be solved by setting to T the control bit for every

record which qualified in field four. On the following revolution, the first

field could be modified by reading the control bit, often called a mark bit,

and modifying field one if the bit is set.
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1.2.1.1.2. RAP

Ozkarahan, Schuster, and Smith [Ozkarahan 75], proposed a

somewhat different head-per-track processor which they called the

Relational Associative Processor (RAP). It was intended to perform

efficiently operations only on a relational data base, and as such, lim

ited all records to fixed length fields. Individual field lengths could

be specified, but were constant for that field for all records. Capabil

ity was provided for inter-record processing to be performed

efficiently through the introduction of a number of comparators for

each disk track. A prototype was built and demonstrated using

CCD's.

RAP implemented the join operation by the use of mark bits

for each record and a number k of comparators for each cell. A set

of records from relation A was selected and their join values broad

cast to all the cells to be compared against the join value in each

record of relation B. If any of the comparators registered a match,

that record was sent to the controller to be joined with the

corresponding record from relation A. Each record in A so selected

had a mark bit set. This procedure was repeated, each time selecting

records from A without the mark bit set, until no records remained.

The number of operations was proportional the square of the number

of records divided by k, so the speed could be increased greatly by

the use of a large value of k.

A serious problem of the RAP design was the restriction that

only one relation could be present in a given cell. This necessarily

limited the parallelism, since many of the cells could not be used on
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sort order, something RAP and CASSM did not provide.

Although sort order is sometimes important, this organization

otherwise presents an inferior solution. It requires close communica

tion among all the cells, since all must participate in the extracting of

a single record. In addition, it doesn't distribute the work load

evenly. For a query where the qualification is on a single field, only

one cell is busy, the others simply waiting for a command to transmit

their portion of the record. The alignment problems associated with

disk advances mentioned earlier also makes doubtful the viability of

this approach.

CASSM, RAP and RARES all gain a significant advantage over the

conventional DBMS because of the elimination of the need to support

indices. As mentioned earlier, indices allow the rapid response to a set of

queries. However, the modification of the data base, in many cases

requires the modification of the indices as well. This is expensive, since

it may require the shuffling of entries within one or more index. Thus a

trade-off exists between rapid response to queries and rapid response to

modifications to the data base [Moulder 73]. In a system where frequent

modifications occur, but rapid access is still required, these designs have

their maximum advantage.

All the above proposals suffered from a severe cost constraint. All

were proposed using fixed head disk initially, and thus had limited capa

bility to handle data bases larger than that which would fit on a fixed head

disk. [Schuster 76] investigated the introduction of swapping techniques

to handle data bases too large to fit on the RAP disk, and concluded that

this was feasible under limited conditions, primarily that the queries exhi-
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a particular query. Also, because of the limited buffering allowed in

each cell, collisions could occur on the bus if many processors

attempted to send results to the controller simultaneously.

[Ozkarahan 77], however, showed that this would not be a problem

unless the number of records in the result relation was excessive.

The potential collision problem on the buss might have been

alleviated by performing projections in the individual cells, so that

only the needed fields were sent across the buss to the controller.

The cells did have the capability to perform the restriction, and did

only send across the part of the record that was needed. Unfor

tunately, the design was such, however, that the transmission of a

partial record still required the entire time slot, so the potential was

not realized.

RAP was implemented with very primitive logic, resulting in

considerable loss of performance. The cell logic consisted primarily

of a shift register which had associated with it a comparator. This

meant that all the time that the data was being shifted into the proper

position, the comparator was idle. Then once the data was shifted to

the correct position, the comparator had to be very fast to complete

its operation before the data was shifted once again. Thus much of

the hardware was not used very effectively.

1.2.1.1.3. RARES

Lin, Smith, and Smith [Lin 76] introduced a design which

grouped tracks into blocks so that the data could be stored orthogo

nally across the tracks instead of sequentially along a single track.

This design provided for the output of multiple qualifying records in
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usefulness of such systems for the data base environment has been lim

ited as a result of the high cost and the small memory capacity inherent in

such designs. Because of this, a mass storage device with phenomenal

bandwidth has been proposed to broaden their applicability. Linde et al

[Linde 73] compared a hypothetical "Associative Processor Computer Sys

tem" to a conventional IBM 370/145 system for search, update, and

retrieval. In their proposal, they assumed the system to include a half-

million-byte random access memory (which they considered large) with

the capability of swapping data to and from the associative memory units

at a rate of 1.6 billion bytes per second. To put this number into perspec

tive, this is more than 1200 times the maximum bandwidth available

through a conventional selector IBM channel at that time [Katzan 71].

Their conclusions were that they could provide substantial improvement

if the mass storage was large enough to keep the system busy though they

made no attempt to determine if their assumed memory size was large

enough.

Edelberg and Schissler [Edelberg 76] investigated a slightly different

idea called "intelligent memory".' The system consisted of a string of pro

cessing elements (PE's). Each PE consists of a circulating loop of storage

cells and some processing logic. Each PE could communicate with its two

neighbors. In addition there was limited broadcast/response capability.

They studied the structure for performance of sort, search, load/unload,

retrieval, and update. Although substantial improvement was claimed

over conventional structures, an unfortunate result was that loading the

full memory took twice as long as the worst case sort time. This resulted

from the necessity of loading the string linearly through one of only two

ports.
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bit significant locality of access. Under less ideal conditions, they con

cluded that the time required to swap the data between the RAP device

and a secondary storage would result in poor performance. Thus the

above proposals appear to have limited application. Although they may

provide improved performance over a conventional system for a small

system with frequent updates and rapid response requirements, they are

not the general solution to the data base problem, since large data bases

cannot be handled well in general.

1.2.1.2. Associative Processors and Associative Memories

Concurrently with the developments described above, others have

pursued the use of an associative processor, such as the STARAN

[Moulder 73], to provide data base management support. Like many of

the tasks tried on STARAN, apparently the data base application was I/O

bound, spending nearly all its time loading and unloading the associative

processor. In a cryptic paper Love [Love 73] described a hybrid associa

tive processor using MOS shift-register memories. Each associative pro

cessor, however, contained only 64 bits of circulating, quasi-associative

memory. Furthermore, a crossbar switch was proposed to connect the

individual associative memories to a proposed MOS static shift-register

bulk memory. Since a large data base requires a large amount of memory

and this system included a large amount of additional hardware, the cost

per bit of such a DBMS would have been exorbitant.

Berra [Berra 74] has concluded that the enormous arithmetic capa

bilities of machines such as STARAN are not needed for data base appli

cations and that simpler associative memories, such as the AM [Moulder

73], developed by Goodyear, can support a DBMS adequately. The
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demonstrate superiority to overcome the natural reluctance to change. Let us

examine some of the common differences between the proposals described

above and the conventional DBMS to see where that superiority might appear.

1.2.2.1. The Role of Auxiliary Structures in DBMS

Conventional data base management systems usually provide

numerous access methods for the data in the data base to allow most or

all of the anticipated queries to be answered rapidly. Because of the

redundancy in the information, these structures often have large memory

requirements of their own, occasionally even greater than the data base

itself, but they pay off handsomely when conditions are right. If indexing

capability has been provided for the appropriate fields, it is often possible

to find the desired information in a large data base with a very small

number of disk accesses. Under such conditions, the DBMS performance

is usually quite satisfactory. However, there is a cost. Each time an

update to the data base occurs, the index structures must be updated as

well. The more auxiliary structures existing, the more expensive (and

. slower) is an update. The result is a trade-off: Quick response on

retrievals means slow response on updates and vice versa.

When quick response is not a prime criterion for retrievals, or when

updates are relatively infrequent, conventional DBMS's often perform

satisfactorily. If the query being handled is of a class that has been antici

pated, so that the proper auxiliary structures have been generated, the

response frequently is quite good. If any of the above assumptions are

false, however, performance will likely be unsatisfactory. It must be

remembered, too, that queries can always be formulated for which the

needed auxiliary structures are not available. Under such circumstances.
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1.2.1.3. The Back-end Machine

A third approach to improving DBMS performance has been the

introduction of the so-called "back-end" computer. [Canaday 74]. The

concept is that the DBMS functions is removed from the host processor

to a separate, possibly general purpose, machine which has no other func

tion. The earliest reported work in this area was done at Bell Laboratories

in an experimental system called XDMS [Canaday 74]. Numerous advan

tages were postulated, in particular the following:

(1) Economy through specialization — smaller, simpler programs
and the use of a processor particularly suited (or modified to
suit) the data base environment.

(2) Shared data — multiple hosts can share the data because of the
well-defined interface.

(3) Protection and security — the physical isolation of the data base
system makes it susceptible to fewer failures. Also, the host
has an opportunity to detect and act quickly upon failures in the
back-end and vice versa.

(4) Transportability — once developed, the system could be at
tached to other hosts with a relatively small investment.

The Bell Laboratories study concluded that for simple commands,

costs were more or less equivalent to that of a conventional system being

developed concurrently, but for complex commands the cost savings were

one to two orders of magnitude. In addition, Canaday et. al. reached the

conclusion that the other benefits mentioned were realizable, and in par

ticular, that back-end DBMS was not only feasible, but that it would sub

stantially improve the cost/performance even if the back-end processor

were an off-the-shelf minicomputer.

1.2.2. Comparison to Conventional Hardware

The traditional DBMS system has benefited from a large amount of com

mercial investment, and a novel approach to the problem must be able to
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1.2.2.2. Set Processing vs. Record-at-a-time

Many authors [Healy 72] [Moulder 73] [Ozkarahan 75] have noted

that quasi-associative devices offer a greater improvement over conven

tional models in the environment where the answer to a query is a large

set of records, not just a single one. This results from the fact that the

associative device takes very little longer to retrieve a set of qualifying

records than to find just one, since each record must be examined to see

if it qualifies regardless. This is in marked contrast to conventional sys

tems where, unless the qualifying records happen to cluster properly, the

retrieval time may be directly proportional to the number of qualifying

records. This concept, known as set processing, is popular particularly with

the proponents of the relational model, where all the information is expli

cit, and therefore the concept of navigating through the data base is not

so useful. Thus the query languages developed for relational data base

systems [Chamberlin 74] [Held 75] generally encourage the types of

queries for which the quasi-associative devices perform best.

1.2.2.3. Storage Requirements

Any solution utilizing a modified head-per-track disk to store the

entire data base will be more expensive than either a moving head disk or

an unmodified head-per-track disk. This is clear because of the

significantly higher cost per bit of the fixed head disk, and the increased

cost of the controller to allow the simultaneous reading of all heads.

Thus the cost for a given size of memory, except in exceptional cir

cumstances, will be higher for the special purpose system than for a con

ventional one, even taking into account the reduction in storage require

ments due to the elimination of the auxiliary storage structures.
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the only solution for a conventional, sequential computer is to search

sequentially through the entire collection of data records. For many

queries it is necessary to make multiple passes through the file. For the

conventional organization under such circumstances, the file must be

brought in serially, possibly several times, and one firm limit on the

response to the query is the time required to read the file in. On the

other hand, the head-per-track architectures are capable of a great deal of

parallelism because all the heads are being accessed in parallel, potentially

increasing the bandwidth in proportion to the number of read heads.

The head-per-track proposals and the associative processor proposals

all have a common trait: they have eliminated the auxiliary structures.

Indeed, much of the improvement claimed for these proposals is the

elimination of the need to maintain these structures [DeFiore 74],

[Ozkarahan 77], [Mailer 78]. While these solutions are appealing, there is

not a great deal of hope for dramatically improving the performance

where conventional systems already perform well. On the contrary,

examples have been constructed where the head-per-track solution would

be much slower [Ozkarahan 77]', [Hawthorn 79a]. Thus it would seem

that a design which claims to improve the performance of DBMS's in

general will be required to support some auxiliary structures. Anything

less would start with a giant step backward unless it can somehow

improve dramatically on the performance of conventional models at the

tasks they perform well.

'See. for example. Fig. 7, page 190.
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1.2.3. Some Recent Proposals

In the last few years the categories described above have become less

distinct. In particular, although little serious consideration has been given to

implementation of a head-per-track "associative disk" as discussed above,

some research has appeared using moving-head-disk [Banerjee 78], [Babb 79]

and much has been made of the possibility of performing a similar function

using one of the emerging technologies, such as CCD's [Schuster 78],

[DeWitt 78], bubbles [Edelberg 76], [Chang 78], [Liu 79], and EBAM's

[Hsiao 77]. Until the recent consensus that CCD's are not a viable technology

as demonstrated by the fact that no new devices have been announced for

several years, the most considered was the use of CCD's. The idea, which

also can be applied to bubbles, is to replace the disk with some form of circu

lating memory, either a standard component or a special device designed for

the purpose. Such a system, though conceptually similar to a head-per-track

disk, in implementation is much more like an associative memory, with logic

distributed throughout the memory. For either bubbles or CCD's the logic

might actually be placed on the same component with the memory. Such

designs are often thought of in the context of a back-end processor, or even

as a back-end to a back-end. In addition, other authors [Stonebraker 78]

[Madnick 75] [Ames 77] have proposed the use of multiple processors to per

form the various functions of the DBMS. These may be as sophisticated as

small mini-computers [Stonebraker 78], or as small as early microprocessors

[Ames 77].

Because they have the most in common with the ideas presented here,

some of these designs will be examined in more detail. Schuster, one of the

originators of the RAP design, has helped Intel Corporation in the develop-
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Furthermore, the cost per bit of memory will inevitably be higher, maybe

an order of magnitude or more, and the only hope for developing an

effective system is through superior performance. On the other hand,

cost considerations dictate that head-per-track systems are out of the

question for moderate to large data bases except for those of pecuniary

indifference.

As mentioned earlier, [Schuster 76] proposed that a head-per-track

device such as RAP could handle a data base much too large to fit on the

head-per-track disk. The technique is to swap into the head-per-track disk

only those portions of the data base which are being accessed. The study

concluded that such was feasible if enough locality exists within the data

base queries. That question remains unanswered. They have suggested

further that RAP might be useful for holding the catalogues and indexing

information of a data base too large to fit on the RAP device. This auxili

ary information may be seen as a small separate data base, having many

of the requirements under which RAP's performance is projected to be

particularly good. The potential places, then, for such special-purpose

machines as described would seem to be the following:

(1) Applications where performance of conventional systems is
inadequate because of the need for quick retrieval response in
an environment of many updates.

(2) Applications where the queries are so varied and unpredictable
or so complicated that the performance of conventional systems
is inadequate.

Both types of applications are more attractive for quasi-associative designs

if the data base is not excessively large. Quite possibly the latter applica

tion might prove attractive if substantial improvement over current capa

bilities could be demonstrated.
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1.2.3.2. DBC

Probably the most ambitious attempt at a back-end computer

specifically designed for database applications is the database computer

(DBC) under development at Ohio State University [Banerjee 76], [Kan-

nan 76], [Hsiao 76]. This design proposes the use of modified, moving-

head disks for the mass memory (MM) of the database. In addition, a

"structure memory" (SM) is proposed for the storage of auxiliary informa

tion about the database. Hsiao and Banerjee predict, however, that it

should be much smaller than typical auxiliary memory requirements with

current conventional designs [Banerjee 79]. They propose that this

memory be built from one of the emerging technologies — bubbles.

CCD's, or electron beam addressable memories (EBAM's).

The modification to the moving-head disks is to enable the use of

all heads on the disk simultaneously. It is claimed, not entirely convinc

ingly, that this is "feasible and relatively low in cost" [Banerjee 79], and

the models presented assume that storage on such devices is no more

expensive than conventional drives. Such a device is inevitably more

expensive, however, since a significant amount of electronics must be

duplicated which otherwise could be shared.

One might further ask if such modifications are really necessary,

since only one disk is ever accessed at a time. It would seem that equal

parallelism might be obtained without the modifications by appropriately

placing the data so that an entire bank of disks could be read con

currently. While this makes the disk controller somewhat more compli

cated, it can be argued that disk controllers are becoming cheaper both

absolutely and relative to disk drives because of progress in VLSI technol-
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ment of a proposed data base computer using CCD's. Since this work has

been presented only in the most limited way, and since the present author has

had the privilege of participating in the design of the Intel version of RAP,

chapter two will deal with some of the design decisions made and the trade

offs considered. Copeland, one of the participants of the CASSM study, has

continued his work at Tektronix Corporation [Copeland 77] and has also pro

posed a CCD system.

1.2.3.1. ECAM

Anderson and Kain [Anderson 76] have described a "content-

addressed memory designed for data base applications". Although it is

claimed to be independent of storage technology, the design assumes

CCD's. It is intended as a back-end machine for one or more host com

puters. It consists of a master computer which is in fact a standard mini

computer, a custom-designed controller, and a large number of modules.

Each consists of a 4K bit serial memory and enough logic to perform

associative functions on the memory. The system is intended to be

expandable up to 109 bits.

Directories are maintained on the contents, apparently primarily to

keep track of the data format, but no other auxiliary structures are men

tioned. Though the design would be quite expensive because of the large

requirement for semiconductor memory, the claim is made, without sub

stantiation, that the system will operate "roughly 200 times as fast as a

conventional database system on a large commercial mainframe." [Ander

son 76, p. 194]
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Functional decomposition is claimed to be an effective way to con

vert high level concepts to requests to the physical information structures.

He proposes the use of a separate set of processors for each functional

level, which he claims simplifies implementation, enhances modularity,

and makes possible the introduction of specialized processor functionality

and parallel execution of lower level primitives. He proposes the imple

mentation of a pipeline through the use of queueing facilities and internal

multiprogramming, and claims that inter-processor communication is

made relatively simple and efficient by the hierarchal structure of the

function decomposition.

Madnick states that "most practical applications result in clustered

references such that during any interval of time only a subset of the

information is actually used, especially when you consider the use of

indexes and other control information." To take advantage of this locality

of reference, he proposes physical decomposition to create the effect of a

large, high-speed storage by means of a hierarchy of memory blocks with

a range of speeds and costs.

He stresses the asynchronous nature of both the functional and phy

sical decomposition for maximum parallelism. While he is quite vague

about any implementation, he does propose a microprocessor complex to

implement the hierarchal decomposition.

1.2.3.4. DIRECT

[DeWitt 78] has proposed implementing INGRES [Held 75], on a

unique back-end computer attached to a small host whose responsibility is

the user interface. See Fig. 1.3. The back-end consists of the following:
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ogy.

In the DBC system, while all the heads on one disk are used simul

taneously, the only parallelism planned for the multiple moving-head

disks is the expectation that, while one is dumping its data to the track

information processors (TIP), other disks will be positioning themselves

for future operations. The question arises, how much of the time does a

disk spend preparing to retrieve data as opposed to the time needed to

transmit it? In the case of the DBC, one revolution, typically 17 msec, is

the time to transmit the data sought. Since a seek is typically in the same

range, and including average latency of 8.5 msec, it would appear that the

best possible level of parallelism within the moving-head disks is quite

low, certainly less than 5. Dividing the disks into banks, however, each

bank having as many disks as there are tracks per disk, and reading all the

disks in a bank in parallel, would provide the same data rate with

unmodified disks. If there are enough drives to create a reasonable

number of banks, the performance should be as good or better than that

obtained with the expensive modified drives. Thus it appears to be possi

ble to build a large system with the same performance as DBC but using

conventional disks, deriving the parallelism from the simultaneous access

of many disks.

1.2.3.3. INFOPLEX

[Madnick 75] [Hsiao 77]. has proposed a system called INFOPLEX

which addresses what he calls "hierarchical decomposition." He claims that

two major types of parallelism to be exploited in an information system:

functional and physical.
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(1) a number (n) of query processors, each actually a PDP 11/03
with 28K words of memory.

(2) a number (m) of CCD memory modules, each containing a
portion of the data base currently being accessed.

(3) a mass storage device to store the database.

(4) an interconnection matrix to connect the query processors and
the mass storage device to the CCD memory modules, and

(5) a back-end controller to control information flow, assign proces
sors, page data between the CCD modules and the mass storage
device, and resolve concurrency conflicts.

The proposed design for the interconnection matrix is bit-serial, with each

memory module broadcasting its data serially and continuously, in syn

chronization with all other modules, to all query processors. The proces

sor wishing to access a particular memory module simply selects that

module and reads the data. DeWitt argued that frequently the query pro

cessor could immediately begin processing a page from the memory

module. Since it only holds one page, the processor could start at what

ever point on the page it found the module broadcasting, rather than

waiting for the beginning of the page, then reading the entire page in. If

the processor has to process the entire page anyway, it may start almost

anywhere. This argument ignores the point, of course, that many queries

will only be seeking a single record, with its address known to the proces

sor. When this occurs, a large wait time is encountered for the processor,

on the average, half the time it takes a module to broadcast its entire

memory, which is .012 seconds. A further problem results from the fact

that page sizes will be forced to grow as semiconductor technology

increases storage density on a single device.

The cross-bar switch proposed to implement the interconnection

matrix has some serious drawbacks. The DIRECT proposal concedes that

other data base techniques are superior for small values of m and n, but
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enough to keep the rest of the system busy.

1.2.3.5. MUFFIN

Stonebraker [Stonebraker 79], one of the originators of INGRES

[Held 75], proposes a distributed data base machine to implement

INGRES. He proposes a network of "processing nodes," called A-cells

(application program cells) and D-cells (data base nodes). Both kinds of

cells consist of "ordinary processors," though he claims they should be

different because of a different optimization of the instruction set.

The D-cells are totally dedicated to the execution of run-time data

base system code and there is no general purpose operating system

present. The cells may or may not have a disk system attached, and their

main storage is used for a "cache" for the disk, if it exists. The message

protocol observed by the D-cell is carefully restricted to minimize the

overhead associated with message traffic. As a result, the D-ceils never

originate messages, but only respond to them.

The A-cells will run a conventional operating system and include

some support peripherals. They will handle the user interface and the

application program, and are responsible for parsing the query,

modification for support of views, and enforcing integrity constraints and

protection [Stonebraker 75]. They will coordinate the execution of the

INGRES transactions by making calls to the D-cells.

A sophisticated page replacement algorithm for the "cache" of the

D-cell is proposed which can take advantage of the special knowledge

available about future references to the same page.
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claims that the cross-bar switch is the best interconnection for larger

values. The network complexity grows more rapidly than either m or n,

however. As a new query processor is added, not only does the switch

become one unit wider, the number of loads placed upon the CCD

transmitter is increased by one. More seriously, the number of places

from which write data can be received increases by one, necessitating

more gating logic at each memory module. The addition of a new

memory module, on the other hand, requires more inputs to each selector

for each query processor, in addition to the general increase in the switch

size. To make matters worse, expandability is clearly limited beyond the

initial design.

In justification of the interconnection matrix, DeWitt argued that

greater parallelism can be obtained by allowing both inter- and intra-query

concurrency. This argument assumes that all the processors cannot be

kept busy with only intra-query concurrency. It will be shown in chapter

two that this assumption is false. Thus little is gained by the generality of

the interconnection matrix and a seemingly superior implementation

would allow each query processor to access only a small subset of the

memory modules. While the claimed superiority over the original RAP

design due to inter-query concurrency may be valid, the implementation

of the relational join operation on DIRECT is clearly inferior to RAP.

One of RAP's major contributions is its capability to handle this operation

well.

The query processors are so slow in the initial implementation that

the interconnection matrix has been reduced to a single, multiplexed bus

[DeWitt 78a]. This solution creates a bottleneck if the processors are fast
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functions efficiently. The concept, which may have broad application,

uses a hashing technique to perform the join operation. This idea, which

is very similar to the approach taken on CAFS, to be described next, is a

powerful concept which may offer significant advantages over any other

reported method.

1.2.3.7. CAFS

A data base machine actually being implemented in England is the

Content Addressed File Store (CAFS) [Coulouris 72], [Mailer 78], [Babb

79]. This is the first reported commercial product and appears to have

had a great deal of influence on the design of LEECH. It is an integrated

design which has attempted to address the issues of security, privacy, ease

of access, data integrity, and consistency in a system with extremely high

performance. [Mailer 78] argues that to overcome the inherent problems

posed for a large DBMS,

(1) an effective method must be provided for associative access to files

of data, and

(2) there must be a method for correlating the data retrieved from

different files without overwhelming the facility with massive sorting

and merging.

In the terms of the relational model, he says this implies that the opera

tions of selection, projection and equi-join must be implemented directly.

CAFS proposes the use of moving head disk, with logic per head for

quasi-associative searching capability.

CAFS comprises five principal sub-units (Fig. 1.4):
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A cluster of A-cells and D-cells, called a pod. are connected together

by means of a bus or local network. The pods may be connected by

means of a gateway, through an A-cell, utilizing a lower speed communi

cation link.

Stonebraker stresses the importance of the bus structure within the

pod because of the importance of the broadcast capability — the ability to

send the same message to a number of nodes. This is the only reason

offered, however, and is heavily dependent on the assumption that "the

cost to send data to all sites is equal to the cost to send it to any site"

[Epstein 80]. He also rejects the use of identical hardware nodes con

nected in some structure because of a large cost savings claimed by only

providing needed functions in the A- and D-cells. He further states that

the two kinds of cells will probably have different instruction sets. Since

both are to be built from available conventional, general-purpose systems,

it is not clear how much different the instruction sets will be, but the two

kinds of nodes clearly will contain very different software.

Stonebraker makes an argument against the use of a hierarchy of

processors because he says such an organization "implies that concurrency

control and crash recovery are at least partly centralized." He further

points out the danger of a bottleneck at the top of a hierarchal structure if

a straightforward approach is used to implement the join operation.

1.2.3.6. LEECH

McGregor, Thomson, and Dawson [McGregor 76] described a

back-end system being developed in Scotland intended to support all data

models but especially the relational view. Although the hardware descrip

tion is very sketchy, a novel concept is proposed for performing certain
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(1) Control Processor

(2) Direct Access Unit

(3) Associative Searching Unit
(4) Record Retrieval Unit

(5) File Correlation Unit

The Control Processor is a conventional minicomputer whose purpose is

to do resource management and task scheduling. The Direct Access Unit

performs the standard functions required for the reading of a disk, but

can read multiple heads in parallel.

The Associative Searching Unit executes concurrent search tasks on

a stream of data coming from a number of disk channels. It performs the

qualification for the query, determining if each record meets the criteria

stated. It is able to perform its function at the speed it is delivered from

the disks, so no block buffering of the input data is required.

The Record Retrieval Unit collects the records for the result. It per

forms the projection by saving only those fields which are wanted. In

addition, it performs the restriction by writing over those records for

which the Associative Search Unit find no match.

The file Correlation Unit provides an efficient mechanism for the

evaluation of joins and the elimination of duplicates. The technique used

employs a set of 1 bit wide memories of size 256K bits in the experimen

tal version. The memories are used to store in compact form the set of

values present in some join field of a relation. To demonstrate the power

of the File Correlation Concept, consider the join operation described ear

lier using the telephone directory. If the field has a width of 18 bits or

fewer, the field itself can be used as an address for one of the memories.

Suppose that the phone numbers are sufficiently short that they can be
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this value is added to a new list saved in the separate storage area. After

the second pass, all those entries in the separate storage area not occur

ring more than once are discarded, and the remaining values are all those

occurring more than once.

Frequently at least one relation must be scanned twice in order to

perform the join operation. This results from the request to provide

other fields of records participating in the join. For example, if the tele

phone query were to list all the names of people who had phone numbers

listed more than once, it would be necessary to scan the relation a second

time to find all the occurrences of a given listing.

In the general case of the join algorithm, the relations are scanned a

second time, and the records qualifying are retrieved along with some

which appear to qualify as a result of a collision in the hash table. In

order to eliminate these extra records, called phantoms, the join must now

be performed again. This is usually a simple task, since the number of

records involved is usually quite small. Thus an acceptable level of phan

toms occurring is quite high, say 20 percent. The important point is that

no records are lost. Only false records occur and they are purged in the

subsequent operation.

The same physical hardware is capable of eliminating duplicates after

a restriction by the use of similar techniques, but in that operation there

is no way to guarantee that unique records will not be thrown away as a

result of collisions. Again, this probability can be made arbitrarily small,

but not zero.
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encoded in 18 bits. Then the following method can be employed to find

all phone numbers listed more than once:

The 1-bit memory is cleared. The telephone directory is scanned
sequentially, and for each entry a *1* is stored in the location
with the address specified by the phone number. Before it is
stored, however, the memory location is checked to see if it is
already a T. If it is, then it may be assumed that this number
has already occurred in the directory and this phone number is
returned.

Thus, in a single scan of the file, the join operation is performed.

If the numbers are sufficiently large that they cannot be encoded in

18 bits, then a more elaborate approach is required. The phone number

field is hashed to produce an 18-bit field which can be used to address the

memory. Now if a T is found in a memory location, it is not safe to

assume that the phone number has been seen before, since more than

one phone number wiil hash to the same location. This is overcome by

using several of the 1-bit memories, each with a different hashing func

tion. Unless all the 1-bit memories show a value of T it is safe to

assume that the number has not been encountered before. If all do show

a *1\ it is still possible that this is the result of a number of collisions,

but Babb has shown [Babb 79] that this probability can be made arbitrarily

small by the use of a sufficient number of hash tables (1-bit stores).

However, for those who are unable to accept a non-zero probability of

error, the result can be guaranteed with a second pass. On the first pass,

each phone number thought to occur twice is saved in a separate storage

area. After the pass, the 1-bit memories are cleared, and the numbers

saved are hashed and entered into the memories. The separate storage

area can now be cleared. A second pass is made, and each value is

hashed. If a value occurs for which all hash table entries are T. then
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in a single integrated circuit, an idea which may soon be realizable. This idea

will be pursued further in a later chapter.

1.3. Lessons to be Learned

Several issues have been raised in the cited works which should at least be

considered in any future design. These issues are discussed next.

1.3.1. The Importance of Auxiliary Structures

Although auxiliary structures are cumbersome and inelegant, they do

provide some powerful capabilities at relatively low cost. For many common

DBMS applications there is evidence [Ozkarahan 77], [Hawthorn 79a] that

none of the above cited proposals will offer dramatic performance improve

ment. For those applications where the data base shows little dynamic fluctua

tion, where few updates affecting the auxiliary information are required, and

where all the queries handled are of a class anticipated when the data base was

generated, the need to exhaustively search the data base never occurs. For

many applications it would appear, then, that the continued use of the auxili

ary structures is warranted. A design which claims any generality must there

fore either demonstrate that these structures can be eliminated, or provide for

their support. With a few exceptions, (e.g. [Berra 76], [Mailer 78], and [Ban

erjee 78]), in the past these structures have been ignored.

1.3.2. Set Processing

As mentioned earlier procedural languages encourage navigating the data

base, with the result that the inherent parallelism within a query is hidden.

Therefore, set-oriented, non-procedural queries will inevitably become rela

tively more attractive. Thus any future data base machine should be designed

to encourage the use of non-procedural languages.
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1.2.4. List Merging Processors

Some interesting research has been performed regarding the design of

special hardware for a related problem, namely document retrieval systems

such as EUREKA [Hollaar 77]. Because these systems generally have com

plex inverted files to assist in the retrieval of documents by keywords, the

results are significant also for more structured data base systems, many of

which also maintain inverted files.

Stellhorn [Stellhorn 74] argued that the most time consuming task in

many document retrieval systems is the standard set operations on the ele

ments composing the inverted lists. This is done to facilitate Boolean expres

sions qualifying the request. He designed a special unit to merge two lists

rapidly using the Batcher even-odd sort [Batcher 68]. Although the method

required2 /V • IgN merge elements to process two lists of length N, a number

that grows unacceptably for hardware, a technique was demonstrated for parti

tioning the lists and merging by parts. While this would indeed be a very

powerful tool, it is doubtful that a backing memory could keep such a device

busy.

Hollaar [Hollaar 75] designed a merge unit capable of merging two lists

rapidly by the use of a special list merging processor which used a single,

high-speed comparator to merge two lists rapidly. He demonstrated that, by

combining these in a binary tree structure, very complex Boolean expressions

could be rapidly analyzed.

Both of these designs included considerable discussion of implementa

tions using currently available integrated circuits. The latter appears to be a

reasonable idea if the list-merging module could, for example, be incorporated

-Throughout this document. Ig means log?.
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1.3.3. The Relationship Between Processing and Storage

Assuming that there are multiple units capable of performing processor

functions and multiple storage units, a fundamental issue is how these units

should be interconnected. At one extreme is the associative memory, which

has Boolean logic associated with exactly one memory unit, possibly as small

as one bit. At the other extreme is the general network, such as DIRECT

[DeWitt 78], which allows any processor to access any memory unit. While

the former requires much logic, which is poorly utilized, the latter required an

expensive, complex switching network to connect logic dynamically to any

desired memory cell. So the choice exists between the need for extra process

ing power which is not utilized and the need for complex switching circuits.

In this sense, memory is the only intractable requirement, and of course it

may be a hierarchy. It is suggested here that an intermediate scheme, minim

izing the processing logic requirements but using it well, while also minimiz

ing the interconnection logic will offer better cost/performance than either

extreme.

1.3.4. The Cost of Storage

The dominant technology for data base storage and retrieval is moving

head disk [Kerr 79]. While this medium has a low storage cost, it also has

long access times and slow data transfer rates relative to main memory speeds.

Most of the proposals suggest the use of higher speed technology or

modifications to the moving head disk, either of which, needless to say, is also

more expensive than standard moving head disks. The assumption, then, is

that one major performance limitation is the inadequacy of the storage

medium. While moving disk does have serious limitations, no emerging tech

nology appears to be challenging its position on the speed/cost curve. Fig. 1.5.



CHAPTER 2

The Intel/RAP Machine

In 1976, Schuster, one of the designers of the Relational Associative Processor (RAP)

at the University of Toronto, approached Intel Corporation about the possibility of imple

menting RAP using charge-coupled devices (CCD's). Intel subsequently began an investi

gation into the feasibility of such a system. The present author was fortunate to become

involved in this research.

2.1. The Relational Associative Processor

As mentioned previously, RAP was a design for a relational data base

management system to adapt a fixed head disk to appear as an "associative disk".

RAP, Fig. 2.1, consisted of a controller, a set function unit to perform statistical

functions, and an array of cells. Each cell consisted of one track of a fixed-head

disk and special logic to perform simple operations on the data coming off the disk.

The ceils could send or receive data from the controller through a common bus.

The controller in turn communicated with the host to which it was attached, using

a relatively high level language interface, such as SEQUEL [Chamberlin 74]. Thus

the entire data base could be searched quickly with complex selection criteria, but

without the use of indices.

There were several reasons for rethinking the design of RAP. Intel's interest

in the RAP project came from the possibilities for using semiconductors

memories, not magnetic disks. Also, as is typical of university projects, the origi

nal RAP did not use state-of-the-art technology. The comparison logic was fairly

complex, and no LSI parts were used.

54
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Thus all the proposals mentioned here are proposing more expensive memory,

hopefully resulting in better performance. This question is at the heart of the

issue, however, and must be investigated further. Must all memory be higher

speed and higher cost? Or can the hierarchal memory concepts which have

emerged be used, requiring only a small amount of more expensive memory?

This dissertation will investigate these questions further.

1.3.5. The Nature of the Query

Many data base management systems respond to queries almost

exclusively through the use of the auxiliary structures constructed for that

purpose [Gray 78]. They may have little or no reason ever to scan the entire

data base to answer queries for which the best access methods do not exist.

Under such circumstances, there is little hope that the ideas presented in this

chapter will offer significant improvement in cost/performance. However, for

those applications where the queries are not anticipated, or for any of several

reasons, the appropriate access methods are not available, these proposals

offer the hope of significant performance enhancement. At least one

manufacturer believes that such an approach is feasible [Babb 79]. If such

applications prove to be enhanced by the ideas presented here, it is reasonable

to expect a dramatic growth in the use of DBMS's in a plethora of new appli

cations.
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2.2. Problems with RAP

A fixed-head disk has a fixed rotation period. A given location is readable

only once during that period. Furthermore, nothing else can be done when the

data under the head is not wanted. Thus the original RAP hardware, made in

Toronto, had to be very fast to be able to do the comparisons quickly when the

data had arrived, yet wasted much of its time waiting for the data to get in the

right position. On the other hand, when the data did not fill the disk, the time

waiting for the data to come under the head was wasted. It is not desirable to have

the tracks very full, on average, because the data may grow. This results in a con

siderable loss in potential processing efficiency.

Another problem of the Toronto design was the problem of collisions when

two or more cells found records simultaneously and both needed to be transmitted

to the controller. The original design was such that when two cells tried to

transmit a record to the controller, one succeeded and marked the record transmit

ted. The other cell, however, failed, and had to record that fact and try again on

the following revolution. Thus in the case where all the cells had a record to

transmit at the same time, RAP required as many revolutions as there were cells.

Nothing can be done if all the records in the relation need be transmitted to the

controller, since the bus was busy all the time. However, in many cases a collision

occurred, forcing an extra disk revolution, even when a small number of records

was being retrieved. Although a small amount of buffering might help consider

ably in this case, the bookkeeping would be non-trivial, and it was argued that col

lisions would be rare, anyway.

A more serious problem was the fact that the minimum time for even a

trivial search was one revolution. This limited speed, and made it pointless to put

more than one relation to a cell. Thus only a small number of the cells would be
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available, even those not yet announced, were not nearly able to use this kind of

bandwidth. In fact the speed match was off by several orders of magnitude and

considerable effort was made to design a cell which could utilize this bandwidth.

A basic difference from the Toronto design resulted from the fact that the

CCD's intended for this project could be halted for a time. It was therefore possi

ble to stop at one page, process the data as long as needed, then skip to the next.

Since a page could be very quickly passed over, little time was lost if much of the

data was unneeded. Thus the relations could be partitioned across the cells evenly,

i.e., for each relation, each cell was to contain the same number of pages, within

one page. Now all the processors could be kept busy nearly all the time, producing

a high degree of parallelism.

Unlike the original RAP design, in which all the cells were working in lock-

step because of the minimal buffering from the disk, the Intel design assured that

the processors would not be in lockstep. Each cell had its own set of CCD's and

advanced the page when it was ready. The asynchronous nature of the cells

guaranteed that collisions could be handled more efficiently. The worst that could

happen would be that one cell simply stopped working while waiting for the bus to

send retrieved records to the controller. A further advantage of the greater intelli

gence given to the cells was that the operations could be specifically tailored for

the current query. That is, before each operation, the program to be performed by

each cell could be broadcast to all the cells over the common bus. A complex pro

gram could be broadcast in a time insignificant in comparison to that for the result

ing query.

2.4. Fixed v. Variable Length Records

A major consideration in the design was the trade-off between storing records

of fixed-length only, or allowing the length to vary. The argument for variable
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busy at any one time, namely those containing the relation being addressed.

Finally, no provision was made for recovery from failures. Magnetic disks

have a relatively high error rate, and their use in modern computers is only possi

ble because of error detection and either correction or retry. No provision was

made for errors in RAP, an issue which would almost certainly make such a pro

duct commercially infeasible.

2.3. A New Technology

The opportunity to employ a new technology in RAP allowed a fresh look at

the RAP design. In particular, it was felt that some of the unique characteristics

of the Intel CCD device could best be exploited by certain changes in the RAP

physical structure. The Intel 64K CCD was a unique device in that it was com

posed of a large number (256) of loops, each being relatively short (256 bits).

Thus at any position, 256 separate bits were randomly addressable at a very high

data rate (2.5 Mhz). Furthermore, the device could be halted at one loop position

for an extended period of time, possibly 1 ms. or longer.

A prime consideration in the new design was reliability. Although semicon

ductor devices are in general no less reliable than magnetic media, they neverthe

less do exhibit random loss of data on occasion. Intel wanted to be able to handle

not only random single-bit failures, but also the case where an entire device failed.

Clearly this meant that the error correction code word had to be spread over many

devices. Thus a cell was defined to be a multiple of 72 devices (or possibly even

143), each of the 72 devices having one bit of each code word. This dictated a

minimum cell size of 524k bytes. As a result of this decision, at any one time no

less than 2048 bytes was randomly addressable, a capability which proved useful.

This unit was referred to as a page. Also, an incredible data rate was available

from such a cell — 20 megabytes per second. It was clear that the microprocessors
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cally require less than 30 msec, to execute [Schuster77].
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length records was that many of the characters would be null and much space

could be saved by not reserving places for such data. However, some overhead is

involved, regardless, whether a field delimiter is included or an extra, regular bit is

added to delimit the field, and it becomes substantial if the fields are short. Some

compression is possible given fixed length records, so that the wasted space due to

null entries might not be as serious as at first thought. In addition to this well-

known problem of fragmentation [Knuth 73a], the cell design introduced an addi

tional capability if fixed-length records only were used. Because of the random

addressability within the page, if the record length is known, then the fields not

required for a given query can be skipped over completely. This was a significant

difference with respect to earlier proposed logic-per-track devices. In many cases,

this savings would be quite substantial.

The greatest disadvantage of the fixed length records was the subsequent

requirement that all relations must be normalized, i.e., no field could actually be a

list or tree. This has serious implications if a network or hierarchal data base

model is envisaged, and very little otherwise. It was decided that the savings

accruing from being able to skip over fields made the fixed record length the more

attractive. The standard relational model was thus supported, i.e., different

domains, or columns, could be of arbitrary width as long as every row had the

same format.

Thus the following architecture emerged. Each cell now contained at least

half a million bytes of memory, including part of all, or nearly all of the relations

in the system. The processing was done in parallel by all the cells, and was pro

portional to the complexity of the query and the size of the relation. High utiliza

tion would result from the fact that the work load was generally spread evenly over

all the cells. Calculations suggested that the type of queries anticipated would typi-
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hardware plummeting and the cost of search operations being reduced relative to indexing,

exhaustive search will become much more commonplace in the future.

3.1. Models

It is possible to model a data base system at several different levels. At one

level the logical operations that are performed on the database can be modeled.

For example, in the relational framework, this might include restriction (selec

tion), projection, equi-join, non-equi-join, update, create, destroy, etc. At a lower

level, the primitives used to implement these operations can be modeled. This

might include, among other things, searching for pointers or elements, sorting,

merging lists or other equivalent operations, and the coordination of operations

necessary to insure that concurrent operations do not leave the data base in an

unacceptable state. At a still lower level, the actual instruction sequences being

used to implement these operations can be studied.

Virtually all data base management systems perform sorting and list merging

and use indices to facilitate the access of data. Although the logical operations

performed vary greatly, depending on the data base model, it is claimed that the

underlying operations will be much the same in two systems performing the same

high level functions, whether the data base models are similar or not. So that

some insight into the lower level operations performed may be gained, some

operations in a relational model and the algorithms by which they might be per

formed on a distributed architecture will be examined. In particular, a query

analyzed by Blasgen and Eswaran [Blasgen 77] involving restriction, projection and

join will be considered. How the operation might be performed in the multipro

cessor environment will be studied.



CHAPTER 3

Models of a Data Base Management System

In this chapter and the following ones a number of basic models of a data base

management system will be considered to judge potential performance of a multiple proces

sor computing system. In order to evaluate the performance of a postulated system, one

could take a number of different approaches. These are the possibilities:

(1) Analyze Models. This is the most desirable method if feasible. The ideal is to
develop a model which is simple enough to be studied analytically, yet complex
enough so that the results are not compromised.

(2) Simulation. If the model developed cannot be analyzed satisfactorily, an alterna
tive is to simulate the model. This technique is generally much more work, and
provides less satisfactory results than analyzing the model directly, but can be
used on much more complex models.

(3) Build and Measure Actual System. If the above two methods provide unsatisfacto
ry or insufficient information about the behavior of the system, the last possibility
is to build the system, possibly simplified somewhat, and take measurements on
it directly. This approach provides the most detailed information but is generally
much more work and should be avoided or delayed until the potentials of the first
two approaches have been exhausted.

The workings of a data base management system are extremely complicated, and simulation

of such a system is a major undertaking. In order to provide some insight into the

behaviour of a DBMS in the environment proposed here, an attempt has been made to

analyze the nature of the operations that are performed in a real DBMS, and to reduce

these operations to a series of models which can be analyzed.

The intent of this work is to investigate the potential of a DBMS using multiple pro

cessors, so the modeling of currently available systems is not particularly appropriate. For

example, the potential for parallelism appears to be greater for queries that cannot be han

dled by indices, i.e., where exhaustive search is required. Such queries are rarely per

formed today on significant data bases, because they are too expensive. With the cost of

61



64

ble. Here it is assumed that this overhead can be reduced to a level where it is not

a major limitation on the system.

The individual processors may be handling different queries in parallel, which

is a problem already widely studied, or they may be working jointly on a single

large query. The focus of this study is the latter problem.

Hawthorn [Hawthorn 79a] has characterized data base queries in two general

categories which she calls "overhead intensive" and "data intensive" queries. In the

case of data intensive queries, a major constraint on the speed of execution is the

I/O activity generated. Additional hardware on the disk which allows the reading

of all the tracks of a cylinder simultaneously is assumed in order to provide for a

high potential I/O bandwidth. Though this may increase the cost of the disk

somewhat, it is claimed that the majority of the additional logic required can be

implemented by the use of the same single chip device proposed for the proces

sors.

In order to take advantage of the potential parallelism available in such an

architecture, the data base must be organized in a careful way. Here it is proposed

that relations be clustered on cylinders, using no more cylinders than necessary.

For a relation which can be placed on a single cylinder, this means that when the

arm is in the right position, the entire relation can be accessed in a single revolu

tion as with many of the data base machines described in chapter 1. It also allows

for the parallel processing of this data, since each processor receives a portion of

the relation in parallel if it is distributed across the cylinder. Indexes should be

placed on the same cylinder if they fit, and on a nearby one if they don't. If an

index is the clustering index then the index should be partitioned over the surfaces

in the same way as the relation itself.
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3.2. The System Model

The opportunities provided by VLSI technology will soon allow us to con

struct a powerful processor, including a significant amount of memory, on a single

piece of silicon. The economics of the semiconductor industry dictate that a small

number of types of devices can be fabricated, though the volume of each of these

may be quite large and the complexity of each may be great [Despain 78]. The

most serious limitations imposed by the technology are power dissipation and I/O

pins [Despain 78]. These constraints make desirable the construction of a large

system from a small number of types of components in a carefully designed

manner to take maximum advantage of the pins available.

For the data base computer model, an architecture of the following type is

proposed. A large number of single chip computers are connected together in a

yet-to-be-determined way and cooperate to perform the tasks required. These pro

cessors each have their own memory and may or may not have I/O devices

attached to them. A typical I/O device would be the head attached to a single

platter of a disk. Thus an entire cylinder can be read in parallel into a set of these

processors in a single revolution of the disk. The array of processors has many of

the properties of a network and in many regards they may be thought of as a net

work of homogeneous processors. However, a significant difference is that the

communication among the processors is extremely high - in the range of 10 mil

lion bytes per second.

Another difference is that a highly optimized protocol is assumed to allow

extremely efficient message passing among the processors. The overhead of mes

sage traffic among processors has been recognized to be a serious constraint in the

data base machine [Hawthorn 79a], [Epstein 80], [McCreery 79]. This problem

must be handled well or the multiprocessor approach to DBMS is probably infeasi-
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have them apply that criteria as the data are fetched from the disk. Assuming

that the selection criteria are not complex so that the processor is able to keep

up with the data streaming off the disk, then the disk activity will limit the

speed of the response.

If the relation is ordered in a particular way, it may be possible to limit

the search operation to certain nodes, i.e., processors, by recognizing that the

selection criteria eliminate all the tuples at certain nodes. This may be partic

ularly useful in the case where the criteria are intended to specify exactly one

record. In general, this is probably not very helpful, however. The disk

presents the primary limitation on response time, and in the general case, two

queries will require access to different cylinders. Thus the processors idled

will not be able to do anything else, since the disk arm is set to a particular

position handling the current query and cannot be moved so that they may

process a different one. They may be able to do housekeeping chores or other

kinds of operations, however. On the other hand, there is a cost associated

with this, since a simple index is required to be able to identify which proces

sors should be used.

If an index does exist, it may be quicker to search the index for the cri

teria than to search the entire relation. This will not be true, however, if the

relation is small enough that it fits on a single cylinder, since one revolution is

required to search either the index or the relation in that case, and searching

the index then usually requires further I/O accesses to fetch the data. (It is

possible that only pointers to the data are required and that these can be ade

quately supplied by the index).

Thus a necessary condition for indices to be useful for restriction is that

the relation be so large that it will not fit on a single cylinder. Under this cir-
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For such an organization, the following operations on a relational data base

shall be considered: restriction, projection, and join (equi-join). As mentioned in

chapter 1, these are the functions which [Mailer 78] thinks need to be imple

mented directly for a high performance DBMS. Epstein [Epstein 80] pointed out

that updates are often initially processed as a retrieval, followed by some lower

level processing. Particularly from the standpoint of inter-processor traffic, the

extension of a retrieval to include updates is, in most cases, trivial.

The concurrent access to a data base by multiple users gives rise to a plethora

of problems related to maintaining consistency and recovering from systems

failures [Eswaran 76]. Though little has been said here about updating the data

base, the problem is well-known and exists even in the case of a single processor

[Gray 78]. Clearly, efficient implementation of locking primitives is important.

However, the issue studied here is the effect of the DBMS on the architecture of

the computer system. There is no reason to think that conventional locking tech

niques [Ries 77] cannot be implemented in the proposed system with little impact.

Therefore, this study will consider only retrieval.

3.2.1. Restriction

Restriction is the selection of a subset of the records of the relation as a

result of some qualification. Frequently, a restriction results in only a single

result tuple. If the qualification includes the specification of the value of a

field for which an index exists, it is usually faster to search the index instead

of the relation itself to determine the result tuples, then accessing the relation

only to fetch the actual qualifying records.

Consider first the case where no index exists. The complete relation

must be searched. The algorithm for this operation is simple: Broadcast the

selection criteria to all the processors connected directly to a disk surface and
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3.2.2. Projection

Projection is the operation to eliminate certain fields of a relation. In

many cases the elimination of certain fields means that the resulting relation

may have duplicate, identical records. This happens whenever two records

differ only in the fields which are eliminated in the projection.

The projection can be performed easily in the postulated environment,

since each processor can scan the part of the relation associated with it, pro

ducing in place of each record a new record consisting of the subset of fields

surviving the projection. These records can be stored internally if they are

sufficiently small. Otherwise, they may be stored in a temporary file, either on

the same track as the original relation, if there is room, or on another track of

the same surface. Thus each processor can handle its portion of the file

independently as it comes of the disk except for the final step - elimination

of duplicates. In the general case, these duplicates may be scattered over all

the participating processors, and these pieces must now be compared to

remove the duplicates.

3.3. Topology

Initially the question occurs whether the topology of the network is of any

importance. In particular, if the network is so efficient that it can handle the data

as rapidly as it can be retrieved from secondary storage, then the issue of its topol

ogy is irrelevant. This may in fact be the case in certain circumstances, depending

particularly on the nature of the queries, the organization of the I/O, and the

organization of the data base. Clearly a tremendous bandwidth is necessary from

the I/O devices to perform exhaustive searches rapidly. This might be facilitated

by attaching one processor within the structure to each head of a moving head

disk, allowing access to all heads in parallel. A file can then be retrieved quickly if
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cumstance, the access of an index may be considerably faster than a scan of

the entire relation, which entails seeks. If the results of the index are ran

domly scattered over the relation, however, the resulting fetching of them

may take as long as scanning the relation in the first place (or even longer if

the fetching is not done in an intelligent way).

In general, then, an index is useful if the number of cylinders accessed

in searching the index is less than the number of cylinders of the relation

which can be elided as a result of the index scan. Of course, this may be

impossible to predict before the scanning of the index is performed, but in the

case where only a single record ultimately is to be fetched, the advantage of

the index will be predictable.

For a relation which is frequently accessed, it may be useful to keep

some information about its partitioning in the processor. This allows restric

tions which depend on the clustering field to be handled quickly by eliminat

ing entire cylinders of the relation which are known not to meet the

qualification criteria. This sort of index is small enough that it can be kept in

the processor main storage if it is frequently used, thus requiring no I/O

activity.

The communication among the processors required for restriction is

fairly small. The selection criteria must be broadcast to all the I/O nodes, and

presumably the results of the query must be assembled somewhere. In addi

tion, if an index is used, and it is not the clustering index, i.e., if it is not

ordered and partitioned in the same way as the relation itself, then the

identifier of qualifying records must be sent from the node identifying the

record to the node into which that record can be accessed.
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The Elimination of Duplicates

The projection operation performed on a relational data base has been shown to be a

simple problem for the individual processors to handle except for the elimination of dupli

cates among the various nodes. In the handling of a complex query this reduction in data is

often crucial and may be performed multiple times. The elimination of duplicates is so

expensive that the user is often given the opportunity to tell the system when it need not

be done. This operation will be studied at great length in order to determine its communi

cation requirements.

In terms of the telephone directory model consider the following operation:

List all of the streetnames present in the directory.

The stripping away of the names, street numbers, and telephone numbers will leave the

desired information, but in a highly redundant form, since many people live on the same

street. The result may be thought of as a list of numbers and the problem is to eliminate

multiple occurrences of a number.

Here it is assumed that the number of elements N making up the list is large - too

large to be reasonably supported by a single processor. Duplicates can be eliminated by

exhaustive comparison or by sorting, or by some combination of the two. The advantage of

the sorting approach is this: direct comparison of all pairs of elements in a list of length N

requires 00V2) comparisons to eliminate all duplicates. Sorting algorithms, on the other

hand, may require only O(NlgN) comparisons worst case and may, depending on the

order in the list, require a substantially smaller number than that. Algorithms exist, in fact,

for sorting in O(N) operations [Knuth 73, pp. 99-102]. However, sorting implies the mov

ing of a large amount of data, more or less randomly. This is awkward, particularly if the
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it resides only on a few cylinders. Ideally, it should reside only on a single

cylinder, being spread over multiple disks if necessary to accommodate it. In gen

eral, individual relations may be too large to fit on a single cylinder and therefore

reside in a cluster of cylinders. Algorithms which will handle such files will be

examined.

3.4. Summary of Critical DBMS Operations

The important relational DBMS operations have been examined and the two

which present the most challenge to the computing system are the join operation

and the elimination of duplicates resulting from the projection operation. These

two operations must now be studied in more detail to determine how they can best

be supported. In chapter 4 the elimination of duplicates problem will be con

sidered to contrast various interconnection alternatives among the processors.



maximum number of comparisons performed in any one node, and
MNm&Xi the maximum number of messages transmitted over any one
link.
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Identifying the duplicates in two ordered lists is equivalent in complexity to

merging the lists since a trivial addition to the merging procedure is to test for

equality and eliminate duplicates. For all methods presented, it is assumed that

each processor first sorts and eliminates its own duplicates. Since this requirement

is the same for all methods, it has been ignored. Thus, to merge two ordered lists

of lengths L\ and L2 requires L\ + L2 comparisons1. How can the duplicates be

eliminated?

Consider how it might be done by first eliminating duplicates within a list,

then by comparing every pair of lists. Somehow the lists must be transmitted in a

regular way so that all lists are compared against each other. However, a method

must avoid the problem of mutual destruction of all duplicates. The following

method does this by assigning priorities to the processors:

4.1.1. Method 1: Sequential Broadcast/Common Bus Organization

The P processors are ordered and connected to a common bus. Each
processor eliminates the duplicates within its own list. The first pro
cessor broadcasts its condensed list in sorted order to the remaining
processors and quits. Each processor which receives the list com
pares it against its own elements and eliminates all elements that
match an element of the broadcast list. The remaining processors
sequentially broadcast their condensed lists and quit. When all pro
cessors but the last have broadcast their lists, the duplicates have
been eliminated.

This algorithm has the desirable property that the message size shrinks

as the duplicates are eliminated. Thus the total length of the message units

sent is the length of the list of all elements with duplicates eliminated less the

Kiiuth fKnuth 75, pp. 198-2001 shows that the minimum possible for the worst case is actually
L\ + Li - 1 if L | and L2 are approximately equal. Here the constant term is ignored and it isassumed that,
in general, merging y lists, each of length L, can be performed in y • L • Igy comparisons, recognizing that
this simplification results in the assumption that merging two lists of length one requires two compares.
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elements to be sorted are in different processors. Thus a tradeoff exists between the move

ment of data and the number of comparisons, depending on the approach chosen.

The methods to follow will be compared in two ways: the cost of computation C and

the cost of communication M. The computation will be measured crudely by estimating the

number of comparisons required. The interprocessor movement of data is measured by the

sum of the transmission of every element across every interprocessor link. If an element

must traverse three such links, then three message element links must be counted. All ele

ments are assumed to be the same length. Computation costs will be determined both for

total system and for the busiest processor. Communication costs will be determined both

for the total system and for the busiest link. This allows an analysis based on either

through-put requirements or response-time requirements, i.e., bandwidth or latency

requirements.

4.1. Parallel Methods for Eliminating Duplicates

Assume that a number of identical computers (P) are connected so that they

can communicate in a fairly intimate way among themselves via messages. (P is

assumed to be a power of 2, except where noted). Suppose that a list of numbers

of total length W, is segmented into P lists of equal length L =» ~ and distri

buted over the P processors. In the general case, a wide range of possible out

comes could result from the elimination of duplicate elements, depending on the

degree of redundancy in the data base. In order to establish bounds on the size of

the task, consider the two extreme cases:

(1) All elements are identical. For this case let CI be the total number of
comparisons done in all processors and Ml be the total number of mes
sage element links. Also, define Clmax, the maximum number of com
parisons performed in any one node, and MlmaXi the maximum number
of messages transmitted over any one link.

(2) All elements are unique, i.e., there are no duplicates. In this case, let CN
be the total number of comparisons done in all processors and let MN
be the total number of message element links. Also, define CiVmax, the
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Another sort of priority can be introduced by allowing an additional pro

cessor to do the comparison of the two or more lists and produce the result:

4.1.2. Method 2: Tree Organization

Each processor, after eliminating its own duplicates, sends its list to
its parent in sorted order, which merges the lists it receives, eliminat
ing the duplicates, and sends the result on to its parent. This contin
ues until the final list is formed at the root of the tree.

In this structure there are actually ^—V- processors connected as a
y -1

tree, where y is the branching factor of the tree and P is a power of y. P

P -1
processors are leaves, — are non-leaves. The P processors at the leaves

have direct access to the data. This method requires more processors, nearly

twice as many as in the previous case. It is very effective if the number of

duplicates is large. However, if few duplicates exist, the length of the list will

increase, by nearly a factor of y at each stage, increasing both the computation

and the worst case message traffic with each level up the tree. Thus each

succeeding step uses only 1 ly as many processors, each of which must do y

times as much computation. For this case CN is calculated as follows:

There are lgv P levels (counting the root or the leaves, but not both). There

y(P -1)are v \— links» one above every node except the root. Numbering the

levels in ascending order starting with the leaves as 0,

p
level 1 contains — processors, each mergingy lists of length I,

p
level 2 contains -y processors, each merging y lists of length yL,

p
level j contains — processors, each merging y lists of length yj m]L.



73

number of unique elements in the last processor. Obviously, this is the least

possible communication cost.

It solves the problem of saving exactly one copy of each element by seri

alizing the broadcasts. Note that these broadcasts cannot be done in parallel,

even if multiple busses are available. As a result, the parallelism is limited.

On average, no more than half of the processors are busy. Since each list is

sorted before communication begins, the removal of the duplicates can be

done in one pass for each broadcast. If there are no duplicates actually

present, then the total number of comparisons CN is

CN =2L(P -I) +2KP-2) +••• +21,(1) =2LP{P2'l) =N(P -1).

GVmax = 2L(P -I) =20V-I).

Also

MN =(P -1)1 = W-I,

MNmax =MN = X -L.

Here the broadcast of a message to many other processors is counted as only

one message sent. If there is only one unique element, only that one element

is sent, and each of the other P -' 1 processors compare it and eliminate their

copy:

CI =2(P-1), Clmax = 2,

and

Ml =» 1, Mlmax = 1.

Of course, there will be some messages necessary to notify other processors

that no more elements are to be sent, but this is considered overhead which,

in general, is small enough to ignore.
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Consider the binary tree case (y = 2). Since the lists were sorted

before being sent to a parent all that is required of the parent is a merge of

ordered lists, a procedure that increases only linearly with the length of the

list. Now suppose that instead of sending the list to a common parent, the

two processors divide their elements into two lists in a commonly agreed way

and exchange one of them. This leads to the first algorithm utilizing a global

sorting:

4.1.3. Method 3: Binary Merge/N-cube

P processors are numbered in binary from left to right, starting with
0. Each processor eliminates its duplicates, leaving them in sorted
order. The range of values of the sort field is partitioned in a univer
sally agreed-upon way, (the obvious way, for example, is to use the
most significant bit of each element), and each processor breaks its
list into two parts. It then sends one of the two lists to the processor
having the same address except for the most significant bit as follows:
If the most significant bit of the address of the sending processor is a
1, it sends the first list. Otherwise, it sends the second list.

After merging the received list with the retained one and eliminating
duplicates, each processor repeats the process, but with the following
modification:

Each partition of the range of the sort field is further sub-divided into
two parts. If the straight-forward way is used, then on step j, the jth
most significant bit of the address is used to determine which list to
send and to whom it will be sent.

This process is repeated n times, after which the range is partitioned
into P parts, and one processor contains all the values for exactly one
partition. If the obvious partition was used, all numbers are sorted
into the proper list according to their n most significant bits.

The links required between the processors form the n-dimensional
structure known as the n-cube [Siegel 79] and sometimes called hy-
percube.

This procedure requires only n =» Ig P steps and does not get more

complex on subsequent steps — in fact it gets shorter with the elimination of

when y is a power of 2.



Assuming that y lists of length L require yL Igy comparisons2 gives

CN =£yL Igy +-^y2L Igy +•••+-£r/'' •Llg.

= P • I -(lg2y)(lgyP) =N lg P.
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NCNmzx is computed for the top node, merging y lists of length —. Again
y

assuming that y lists of length L require y • L -Igy comparisons,

CWmax ~y--lgy =Nlgy.

The calculation of MN follows from the observation that each element goes

from aleaf node to the root, i.e., through lgy P links. Therefore,

MN ~NlgyP =-?LlgP.
igy

Each of the top level links carries — elements, i.e.,

This difficulty suggests that the upper nodes might require greater power and

larger memory. If all elements are identical, no such congestion occurs. Each

non-leaf node receives y lists of length 1. Assuming that merging y lists of

length 1 requires y lgy operations, then

CI =» —jy lgy.

Since each non-leaf node does the same number of operations,

C1 , CI a
max number of non-leaf nodes °y 8y'

Since exactly one element passes through each link,

and

Ml --£-(P-i)f
y -1

-Strictly speaking, this is an equality only if y isa power of 2. Comparison is inherently a binary operation,
and a .y-way merge can be accomplished with only about lgy comparisons per element using a selection tree
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the redundant elements. After each of the Ig P exchanges, all P processors

merge two lists of length —. Therefore,

GV =(lgP)p-2 lg2 = NlgP

Symmetry arguments guarantee that CNmax and MNmax are just -^L and -ir

respectively. Assuming that on each move, half the elements are moved3,

\S\T / D N ^IgPMN «* IgP — = —t—
2 2.

p
For the unique case, after exchange j, —- nodes have a list of length 1 while

the remainder have the empty list.

CI =2(l)te2|f£ -2CP-1),
y-i 2

Clmax = 2(1) Ig2 (IgP) -2lgP.
p

During exchange j\ — elements are sent:

Ml - '%-L =P. x
7-1 2

and Mlmax = 1.

There is nothing magic about the binary process, however. It is possible

to use a y-v/ay sort and divide the elements into y lists, sending y -1 off at

each step. This would require fewer steps, since

IgyP < lg2P

for all values of y > 2,P > 1. Carrying this idea to its extreme, this could be

done in base P, in which case only one swap would occur. This results in the

following method:

In the worst case, when all elements are moved each time, MN =» N Ig P.
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4.1.4. Method 4: P-Merge

Each processor orders its own list and, after eliminating its own du
plicates, partitions the list into P separate lists in a consistent way for
all processors. Numbering these sublists from lowest segment to
highest, the yth segment is sent to the yth processor. Each processor
retains only that sublist which it would send to itself, and merges it
and the P -1 incoming sublists as they arrive.

This method again is near optimal in terms of the transmission of infor

mation, at least for the case where there are few duplicates. With no dupli

cates, each processor merges Plists, each of length -^:

CN ?j;lgP NlgP.

CNmax =-^ =Ig P.
Each processor sends L - — elements:4

MN =P '-* = /V-L.

MN = m = "-L = 2L_
max number of links P(P -1) 12 P.

For the single unique element case, only one processor receives anything: P -

1 lists of length 1.

CI = P • 1 • Ig P = Pig P, Clmax - CI - Pig Py

Ml = P -1, Mlmax = 1.

Another extension of Method 2 is two build a network which contains the

interconnections for one dimension of the n-cube and has the capability to

move the data among processors so that each exchange can be accomplished

with immediate neighbors. It has been shown [Stone 71] that both the

shuffling of the data and the exchange can be effected in paths through only

one link each for the network known as the perfect shuffle. This leads to our

*MN = N, worst case.
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last method.

4.1.5. Method 5: Binary Merge/Perfect Shuffle Connection

P processors are numbered in binary from left to right, starting with
0. Each processor has a link to one neighbor whose address is the
same except for the least significant bit. This link is used to imple
ment the exchange. In addition, each processor has two other links
to the two processors having the same address but shifted (end-
around) one position. Each of these links is used once for each
shuffle. Each processor eliminates its duplicates, leaving them in
sorted order. Using the agreed test, (again perhaps the most
significant bit of each element), each processor partitions its list into
two smaller ones. It then exchanges one list with its neighbor.

After merging the received list with the retained one and eliminating
duplicates, a shuffle is performed, i.e., each processor sends its entire
list over the link to the processor with the same address shifted one
position, say, left.

This process is repeated Ig P -1 times, after which the range is parti
tioned into P parts and each processor has all the values for exactly
one partition.

The computation involved here is the same as for the /7-cube structure,

so CN and CVmax are precisely the same as that case. Assuming again that on

each move, half the elements are moved, the communication involved in

Method 3 is again required, but additional communication is incurred because

of the shuffles. Each shuffle involves sending all surviving elements through

one link, and since there are Ig P -1 shuffles,

MN = HAL + NUgP .,) = 3EM.. N_

Since more traffic goes over the shuffle links, the traffic on the busiest link is

MNmax - NUgPp 'l) =LilgP -1).
For the unique case, again CI and Clmax are the same as for Method 3.

Again an additional communication cost is incurred because of the shuffle.

During shuffle y, j = 1,2,3, •••MgP - 1), -?- nodes transmit a list of

length 1, the remainder transmitting the empty list. Thus the additional
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communication cost for the shuffles is

UgP-l) D

j-l 2J

so the total communication cost is

Ml = P -1 + P - 2 - 2P - 3.

The busiest link is the exchange link of one particular processor which carries

the unique element on every exchange. Thus,

Mlmax =*lgP.

4.2. Comparison of the Methods

Table 4.1 compares the five methods under the assumption that no duplicate

data exists. Table 4.2 compares the five methods for the model where all elements

are identical. The parameters have been normalized for the case of all unique ele

ments by dividing by L, the length of the list in each processor. For purposes of

comparison, the following assumptions have been made:

(1) Order is initially totally random, but the elements are evenly distributed
among the processors.

(2) The numbers are scattered randomly, i.e., evenly, over their possible
values.

The first assumption seems reasonable, though presumably it corresponds to some

sort of worst case. The second assumption, however, requires some justification.

Normally one would expect to find severe clustering of the numbers resulting from

the fact that they are normally derived from natural language or other organized

sets of data. They can be randomized, however, by hashing the sort field. The sort

order is changed, making the end result of little use as a sorted list. This is not

terribly important in many cases, however, since the elimination of duplicates is so

often an intermediate result and ordering is not useful anyway.
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Method

1 2 3 4 5

No. of Processors
P /> P i>

Number of links 1
j>(/>-1) PigP

2

P(P-l)
2

3P

2

CN IL PIP -1) Pig P Pig P Pig P Pig P

MN IL P-l -r-igP
Pig P

2
P -1

3PlgP p
2

CNmax/L 2(P -1) P\o%y IgP IgP IgP

MNrmIL P -1
y

1
2

P
Ig P -1

A P -1 y +1 IgP P -1 3

MN IL (P -1)2 ^-±±PigP
\o%y

P(lgP)2
2

(/> - l)2 9Pl$P .3P
2

(P -1)2 y +1P
y

IgP
2 (/» - 1)

P
3(lg P -1)MNmx/L

Table 4.1. Comparison of five methods for eliminating duplicates assuming that no dupli
cates exist. Method 1: Sequential broadcast. Method 2: y-branch tree. Method 3: Binary
merge. Method 4: P merge. Method 5: Perfect shuffle. GV is the total number of com
parisons done in all processors. MN is the total number of message element links. OVmax
is the maximum number of comparisons done in one processor. MNmar is the maximum
number of message elements passing through any one node. MN = MN-A is the total
message traffic adjusted to compare processors with different numbers of I/O ports.
^flVmax = MNmax-A is the normalized measure of busiest link traffic. A is the normaliza
tion factor for the variable number of ports required.
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Method

1 2 3 4 5

No. of Processors P
yP -1

J-1
p P P

Number of links 1 y(P-l)

J-1

pi$ P
2

P(P-l)
2 ¥

CI 2(P -1)
y -l

2(P -1) Pig P 2(P -1)

Ml 1 ^(P - D
y -l

P -1 P -1 2P -3

CI^ 1max 2 ^logj/ 2lg P Pig P 2lg P

M"lmax 1 l 1 1 IgP

A P -1 j' +i &P P-l 3

Ml P -1 iSjl±JL{p. d
^ -1

(P -1) & p (P -1)2 6P -9

Ml max P -1 y +1 fcp P-l llg P

Table 4.2. Comparison of five methods for eliminating duplicates assuming that all ele
ments are identical. Method 1: Sequential broadcast. Method 2: Tree. Method 3: Binary
merge. Method 4: P merge. Method 5: Perfect Shuffle. CI is the total number of com
parisons done in all processors. Ml is the total number of message element links. A is the
normalization factor for the variable number of ports required. Ml = Ml-A is the total
message traffic adjusted to compare processors with different numbers of I/O ports.
Mlmax = ^flmax'<4 is the normalized measure of worst case link traffic.
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A more serious problem is that if the hashing function fails to randomize the

data sufficiently, some nodes may receive very large lists. This would imply that

each processor must have enough memory to hold the entire list, violating our

assumptions made. This problem can be resolved, however, by aborting an opera

tion as soon as an overflow occurs, and substituting a more appropriate hashing

function.

The comparison of message traffic among processors is not straightforward if

the processors in the different cases have different kinds or numbers of ports. One

might reasonably expect that processors with more ports or faster ports would be

more expensive, so that it is also only fair to expect more performance from them.

In the above cases the processors vary widely in their I/O capability, from a binary

tree or the perfect shuffle, which need only three ports per processor, to the com

plete interconnection, which requires as many ports on each processor as there are

processors, less one. The bus structure is even harder to compare, since although

only one port is specified, it nevertheless is obviously much different than the port

required by the other cases.

Despain [Despain 79] has shown for a single chip computer that power con

siderations limit the total I/O bandwidth of the processors. Thus if the total

bandwidth available is B bits/second, it can be assumed that each of K identical

D

ports can transmit a maximum of — bits per second. He has also shown for the
A.

case where Q processors share a bus that a processor using the bus can achieve a

Bbandwidth of only3 _ bits/second. A further result is that reduced bandwidth

is equivalent to an increase in the average path length for a message, i.e., for a

given set of message interchanges there exists an average path length A, such that

-In the special case where the processors broadcast sequentially. In the general case where all processors are
vying for the bus, it is much worse, i.e.. B / (Q - 1) 2.
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A • BE = 5,

where BE is the effective bandwidth through a port and B is the total bandwidth

available to a processor.

If it is assumed that a structure with equivalent performance can be obtained

by reducing the number of ports and increasing the number of intermediate nodes

traversed, then equivalence among the various processors is defined by multiplying

the message traffic by the average path length. Thus define

MN =*A • MN, AflVmax = A • MNn

and

Ml "A- MIA, Mlmax = A • AHmax.

Tables 4.1 and 4.2 show values for the effective path length A and the com

pensated values for message traffic. Under these assumptions, the tree (method 2)

and the perfect shuffle (method 5) have the least total message traffic, regardless

of the duplication factor, though the binary merge with the n-cube (method 3) has

less message traffic if P is quite small. Also, the optimal value for y is 4, although

the differences are small for values of 2 to 8. On the other hand, when the dupli

cation is low, the tree exhibits congestion near the root, and ail methods but the

bus are superior to the tree with respect to the busiest link, increasingly so with

larger values of P. When the duplication is high, however, the binary tree is

exceedingly effective, with the busiest link not affected even with increases in P.

Clearly none of these structures is best over the range of consideration.

Some of the methods are asynchronous. The P - 1 messages that each pro

cessor sends in the P-merge (method 4) need not be sent simultaneously. Each

processor can begin processing the second phase of the P-merge as soon as one

message has arrived. Thus communication and processing can be overlapped.
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The binary merge (method 3) likewise can proceed asynchronously, with

each node having a list of other processors with which it must communicate

sequentially. Thus, either of these methods can be implemented on a general

computer network where all nodes can communicate with all others. Both require

many messages to many different nodes, so it should be noted that efficient com

munications are vital in the elimination of duplicates using a sorting scheme.

It is interesting to observe in the tree (method 2) that if the initial elimina

tion of duplicates results in the elements being sorted, then the processors above

the bottom level can proceed asynchronously in a pipeline fashion. Each processor

may begin processing as soon as it has received one element from each of its chil

dren. After selecting the lowest value of those received, it can immediately send

this element on to its parent, and remove it from its own list. Thus it is not at any

time required to store the complete lists, which may be growing quite large. Of

course the node at the top must do something with the resulting list, and it might

turn it around and send it down the tree, where it can be sorted on the way down,

thus preserving a useful sort order. Thus all the non-leaf nodes can be working

simultaneously, resulting in a higher degree of parallelism than might otherwise be

expected.

The tree model (method 2) uses up to twice as many processors as the other

models. The difference in performance, however, is much greater than a factor of

two. The amount of computation is no more than for any other method, so the

processors on the average do only half as much work. The total message traffic,

on the other hand, is much less than for any other method, for large values of P.

The important consideration here is how rapidly the requirements grow as the

number of processors grows, and in this respect, a mere factor of two is quite

unimportant.
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. Methods 3 and 4 require substantially more data paths than any of the other

methods. Clearly the P-merge is not feasible for large P if P(P -1) dedicated

p
links are required. Even the PIg y links required by the binary merge are hard

to justify for large values of P. This would mean Ig P links per node if dedicated

links were used.

A more serious problem is the lack of expandability imposed by these struc

tures. A processor may have only a fixed number of ports, particularly if it is a

single integrated circuit. Methods 3 and 4 require an increase in the number of

ports as the number of processors grows, so that if room is left for expansion, then

some of the available ports are unused, wasting available resources.

The perfect shuffle seems to have many of the properties needed here,

though it is markedly inferior to the binary tree in the case of high duplication. It

also has a large enough linear coefficient for MN that its superiority occurs only

for large values of P. But it poses some unfortunate problems as well. It certainly

cannot be gracefully expanded, since it requires a power of two processors. Furth

ermore, the routing of messages in such a structure is difficulty because of its lack

of symmetry.

On the other hand, the sequential broadcast method takes substantially

longer to execute than the other methods. Also, if the duplication factor is low, it

requires far more comparisons than any other method and much more communi

cation bandwidth than any method except the complete interconnection.

It is clear that the bus is inferior to the other methods. However, the others

all have shortcomings which are extremely serious. The question then arises — is

it possible to construct a network on which several of the methods can be imple

mented so that the best method may be employed in a given situation?
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Assuming that each processor in a structure has the same number of ports, a

significant variation among these structures is the portion of ports actually used.

The complete interconnection and the a-cube algorithms, for example, use every

port. But the binary tree uses less than two-thirds of the ports it has, since each

leaf node has two unused ports. It has been suggested [Despain 78] that this is

desirable to allow a convenient placement of I/O devices, a point that all structures

must address somehow. Thus a fairer comparison might require that each struc

ture have as many unused ports as it has processors. For methods 3, 4, and 5 this

would be approximately equivalent to increasing the value of A by 1.

An alternative approach, and one taken here, is to connect the unused ports

of such a structure in some regular way. One possibility for the binary tree is to

connect the leaves to form the perfect shuffle interconnection, Fig. 4.1. The

exchange can now be accomplished by messages exchanged through the common

parent. Unfortunately, this doubles the traffic during the shuffle, which is already

the dominant traffic for method 5. A better possibility exists.

4.3. X-Tree

A topology recently proposed [Goodman 79] in connection with X-Tree

[Despain 78], can implement any of the algorithms. The structure, called Hyper-

tree, is the binary tree topology, but with each node having one extra link connect

ing it in a regular way to another node at the same level (Fig. 4.2.). The structure

is particularly well-suited for communications among leaf nodes which are nearest

neighbors in the n-cube. Since the structure is a binary tree, obviously method 2

(binary tree) can be implemented directly on the structure. In addition, method 3

(n-cube) can be implemented by using the leaf processors, passing messages

through intermediate nodes where necessary. Furthermore, the structure has been

shown to be well-suited for communication among all leaf nodes, so that method 4
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could also be implemented conveniently. Method 5, the perfect shuffle algorithm,

could also be implemented, though nothing is gained by the shuffle, so it is essen

tially the same as method 3. However, the extra ports of the leaf nodes can be

connected in a perfect shuffle so that the horizontal links can be used for the

exchange (Fig. 4.3.). With this addition, the structure can perform the binary

merge as well as the perfect shuffle network except that the value of A is 4 instead

of 3.

Tables 4.3 and 4.4 show the values for this model assuming the structure is

used to implement methods 2, 3, 4, and 5. The computations, of course, do not

change, being determined by the method and the corresponding logical structure.

Degradation occurs for the binary tree structure because the multiplication factor

A, is increased by one to accommodate the additional link required for the Hyper-

tree connection.

Method 3 is implemented using the extra links. It has been shown [Good

man 79] that for communication between any pair of leaf nodes, an optimal path

exists which goes no more than half way up the tree. This guarantees that the

bottleneck which would occur in the simple binary tree if few duplicates are

present, will not occur, or at least will be much less serious, since a factor of VP

more links are available to handle the traffic over the most heavily used path.

The best method to use varies greatly, depending on the amount of duplica

tion in the list, the number of processors, and the relative importance of total

traffic versus busiest link traffic.

For the high duplication case, the simple binary tree algorithm is always the

best for the worst case link traffic, though it is slightly inferior to the binary merge

(n-cube) algorithm in total traffic. Note also that these two methods have the

lowest computational requirements as well, under these conditions.
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Method

2 3 4 5

CN 1 L Pig P PlgP PlgP PlgP

MN 1 L Pig P ^-j^-ilgP +0 — - —P + —P /p Pf3 12^ 4^/g^
IPlgP P

2

CNmax 1 L P IgP &P IgP

A^max / L
P

2

V2P'
4

P-l'
2VP

IgP -l

MN

L
4Plg P Pig PilgP +1) y---y-P + 5P&P' 6Plg P - 4P

2P V2P' 2(P-1)'
VP

4(/£P-l)MN^ 1 L

Table 4.3. Using the "hypertree" structure with perfect shuffle interconnections among the
leaves (Fig. 2). Implementation of four methods for eliminating duplicates assuming that
no duplicates exist. There are 2P -1 processors and 4P - 3 links. The normalization fac
tor, A, is 4. CN is the total number of comparisons done in all processors. MN is the
total number of message element links. GVmax is the maximum number of comparisons
done in one processor. MNmax is the maximum number of message elements passing
through any one node. MN = MNA is the total message traffic adjusted to compare pro
cessors with different numbers of I/O ports,
case link traffic.

MNmax MVmax<4 is the normalized worst

+This formula is correct only where Pis not a power of 4. If Pis a power of 4 the formula is slightly
different.
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Method

2 3 4 5

CI 2(P -1) 2(P -1) Pig P 2(P -1)

Ml 2(P -1) 2(P -1) - Ig P — - ~P + —P 12 Pf
3 12r 4^*^ 2P -3

CI*•* *max 2 2lg P PfeP 2/gP

A^lmax 1 (Ig P) -1 P-2 IgP

Ml 8(P -1) 8(P-1) -4&P •y-y-P +SPlgP> 8P -12

AH max 4 4lgP 4(P - 2) 4lg P

Table 4.4. Using the "hypertree" structure with perfect shuffle interconnections among the
leaves (Fig. 2). Implementation of four methods for eliminating duplicates assuming that
all elements are identical. There are 2P -1 processors and 4P - 3 links. The normalization
factor, ^4, is 4. CI is the total number of comparisons done in all processors. Ml is the
total number of message element links. Ml =» MIA is the total message traffic adjusted to
compare processors with different numbers of I/O ports
ized worst case link traffic.

Ml, Mlm*xA is the normal-

This formula is correct only where P is not a power of 4. If P is a power of 4 the formula is slightly
different.



*
•

k.
*••

4

Fi
gu

re
4.

3.
Pe

rf
ec

tS
hu

ff
le

In
te

rc
on

ne
ct

io
n

Su
pe

rim
po

se
d

on
th

e
L

ea
ve

s
of

H
yp

er
tre

e.



94

For the case of low duplication, the results are not so clear-cut. Up to about

128 leaf nodes, methods 3 and 4 are best, with method 4 slightly preferable if total

traffic is the consideration, and method 3 creating somewhat less total message

traffic. Method 4 is generally superior at 128 nodes.

Above 128 nodes, method 5, the perfect shuffle, becomes the best method

because of its attractive balanced link traffic. Method 2, the binary tree algorithm,

has slightly less total traffic, but must be rejected because of the excessive

bottleneck occurring at the root, both in link traffic and in computation.

4.4. Conclusions Concerning Structure

The Hypertree structure is able to implement the best algorithm for a given

situation. Under the assumptions made, performance is nearly equal, and in some

cases superior, to the structure for which the algorithm was originally proposed.

-m. , r- MN .
The total message traffic, —r- is actually improved, approximately by a factor of

p
-r—= for the algorithm using the complete interconnection (method 4), though

the worst case link traffic for the same model is increased by a factor of *JP for

the case of no duplicates. Since method 4 is the method of choice only for values

of P < 128 this would seem to be unimportant.

Method 3 shows some degradation in performance. The worst case link

traffic is increased, for the case of no duplicates, by a factor of , but for large
ig P

values of P the perfect shuffle algorithm predominates anyway.

Methods 2 and 5 show only slight, linear degradation due to the increase in

the value of A resulting from the unused links for that algorithm. Thus the

Hypertree structure is able to achieve the same order of performance as the best of

the methods considered for virtually all circumstances under the assumptions
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made. If other assumptions are made, a different conclusion could also be drawn,

as is evident from the results presented in Table 4.1.

The power of the tree structure is clear for the problem of eliminating dupli

cates. However, the importance of flexibility in choosing the method is apparent.

The best structure is clearly one which can handle both extreme cases (and hope

fully the cases in between) reasonably well. Only the Hypertree structure can

claim this flexibility.

The elimination of duplicates is an important data base operation which pro

vides significant insight into the requirements for a data base computer. Its

efficient implementation over a wide range of situations is critical for achieving

high performance. Since it can also implement the join operation over a wide

range of conditions as well, as will be demonstrated in the next chapter, it is the

structure of choice. Other considerations as well have influenced the choice of

Hypertree. For example, unlike some other models, the tree structure is expand

able without a modification to the processor itself, which surely makes it more

attractive if it is a single component. Another issue is the fact that adjacent pro

cessors may wish to communicate heavily at times. The binary tree, with nodes

having few ports, each with high bandwidth, is clearly advantageous in this case.

The X-Tree "Hypertree" interconnection with the perfect shuffle interconnec

tion among the leaves has been shown to provide an attractive compromise of the

models considered. It gives essentially the same performance as the best of the

other structures over the range of conditions considered. It will be studied in

more detail in the following chapter to determine its performance in the join

operation.



CHAPTER 5

The Join Operation

In the relational model of a data base management system, the join operation is

involved in all operations involving more than one relation. It is the only common opera

tion which may require more than one access to the same element in a relation. The most

difficult operations that can be performed with selection or restriction require no more than

a single scan through the relation. While this may not be trivial for very large relations, it

is far easier than many operations requiring a join operation, the implementation of which

may include many scans under certain conditions.

The join operation can be implemented in many different ways, all producing the

equivalent result, differing only in their ordering in the result relation. The best method in

a particular case depends on the indices and access methods available, the parameters of the

relations involved, and the context in which the query is presented. For example, if the

result is an intermediate one, sort order may not be important, even though the final result

must be sorted. Also, a join is usually associated with at least one restriction and often a

projection. The effect of these operations also varies, depending on the method.

5.1. Synchronizing Data from Disk

Because data stored on a disk is not accessible in a random fashion some

method of buffering is necessary in order to synchronize the processor with the

data read from the disk. The traditional method of buffering the data from a

direct access storage device, such as a disk, is to divide it into blocks and bring

only a few into main storage at a time. These blocks are analyzed, perhaps parts

are saved, then deleted to make room for more blocks fetched by means of

another I/O request. While this method is widely used, it requires substantial

96



97

main storage, and it makes disk accesses expensive because many accesses to the

disk are required to search a single large file.

If the operation to be performed on the data is a simple sequential search,

and if the processor is capable of performing the search at a rate somewhat greater

than the rate at which data comes in to main storage from the disk, then the possi

bility exists that the data can be processed in real-time while it is being read in.

For example, if two blocks can be held in main storage, the processor could wait

until one is filled. Then while the second is being filled, it could proceed with the

operations on the first. Assuming that it can complete the operation before the

second block is filled or, barring that, that it can halt the disk read when necessary,

it can finish the first and arrange for the disk to fill the first again before the

second is filled. By repeating this procedure, the processing can go on simultane

ously with the I/O activity, limited only by the rate at which it can be read from

the disk. Although the data may still be blocked on the disk for interruption capa

bility, the file can be searched very quickly if it exists sequentially on the disk.

If the main storage is large enough to store an entire track, the seek time and

latency time for the following access can also be used to process the data. Thus

the processing time can be extended into the next access without loss in perfor

mance, and can even be extended beyond the beginning of the next read opera

tion. Of course, at this point, the danger exists that the following operation may

not be completed in time.

If one such processor exists for each head on the disk, an entire cylinder can

be read in and processed, the speed again limited only by (1) the rate data can be

read off the disk and (2) the synchronization of all the processes in the system that

are using the data.
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The X-Tree environment [see chapter 4] is particularly suited for this type of

operation. The synchronization required to overlap processing with the I/O opera

tion is already necessary to allow efficient communication among cooperating pro

cessors. In addition, there is reason to think that the processing power of the

nodes may be sufficient to keep up with the disk for most simple operations. For a

record size of 100 bytes, if the data is being read from the disk at a rate of 800,000

bytes per second, approximately 120 micro-seconds is available for the processing

of each record. If the processing required is too great for the leaf node, and if the

operation to be performed can be split up, the leafnode can perform the first stage

and send the remainder on to another node up the tree. A reduction in data is

required, of course, since each non-leaf node may have more than one child send

ing data, so the leaf node must act as a data filter.

Many of the set operations on a data base can be conveniently broken up in

this way. Some algorithms to do this are proposed here for the join model of

Eswaran and Blasgen. [Blasgen 77] As will be shown, this technique has great

advantages under many circumstances. However, the cooperation of the various

processors is a significant problem. In particular, the possibility that one or more

processors may not be able to do its assignment in real time dictates that a method

must be capable of being stopped or aborted and restarted. For example, on a

scan of a cylinder, if any processor gets behind, one solution is to use a second

revolution to complete the operation. This requirement must be communicated to

the processor controlling the arm. That communication may actually take longer

than the time to scan the cylinder, so an overflow of data coming from any single

head causes a significant increase in scan time for the entire cylinder. A better

solution, when possible, is to arrange for other processors to take care of the

overflow. The tree structure can handle this nicely by passing the result of an

overflow situation up the tree. A parent only gets into trouble if both its children
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require its help. Even then, it may be able to push the overflow up the tree

farther.

5.2. The Eswaran-Blasgen Query Model

Eswaran and Blasgen [Blasgen 76], [Blasgen 77] have studied in considerable

detail the properties of various join algorithms. They defined a particular operation

which included a join of two relations, R and 5, and a restriction, not necessarily

the same, on both R and S in some field other than the join field. They examined

the cases where various indices were present, where the restriction had various

effects, and for various sizes of the relations. They parameterized a large number

of properties of the data base, such as the number of records in each relation, the

sizes of records and indices, and the proportion of records from each relation parti

cipating in an unrestricted join. They also parameterized some properties of the

query, such as the percentage of the record being sought, and the proportion of

the records being eliminated as a result of the restrictions. They evaluated the

cost in terms of disk operations and showed that many different algorithms were

best under a particular set of conditions.

That study has been expanded in three ways here to evaluate the X-Tree

environment for join algorithms. First, the algorithms of Blasgen and Eswaran

were expanded in a logical way to be implemented on multiple processors, each of

which has too little memory to perform the operation alone. Second, new algo

rithms were proposed which take advantage of the multiprocessor environment

present in X-Tree. Third, a pair of additional cost functions, like those of the pre

vious chapter for measuring interprocessor communication cost, were defined to

allow the analysis of the interprocessor communication for the distributed model.

Initially the total amount of communication required among the nodes to imple

ment those algorithms proposed by Eswaran and Blasgen was determined. The
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danger of bottlenecks occurring in the Hypertree structure motivated the definition

of a second cost function, that being the maximum total traffic occurring in a sin

gle link.

The four algorithms of Blasgen and Eswaran [Blasgen 77] are presented here.

In addition, the algorithm is expanded to describe the communication among the

various processors. Three additional algorithms are then developed which are par

ticularly suited for X-Tree. For each algorithm, the cost functions for disk

accesses and for interprocessor communication are derived. It is assumed in all

cases that the result relation need not be collected together in any particular way,

i.e., that it can exist as a distributed file, just as the initial relations are. This is

certainly valid if the query is in fact only part of a larger query. If not, then the

result must be collected together at the node where it is required. This cost is not

directly a function of the algorithm used and has been ignored. Limits and capa

bilities of each algorithm are discussed and they are compared under a variety of

conditions.

The Eswaran and Blasgen model poses a query on two relations, R and S.

The query consisted of the following parts:

(1) Generate R' through the application of a simple restriction on some column

of P.

(2) Generate S' through the application of a simple restriction on some column

of S.

(3) Generate relation 7\ by performing the join of R and 5.

(4) Project some columns of T to produce the result relation.

Some additional assumptions have been made in the case where the system is

X-Tree. It has been assumed that each relation is spread across a large number of

surfaces of a disk, possibly every one. It is assumed that the entire relation will
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not fit on a single cylinder, but is clustered over a few cylinders, hopefully physi

cally close. The analysis here assumes a single disk, but it can be easily extended

to include multiple disks, where the relation is spread over all of them, and the

index still occupies no more than one cylinder on each disk. The assumption has

also been made that, in the case of the clustering index if it exists, a tuple will

reside on the same surface as the index entry for that tuple. Thus, the same pro

cessor that finds a particular tuple in the index may access the tuple directly when

the head is properly positioned. It is not assumed, however, that two relations

which have fields capable of being joined will be aligned in such a way as to allow

the join without inter-processor communication, even if each relation has a cluster

ing index on the join field.

It has been assumed further that each processor knows how each relation is

partitioned with respect to the clustering field, so that it can directly communicate

with the processor having access to any given entry. In some cases this assump

tion may make too heavy a demand on the system. The tree organization again

provides an attractive alternative for those cases where maintaining the informa

tion at every node require too much memory. If the non-leaf nodes maintain pre

cise information only for their descendents and much cruder information about

nodes in other parts of the tree, the address can be refined along the way with

minimal increase in path length.

5.3. The Four Methods of Eswaran and Blasgen

The following section extends the four algorithms of Eswaran and Blasgen

for a multiprocessor distributed system, including X-Tree. The Blasgen-Eswaran

paper introduced a large amount of notation which has been used here unchanged

whenever possible. Those parameters are summarized in Appendix A. Some

additional parameters and notation are introduced in this section, resulting from
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the extensions to their model. They are explained as they are introduced.

5.3.1. Method 1: Indexes on Join Columns

For this method it is assumed that indices exist for the join columns of

both R and S. These two indices are scanned concurrently. When a common

value is found in both indices, the tuple from one, say R, is fetched and the

appropriate restriction performed. For a qualifying tuple, the scan is contin

ued along the S index to identify all candidates to be joined with the tuple.

These tuples are then fetched and, after the proper restriction and projection,

stored in temporary storage. Scanning along S is now continued to find all

tuples with the same key value, and these tuples are retrieved. Restriction

and projection are performed, each resulting sub-tuple being concatenated

with each corresponding element of the temporary storage and placed in the

output relation. The temporary storage must be sufficiently large to hold all of

the sub-tuples of S to be joined with any single sub-tuple of R.

This algorithm poses some difficulty for the distributed case, since the

indices for R and S are not in general partitioned in the same way. Thus,

portions of the two indices to be compared may be read into different process

ing nodes, and additional message traffic is necessary to get them to the same

node. The same is also true when the tuples are fetched. If this method

proves otherwise useful, however it is reasonable to think, at least for limited

cases, that the relations could be maintained with a common partitioning.

Given this assumption, the join indices for both R and S can be scanned con

currently, and no interprocessor communication of data is necessary at all.

Unfortunately, this restriction places rather severe constraints on the data base

organization and can at most be implemented on one field of a relation. Here

it has been assumed that this is not possible, and that R and S are not
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partitioned in the same way. Thus a substantial cost in interprocessor com

munication is required for the initial comparisons.

An alternative possibility which would improve the performance of

method 1 is that a joint index be maintained for the join column for both R

and S, i.e., each key value is followed by two lists of 77D's, one for R and

one for S. Of course, such a join index can be built quickly from the two join

indices, but this index can exist instead of the two join indices, and would in

fact be smaller. Under this assumption the index entry for a particular tuple

will not in general occur on the same surface with the tuple itself, at least for

one index. This is one case, then, when the index entry and the tuple itself

are on different surfaces even if the index is the clustering index. In this case

it must be assumed that each tuple fetched from one of the relations requires

an interprocessor message to request it and another to return it. The assump

tion has been made here that whenever both join indices exist and are the

clustering indices, that the joint index is available. In addition, in this case it

is also assumed that the larger relation is aligned with the index so that no

interprocessor communication is required for its retrieval.

For each key for which both R and S have tuples, the tuple itself for

one, say R is now fetched and the restriction performed. The processor

fetching the tuple is in general different from the requesting processor if the

join field is not the clustering index. In such a case, the restriction and a pro

jection could be performed in the processor fetching the tuple, and only those

tuples qualifying would be sent back to the requesting processor. A request is

now sent out for each of the tuples of S having the same key value as a tuple

of R surviving the restriction. Again the restriction and projection could be

done in the node fetching the tuple if that is a different processor, and the
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are tightly clustered on certain pages. In fact, if every other tuple of a relation

participates in the join, then every page must be fetched, but the

Blasgen/Eswaran assumption would estimate only half that.

Appendix D shows that the expected number of pages fetched from rela

tion R when Pi is small is

Ex

k -£il
p*m Ni

1 tfi 1
Pi- Ni

Similarly, when P2 • F\ is small, the expected number of pages fetched from

relation 5 is

Hi
i . -

N2-E2
P2 • P, • N2

Ei
i -

N2
Pi • Pi *^2

Because the assumption was made here, and in the Blasgen/Eswaran work,

that all tuples participated in the join, this difference is unimportant for rela

tion R. Not all the tuples of relation S participate in the join, however,

because a restriction is performed first. Blasgen and Eswaran made the

assumption that the restriction was a simple one, i.e., that it could be stated as

an equality or inequality. This has the effect, if the relation is clustered on

the restriction index, that the participating tuples occur consecutively in the

file, and therefore the Blasgen/Eswaran assumption is correct. Unfortunately,

however, this cannot be true since the assumption was that the relation is

clustered on the join index. The participating tuples therefore will be scat

tered in an unpredictable manner throughout the pages of the relation. Define
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if p < 1 - — and let r(p,n,e) = — if 1 - —^p^l. The cost function CD
n en

then is

-± +HPuNuEJ +-j- +t(P2 •/,i,tf2,£2)

The cost Q-, of interprocessor communication in terms of pages

N
transferred, is calculated as follows: There will be Px • -rr pages of TID's

K

sent in requesting the tuples for R. The sending of those tuples will require

Lf

that Pj • N\ • Pj • — pages be sent in return. However, if the join indices of

both are clustering indices and the joint index on the join columns of R and S

exists and is partitioned in the same way as relation R, then this cost is zero.

In addition, F\ • P2 • — pages will be sent in requesting the tuples of S

is

which will require N2- P2 • Fx- F2- -rr pages to be sent in return. The
<-2

average distance these pages will travel depends heavily on whether the join

column indices are the clustering indices. If they are, then the average dis

tance will be small, (zero if fully aligned, i.e., if the two relations are parti

tioned in the same way), though how small is hard to predict. If they are not

the clustering index, then the average distance will be very near the average

distance between leaf nodes in the structure, which will be called d.

5.3.2. Method 2: Sorting Both Relations

This algorithm utilizes sorting to expedite the join. Two temporary files

are created. File Wx is created by performing the restriction on R and elim-



107

inating all fields but those required either for the join operation or for the out

put relation. File W2 is created in the same way from S. Using the join field,

each of these relations is sorted. The resulting files, W{ and W2, are then

scanned concurrently to perform the join.

The method varies somewhat, depending on the indices available. In

particular, the disk cost function is determined by which of four types of

access is used. These four types and yj, their cost for a single scan of relation

R are:

(1) The restriction index is the clustering index and is used for the scan.

The cost, in pages accessed from the disk, is

(2) The restriction index is used, but is not the clustering index. Thus,

J\ =Fx •(^- +Nx).
(3) The clustering index is used, but it is not the restriction index. Here,

(4) A segment scan is used to access the relation. A segment is a file con

taining all the tuples of one or more relations. It may include pages

which do not have any relevant tuples, but they will be fetched regard

less during a segment scan. In this case,

yx - Mx.

Blasgen and Eswaran stated that if an index exists for the restriction

field, and it is the clustering index, then it was always used. If not, then from

the other three methods that one was selected which was possible and had the

minimum disk transfers.
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In the distributed case, as the tuples for relations Wx and W2 are

obtained, they are sent to the appropriate node for the selected partitioning of

Wx and W{. At that node they are stored on the local disk surface if neces

sary, and sorted to produce W{ and W{.

Disk activity is minimized if the restriction index exists and is the clus

tering index. However, the link traffic is minimized if the join index exists

and is the clustering index, since the relations W{ and W{ are partitioned

according to the join field. When the latter is not true, then the tuples to be

placed in relations W{ and W2 must be sent to the appropriate node, deter

mined by their join value.

Except for that special case where the access method is the clustering

index which happens to be the join field, all tuples must be exchanged in the

formation of relations W{ and W2. Even in this special case, it cannot be

assumed that R and S relations will be aligned on the clustering index. So at

best, the tuples for one relation, the larger if both otherwise qualify, need not

be moved initially if the access method is the join field index and it is the

clustering index.

The cost of the disk accesses is

CD = A • (y, + y2) + 2 • B 01 • log-0, + /32 • log-/32

Nx • P, • Hx
where px =* — — is the number of blocks of size Q needed to sort

N • F • H
relation Wx and /32 = 2 2 2 is the number ofblocks ofsize Qneeded

to sort relation W2 (see [Blasgen 77]). Also, log.-^ is the number of passes

necessary to sort relation Wx and logrj32 is the number of passes necessary to

sort relation W2. Z is the degree of merging in the sort, as defined by Bias-
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gen and Eswaran, and y2 is the cost function for relation S equivalent to yx.

Assuming that Nx > N2, the number of pages of W2 sent between pro

cessors is

Fi ' N2 • H2

C2

in all cases (exception: if the two relations are aligned on the clustering join

indices). In addition, if the clustering index is not the access path or is not

the join index, then

Pi ' AT, • Hx

C,

pages of Wx are transmitted as well. Thus if the relations are scattered ran

domly over the leaf nodes of the tree, an inter-processor cost function of

Cc = d • (0, + 92)

can be assigned, where

and

9 FrNrm

a Pi •^i • H2
v2 = -

C2

unless the access path is the clustering join index on P, in which case 92 = 0.

If S is larger than R, then 9X will be zero if the access path is the clustering

join index on P. A sophisticated system might minimize the interprocessor

traffic further by selecting the smaller of 9X and 9U rather than just selecting

the smaller of Nx and N2.

The values determining 9X and 92 are of three types:

(1) Parameters determined by the properties of the relations: Cr, Pr, and

Nx. These values usually remain constant for long periods and are fre

quently retained by the DBMS.
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(2) Parameters determined by the query: Hx. These values can often be

estimated. If an accurate estimate is important, it may be possible to

sample a portion of the data base to determine their value.

5.3.3. Method 3: Multiple Passes

As with the preceding method, no particular indices are required. The

tuples of S are obtained by means of a scan. A temporary file W2 is created

to hold those sub-tuples resulting from the proper restriction and projection of

5. If the main storage available is insufficient to hold all of W2i then the

tuples are ordered by join value and the smallest values are retained. Relation

R is now scanned and the restriction performed. As each tuple is obtained,

W2 is checked for the presence of tuples having the same join value. For

each such case the resulting tuple is produced and placed in the output rela

tion.

If the main storage was insufficient, all those tuples which were retained

in previous passes are eliminated from W2. The procedure is repeated until

W2 fits in main storage.

This method shows dramatic performance differences depending on

whether W2 fits in main storage or not. It is therefore quite important which

relation is used, if the two relations vary significantly in size. Blasgen and

Eswaran assumed that R was much larger than S\ so this algorithm works

fine. If R is smaller than S, then Wx should be retained instead of W2.

Again, a sophisticated system could make the truly optimal choice if it could

accurately estimate the sizes of Wx and W2. That is, it would select W2 if

Nx -Fx-Cx< N2 • F2 • C2.

In the distributed version of this algorithm, the qualifying tuples of one

relation, say 5, are extracted and sent to the appropriate processor, i.e., that



Ill

processor having the corresponding tuples of R, if they exist. This method

has a problem, however, in that it is difficult to tell when memory is full. For

the single processor case, the tuples to be thrown out are easily identified —

all those smaller than a certain value. In the distributed case, each processor

must keep track of its portion of the list W2y making sure that it throws out

the proper tuples. Unfortunately, this requires that the complete file W2 be

transmitted among the processors at every pass.

The possible modes of access for method 3 are exactly the same as for

method 2. The same algorithm has been assumed for choosing the access

path. Unlike the previous method, however, these access methods are util

ized repeatedly to access Wx and W2. Each file is accessed £ times, where

F2-N2
0

Hi

is the number of scan passes required. Thus the total cost of disk accesses is

CD - (71 + Ji) • 0

where yi and y2 were defined in method 2.

Considering now the interprocessor communication costs for method 3,

again as in method 2 the link traffic is minimized if the relation is clustered on

the join field. The total link traffic cost, assuming that all projected sub-tuples

of relation S surviving the restriction are sent to some other node of average

distance d for each pass of the algorithm, is

Cc = 0 • (9X + 92) • d,

where 9X and 92 were defined in method 2. Again, 9X or 92 may be 0 under

the proper conditions.
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5.3.4. Method 4: Simple TID Algorithm

This algorithm requires indices on both the restriction and join columns

of both relations. It also makes use of the unique value assigned to each

tuple, the TID. The relation R\ consisting of 77D's of tuples satisfying the

restriction for R, is generated by scanning the restriction index for R, apply

ing the restriction, and sorting the resulting list of TID's. The relation S', is

produced from 5 in the same way. The join column indices are then scanned

concurrently to produce TID pairs corresponding to tuples participating in the

unconstrained join. As these pairs are identified, the TID for relation R is

examined to determine if it is also present in P'. If it is, and the remaining

TID is present in S\ the two tuples are fetched and the projection performed

to produce a tuple for the output relation.

A key consideration in the performance of this algorithm is whether the

relations are clustered on the join column index. If they are, then the rela

tions R' and S' are probed sequentially and the cost is much less than if they

are not, in which case the relations R' and S' must be probed randomly. This

makes a considerable difference in I/O operations if these temporary relations

don't fit in main storage.

In the distributed case, parts of relations R' and S' accrue at each node

participating in the scan of the restriction index. These parts can be parti

tioned and sent directly to the nodes containing the corresponding tuples of

the relation. If both relations are clustered on the join field and partitioned

identically, the scanning of the join indices and their comparison against R'

and S' can now proceed at individual nodes without the requirement for

further intercommunication. As noted earlier, however, this is assumed not

to be the case. Thus the algorithm becomes complex. The join index on 5 is
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fetched and the (KEY, TID) pairs sent to the location where the correspond

ing values of the R join index reside. These pieces of the index are now com

pared against the R join index, and matching (TID,TID) pairs are assembled

to form 7". If the join index exists, the previous step is much simplified,

since that index can be scanned once quickly to generate 7". These pairs

making up the relation 7" must now be sent to the node controlling the

relevant 5 tuple. If the TID for the S relation exists in S', the tuple is

fetched, the projection performed to eliminate unneeded fields, and the result

is sent, along with the TID for the P relation, to the node containing the R

relation. At that node the tuple corresponding to the TID is fetched from R,

the appropriate projection performed, and the output relation is assembled.

The disk access cost function depends on whether the join column

indices are the clustering indices. If they are, then

t(Fx,Nx,L) +t(F2,N2,L) +71 +-J-

+ r(Pi • P2 • PX,NX,EX) + r(Fx • P2 • P2,N2,E2) + </r

where tfr = 0 if both R' and S' fit in main storage. If they don't, then an

external sort is required, and

* ~A • t(Fx,Nx,L) +t(F2,N2,L)

+ B • (2 • ax • log.ai + 2 • a2 • logra2 + ax 4- a2),

E\ ' Nx . F2 • N2
where <*i = is the number of blocks of R' and a2 = ——— is the

number of blocks of S' to be sorted. If the join column indices are not the

clustering indices, then
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r(Fx,Nx,L) +r(F2,N2,L) +-^- +-^

/G-iVi-AT2-max[0,(l -P
2iV, • P,

)]

+ P, -max[0,(l -P
2N2 • F2

)]

+ a • Pi • p2 • (P, • iv, + p2 • yv2) + *,

where again i/> = 0 if both R' and 5' fit in main storage. Otherwise,

t/r =^ t(Fx,Nx,L) +t(F2,N2,L)
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+ B - (2 - ax • lograi + 2 • <x2 • log.a2).

The cost of internal communication has been analyzed for method 4 in

the following two cases.

(1) If both relations are clustered on the join column indices, and the joint

index for the join fields of R and S is available.

(2) If neither relation is clustered on the join column index.

For case 1, four stages of the algorithm contribute to the interprocessor com

munication cost.

(1) From the restriction index on each relation, each TID satisfying the res

triction is sent an average distance d to the location of the join index of

P, determined from the TID. This results in a total cost of

(2) Each TID in the join index of 5 is sent a distance d to the location of

the join index of R. The added cost is N2 • d.

(3) The 77D's to be fetched for relation S must now be sent to the

appropriate node at a cost of
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P, -P, i.,.^

(4) These fetched tuples of 5 must now be sent back to the node from

which the request was sent, at a cost of

Pi ' F2 • P -^LPl EX
For case 2, where neither relation is clustered on the join column, the

interprocessor cost is composed of the following terms.

(1) From the restriction index on each relation, each TID satisfying the res

triction is sent a distance d to the node where the corresponding tuple in

the R relation will be fetched. This results again in a total cost of

^i • -r + P2 • —•
i

Hi
I

d.

(2) For each relation, the (KEY, TID) pairs in the join index are sent to the

node specified in the TID to be checked against P' and S'. Thus the

entire join indices for both P and S are sent across the network to some

node. The cost for this is

K K
d.

(3) The surviving (KEY,TID) pairs (those present also in R' or S'), are

sent to a predetermined node to be sorted and matched against the other

relation, forming 7". The cost here is

P, •Nx + F2 •N2
K K

(4) The request for all tuples in the output relation must be sent from the

node containing part of R' and S' to the node which can fetch the tuple

itself. The tuple, stripped of unwanted fields, is then returned to the
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requestor. The cost for these actions is

P, - F, Pl.Nr(L+f.)+P2.Nz.(±+Jg) d.

5.4. Distributed Algorithms

Several methods are developed here which take advantage of the possibilities

of processing the data as quickly as it is read off the disk. A powerful idea due to

Babb [Babb 79] for implementing the join operation was employed in CAFS, which

was described in chapter 1. It involves the concept of hashing a field, using the

resulting number as an index into a boolean array, and thus eliminating quickly

most of those parts of the data base which are not required. In the following algo

rithms, that idea is used extensively to allow arriving at the proper subset of the

needed data quickly. It is assumed that the relation is spread approximately evenly

across the tracks of the cylinder and that the processors connected to those heads

are the leaves of the binary tree. Each leaf node maintains a hash table which can

be combined with the others quickly by migrating it up to the root of the tree or

subtree, merging the two tables at each level. This is a very quick operation,

requiring only that both tables be scanned in parallel. This merged table can then

be propagated down the tree to the leaves very quickly if required.

The hash table must be large enough to map uniquely most of the values of

the function being hashed. In general, it has been assumed that the hash table is

large enough so that only one can exist in a single processor at any one time.

Define 7*j to be the ratio of unique values in the join field of R to Nx, and T2 to

be the ratio of unique values in the join field of S to N2. It will be assumed also

that at least one of the relations being hashed contains all the unique values, so

that for a page size of S bytes, the hash table for the join field for the uncon

strained join of relations R and S must have
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2 •max(7'1 - NX,T2- N2)

binary locations. This meets the hash table criteria of two locations per unique

value.

Note that it is not true, however, that the number of unique values found in

the join field of relation R after the restriction has been performed will be

Tx - Nx - Fx unless Tx is very close to 1. If it is assumed that in a collection of N

items there are T unique items, all equally represented, (not a very good assump

tion in the case here) then the probability that a given unique value will not be

chosen, when X items are randomly selected, is

*i1
\X\

This formula is derived in Appendix D. Thus, the expected number of unique

values encountered would be

,.ivi
\X)

It will be assumed, therefore, that the number of unique values encountered

is the lesser of

(1) the total numberof unique values in all the fields being hashed, or

(2) the total number of values to be hashed.

While it is to be expected that the former would usually be larger, the latter might

dominate under certain conditions, for example, when the join field is a primary

key, i.e., all values of the join field are unique. If a restriction is performed in this

situation before the join value is hashed, and the restriction is very effective, then

the total number of values being hashed may be substantially smaller than the total

number of unique values in all the fields being hashed, which is quite large.
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When a series of tables residing in the leaves is merged, as described above,

the amount of communication resulting depends in part on the location of the

tables at the leaves. If U leaves have hash tables, then the amount of communi

cation resulting will be the length of the hash table times n, the number of links

over which some form of the hash table is sent. If U is a power of 2, then

fj. = 2 • (U -1), since every link in the basic tree structure transmits one hash

table. If U is not a power of 2, then fi is variable, depending on the precise loca

tion of the tables among the leaves. In general, the worst case is when the U

tables are distributed throughout the leaves so that the entire tree must be used.

It will be assumed that the U leaves having hash tables are adjacent, in which case

the number of tables transmitted at each level is half the number of the level

below, plus one half if that number is odd.

5.4.1. Method PI: Hashing on the Join Fields

Each cylinder of relation R is scanned, at each node the restriction is

applied to those tuples read in, and the join field is hashed, the result being

used as an index to set an entry in table Rf at node /'. Table Rr is then

formed by merging the individual Rf tables and saved in the root, or some

other convenient location.

The same is now done for relation S, first forming individual tables Sf,

then integrating them into a single table Sr. By merging Sr and Rr at the

root, a new table is now formed and propagated to the leaves. Merging is

accomplished with the bit-wise 'AND' of the two tables Sr and Rr. The

resulting table is called RSrJ. Each relation is now scanned again. For each

relation, the restriction is applied, the join field is hashed, the result is used to

find the appropriate entry in the RSrJ array. If the entry is present, the tuple

is stripped of unneeded fields and sent to a predetermined node, based on
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some criterion which guarantees that all equal join values will be sent to the

same node. The hash index could be conveniently used. The sub-tuples of P

and S are each collected at these predetermined nodes and sorted, forming

the relations R° and S° respectively, which are distributed over a number of

nodes evenly. (Their distribution can be guaranteed to some extent by choos

ing the node number from the hashing value). At each node, these two rela

tions are scanned jointly, and the phantom tuples of the result relation, result

ing from the collisions in the hash table, if any, are eliminated.

The total disk activity required is precisely two complete scans of each

relation, P and S. If it is assumed that that there are V pages per track on

the disk, that the relation is clustered on a small number of cylinders so that

U - V pages of the disk can be read in during a single revolution of the disk

at a cost of B, then the disk cost can be computed as

CD - 2 • B • (p + <t),

where

Mx

and

U • V

M,

U • V

are the number of cylinders of the disk that must be accessed in order to scan

P and S, respectively.

The interprocessor communication cost may be computed in the follow

ing way:

(1) When the hash table Rr is formed, each processor except the root sends

exactly one copy of the table up the tree one level. The hash table con

tains approximately 2 Y binary locations, where Y is the smaller of
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max[7*i - NX,T2 • N2]

max[Nx • FX,N2 • F2]
2- Y

b • S

is the number of bytes in a page, and b is the number of bits in a byte.

(2) The same total communication is invoked again in the formation of Sr.

(3) The same total communication is required a third time to propagate the

table RSrJ to the leaves.

(4) On the second scan of each relation, the necessary fields of all tuples

participating in the final relation are sent to an arbitrary node in the

structure. Though the exact distance will be variable, it may be assumed

that on the average, the length of this path will be no more than d, the

average distance between nodes in the X-Tree structure. Letting if/ be

the ratio of the total number of tuples sent including phantoms to the

number required for the final output relation, and assuming that the res

trictions on the two relations are independent, Fx - F2- Px • Nx •$

tuples of relation R and Fx • P2 • P2 • N2- </r tuples of relation S sur

vive. Thus it is concluded that the final scans of P and S will result in a

total interprocessor communication of

2 • YThus a message of length ——- is sent up from fi processors, where S

d-Ft-F,

i 2- Y
* b S

+ d • P, • F-

Nx • P, • Hx N2 -P2-H2
T

C\ c2

pages. Thus the total interprocessor communication cost is

Hx •Pi •Hx [ N2-P2-H2

*

ib.
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5.4.2. Method P2: Join Index Only

This method makes use of the join index only to generate the uncon

strained join. (It can be very inefficient if many of the join values exist in

both P and S, but one or the other fails to qualify because of the restriction.)

Table P/ is formed by scanning the join index of R, hashing the join field,

and entering a one in those entries indexed by the hashed values. Table RJ is

created at the root by merging the separate tables Rj as they are sent up the

tree. Table Sj is created in the same way, and the table corresponding to the

unconstrained join, RSJ, is formed by performing the bit-wise 'AND' of the

tables RJ and SJ. This table is then propagated to the leaves where it is refer

enced during the scans of P and S, whenever a tuple is found which satisfies

the restriction. If the hashed join value of that tuple is represented in the

table RSJ, the tuple is projected and sent to a predetermined node. Once

again, it is easy to guarantee that the tuples from P and S to be concatenated

will appear at the same node. At that node the join is performed to eliminate

the phantom tuples and that portion of the output relation is formed.

The disk access cost results from a complete scan of both relations P

and S and a complete scan of both join indices. Thus,

CD = B • (p + cr + px + o-x).

The interprocessor communication cost is calculated as follows:

(1) When the hash table Rj is formed, each processor except the root sends

exactly one copy of the table up the tree one level. The hash table con

tains approximately 2Y binary locations, where this time Y is the smaller

of

max[7*i • NX,T2- N2]

and
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maxLVi • PX,N2 • P2].
2 • Y

Thus a hash table of length -—~ pages is sent up one level from each
0 ' O

of fi processors.

(2) The same total communication is invoked again in the formation of SJ

from Sj.

(3) The same total communication is required a third time to propagate the

table RSJ to the leaves.

(4) On the scan of each relation, the necessary fields of all tuples participat

ing in the final relation are again sent to an arbitrary node in the struc

ture. Again it is concluded that the final scans of P and S will result in

a total interprocessor communication of

d-Fx-F2-

i 2' Y
* b S

+ d • Fx- F2

Hx-Px-Hx N2 • P2 • H2
C, C2

pages, where t/r is the ratio of the total number of tuples sent including

phantoms to the number required for the final output relation. Thus the

total interprocessor communication cost is

Nx' Px' Hx W2 • P2 • H2
Cx C2

5.4.3. Method P3: Hashing the TID in Join and Restriction Indices

This method requires the join and restriction index for both relations,

but it requires only one scan each of the relations P and 5 and each of the

four indices. The restriction index of P is scanned first and the hashed TID

of qualifying tuples is entered into the boolean table Rr, which is merged and

propagated to the leaves. The join index of P is now scanned and the hashed

value of the TID is checked in the table Rr. If the hashed TID is present,

*

«/>.



123

the hashed value of the join field is sent to the parent node to be entered into

another table, RrJ, which is also merged and saved at the root. The same

thing is done to S, producing Sr and SrJ. The bit-wise intersection of RrJ

and SrJ is now generated, and called RSrJ representing all join values which

have qualifying tuples in P and S. RSrJ is then propagated to the leaves.

The relations P and S are both scanned now, the appropriate restriction per

formed, and the join field hashed. If that value is present in RSrJ then the

proper fields are extracted from the relation andsent to a predetermined node.

Because that node is determined by the hashed value of the join field, the por

tion of each result tuple coming from P and that portion coming from S will

always appear at the same node. The normal join is now performed to elim

inate the phantom tuples, producing the result relation.

The accesses to the disk required, using this method, include one com

plete scan each of P and S, and one scan each on the restriction and join

indices of each relation. Again assuming that there are V pages per track on

the disk, that the relation is clustered on a small number of cylinders so that

U • V pages of the disk can be read in during a single revolution of the disk

at a cost of B, then the disk cost can be computed as

where

and

CD - B • (p -I- or + 2 • px + 2 • <rx),

Px =
Ni

L • U • V

H-,

L • U • V

are the number of cylinders of the disk that must be accessed in order to scan

an index of P and S, respectively.
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The cost, Cc, of the interprocessor communication is the sum of the

following:

(1) Since the hashing in this algorithm is done on the TID, there will be as

many unique values as there are TID's entered in the table. Thus a

table of at least

Ym . *-Ex'Hx
1 b-S

pages is needed for table Rf and

ytid = 1-E2-H2
b • S

pages for table Sf. One table of each of these sizes is sent from

2 • (U -1) processors in creating Rr and Sr at the root. The same

amount of traffic is required to send each of the merged tables back to

the leaves after it is merged.

(2) The hash table RfJcontains approximately 2Y binary locations, where Y

is the same as defined for PI. The hashed join value of each TID found

to be present in Rr is sent over a single link, a total of

Hx'Fx

pages, where

b S

|log2(2r,)
is the number of hashed join values from P that fit on a page and Yx is

the smaller of Tx • Nx and Nx • Fx. Likewise,

H2'F2

A2

pages are sent over one link to check for the join value in SrJ, where
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b S

is the number of hashed join values from S that fit on a page and Y2 is

the smaller of T2 • N2 and N2 • P2.

•j y

(3) The tables RrJ and SRJ are of size -—z pages and are merged to form

RrJ and SRJ, each through a total of U - 2 links, at a total cost of

(-2-2) 2r

P. -P,

2 ' 6-5

pages.

(4) Table RSrJ is propagated from the root to the leaves at a cost of

pages.

(5) As in algorithm PI, all result tuples must be sent to a predetermined

place for the final join and elimination of phantoms. The cost again is

Nx •P, •HL + iV2 •P2 •#2

5.5. Significance of Clustered Join Index

For each of the three algorithms described using hashing, it was assumed

that all the tuples of the relation P (plus some phantoms) had to be sent to an

arbitrary node to be matched against the surviving tuples from S. Since the

expected distance for these communications is unpredictable, it has been assumed

that it was the average distance between leaf nodes in the tree. This is a rather

pessimistic assumption, since it should be possible, in general, to set up the data

base so that many or most of the join fields would be partially aligned. This is

hard to predict, however. On the other hand, if the partitioning of one relation,

say P, is known, it should be easy to arrange to send the tuples of the other rela-

*.
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tion directly to the appropriate node where their counterparts from the other rela

tion will appear from the disk. This achieves two things.

(1) It substantially reduces the interprocessor communication, since this traffic is

the bulk of the total communication required in the algorithms, and

(2) It reduces the storage requirements in the processors, since only the tuples

from one relation need be saved. Of course something must be done with

the output relation when it is formed, but that is true in any case.

Therefore, in the previous examples, it has been assumed that if the join

index is the clustering index, then the partitioning is known by all the nodes, so

that the total communication required is only that necessary to send the tuples

from one relation, namely the smaller one, to the appropriate node. Thus the last

term in the formula for Cc in each case is

N2 • P2 • H2

instead of

Fx'F2 *,

\HX-PX-HX , H2'P2-H2\
rx • t2- = h ib.

5.6. Extension of Cost Function to Busiest Link

In the previous sections, the total communication among the links was

derived. While this is surely the broadest measure of the requirements of the vari

ous methods, the potential for a bottleneck exists in the X-Tree structure because

it is not completely symmetric around every node. In order to assess the

significance of this problem, a second cost function was defined, namely, the total

traffic occurring in the busiest link. This analysis can be derived with relative ease

from the previous section. All messages in the algorithms considered are of four

types.
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(1) A set of hash tables was propagated up the tree, being merged at each level,

so that every link which was connecting two ancestors of a node receiving

data directly from a disk would transmit exactly one copy of the hash table

(assumed to be an integral number of pages).

(2) Leaf node to parent traffic. In algorithm P3, it was necessary to send some

results from a leaf node to its parent, because of memory size limits.

(3) A general exchange of data. Each processor was sending messages to various

other processors. The assumption was made that the messages were ran

domly distributed, with average path length the same as that of a tree large

enough to have U leaves.

(4) The I/O links between the leaf processors and the disk must transmit all the

data read in from the disk (and written to it). In this case, the cost is per

page, not per block, since the issue here is bandwidth. For numerous cases

when the interprocessor communication was small, these links were the most

congested.

While the I/O links may in fact have additional constraints which force them

to have even lower bandwidth than inter-processor links, they will clearly limit the

communication if they are also the busiest links. Therefore, they are included

here whenever they have more page traffic than any other link.

While the first type of exchange contributed equally to all of the links most

likely to be busy except the I/O links, the second and fourth only contributed to a

specific subset of links. The third contributed much more traffic on some links

than others. In Appendix B the relative amount of messages going through vari

ous classes of links is derived for the Hypertree. In short, The busiest links in a

general exchange among leaf nodes are those nodes at the middle levels of the

tree. In certain cases, namely, when the number of leaves in the complete subtree
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is a power of 4, the horizontal and vertical links in the middle of the tree are

equally busy. Otherwise, the horizontal links are the busiest. In each case, a per

centage of the total message traffic passing through each node is calculated and

multiplied by the total message traffic. The total traffic in each link is determined

in this way, and the worst case cost function is this value.

5.7. Selection of Parameter Values

In addition to the plethora of parameter values selected by Blasgen and

Eswaran, which are detailed in Appendix A, a number of new parameters were

defined and estimated in this work. In addition, some of the Blasgen and Eswaran

parameters were varied to reflect expectations of change due to technological pro

gress. The rationale for modifications to Blasgen and Eswaran's values and the

selection of new values is given in this section.

5.7.1. Modifications to Parameters Defined by Blasgen and Eswaran

The parameters selected by Blasgen and Eswaran have been assumed

here to have the same values, with a few exceptions. The value P, the total

number of pages of storage available, was assumed by them to be only 25. A

more realistic number for the middle 1980's for a large main frame computer

is probably between 10 and 100 times larger than that, and both the original

value, and the value of 4096 were used. The assumption was that each of the

U processors having a direct port to a disk surface contained pages avail

able for sort buffers, TID pair lists, hash tables, etc. The only apparent

significance to this seemingly very significant change is that when P was only

25, the hash tables became too large to fit in a single processor under some

conditions. When P was increased to 4096, however, the problem didn't

appear until nearly one million unique records occurred in a relation.
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The parameter B, the cost of reading a block off the disk, was extended

in the model to include the cost of reading all the relevant pages on an entire

cylinder. Blasgen and Eswaran assumed that B was the same as the cost of

accessing a single page, i.e., B = A =1. Since it could be argued that this is

no longer reasonable when an entire cylinder is read, the value of B was

increased to various values. This parameter is in fact quite crucial to this

analysis, since the choosing of it critically affects the relative cost of the hash

ing methods. Since the basic four methods cannot take advantage of the large

block size, variation in the value of B has little effect on their cost. The hash

ing methods, on the other hand, are directly affected by this parameter, since

most accesses are cylinder-at-a-time.

For a disk with V pages per track, in terms of access time, the cost of

reading in an entire cylinder under no conditions is more than V times the

cost of reading in a single page and generally the cost is somewhat less. In

this range (P=6) the results are not affected significantly. For large values of

B (=K- U), the penalty is severe, and the hashing methods are clearly

worthless.

The ranges of values for the sizes of the relations (Nx) have been

extended significantly, particularly toward larger values. This is clearly the

direction of modern data base systems, and it might be argued that the success

of an architecture such as that proposed here could accelerate this process.

Thus the maximum size of the smaller relation (S) has been increased from

about 30,000 to 1,000,000.

The size of the segment is significant in methods 2 and 3. For instance,

if Mx is not somewhat larger than -=-, then a segment scan almost always
E\

requires fewer disk accesses than using the clustering index, because the index
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itself must be accessed. Blasgen and Eswaran did not state their assumptions

about the size of the segment, so it is not possible to duplicate their results

precisely. In order to consider the range of possibilities, the assumption has

been made that Mx and M2 are each a power of 2 and that the relation will

always fill up no less than half the pages in the segment.

5.7.2. Values for New Parameters

The assumption that an entire cylinder of a disk could be read at once is

not a novel idea, and such an approach is feasible with current technology. A

reasonable value for U, the number of heads read in parallel, is 20 or more.

If multiple drives are used, this number could be much larger. This value has

been assumed. The number of pages of size 4096 bytes currently possible on

disks is about 5 or 6 per track. It is reasonable to expect that density improve

ments will increase that number in the next five years, but a conservative esti

mate for V of 6 is made.

For the hashing methods, an important consideration is the size of the

hash table required. Too small a hash table results in many collisions which

translates to a large number of phantom tuples. One of the important parame

ters in determining the required size for the hash table is the number of

unique values present in the join field, Tx. This number was varied from 0.01

to 1.0 and, surprisingly, this was found to have very little effect on the com

munication. This is understandable, however, after a little thought. Since the

movement of the hash tables is a small portion of the total I/O required in

most cases, it is dwarfed both by the disk I/O and, in most cases, by the

movement of the tuples to assemble the joined tuples.

The number of phantom tuples resulting from collisions in the hash

table is a number of considerable interest. In all the algorithms, with the
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organization proposed, or any other the author has been able to think of, the

major element of communication is the final operation to assemble the result

relation from the participating tuples from the two relations. This communi

cation is proportional to 1 + R, where P is the proportion of phantom tuples

generated by collisions. Babb [Babb 79] derived the formula for the propor

tion of phantom tuples generated as a function of the number of unique

values in the domain (using his terminology, r), the number of values meet

ing the criteria to be entered into the hash table (h), and the number of bits

in the hash table (B). He showed that a substantial reduction in the number

of spurious keys selected (eh) could be gained by splitting the B bits into n

D

separate hash tables, each of size b = —, and using an independent hash

function to generate each hash table. He then demonstrated that

eh -(1 -*-*'*)« •(/•-/?)

if b»l, i.e., 6^10. Since P, the number of phantoms expressed as a per-

cent of those stored in the table, is just —,
h

h h

A tabulation of these values is given in Tables 5.1 and 5.2. As may be

seen from the table, a significant number of spurious records are selected if

the hash table is no larger than the number of unique elements in the field.

Even for the case where the hash table is twice as large as the number of

unique elements, the number of phantom records is unacceptably high. How

ever, if the hash table is split into two tables, each half as large, the number

of phantom records occurring drops dramatically. Surprisingly, even for the

case where the hash table is no larger than the number of unique elements in

the field, a reasonable number of phantoms occur. For the worst case, when
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100-
r

Ratio of —
r

1

4

1

2
1 2 4 8

.01 400 200 100 50 25 12.5

.1 399 200 99.9 49.9 25 12.5

1 388 196 98.5 49.4 24.7 12.4

5 344 181 92.7 46.9 23.6 11.8

10 297 163 85.6 43.9 22.2 11.2

15 256 147 78.9 40.9 20.9 10.5

20 220 132 72.5 38.1 19.5 9.88

25 190 118 66.4 35.3 18.2 9.23

30 163 105 60.5 32.5 16.9 8.59

35 140 93.5 54.8 29.8 15.6 7.95

40 120 82.6 49.5 27.2 14.3 7.32

45 102 72.5 44.3 24.6 13 6.69

50 86.5 63.2 39.3 22.1 11.8 6.06

90 10.8 9.27 6.59 4.03 2.24 1.18

99 .991 .871 .635 .394 .221 .118

Table 5.1. Percentage of spurious records P resulting from hashing collisions. Single hash
table. B is the number of bits available in the hash tables, h is the number of entries to
be made in the hash table, r is the number of unique values present to be hashed.
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100-
r

Ratio of —
r

1

4

1

2
1 2 4 8

.01 .639 .16 .04 .01 .0025 .000625

.1 6.34 1.59 .399 .0998 .025 .00624

1 58.5 15.2 3.88 .98 .246 .0617

5 207 62.4 17.2 4.52 1.16 .293

10 273 97.8 29.6 8.15 2.14 .549

15 277 115 38.1 11 2.96 .768

20 255 121 43.5 13.1 3.62 .951

25 224 120 46.4 14.7 4.14 1.1

30 193 114 47.5 15.7 4.53 1.22

35 164 105 47.1 16.2 4.79 1.3

40 138 95.5 45.5 16.3 4.93 1.36

45 116 85.2 43 16 4.96 1.38

50 96.4 74.8 40 15.5 4.89 1.38

90 11.1 10.5 7.74 3.91 1.46 .451

99 1.01 .972 .75 .399 .154 .0486

Table 5.2. Percentage of spurious records P resulting from hashing collisions. Two hash

tables, each of size y. B is the number of bits available in the hash tables, h is the
number of entries to be made in the hash table, r is the number of unique values present
to be hashed.
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approximately 30% of the records qualify to be inserted in the hash table, the

number of phantoms P is around 48%. If two hash tables are used, the worst

case number is only about 17%. For larger tables the numbers get even

smaller. In some cases the use of more than two hash tables improves this

figure as well.

The implication of this is that if the hash table is divided into two parts

and two independent hash functions are used for the tables, then it is reason

able to expect that less than 20% additional traffic will result from the spurious

records and this is the value that has been used for this study.

For purposes of establishing the size of the hashing table required, it is

necessary to predict the number of entries to be made in the table. Although

the join field may in fact be a primary key, in which case all values are unique,

it is much more likely that a large amount of redundancy will be found in the

join field. Most of the analysis was done with the assumption that

T\ = T2 = .01. However, it has been discovered that little of the traffic in

any of the algorithms results from the merging of the hash tables. Although

the presence of many more unique values may make the hashing methods

unwieldy because of the large table size, making storage in a single processor

of even one difficult, this does not significantly affect the cost functions

defined. In addition, a trade-off exists in that keeping the hash tables smaller

than is desirable only increases the number of phantoms, which may slow

down response, but will not cause a failure.

5.8. Interpretation of Results

The cost functions generated in the previous section were tested over a wide

range of values for numerous parameters. A computer program was generated to

evaluate the expressions derived in the previous sections. Some of the most
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significant results are given in Appendix C. Blasgen and Eswaran considered three

situations which they believed to be typical. They are:

A. Indexes exist for the join columns, but they are not the clustering indices.

No indices exist for the restriction columns.

B. Indexes exist for the join columns and for the restriction columns, but none

are the clustering indices.

C. There are clustering indices on the join columns, and indices on the restric

tion columns.

They also talked about a fourth situation and cited results from that situa

tion, though they did not show data for it. This was the same as situation C above

except that the clustering index is on the restriction column rather than the join

column. This will be called situation D. These four situations have been studied

in considerable detail, and results which Blasgen and Eswaran presented were com

pared where possible, though their results were presented only graphically, so only

rough comparisons could be made. In addition, two other situations have been

studied:

E. Indexes exist for the restriction columns but not for the join columns, and

they are not the clustering index.

F. No applicable indices exist.

One inconsistency was noted in the work of Blasgen and Eswaran [Blasgen

77]. Although the graphs in their Fig. 4 showed that method 4 was never best,

they nevertheless concluded that it was the best except for certain circumstances

which they specified. The data generated here confirms their conclusions, not

their presented data. Presumably, the wrong graph was printed.
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5.8.1. Disk Access Cost Function

The most surprising result of the present work is that in all situations,

the disk cost is higher for the methods of Blasgen and Eswaran than for the

hashing methods. This is particularly true for situation A, shown in Figs.

5.1-5.4, where the difference is nearly two orders of magnitude over the range

of relation sizes even for the case where B = 6. In situations B and C, Figs.

5.5-5.8, it is not true for some of the very small size relations, particularly if

the restriction is effective, so that there are not many disk accesses at all, or if

B is quite large, say 20.

5.8.2. Interprocessor Communication Cost Function

The processor communication cost was not so clear cut, at least for small

relations. For cases where Fx and P2 are near 1, the total traffic was nearly

equal for all methods except method 3, which is higher both for disk cost and

interprocessor communication cost. For smaller values of Fx and P2, the cost

for the hashing algorithms was much more uniform than methods 1-4 over

the range of relation sizes studied, which is to say that it was higher for small

relations and generally lower for large ones. For situation A, shown in Figs.

5.9-5.10, the hashing algorithms were clearly superior for large relations while

performance was very close for small ones. For situations B and C, the hash

ing algorithms were clearly inferior for small relations, while cost was similar

for the larger ones.

5.8.3. Busiest Link Cost Function

In order to compare the link traffic for all links - including those

between the disk and processors — the number of pages transferred between

the disk and the processors was calculated. The assumption was made that
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Figure 5.1. Total Disk Comrnunication Cost for Situation A. Ft = F2 - •1.0. £ = 6,
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Figure 5.3. Total Disk Communication Cost for Stuation A. Ft = Fg = 0.1. B= 6,
P = 4096.
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these links would carry equal traffic, so that the I/O link traffic was this

number of pages divided by the number of disk heads, U. For methods 1-4

the I/O link traffic was quite low, and the links which carry the most pages

were certain links connecting processors. This is misleading, however,

because although the number of pages transferred for these methods was

smaller than for the hashing methods, the cost of the disk transfers, CD, is

substantially larger, as shown above. This paradox results from the fact that

most transfers for methods 1-4 are one page only, while for the hashing

methods they are much larger, and therefore cheaper per page. Thus the

methods of Eswaran and Blasgen are limited either by Cc or by CD, either of

which is worse than for the hashing methods, except for very small relations.

For the hashing algorithms in all situations, if Fx and F2 are each less

than 0.2 then the busiest links are the links between the leaves and the disk.

Of course the bandwidth between a disk head and a processor can be no

higher than that between two processors, so the conclusion is that, with small

Fx and F2 for the situations and parameters considered, at least, the traffic in

the tree is not a problem, since communication is strictly limited by the disk

traffic.

For the case where Fx and F2 were relatively large, the interprocessor

links were the limiting factor. The most extreme example of this, shown in

Figs. 5.11 and 5.12, is for situation B. For the best algorithm, method P2, the

busiest processor link requires more than 23 times the bandwidth required of

a disk link when relation R has 4 million records and relation S has 1 million

records. Method 2 actually requires slightly less traffic on the busiest link, but

its disk traffic is even higher than its busiest processor link, so it is probably

not a good choice in this situation. In situation C, where the join index is the



10" 10 10'
NUMBER OF RECORDS IN S

Figure 5.12. Communication Cost on I/O Link for Situation A. Fx= Fz= 1.0. B= 6,
P= 4096

149



150

clustering index, the ratio is only about 5 to 1. The severity of the bottleneck

increases, of course, as the size of the data base increases. A strong argument

can be made, however, that this situation is unimportant. The bottleneck

results from the huge amount of traffic generated in the tree in forming the

result relation, which is extremely large. The question then occurs, what will

be done with this enormous relation? It is far too much to be displayed on a

screen or otherwise be quickly analyzed by a human. It may possibly be a

report of some type, but more likely, if it is useful at all, it will be further

reduced with another program. Given the power and flexibility of a relational

query language, it is reasonable to expect that a single query could be formed

which would produce the smaller final result without producing the large inter

mediate relation.

Not surprisingly, the hashing methods are more effective in every

respect when no indices at all exist.

5.9. Conclusions Regarding the Join Operation

The hashing approach has been shown to be significantly superior to the algo

rithms of. Blasgen and Eswaran as extended to the multiprocessor environment,

except for the case of very small relations. Of the three hashing algorithms,

method P2 was always as good as the others for those cases for which it was appli

cable, and should be employed whenever possible. Method PI is always applica

ble, and should be applied in those cases for which method P2 cannot be. Method

P3 is never superior to method P2, and since it is never applicable when method

P2 is not, it may be discarded.

The preceding analysis has demonstrated that algorithms exist which will

allow the Hypertree structure to perform join operations at speeds at or near the

speed limitation of the disk. This conclusion is for the range of values studied.
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For a much larger relation, for example, spread over more disk surfaces, this may

no longer be true, since the interprocessor communication cost is growing in pro

portion to V77, while the disk cost grows linearly for some methods. Neverthe

less, over the range studied, the Hypertree topology is sufficient to process the

data as quickly as it can be delivered from the disk. Given that it performed the

best over a wide range of conditions for the problem of eliminating duplicates, it

must be considered the structure of choice for the data base environment.

It has been demonstrated that the hashing algorithms proposed can show

significant performance enhancement over the other methods considered, primarily

because they are better able to utilize the capability to access large blocks of data

sequentially. Since the hashing methods employ techniques not widely imple

mented to date, the potential pitfalls of this approach may not become apparent

until more experience is gained in their use. The evidence presented here is

sufficient to justify the building of asystem to implement the hashing algorithms.



CHAPTER 6

Implications for Processor Architecture

The work discussed above has determined the algorithms and structures to support a

high performance data base management system. This chapter discusses the capabilities

and performance required to support the DBMS and the implications for the processor

architecture.

6.1. Functional Capabilities

6.1.1. Broadcast Capability

Many of the algorithms studied require the capability to send some

information to a large number, possibly all of the processors. Particularly in

the case of an extraordinary event, such as when an overrun occurs and one

processor is unable to complete its task in time, or if a hashing algorithm fails,

so that too many records are sent to the same node, it is necessary to broad

cast a message to halt the current task and restart. In addition, if the broad

cast capability exists, it can be used to communicate quickly and effectively to

all the processors the nature of the task to be performed.

The binary tree has certain inherent properties which make broadcast

relatively easy. Of course, it is not as straightforward as a bus, since many

separate messages must be created, but the hierarchal structure makes it easy

to propagate quickly a message to a collection of processors. It is easy to ima

gine a broadcast from the root of the tree, where each node receives a mes

sage from its parent and forwards it to both children. A broadcast can be ori

ginated from any other node by taking advantage of the fact that any node of
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a binary tree can be designated as root and the structure is still a binary tree.

This scheme is not optimal for the X-Tree structure, or any other tree struc

ture containing additional links, but it will work, though it fails in the case of

a broken link.

A slightly less general scheme which has been considered for X-Tree is

the capability to send messages to a list of nodes. Many questions have not

been resolved, and it is not the intent here to resolve them, but such a capa

bility might well satisfy the requirements identified here. Some of the

relevant questions are:

(1) Should the list indicate the order in which the message was to be
transmitted to the addressees?

(2) Should it be split into multiple lists whenever the routing would be
different for two addressees on the list?

(3) Should it be sent as a daisy chain?

Clearly to have the effect of a broadcast, speed is important, and that probably

rules out a daisy chain. The splitting of the lists is desirable however, if it

doesn't create too much complexity in the routing controller.

6.1.2. Efficient Message Passing: Pipes

Interprocess communication overhead is a very serious concern in virtu

ally any computer system of significant complexity. The INGRES work

[Hawthorn 79] has shown that in the data base environment, a major portion

of the processor time is devoted to the handling of such communication even

with a single processor. For multiple processors the problem can only become

more severe. It is clear that for such a system to perform efficiently, this

problem must be solved well.

While the problem is difficult, it is by no means hopeless. The solution

lies in the implementation of the appropriate low-level primitives to ensure
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the efficient execution of the variety of operations which must be performed

to dispatch a message. In the X-Tree environment, a simple scheduling algo

rithm can be implemented to run very fast, since only a small number of

processes should be active at any time in a single processor. This is important

in systems for which a major delay in message passing is caused by calling the

scheduler. Stonebraker has pointed out [Stonebraker 79] that a special proces

sor, which never originates messages but simply returns answers, can have a

drastically lower instruction overhead compared to a more flexible protocol.

He estimates, for example, that the D-cells in MUFFIN might have an over

head to send or receive a message of 100 instructions, while for the A-cells he

estimates 5000. Thus there is hope that this problem can be solved. This is a

very important issue and the success of the proposed system clearly depends

on how well it is resolved.

Gray [Gray 78] differentiates between what he calls "one shot" messages,

where he says a very rigid protocol exists, and messages via an established ses

sion, where many of the protocols are agreed to, thus potentially simplifying

the message handling overhead.

6.1.3. Efficient String Comparisons

The operation of string comparison is used in a variety of ways in a data

base management system. String comparisons are performed repeatedly in

sorting and merging operations, of course. In addition, whenever a file scan is

required, string comparisons are performed in large numbers. This would

seem to be reason to make the string comparison operation capable of

extremely efficient operation. This can be done in several ways.

(1) An instruction can be defined which allows the operation to be aborted

at the earliest possible moment — for example, when a differing
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character is found — without requiring an explicit test and branch.

(2) Increased buffering may be useful to allow the rapid testing of a long

string.

(3) In many circumstances, the capability of comparing a single value against

many values can provide significant advantages. This was used

effectively in RAP [Ozkarahan 77], for example, and resulted in nearly

linear speedup for join operations.

6.1.4. Family of Hashing Functions

It is well known that hashing is a useful technique for distributing data

more uniformly when it does not occur that way naturally. Hashing is fre

quently used in data base systems today to implement efficient access

methods. In addition, it has been shown that it can be used effectively to

implement certain join algorithms. However, hashing functions are much less

effective if they do not randomize the data well. Unfortunately, good hashing

functions also require considerable computation — division, for example.

Many interesting hashing functions which can be easily implemented in spe

cially designed hardware have been virtually unused because they are so

difficult to program on a conventional computer [Lum 71]. In the data base

environment, it would seem clear that a hashing instruction would be quite

valuable. That instruction should have these parameters:

(1) the size of the field to be hashed,

(2) the size of the hash table, and

(3) a third number to specify one of a family of hash functions to be gen

erated.
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A number of possible families of hashing functions are possible. Lum et

al [Lum 71] concluded that the widely known division technique is best in

general. They found that, in many cases, it actually performs better than a

truly randomizing function because it apparently preserves the uniformity in

the key set to some extent. Knuth [Knuth 73, pp. 506-513] defined a slightly

more general hashing function involving only multiplication. An interesting

method has been proposed based on algebraic coding theory [Peterson 57]..

Analogous to the division algorithm above, it uses division by a polynomial.

It was not thought applicable until recently, however, because of the difficulty

of its implementation without special instructions. However, some newer

machines have special instructions which can be used in this way [VAX 77]

and this approach is now possible at a reasonable cost. Lum, however, did not

find this method to be superior to the standard division technique.

The division approach has some limitations due to the fact that the size

of the hashing table is determined, to some extent, by the value of the divi

sor. Knuth's multiplication technique and the polynomial arithmetic appear to

have no such constraints.

6.2. Performance Requirements

6.2.1. Disk Bandwidth Requirements

For simple operations such as restriction, the dominant delay in response

is the time required to retrieve the required data from the disk. It was

demonstrated in chapter 5 that the join operation can be supported with the

Hypertree structure for a reasonable number of disk heads in such a way that

the disk transfer rate limits the response of the DBMS to the query. Thus the

bandwidth of the disk is of paramount importance.
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Unfortunately, the disk transfer rate is largely limited by technology.

Although some increase in speed may occur in disk transfer rates, most of the

increase in density has resulted from the addition of more tracks rather than

denser ones, and the rotational velocity of disks is currently limited by the

speed of sound. Thus it is not reasonable to expect a substantial increase in

disk transfer rates in the near future. It is important, however, to take advan

tage of all the bandwidth that is available from the disk, i.e., to make use of

the data coming under every head as was done in this work.

6.2.2. Communication Rates

It has been assumed that the individual processors can send and receive

data at the speed of disk transfers. For structures of the size studied here,

that speed will be adequate, since for nearly all cases of interest, for the

difficult operations the highest communication occurs between the disk heads

and the adjacent processors. For larger networks of processors, the communi

cation among the processors may be expected to grow more rapidly than

linearly. In general, the traffic over the busiest links will grow in proportion

to the square root of the number of processors, so that if the number of pro

cessors is quadrupled the busiest link traffic will double. At some point, of

course, the interprocessor links will require higher transfer rates than the disk,

and it is important that the processors have this higher bandwidth capability if

the number of disk heads read in parallel is increased substantially.

6.2.3. Processing Rates

In chapter 5 the assumption was made that the processing required to

keep up with the disk was available at each node. If that assumption is not

valid now, it clearly will be at some point in the near future as the processing
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speed of a single-chip computer increases with advances in semiconductor

technology. A processor must be able to perform one or more comparisons,

several hashing operations and move some data for each relevant record read

into it. Using current disk transfer speeds of about 800,000 bytes per second,

and assuming 20 tuples per page of 4096 bytes, the processor must process

four tuples every millisecond. Of course, if the entire cylinder can be stored,

as discussed in section 5.1, then the processor can take about twice as long to

handle each tuple. This requirement is beyond the capability of current

microprocessors, but mainly because they generally have no provision for

hashing, so that this function would have to be implemented as a subroutine.

The algorithms developed in this work require close cooperation among

a large number of processors, and in some cases created large numbers of

messages, many of which might be quite small. The processor must have

efficient mechanisms to send and receive messages very efficiently in order to

insure that this will not limit the speed of the system.

6.3. Architectural Features Required

The features required of the processor architecture are distinctly different for

the data base environment than for generaly purpose computing. Arithmetic

operations are generally not used a great deal, and floating point manipulations are

extremely rare. However, the sorting requirements, the join algorithms, and the

restriction operation create the requirement that string comparisons be imple

mented efficiently. Also, arithmetic performed directly on ASCII characters, or

whatever format of characters is used for the data base itself, would save multiple

conversions and the possible errors they create whenever fields are modified.

In addition, the hashing algorithms derived here place additional burdens on

the processor, and pose additional opportunities to modify the architecture to



159

support them efficiently. In particular, the use of single bits for the hashing table

entries makes desirable the ability to address the memory down to the bit level.

As mentioned before, a family of hashing functions is of vital importance in sup

porting the join algorithms developed, and these functions must be implemented

to execute very quickly, because they will be used a great deal during the join

operation.

The compactness of the code is important because of the limited amount of

memory available for each processor in X-Tree and because of the large amount of

code making up a DBMS. Through the supportof special data structures for arrays

of strings and hashing tables, it is probably possible to produce a storage-to-storage

organization which would nevertheless have compact code. Because of the large

amount of data being referenced and the limited amount of locality on that data in

the DBMS environment [Hawthorn 79a], storage-to-storage operations would

probably be the format of choice.

The processors operating at the leaf nodes will be essentially dedicated to the

task of processing the data coming off the disk. Therefore they will probably not

be required to support a high degree of multiprogramming, though it is certainly

desirable for them to be able to maintain a number of processes in parallel to bal

ance the load and handle operating system functions. This observation can

perhaps be used to implement a very fast scheduling algorithm, since only a few

choices exist, and hence to implement efficient system calls for message passing

and other functions.

Because of the requirement that the processors handle the data fetched from

the disk on the fly, it is important that the disk operations occur independently and

simultaneously with the processing of the data. This means sophisticated capabili

ties for the I/O port and overlapped I/O.



CHAPTER 7

Summary and Conclusions

7.1. Summary

This work has investigated the nature of data base operations and identified

some of the most important ones, which were expressed in the framework of a

relational data base. Analysis of models of these operations was seen to be an

appropriate way to evaluate the requirements they place on the architecture, and a

series of models were developed to study these operations in detail.

Algorithms were developed for a number of different topologies for the elim

ination of duplicates problem resulting from the restriction operation and weakness

of the structures were identified. The join operation was studied in great detail,

and the algorithms developed by Blasgen and Eswaran were extended to operate in

the multi-computer environment being studied. In addition, new algorithms,

using a hashing technique were proposed and shown to perform well over a variety

of conditions.

A variety of topologies were considered, and the close interaction of their

structure and the algorithms employed were verified. Thus it is concluded that

over the range of operations considered, the Hypertree structure [Goodman 79]

provides a promising solution to the problem studied, and effective algorithms

were found to implement all the operations studied on this topology.

7.2. Conclusions

DBMS systems are very important and are thus deserving of special architec

tural consideration. Many queries that a user would like to make are simply too
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expensive on current machines, and as a result, either redundant data bases for

different purposes are maintained, or those queries are answered in other ways,

i.e., without the use of computers, or through human interpretation of computer

data. To gain improvements, many DBMS system architectures have been pro

posed, most apparently in an ad hoc fashion, since little analysis of the system

choices generally appears.

An examination of query operations led to the conclusion that the restriction

operation, requiring the primitive function of the elimination of duplicates, was

the critical, dominant operation of a DBMS. The Hypertree structure with added

links implementing the perfect shuffle interconnection among the leaves was

shown to be the optimal structure for connecting a collection of identical,

cooperating processors performing this task. A different structure quite possibly

would be superior if specialized nodes were to be employed.

The join function was found to be a critical operation which is frequently not

employed because of its cost. Therefore, principles for implementing it were

derived, and new join algorithms were derived and shown to be superior to more

traditional algorithms. Especially important is the proper use of hashing tech

niques to implement the join algorithm in linear time.

The required capabilities of the node processors were found to be about as

would be expected: general purpose capabilities with optimized performance on

interprocess communications of messages (including broadcast capabilities),

efficient string comparison operations, and support for hashing with a family of

hashing functions and bit addressability of the memory. No exotic features, such

as associative memories, 'logic-in-memory,' special I/O devices, or other novel

hardware were found to be useful, though some might be useful in the implemen

tation of the required functions if they are found to be sufficiently inexpensive.
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Also, to maximize I/O bandwidth, which was found to be the limit on perfor

mance, it is necessary to read from all the heads of the disk at once.

In general, it appears that a very powerful, high performance DBMS can be

constructed from a large Hypertree array of micro-computers and standard mag

netic disk drives, using the principles and techniques developed in this disserta

tion.

7.3. Future Research

This dissertation considered the theory of DBMS machines for high perfor

mance on queries. Updating the underlying data base is generally a minor exten

sion to this work, since the major task is identifying the data to be modified. How

ever, a number of related issues become important when the data base is being

changed. In particular, recovery of the DBMS after a system crash is enormously

complicated by the fact that a complicated transaction may have been partially

completed, leaving the data base in an inconsistent state. Concurrency also

becomes a problem only when the data base is being changed, and provisions for

locking out readers may result in many potential cases of deadlock.

The techniques and principles developed here could be extended to this class

of DBMS machines. Important issues of update synchronization, crash recovery,

and incremental locking could be attacked using the methodology employed here.
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APPENDIX A

Notation and Parameter Values

A.l. Parameters of Biasgen and Eswaran

Biasgen and Eswaran [Biasgen 77] introduced a large amount of notation

which has been used extensively here with essentially no modification. The fol

lowing are parameters which they used. In many cases, the same parameter is

defined for relations R and S. In those cases, designated here with a subscript x,

x = 1 refers to relation R and x = 2 refers to relation S.

A.1.1. Query-independent parameters

Nx Cardinality of relation.

Ex (Average) Number of tuples from R in a data page. It is obtained
by dividing /Vv by the number of data pages that contain at least one
tuple from R.

Mx Total number of data pages in the segment which contains R. Mx
is never smaller than Nx • Ex and may be larger.

L Average number of (KEY,TID) pairs per page.

Cx Number of tuples of R that fit in a page of a (temporary) file, as
obtained by dividing the size of a page in the file by the average size
of a tuple. Cx may be different than Ex because a data page in the
data base may contain tuples from more than one relation.

Px Effectiveness of the join filter, i.e., the fraction of tuples of the rela
tion that participate in the unconditional equijoin.

G Ratio between the number of tuples in the unconditional equijoin
and Nx • N2.

I Number of 77Ds that fit in a page of a temporary file.
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K Number of (KEY,TID) pairs that fit in a page of a temporary file.

P Main storage space in page frames that are available for sort buffers,
TID lists, TID pair lists, W2\ etc.

Z Merge factor for sort-merge algorithms.

Q The bjock size (in pages) for temporary storage during a sorting
operation. Z + 1 blocks must fit in main storage at once, so

Z +1

A Cost (in time) of a page transfer between a processor and disk.

B Cost (in time) of a block transfer between a processor and disk. A
block is the unit of transfer for a file. In the current context, it has
been assumed that it is never larger than one cylinder.

A.1.2. Query-dependent parameters

Hx Ratio between the average size of the subtuple of interest from the
relation and the average size of a tuple in that relation.

Fx Effectiveness of the predicate filter, i.e., the ratio between the
number of tuples that satisfy the predicate and the cardinality of the
relation.
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A.1.3. Values of Parameters of Biasgen and Eswaran

Most of the parameters defined above were assumed by Biasgen and

Eswaran to be fixed for all the work reported. Those include the following:

Nx = 4 • N2

Ei = E2 = 20

/ -1000

Cx = C2 = 20

L =200

K =300



Px =• P2 = 1.0

Hx = H2 = 0.5

G = 7/W2

P =25

^ = 1

B = 1

Z =3

The parameters that were varied were the following:

200 < N2< 30000

Fx =F2 = (1.0,0.5,0.1,0.01)
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A.2. Other Notation

Many other quantities were defined throughout this work. The following is a

list of those which were referenced.

fx The number of links over which a hash table is sent during a merge or
broadcast of hash tables.

p The number of cylinders which must be read to scan the entire relation
R.

px The number of cylinders which must be read to scan an entire index of
the relation R.

o- The number of cylinders which must be read to scan the entire relation
S.

crx The number of cylinders which must be read to scan an entire index of
the relation S.

r(pyn,e)
The expected number of pages which must be accessed in order to ex
amine p - n records of a relation containing n records distributed even
ly, e per page. It is equal to



n ' p

e

n - e

P ' n

n

p • n

b The number of bits in a byte, usually 8.

CI The total number of comparisons done in all processors for the case
where all elements are identical.

CI^ 1max

The total number of comparisons done in the busiest processor for the
case where all elements are identical.

CN The total number of comparisons done in all processors for the case
where all elements are unique.

CN

The total number of comparisons done in the busiest processor for the
case where all elements are unique.

Cc The total cost, in pages, of all communications among processors for the
join methods.

CD The total cost, in pages, of all disk accesses for the join methods.

d The average number of links traversed by a message sent randomly from
one leaf node to another in Hypertree. In [Goodman 79] it was shown
that

5 • m 4,2

4 3 3 12'

where m is the number of levels of the tree, not including the root, and
a = m mod 2.

yx The cost in terms of disk accesses of accessing relation R one time.

Ml The total number of message element links required for the case where
all elements are identical.

Ml The total number of message element links required for the case where
all elements are identical, normalized for number of ports per processor.

'Wlmax
The total number of message element links required for the case where
all elements are identical.
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M\T~•max

The total number of message element links required for the case where
all elements are identical, normalized for number of ports per processor.

MN The total number of message element links required for the case where
all elements are unique.

MN The total number of message element links required for the case where
all elements are unique, normalized for number of ports per processor.

MWmax
The total number of message element links required for the case where
all elements are unique.

MWmax
The total number of message element links required for the case where
all elements are unique, normalized for number of ports per processor.

R The ratio of the number of phantom tuples incorrectly included in the
preliminary result relation to the number of tuples in the correct result
relation.

S The number of bytes of data in a page.

Tx The ratio of unique values existing in the join field to Nx
9X The total number of pages of relation Wx which must be transmitted in

join methods 2 and 3.

Y The expected number of unique values to be entered into a hash table.

U The number of heads read in parallel from a disk surface into processors.
V The number of pages existing on each track of the disk.



APPENDIX B

The Busiest Links in Hypertree

In order to calculate the busiest link for a given algorithm, it is necessary to

determine the amount of traffic in each link. This can be done without great

difficulty if the assumption is made that the message traffic among the various leaf

nodes is symmetric, i.e., the lengths of their lists are equal, the sizes and number

of messages they send are equal, and the amount of data read from the disk into

each node is the same. Under this assumption, the symmetric nature of Hypertree

guarantees that every link connecting level / to level J will have the same amount

of traffic as every other link connecting level / to level j. This includes the hor

izontal links, i.e., when / = j. The problem then becomes one of determining the

amount of traffic for each of these classes of links for each communication occur

ring in the handling of a query and dividing by the number of links in the class.

All messages in the algorithms considered were of four types.

(1) A set of hash tables was propagated up the tree, being merged at each level,

so that every link which was connecting two ancestors of a node receiving

data directly from a disk would transmit exactly one copy of the hash table

(2) Leaf node to parent traffic. In algorithm P3, it was necessary to send some

results from a leaf node to its parent, because of memory size limits.

(3) A general exchange of data. Each processor sent messages to various other

processors. The assumption was made that the messages were randomly dis

tributed, with average path length the same as that of a tree large enough to

have U leaves.
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(4) The I/O links between the leaf processors and the disk transmitted all the

data read in from the disk (and written to it).

For the case of a hash table being propagated from the leaves to the root, or

vice versa, all the vertical links, for which i^j, carry the entire hash table exactly

once, and all the horizontal links, for which / = j carry no traffic at ail. For the

case where leaf nodes found it necessary to send a portion of their work to a

parent, the lowest level vertical links each carried the amount of traffic sent, an no

other links carried any traffic. For data read from the disk to the leaf nodes, no

traffic occurred on any interprocessor links, and the traffic on the I/O links was

assumed to be equally distributed. This leaves the calculation for the case where a

general exchange took place among the leaf nodes.

In [Goodman 79] the average path length of the Hypertree structure was

derived for uniform distribution of messages among the leaf nodes. That number

was shown to be

d = In i+i.i-* JL
4 " 3 3 "12

where d is the average path length between pairs of leaf nodes communicating, m

is the level number of the node, the root being 0, and a = m mod2, The deriva

tion was based on the observation that the message density through a link was uni

form at a given level in the tree and was distributed in a particular way. The busi

est links in a general exchange among leaf nodes are those nodes near the middle

levels of the tree. This can be shown by considering separately the vertical links

(the binary tree) and the horizontal links adding the redundancy for two cases:

(1) the number of leaves in the complete tree is a power of 4, i.e., the level

number of the leaf nodes, starting with the root level as 0, is even, and

(2) the number of leaves in the complete tree is twice a power of 4, i.e., the

level number of the leaf nodes is odd.
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In both cases, it has been shown [Goodman 79] that for the bottom half of

the tree, the horizontal links at each level collectively carry precisely half of all

messages. For the top half of the tree, the horizontal links carry no messages at

all. For the first case, where for a /c-level tree, i.e., P = 2k leaf nodes, k is even,

the links at the highest level carrying messages are at level — + 1. Where k is

odd, the links at the highest level carrying messages are at level . Since

there are VF and VP / 2 links respectively at the highest levels carrying traffic,

and twice as many at each succeedingly lower level, the traffic per horizontal link

at each level can easily be determined.

Table B.l shows the number of messages links occurring for the vertical links

between adjacent levels for k even. Table B.2 shows the same data for k odd.
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1 Level

Number

Number

of

Links

Messages
Traversing

Levels

Communications

Per

Link

1 2 0 0

2 4 0 0

• :

•

•

k

2
22 0 0

. !- 22 2*

2

Vp
2

f+2 7+222 }* ±JP
16

|+3 22 2L7k
32

^VP
128

f+4 22 ill,*
128

127 VF
1024

; •

• •

k -2 2*.2 2* -32 a 256

k -1 2*.i 2* -8 , 32

4"T

A: 2* 2* -2 '"*

Table B.l. Density of communication traffic for vertical links of Hypertree for an odd
number of levels. Level / refers to links connecting the nodes at level / to the level above.
The number of messages traversing the links is the number of messages sent from one leaf
processor which pass through a link at that level. The communications per link is deter
mined by dividing the number of messages traversing the links by the number of links at
that level and multiplying by two, since each message passing through the level must pass
both up and down. To determine total link traffic, the communications per link entry must
be multiplied by the number of leaf nodes.
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Level

Number

Number

of

Links

Messages
Traversing

Levels

Communications

Per

Link

1 2 0 0

2 4 0 0

^

• •

•

k -1

2

*-l

2 2 0 0

k +1

2

* +1

2 2 0 0

k +3

2

* +3

2 2
4Z 4

/t +5

2

* +5

2 2 ii2*
16

^/2TP
32

A: +7

2

* +7

2 2
64 256

•

•

•

•

A: -2 2*-2 2* -32 ft 256

it -1 2*-i 2* -8 <-f
k 2* 2* -2 24

Table B.2. Density of communication traffic for vertical links of Hypertree for an even
number of levels. Level / refers to links connecting the nodes at level / to the level above.
The number of messages traversing the links is the number of messages sent from one leaf
processor which pass through a link at that level. The communications per link is deter
mined by dividing the number of messages traversing the links by the number of links at
that level and multiplying by two, since each message passing through the level must pass
both up and down. To determine total link traffic, the communications per link entry must
be multiplied by the number of leaf nodes.



APPENDIX C

Results of Join Analysis

The cost functions for the join algorithms described in chapter 5 were calcu

lated under a variety of conditions. Initially the calculations were done using the

values suggested by Biasgen and Eswaran for the parameters they defined. Each of

four cost functions were determined, all measured in the number of pages

transferred:

(1) Total interprocessor communication. The total number of pages passing

through all links except those between processors and the disk.

(2) Total disk communication. The total number of pages read from the disk.

This was the cost function defined by Biasgen and Eswaran.

(3) Worst case interprocessor communication. The total number of pages cross

ing the busiest link between processors.

(4) Worst case disk communication. The total number of pages crossing the

busiest link between a processor and the disk. Since disk traffic was assumed

to be evenly distributed, this was just the total disk communication divided

by the number of heads being read.

Each of these cost functions was calculated for four possible values of the Fx

and F2, the effectiveness of the predicate filter: 1.0, 0.5, 0.1, and 0.01. In addi

tion, five different situations were analyzed:

A Relations R and 5 have join column indices, and indices on irrelevant

columns X and Y respectively. They are not clustered on the join indices,

but rather on columns X and Y.
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B Relations R and S have join indices, restriction column indices, and indices

on irrelevant columns X and Y respectively. They are not clustered on the

join indices, nor on the restriction column indices, but rather on columns X

and Y.

C Relations R and 5 have join indices and indices on the restriction columns.

They are clustered on the join column indices.

D Relations R and S have join indices and indices on the restriction columns.

They are clustered on the restriction column indices.

E Relations R and S do not have join column indices, but have indices on the

restriction columns. They are not clustered on the restriction column

indices.

E Relations R and S do not have join column indices and indices on the res

triction columns. They are not clustered on either the restriction column or

on the join column.

The same set of calculations were run again after changing two variables:

(1) The cost B for accessing a block on the disk was increased from 1 to 6.

(2) The number of pages available for temporary storage was increased from 25

to 4096.

Tables C. 1.1.1 through C.2.4.5 present the results of these computations.

Selected results were also presented in Chapter 5 in graphical form.
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TOTAL INTERPROCESSOR COST SITUATION A

Size Method
of

N2 1 2 3 4 PI P2 P3

Fj - F2 - 1.0

300 207 183 183 321 321

1000 691 609 609 790 790

3000 2072 1828 5484 2131 2131

10000 6906 6094 60938 6823 6823

30000 20719 18281 548438 20229 20229

100000 69063 60938 6093750 67151 67151

300000 207188 182813 54843750 201214 201214

1000000 690625 609375 609375000 670673 670673

Fj - F2 - 0.500

300 104 91 91 170 170

1000 347 305 305 288 288

3000 1042 914 1828 623 623

10000 3473 3047 15234 1796 1796

30000 10420 9141 137109 5147 5147

100000 34734 30469 1523438 16878 16878

300000 104203 91406 13710938 50393 50393

1000000 347344 304688 152343750 167938 167938

F! - F2 - 0.100

300 35 18 18 122 122

1000 117 61 61 127 127

3000 350 183 183 140 140

10000 1166 609 609 187 187

30000 3498 1828 5484 321 321

100000 11659 6094 60938 790 790

300000 34978 18281 548438 2131 2131

1000000 116594 60938 6093750 7063 7063

Fj - F2 - 0.010

300 21 2 2 120 120

1000 70 6 6 120 120

3000 210 18 18 120 120

10000 700 61 61 121 121

30000 2101 183 183 122 122

100000 7005 609 609 127 127

300000 21015 1828 5484 140 140

I000000 70050 6094 60938 427 427

Table C.1.1.1. Total processor communication cost Cc- Parameters as assumed by Biasgen
and Eswaren: P = 25, B = 1.
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TOTAL INTERPROCESSOR COST

Size

of

Fl " F2 " 10

300

1000

3000

10000

30000

100000

300000

1000000

Fj - F2 - 0.500

300

1000

3000

10000

30000

100000

300000

1000000

F] - F2 - 0.100

300

1000

3000

10000

30000

100000

300000

1000000

0.010

300

1000

3000

10000

30000

100000

300000

1000000

183

609

1828

6094

18281

60938

182813

609375

91

305

914

3047

9141

30469

91406

304688

18

61

183

609

1828

6094

18281

60938

2

6

18

61

183

609

1828

6094

Method

183

609

5484

60938

548438

6093750

54843750

609375000

91

305

1828

15234

137109

1523438

13710938

152343750

18

61

183

609

5484

60938

548438

6093750

2

6

18

61

183

609

5484

60938

PI

321

790

2131

6823

20229

67151

201214

670673

170

288

623

1796

5147

16878

50393

167938

122

127

140

187

321

790

2131

7063

120

120

120

121

122

127

140

427

188

SITUATION F

P2 P3

Table CI. 1.6. Total processor communication cost Cc. Parameters as assumed by Biasgen
and Eswaren: P = 25, B = 1.
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TOTAL DISK COST SITUATION A

Size

of

N2

Method

i 2 3 4 PI P2 P3

Fl " F2 " 10

300 1508 104 80 4 4

1000 5025 442 320 8 6

3000 15075 1758 3840 24 14

10000 50250 4566 25600 46 26

30000 150750 17490 307200 174 94

100000 502500 69302 4096000 686 365

300000 1507500 179420 24576000 1368 747

1000000 5025000 694358 327680000 5464 2941

Fj - F2 - 0.500

300 1358 86 80 4 4

1000 4525 362 320 8 6

3000 13575 1458 2560 24 14

10000 45250 3526 12800 46 26

30000 135750 13744 153600 174 94

100000 452500 54726 2048000 686 365

300000 1357500 129420 12288000 1368 747

1000000 4525000 506868 163840000 5464 2941

Fj - F2 - 0.100

300 1238 80 80 4 4

1000 4125 324 320 8 6

3000 12375 1304 1280 24 14

10000 41250 2682 2560 46 26

30000 123750 10718 30720 174 94

100000 412500 42966 409600 686 365

300000 1237500 89170 2457600 1368 747

1000000 4125000 356022 32768000 5464 2941

Fj - F2 - 0.010

300 1211 80 80 4 4

1000 4035 320 320 8 6

3000 12105 1280 1280 24 14

10000 40350 2564 2560 46 26

30000 121050 10264 10240 174 94

100000 403500 41082 40960 686 365

300000 1210500 82398 245760 1368 747

1000000 4035000 329686 3276800 5464 2941

Table C 1.2.1. Total disk communication cost CD. Parameters as assumed by Biasgen and
Eswaren: P = 25, B =» 1.
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TOTAL DISK COST SITUATION E

Size

of

N2

Method

l 2 3 4 PI P2 P3

Fi - F2 - 1.0

300 - 104 80 — 4 —

1000
- 442 320 ~ 8 — _

3000
- 1758 3840 .. 24 —

10000
- 4566 25600 - 46 _ „

30000
- 17490 307200 - 174 ..

100000
- 69302 4096000 ~ 686 _ _

300000
- 179420 24576000 - 1368 .. _

1000000
~ 694358 327680000

- 5464
~

Fi - F2 - 0.500

300 - 86 80 .. 4 — ..

1000 - 362 320 ~ 8 - _

3000
- 1458 2560 - 24 - -

10000
- 3526 12800 - 46 — —

30000
~ 13744 153600 - 174 — ..

100000
- 54726 2048000 ~ 686 — —

300000
- 129420 12288000 - 1368 —

1000000
- 506868 163840000

-
5464 -

F! - F2 - 0.100

300 - 80 80 — 4 — ..

1000
- 324 320 ~ 8 -

3000 - 1304 1280 - 24 ..

10000 - 2682 2560 ~ 46 _

30000
- 10718 30720 - 174 ..

100000 - 42966 409600 ~ 686 _ ..

300000 - 89170 2457600 ~ 1368 - ~

1000000
- 356022 32768000

-
5464

-

Fj - F2 - 0.010

300 ~ 17 17 - 4 *.

1000 - 52 52 - 8 -

3000
- 152 152 - 24 ~

10000 - 507 503 ~ 46 ~ _

30000 - 1532 1508 - 174 _

100000
- 5147 5025 - 686 >. ..

300000 - 15553 45225 - 1368 — ..

1000000
- 52256 502500

-
5464 _

Table C 1.2.5. Total disk communication cost CD.
Eswaren: P = 25, B = 1.

Parameters as assumed by Biasgen and
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TOTAL DISK COST SITUATION F

Size Method

of

N2 1 2 3 4 PI P2 P3

Fl " F2 " L0

300 - 104 80 — 4 — —

1000
- 442 320 ~ 8 ~ _

3000
- 1758 3840 - 24 ..

10000
- 4566 25600 - 46 — *.

30000
- 17490 307200 -. 174 ♦• ..

100000
- 69302 4096000 - 686 ~ *»

300000
- 179420 24576000 .. 1368 — —

1000000
- 694358 327680000

- 5464 -

Fl " F2 " °-500

300 - 86 80 — 4 •• M

1000
- 362 320 - 8 •* «

3000
- 1458 2560 - 24 -• •*

10000
- 3526 12800 .. 46 .-

30000
- 13744 153600 - 174 „ _

100000
- 54726 2048000 -. 686 — —

300000
- 129420 12288000 - 1368 *. —

1000000
- 506868 163840000

- 5464 ~

Fl " F2 " 0I0°

300
- 80 80 .. 4 ••

1000
- 324 320 ~ 8 .-

3000
- 1304 1280 .. 24 •• «

10000
- 2682 2560 _ 46 — —

30000
- 10718 30720 ~ 174 ••

100000
•- 42966 409600 _ 686 •• »

300000
- 89170 2457600 - 1368 •-

1000000
-- 356022 32768000

- 5464 -

Fl " F2 " 00l°

300
- 80 80 _ 4 ^

1000
- 320 320 — 8 -• «

3000
- 1280 1280 .. 24 -•

10000
- 2564 2560 .. 46 •• «.

30000
- 10264 10240 — 174 —

100000
-• 41082 40960 _ 686 --

300000
~ 82398 245760 _ 1368 •• —

1000000
~ 329686 3276800

» 5464 -

Table C 1.2.6. Total disk communication cost Q>. Parameters as assumed by Biasgen and
Eswaren: P = 25, B = 1.
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BUSIEST INTERPROCESSOR LINK (PAGES) SITUATION A

Size

of

N2

Method

12 3 4 PI P2 P3

FI - F2 - 1.0

300 128 113 113 127 127

1000 425 375 375 416 416

3000 1275 1125 3375 1241 1241

10000 4250 3750 37500 4128 4128

30000 12750 11250 337500 12378 12378

100000 42500 37500 3750000 41253 41253

300000 127500 112500 33750000 123753 123753

1000000 425000 375000 375OO0OC0 412509 412509

F1 - F2 - 0.500

300 64 56 56 34 34

1000 214 188 188 106 106

3000 641 563 1125 312 312

10000 2138 1875 9375 1034 1034

30000 6413 5625 84375 3097 3097

100000 21375 18750 937500 10316 10316

300000 64125 56250 8437500 30941 30941

1000000 213750 187500 93750000 103134 103134

Fl ~ F2 " 010°

300 22 11 11 4 4

1000 72 38 38 7 7

3000 215 113 113 15 15

10000 718 375 375 44 44

30000 2153 1125 3375 127 127

100000 7175 3750 37500 - 416 416

300000 21525 11250 337500 1241 1241

1000000 71750 37500 3750000 4134 4134

Fj - F2 - 0.010

300 13 1 1 - 3 3

1000 43 4 4 - 3 3

3000 129 11 U 3 3

10000 431 38 38 3 3

30000 1293 113 113 4 4

100000 4311 375 375 7 7

300000 12932 1125 3375 15 15

1000000 43108 3750 37500 50 50 -

Table C 1.3.1. Number of pages transferred on busiest interprocesor link. Parameters as
assumed by Biasgen and Eswaren: P = 25, B = 1.
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BUSIEST INTERPROCESSOR LINK (PAGES) SITUATION C

Size

of

N2

Method

i 2 3 4 PI P2 P3

Fj - F2 - 1.0

300 26 113 113 50 28 28 32

1000 85 375 375 168 86 86 90

3000 255 1125 3375 504 251 251 255

10000 850 3750 37500 1680 828 828 836

30000 2550 11250 337500 5040 2478 2478 2498

100000 8500 37500 3750000 16800 8253 82S3 8317

300000 25500 112500 33750000 50400 24753 24753 24939

1000000 85000 375000 375000000 168000 82509 82509 83123

Fj - F2 - 0.500

300 7 56 56 14 9 9 13

1000 24 188 188 46 24 24 28

3000 71 563 1125 137 65 65 69

10000 238 1875 9375 458 209 209 215

30000 713 • 5625 84375 1373 622 622 632

100000 2375 18750 937500 4575 2066 2066 2100

300000 7125 56250 8437500 13725 6191 6191 6285

1000000 23750 187500 93750000 45750 20634 20634 20942

F, - F2 - 0.100

300 1 11 11 1 3 3 7

1000 2 38 38 3 4 4 8

3000 5 113 113 9 5 5 9

10000 18 375 375 30 11 11 15

30000 53 1125 3375 91 28 28 32

100000 175 3750 37500 303 86 86 94

300000 525 11250 337500 909 251 251 271

1000000 1750 37500 3750000 3030 834 834 898

F, - F2 - 0.010

300 0 1 1 0 3 3 7

1000 0 4 4 0 3 3 7

3000 0 11 11 0 3 3 7

10000 1 38 38 2 3 3 7

30000 3 113 113 5 3 3 7

100000 11 375 375 17 4 4 8

300000 32 1125 3375 50 5 5 9

1000000 108 3750 37500 165 17 17 30

Table CI.3.3. Number of pages transferred on busiest interprocesor link. Parameters as
assumed by Biasgen and Eswaren: P =» 25, B — 1.
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BUSIEST INTERPROCESSOR LINK (PAGES) SITUATION E

Size

of

N2

Method

1 2 3 4 PI P2 P3

F, - F2 - 1.0

300 113 113 ~ 127

1000 375 375 ~ 416

3000 1125 3375 - 1241

10000 3750 37500 ~ 4128

30000 11250 337500 ~ 12378

100000 37500 3750000 ~ 41253

300000 112500 33750000 - 123753

1000000 375000 375000000
-

412509

Fj - F2 - 0.500

300 56 56 - 34

1000 188 188 ~ 106

3000 563 1125 - 312

10000 1875 9375 - 1034

30000 5625 84375 ~ 3097

100000 18750 937500 - 10316

300000 56250 8437500 - 30941

1000000 187500 93750000
-

103134

Fl " F2 " 010°

300 11 11 -
4

1000 38 38 -
7

3000 113 113 ~ 15

10000 375 375 -
44

30000 1125 3375 - 127

100000 3750 37500 ~ 416

300000 11250 337500 - 1241

1000000 37500 3750000 -
4134

Fl • F2 " 00l°

300 1 1 - 3

1000 4 4 -

3

3000 11 11 -
3

10000 38 38 -
3

30000 113 113 -
4

100000 375 375 ~
7

300000 1125 3375 - 15

1000000 3750 37500
-

50

Table C. 1.3.5. Number of pages transferred on busiest interprocesor link. Parameters as
assumed by Biasgen and Eswaren: P — 25, B =» 1.
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BUSIEST INTERPROCESSOR LINK (PAGES) SITUATION F

Size Method
of

N2 12 3 4 PI P2 P3

F{ - F2 - 1.0

300 113 113 127

1000 375 375 416

3000 1125 3375 1241

10000 3750 37500 4128

30000 11250 337500 12378

100000 37500 3750000 41253

300000 112500 33750000 123753

1000000 375000 375000000 412509

Fx - F2 - 0.500

300 56 56 34

1000 188 188 106 - -

3000 563 1125 312

10000 1875 9375 1034

30000 5625 84375 3097

I00000 18750 937500 10316

300000 56250 8437500 30941

1000000 187500 93750000 103134

FI ~ F2 "0.100

300 U 11 4

1000 38 38 7

3000 113 113 15

10000 375 375 44

30000 1125 3375 127

100000 3750 37500 416

300000 11250 337500 1241

1000000 37500 3750000 4134

F, - F2 - 0.010

300 1 1 3

1000 4 4 3

3000 -11 11 3

10000 - 38 38 3

30000 113 113 4

100000 375 375 7

300000 1125 3375 15

1000000 3750 37500 50

Table C 1.3.6. Number of pages transferred on busiest interprocesor link. Parameters as
assumed by Biasgen and Eswaren: P = 25, B = 1.
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TRAFFIC ON DISK LINK (PAGES) SITUATION C

Size

of

N2

Method

1 2 3 4 PI P2 P3

Fl " F2 " l0

300 4 11 4 5 24 24 36

1000 14 53 16 15 48 36 48

3000 41 207 192 45 144 84 96

10000 138 730 1280 162 276 156 174

30000 413 2687 15360 500 1044 564 606

100000 1375 10551 204800 1717 4116 2190 2322

300000 4125 33346 1228800 5295 8208 4482 4860

1000000 13750 126387 16384000 18152 32784 17646 18900

F! - F2 - 0.500

300 4 6 4 5 24 24 36

1000 14 29 16 15 48 36 48

3000 41 117 128 45 144 84 96

10000 138 418 640 150 276 156 174

30000 413 1563 7680 474 1044 564 606

100000 1375 6178 102400 1605 4116 2190 2322

300000 4125 18346 614400 4883 8208 4482 4860

1000000 13750 70140 8192000 16580 32784 17646 18900

Fj - F2 - 0.100

300 4 4 4 2 24 24 36

1000 14 17 16 5 48 36 48

3000 40 71 64 14 144 84 96

10000 135 165 128 48 276 156 174

30000 403 655 1536 143 1044 564 606

100000 1345 2650 20480 490 4116 2190 2322

300000 4034 6271 122880 1482 8208 4482 4860

1000000 13446 24887 1638400 4993 32784 17646 18900

Ft - F2 - 0.010

300 4 1 1 1 24 24 36

1000 12 3 3 3 48 36 48

3000 35 8 8 7 144 84 96

10000 117 26 25 24 276 156 174

30000 351 83 75 71 1044 564 606

100000 1171 288 251 236 4116 2190 2322

300000 3512 897 2261 707 8208 4482 4860

1000000 11705 3114 25125 2370 32784 17646 18900

Table CI.4.3. Number of pages transferred on average disk link. Parameters as assumed
by Biasgen and Eswaren: P = 25, B = 1.
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TRAFFIC ON DISK LINK (PAGES) SITUATION E

Size

of

N2

Method

1 2 3 4 PI P2 P3

Fj - F2 - 1.0

300 11 4 24 — —

1000 53 16 48 — —

3000 207 192 144 ~ ..

10000 730 1280 276 .. _

30000 2687 15360 » 1044 _ _

100000 10551 204800 4116 - _

300000 33346 1228800 8208 ..

1000000 126387 16384000 32784
-

F! - F2 - 0.500

300 6 4 24 ..

1000 29 16 48 - _

3000 117 128 144 -.

10000 418 640 276 - _

30000 1563 7680 1044 *.

100000 6178 102400 4116 - ~

300000 18346 614400 8208 ~ -

1000000 70140 8192000 32784 ..

Fj - F2 - 0.100

300 4 4 24 —

1000 17 16 48 ~ _

3000 71 64 144 *.

10000 165 128 276 ..

30000 655 1536 1044 „

100000 2650 20480 4116 *.

300000 6271 122880 8208 ~

1000000 24887 1638400 32784
-

F, - F2 - 0.010

300 1 1 24 _

1000 3 3 48 „

3000 8 8 144 _

10000 26 25 276 ..

30000 83 75 1044 _

100000 288 251 4116 ..

300000 897 2261 8208 .. _

1000000 3114 25125 32784
-

Table CI.4.5. Number of pages transferred on average disk link. Parameters as assumed
by Biasgen and Eswaren: P = 25, B = 1.



c
r

H
•
<

p

0
0

2

T
O

r
e O

r
e

3
i-

—

4
^

B
O

N

a n
i

C
A

P

z c 3
—

t
r
e 3

c
r

r
e

•
-
i

n
o

o

H
•
a p

N
>

T
O

y
»

r
e

C
A

0
0

•
-
•

p
It

3 C
A I?
>

to 3 r
e a
.

o 3 P < r
e

•-
I

p IQ r
e

C
A

3 X
T

*
0

p 3 r
e

r
-
t

r
e 6 C
A c 3 r
e P
.

I

O
p

U
l

O
O

—
to

O
x

—

f
t

—
U

l
t
o

K
l

O
O

t
o

O
U

l
—

£
*

i
!

i
:

:
:

0
0

4
k

—
t
o

—
—

©
—

it
s!

t

s
:

t
i

i
;

:

:
:

i
:

o
o

t
o

f
t

0
0

-
O

U
i

U
i

U
l

•—
•

-
J

O
O

4
k

U
l

—
O

O
0

O
U

l
K

l
f
t

—
©

©
f
t

O
O

4
k

f
t

O
O

©
—

It
3!

it

J
!

J
i

I

I
t

I
i

t
I

8
8

8

i
:

i
t

:
i

<

f
t

0
0

—
O

X
—

&

f
t

—
—

t
o

O
x

—
4

k
K

l
—

O
O

O
f
t

<
:

t
:

>

K
l

O
O

4
k

—

t
&

I
t

I
I

t
I

i
|

i
s

i
i

i
i

:
i

8

:
:

i
s

:

K
l

U
l

—

U
l

U
l

U
l

O
x

~
o

O
O

4>
U

l
O

O
«

J
f
t

—
-
o

8
©

f
t

o
o

s
o

—
O

O
O

t
o

f
t

4
k

i
I

:
>

t
o

O
O

4
k

—
~

j
t
o

—
©

t
o

—
Q

O
O

—
£

^
4

4
k
4

.
K

I
4

k
0

0
f
t
4

k
f
t
4

k
0

0
4

k

i
I

I
I

I
I

I
I

:
>

I
i

t
I

i
I

r
e 3
*

O Q
.

C
O G > H i—

•

O z
K

J

o O
N



207

TOTAL INTERPROCESSOR COST SITUATION A

Size

of

N2

Method

1 2 3 4 PI P2 P3

Fl " F2 " I0

300 207 183 183 321 321

1000 691 609 609 790 790

3000 2072 1828 1828 2131 2131

10000 6906 6094 6094 6823 6823

30000 20719 18281 18281 20229 20229

100000 69063 60938 60938 67151 67151

300000 207188 182813 365625 201214 201214

1000000 690625 609375 4265625 670673 670673

Fl " F2 " °-500

300 104 91 91 170 170

1000 347 305 305 288 288

3000 1042 914 914 623 623

10000 3473 3047 3047 1796 1796

30000 10420 9141 9141 5147 5147

100000 34734 30469 30469 16878 16878

300000 104203 91406 91406 50393 50393

1000000 347344 304688 1218750 167938 167938

Fl " F2 " 010°

300 35 18 18 122 122

1000 117 61 61 127 127

3000 350 183 183 140 140

10000 1166 609 609 187 187

30000 3498 1828 1828 321 321

100000 11659 6094 6094 790 790

300000 34978 18281 18281 2131 2131

1000000 116594 60938 60938 7063 7063

Fi - F2 - 0.010

300 21 2 2 120 120

1000 70 6 6 120 120

3000 210 18 18 120 120

10000 700 61 61 121 121

30000 2101 183 183 122 122

100000 7005 609 609 127 127

300000 21015 1828 1828 140 140

1000000 70050 6094 6094 427 427

Table C.2.1.1. Total processor communication cost Cc. Modified parameters: P = 4096, B
- 6.
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TOTAL INTERPROCESSOR COST SITUATION B

Size Method

of

N2 1 2 3 4 PI P2 P3

F, - F2 - 1.0

300 207 183 183 197 321 321 445

1000 691 609 609 658 790 790 930

3000 2072 1828 1828 1974 2131 2131 2321

10000 6906 6094 6094 6581 6823 6823 7396

30000 20719 18281 18281 19744 20229 20229 22051

100000 69063 60938 60938 65813 67151 67151 73516

300000 207188 182813 365625 197438 201214 201214 221978

1000000 690625 609375 4265625 658125 670673 670673 745760

Fl " F2 " °-500

300 104 91 91 51 170 170 292

1000 347 305 305 171 288 288 418

3000 1042 914 914 512 623 623 778

10000 3473 3047 3047 1706 1796 1796 2142

30000 10420 9141 9141 5119 5147 5147 6038

100000 34734 30469 30469 17063 16878 16878 20120

300000 104203 91406 91406 51188 50393 50393 60795

1000000 347344 304688 1218750 170625 167938 167938 205462

F! - F2 - 0.100

300 35 18 18 3 122 122 242

1000 117 61 61 9 127 127 249

3000 350 183 183 26 140 140 267

10000 1166 609 609 88 187 187 336

30000 3498 1828 1828 263 321 321 547

100000 11659 6094 6094 878 790 790 1455

300000 34978 18281 18281 2633 2131 2131 4227

1000000 116594 60938 60938 8775 7063 7063 14568

Fl " F2 • 0.010

300 21 2 2 0 120 120 240

1000 70 6 6 0 120 120 240

3000 210 18 18 1 120 120 241

10000 700 61 61 3 121 121 244

30000 2101 183 183 9 122 122 253

100000 7005 609 609 31 127 127 285

300000 21015 1828 1828 92 140 140 394

1000000 70050 6094 6094 307 427 427 1134

Table C.2.1.2. Total processor communication cost Cc. Modified parameters: P = 4096 B
- 6.
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TOTAL INTERPROCESSOR COST SITUATION C

Size

of

N2

Method

1 2 3 4 PI P2 P3

F! - F2 - 1.0

300 41 183 183 82 160 160 284

1000 138 609 609 273 254 254 394

3000 414 1828 1828 819 522 522 712

10000 1381 6094 6094 2730 1461 1461 2034

30000 4144 18281 18281 8190 4142 4142 5964

100000 13813 60938 60938 27300 13526 13526 19891

300000 41438 182813 365625 81900 40339 40339 61103

1000000 138125 609375 4265625 273000 134423 134423 209510

Fj - F2 - 0.500

300 12 91 91 22 130 130 252

1000 39 305 305 74 154 154 284

3000 116 914 914 223 221 221 375

10000 386 3047 3047 743 455 455 802

30000 1158 9141 9141 2230 1125 1125 2016

100000 3859 30469 30469 7434 3472 3472 6714

300000 11578 91406 91406 22303 10175 10175 20577

1000000 38594 304688 1218750 74344 33876 33876 71399

Fl • F2 " °-,c0

300 1 18 18 1 120 120 241

1000 3 61 61 5 121 121' 243

3000 9 183 183 15 124 124 251

10000 28 609 609 49 133 133 283

30000 85 1828 1828 148 160 160 386

100000 284 6094 6094 492 254 254 919

300000 853 18281 18281 1477 522 522 2619

1000000 2844 60938 60938 4924 1701 1701 9205

Fl " F2 " °°1°

300 0 2 2 0 120 120 240

1000 0 6 6 0 120 120 240

3000 1 18 18 1 120 120 241

10000 2 61 61 3 120 120 243

30000 5 183 183 8 120 120 251

100000 17 609 609 27 121 121 280

300000 52 1828 1828 81 124 124 378

1000000 175 6094 6094 269 373 373 1080

Table C.2.1.3. Total processor communication cost Cc- Modified parameters: P
= 6.

4096, B
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TOTAL INTERPROCESSOR COST SITUATION E

Size

of

N2

Method

1 2 3 4 PI P2 P3

12-LU

300 183 183 321 _ _

1000 609 609 790 _ _

3000 1828 1828 2131 ~ -

10000 6094 6094 6823 _ ~

30000 18281 18281 20229 ~ *.

100000 60938 60938 67151 *. -

300000 182813 365625 201214 .. -

1000000 609375 4265625 670673 -

Fl " F2 " °-500

300 91 91 170 _ _

1000 305 305 288 ~

3000 914 914 623 ~ ..

10000 3047 3047 1796 - *.

30000 9141 9141 5147 ~

100000 30469 30469 16878 - ~

300000 91406 91406 50393 _

1000000 304688 1218750 167938 -

Fl " F2 " 010°

300 18 18 122 _ ..

1000 61 61 127 ~

3000 183 183 140 ..

10000 609 609 187 ..

30000 1828 1828 321 -

100000 6094 6094 790 _

300000 18281 18281 2131 _

1000000 60938 60938 7063
-

Fl " F2 " 001°

300 2 2 120 .-

1000 6 6 120 ..

3000 18 18 120 _

10000 61 61 121 ..

30000 183 183 122 _

100000 609 609 127 ~

300000 1828 1828 140 *.

1000000 6094 6094 427 „

Table C.2.1.5. Total processor communication cost Cc. Modified parameters: P — 4096, B
- 6.
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TOTAL INTERPROCESSOR COST SITUATION F

Size Method

of

N2 1 2 3 4 PI P2 P3

Fx - F2 - 1.0

300 183 183 321 .. _

1000 609 609 790 _

3000 1828 1828 2131 .- _

10000 6094 6094 6823 — _

30000 18281 18281 20229 — _

100000 60938 60938 67151 — —

300000 182813 365625 201214 — *.

1000000 609375 4265625 670673
-

Fj - F2 - 0.500

300 91 91 170 — ..

1000 305 305 288 — —

3000 914 914 623 .. _.

10000 3047 3047 1796 _

30000 9141 9141 5147 ~

100000 30469 30469 16878 — -

300000 91406 91406 50393 — „

1000000 304688 1218750 167938
-

Fj - F2 - 0.100

300 18 18 122 —

1000 61 61 127 — —

3000 183 183 140 —

10000 609 609 187 — _

30000 1828 1828 321 —

100000 6094 6094 790 — —

300000 18281 18281 2131 ~ _

1000000 60938 60938 7063
-

F, - F2 - 0.010

300 2 2 120 — ..

1000 6 6 120 -. ..

3000 18 18 120 — ~.

10000 61 61 121 —

30000 183 183 122 —

100000 609 609 127 ~

300000 1828 1828 140 ~ —

I000000 6094 6094 427 _

Table C.2.1.6. Total processor communication cost Cc. Modified parameters: P 4096, B
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TOTAL DISK COST SITUATION A

Size

of

N2

Method

i 2 3 4 PI P2 P3

Fl " F2 " I0

300 1508 80 80 24 24

1000 5025 320 320 48 36

3000 15075 1280 1280 144 84

10000 50250 2560 2560 276 156

30000 150750 10276 10240 1044 564

100000 502500 41356 40960 4116 2190

300000 1507500 83552 163840 8208 4482

1000000 5025000 334460 2293760 32784 17646

Fi - F2 - 0.500

300

1000

3000

10000

30000

100000

300000

1000000

1358

4525

13575

4S2S0

135750

452500

1357300

4525000

80

320

1280

2560

10264

41104

82555

330500

80

320

1280

25S0

10WO

40960

81920

1310720

24

48

144

276

1044

4116

8208

32784

36

84

156

5W

2190

4482

17646

Fj - F2 - 0.100

300 1238 80 80 24 24

1000 4125 320 320 48 36

3000 12375 1280 1280 144 84

10000 41250 2560 2560 276 156

30000 123750 10240 10240 1044 564

100000 412500 40960 40960 4116 2190

300000 1237500 81956 81920 8208 4482

1000000 4125000 328076 327680 32784 17646

F! - F2 - 0.010

300 1211 80 80 24 24

1000 4035 320 320 48 36

3000 12105 1280 1280 144 84

10000 40350 2560 2560 276 156

30000 121050 10240 10240 1044 564

100000 403500 40960 40960 4116 2190

300000 1210500 81920 81920 8208 4482

1000000 4035000 327680 327680 32784 17646

Table C.2.2.1. Total disk communication cost CD. Modified parameters: P = 4096, B = 6.
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TOTAL DISK COST SITUATION C

Size

of

N2

Method

i 2 3 4 P*l P2 P3

F! - F2 - 1.0

300 83 80 80 91 24 24 36

1000 275 320 320 300 48 36 48

3000 825 1280 1280 900 144 84 96

10000 2750 2560 2560 3000 276 156 174

30000 8250 10276 10240 9000 1044 564 606

100000 27500 41356 40960 30000 4116 2190 2322

300000 32500 83552 163840 90000 8208 4482 4860

1000000 275000 334460 2293760 300126 32784 17646 18900

Fi - F2 - 0.500

300 83 80 80 91 24 24 36

1000 275 320 320 300 48 36 48

3000 825 1280 1280 900 144 84 96

10000 2750 2560 2560 3000 276 156 174

30000 8250 10264 10240 9000 1044 564 606

100000 27500 41104 40960 30000 4116 2190 2322

300000 82500 82556 81920 90000 8208 4482 4860

1000000 275000 330500 1310720 300000 32784 17646 18900

Fl • F2 " 0I0°

300 82 80 80 31 24 24 36

1000 270 320 320 97 48 36 48

3000 807 1280 1280 288 144 84 96

10000 2690 2560 2560 957 276 156 174

30000 8068 10240 10240 2867 1044 564 606

100000 26893 40960 40960 9553 4116 2190 2322

300000 80677 81956 81920 28658 8208 4482 4860

1000000 268922 328076 327680 95524 32784 17646 18900

FT - F2 - 0.010

300 71 17 17 18 24 24 36

1000 235 52 52 50 48 36 48

3000 703 152 152 144 144 84 96

10000 2342 503 503 473 276 156 174

30000 7024 1508 1508 1416 1044 564 606

100000 23411 5025 5025 4717 4116 2190 2322

300000 70232 15075 15075 14147 8208 4482 4860

1000000 234105 50250 50250 47152 32784 17646 18900

Table C.2.2.3. Total disk communication cost CD. Modified parameters: P = 4096, B = 6.
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BUSIEST INTERPROCESSOR LINK (PAGES) SITUATION A

Size Method
of

N2 12 3 4 PI P2 P3

F: - F2 - 1.0

300 128 113 113 127 127

1000 425 375 375 416 416

3000 1275 1125 1125 1241 1241

10000 4250 3750 3750 4128 4128

30000 12750 11250 11250 12378 12378

100000 42500 37500 37500 41253 41253

300000 127500 112500 225000 123753 123753

1000000 425000 375000 2625000 412509 412509

Fj - F2 - 0.500

300 64 56 56 34 34

1000 214 188 188 106 106

3000 641 563 563 312 312

10000 2138 1875 1875 1034 1034

30000 6413 5625 5625 3097 3097

100000 21375 18750 18750 10316 10316

300000 64125 56250 56250 30941 30941

1000000 213750 187500 750000 103134 103134

Fl " F2 " 010°

300 22 11 11 4 4

1000 72 38 38 7 7

3000 215 113 113 15 15

10000 718 375 375 44 44

30000 2153 1125 1125 127 127

100000 7175 3750 3750 416 416

300000 21525 11250 11250 1241 1241

1000000 71750 37500 37500 4134 4134

Fl " F2 " 001°

300 13 1 1 3 3

1000 43 4 4 - 3 3

3000 129 11 U 3 3

10000 431 38 38 3 3

30000 1293 113 113 4 4

100000 4311 375 375 7 7

300000 12932 1125 1125 15 15

1000000 43108 3750 3750 50 50

Table C.2.3.1. Number of pages transferred on busiest interprocesor link. Modified param
eters: P = 4096, B = 6.
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BUSIEST INTERPROCESSOR LINK (PAGES) SITUATION C

Size Method
of

N2 1 2 3 4 PI P2 P3

Fx - F2 - 1.0

300 26 113 113 50 28 28 32

1000 85 375 375 168 86 86 90

3000 255 1125 1125 504 251 251 255

10000 850 3750 3750 1680 828 828 836

30000 2550 11250 11250 5040 2478 2478 2498

100000 8500 37500 37500 16800 8253 8253 8317

300000 25500 112500 225000 50400 24753 24753 24939

1000000 85000 375000 2625000 168000 82509 82509 83123

F{ - F2 - 0.500

300 7 56 56 14 9 9 13

1000 24 188 188 46 24 24 28

3000 71 563 563 137 65 65 69

10000 238 1875 1875 458 209 209 215

30000 713 5625 5625 1373 622 622 632

100000 2375 18750 18750 4575 2066 2066 2100

300000 7125 56250 56250 13725 6191 6191 6285

1000000 23750 187500 750000 45750 20634 20634 20942

Fl " F2 " 0I0°

300 1 11 11 1 3 3 7

1000 2 38 38 3 4 4 8

3000 5 113 113 9 5 5 9

10000 18 375 375 30 11 11 15

30000 53 1125 1125 91 28 28 32

100000 175 3750 3750 303 86 86 94

300000 525 11250 11250 909 251 251 271

1000000 1750 37500 37500 3030 834 834 898

Fx - F2 - 0.010

300 0 1 1 0 3 3

1000 0 4 4 0 3 3

3000 0 11 11 0 3 3

10000 1 38 38 2 3 3

30000 3 113 113 5 3 3

100000 11 375 375 17 4 4 8

300000 32 1125 1125 50 5 5 9

1000000 108 3750 3750 165 17 17 30

Table C.2.3.3. Number of pages transferred on busiest interprocesor link. Modified param
eters: P = 4096, B = 6.
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BUSIEST INTERPROCESSOR LINK (PAGES) SITUATION D

Size Method
of

N2 1 2 3 4 PI P2 P3

F! - F2 - 1.0

300 128 113 113 122 127 127 131

1000 425 375 375 405 416 416 420

3000 1275 1125 1125 1215 1241 1241 1245

10000 4250 3750 3750 4050 4128 4128 4136

30000 12750 11250 11250 12150 12378 12378 12398

100000 42500 37500 37500 40500 41253 41253 41317

300000 127500 112500 225000 121500 123753 123753 123939

1000000 425000 375000 2625000 405000 412509 412509 413123

Fj - F2 - 0.500

300 64 56 56 32 34 34 38

1000 214 188 188 105 106 106 no

3000 641 563 563 315 312 312 316

10000 2138 1875 1875 1050 1034 1034 1040

30000 6413 5625 5625 3150 3097 3097 3107

100000 21375 18750 18750 10500 10316 10316 10350

300000 64125 56250 56250 31500 30941 30941 31035

1000000 213750 187500 750000 105000 103134 103134 103442

Fj - F2 - 0.100

300 22 11 11 2 4 4 8

1000 72 38 38 5 7 7 11

3000 215 113 113 16 15 15 19

10000 718 375 375 54 44 44 48

30000 2153 1125 1125 162 127 127 131

100000 7175 3750 37*50 540 416 416 424

300000 21525 11250 11250 1620 1241 1241 1261

1000000 71750 37500 37500 5400 4134 4134 4198

Fj - F2 - 0.010

300 13 1 1 0 3 3 7

1000 43 4 4 0 3 3 7

3000 129 11 11 1 3 3 7

10000 431 38 38 2 3 3 7

30000 1293 113 113 6 4 4 8

100000 4311 375 375 19 7 7 11

300000 12932 1125 1125 57 15 15 19

1000000 43108 3750 3750 189 50 50 58

Table C2.3.4. Number of pages transferred on busiest interprocesor link. Modified param
eters: P = 4096, B = 6.



BUSIEST INTERPROCESSOR LINK (PAGES)

Size

of

N,

Fj - F2 - 1.0

300

1000

3000

10000

30000

100000

300000

1000000

F! - F2 - 0.500

300

1000

3000

10000

30000

100000

300000

1000000

Fi - F2 - 0.100

300

1000

3000

10000

30000

100000

300000

1000000

0.010

300

1000

3000

10000

30000

100000

300000

1000000

113

375

1125

3750

11250

37500

112500

375000

56

188

563

1875

5625

18750

56250

187500

11

38

113

375

1125

3750

11250

37500

1

4

11

38

113

375

1125

3750

Method

113

375

1125

3750

11250

37500

225000

2625000

56

188

563

1875

5625

18750

56250

750000

11

38

113

375

1125

3750

11250

37500

1

4

11

38

113

375

1125

3750

223

SITUATION E

PI

127

416

1241

4128

12378

41253

123753

412509

34

106

312

1034

3097

10316

30941

103134

4

7

15

44

127

416

1241

4134

3

3

3

3

4

7

15

50

P2 P3

Table C.2.3.5. Number of pages transferred on busiest interprocesor link. Modified param
eters: P = 4096, B = 6.
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TRAFFIC ON DISK LINK (PAGES]> SITUATION B

Size Method

of

N2 1 2 3 4 PI P2 P3

F, - F2 - 1.0

300 75 4 4 76 24 24 36

1000 251 16 16 253 48 36 48

3000 754 64 64 758 144 84 96

10000 2513 128 128 2525 276 156 174

30000 7538 819 512 7575 1044 564 606

100000 25125 5427 2048 25250 4116 2190 2322

300000 75375 18022 8192 75750 8208 4482 4860

1000000 251250 74240 114688 699850119 32784 17646 18900

F, - F2 - 0.<00

300 68 4 4 20 2* 24 36
1000 226 16 16 65 48 36 48
3000 679 64 64 195 144 84 96
10000 2363 128 128 650 276 156 174
30000 6788 717 512 1990 1014 5ft 606
100000 22S25 3277 20)8 6500 4116 2190 2322
300000 67875 9523 4096 19500 8208 4)82 4860

1000000 226250 40W8 65536 65000 32784 17646 18900

F, - F2 - 0.100

300 62 4 4 2 24 24 36

1000 206 16 16 5 48 36 48

. 3000 619 64 64 15 144 84 96

10000 2063 128 128 50 276 156 174

30000 6188 512 512 150 1044 564 606

100000 20625 2048 2048 500 4116 2190 2322

300000 61875 4403 4096 1500 8208 4482 4860

1000000 206250 19763 16384 5000 32784 17646 18900

F! - F2 - 0.010

300 61 1 1 I 24 24 36

1000 202 3 3 3 48 36 48

3000 605 8 8 7 144 84 96

10000 2018 25 25 24 276 156 174

30000 6053 75 75 71 1044 564 606

100000 20175 251 251 236 4116 2190 2322

300000 60525 754 754 707 8208 4482 4860

1000000 201750 2513 2513 2358 32784 17646 18900

Table C.2.4.2. Number of pages transferred on average disk link. Modified parameters: P
= 4096, B = 6.
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TRAFHC ON DISK LINK (PAGES)

Size

of

N,

F, - F2 - 1.0

300

1000

3000

10000

30000

100000

300000

1000000

F! - F2 - 0.500

300

1000

3000

10000

30000

100000

300000

1000000

"1 0.100

300

1000

3000

10000

30000

100000

300000

1000000

0.010

300

1000

3000

10000

30000

100000

300000

1000000

4

16

64

128

819

5427

18022

74240

4

16

64

128

717

3277

953

4

16

64

128

512

2048

4403

19763

1

3

8

25

75

251

754

2513

Method

4

16

64

128

512

2048

8192

114688

4

16

64

128

512

4096

65536

4

16

64

128

512

2048

4096

16384

1

3

8

25

75

251

754

2513

PI

24

48

144

276

1044

4116

8208

32784

21

48

m

216

1044

4116

32784

24

48

144

276

1044

4116

8208

32784

24

48

144

276

1044

4116

8208

32784

229

SITUATION E

P2 P3

Table C.2.4.5. Number of pages transferred on average disk link. Modified parameters: P
= 4096, B - 6.
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TRAFFIC ON DISK LINK (PAGES) SITUATION F

Size Method

of

N2 1 2 3 4 PI P2 P3

Fj - F2 - 1.0

300 4 4 24- _ _

1000 16 16 48 _ _

3000 64 64 144 _ _

10000 128 128 276 _ —

30000 819 512 10W _ _

100000 5*27 2M8 4116 — «.

300000 18022 8192 8206 _ ..

1000000 74240 114688 32784 -

Fx - F2 - 0.500

300 4 4 24 .. ..

1000 16 16 48 .. _

3000 64 64 144 _ _

10000 128 128 276 .. ..

30000 717 512 1044 ~

100000 3277 2048 4116 ..

300000 9523 4096 8208 ~

10OO0OO 40448 65536 32784
-

Fl " F2 " 010°

300 4 4 24 ~

1000 16 16 48 ~

3000 64 64 144 ..

10000 128 128 276 ..

30000 512 512 1044 —

100000 2048 2048 4116 — ..

300000 4403 4096 8208 — _

1000000 19763 16384 32784 -

Fi - F2 - 0.010

300 4 4 24 —

1000 16 16 48 ..

3000 64 64 144 -

10000 128 128 276 _

30000 512 512 1044 -

100000 2048 2048 4116 „

300000 4096 4096 8208 .-

1000000 16384 16384 32784 ..

Table C.2.4.6. Number of pages transferred on average disk link. Modified parameters: P
= 4096, B = 6.



APPENDIX D

The Expected Number of Pages Fetched

In determining their disk cost functions, Biasgen and Eswaran assumed that

the number of pages which had to be read in from the disk was proportional to the

percentage of the records required. This estimate is quite good if the records

being retrieved are clustered on a set of pages. This will generally be true in the

case where the records required are the result of a simple restriction, and the res

triction is on the clustering index, ignoring fragmentation. If, however, the

records are specified as the result of a restriction on any other index, or if they are

specified as those participating in a join operation, then there is no basis for

expecting them to be clustered neatly on a small number of pages. In this section

will be derived the expected number of page accesses required to fetch X records

from a relation having N records distributed evenly with T records on each page.

For the selection of a single record, the probability that a particular page, /,

N - Twill not be retrieved is —-rj—. The probability that page / will not be retrieved

when two records are retrieved at random is

N - T N - T -I

N N -I

In general, for X such retrievals of distinct records, if N^T + X the probability j '

Pf that a given page / is not selected is

N-T N-T-1 N-T- X + 1
Pi

N N - 1 N - X + 1

\X)

For N^T + X, all pages are retrieved, so P, = 0.

231
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The expected number of pages fetched £ is the sum of the probabilities that

each page is fetched, so

£ =2(1-^,) --£.(!-/>)

N_
T

..JV1

In the Blasgen/Eswaran work, it was assumed that £ = •£. This estimate is
N

a lower bound. In most cases, the difference between these two values was small

enough that it made no difference, but under certain circumstances, the difference

was substantial. In particular, in situations B, C, and D, when F{ and £2 were less

than 1, methods 1 and 4 resulted in somewhat higher values than Eswaran and

Biasgen predicted. For method 1, this occurred only in situation C, resulting in a

10-20 % increase in the disk access cost. For method 4, however, it resulted in

the cost being increased by more than a factor of 3 in many cases for situation C

and by as much as a factor of 2 for situations B and D. This is particularly

significant because Biasgen and Eswaran concluded that method 4 was the method

of choice under situation C! With this adjustment, method 4 is still superior to

the other Blasgen/Eswaran methods in some cases, but not by so clear a margin.

The same formula may also be used to predict the number of unique values

occurring in a hash table if T is interpreted as the number of unique values

present in the hash field of N tuples, of which X are selected. However, this does

require the somewhat unrealistic assumption that all values are equally

represented.
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