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ABSTRACT

Under reasonable assumptions, it is shown that the dynamic

behavior of an analog multiplier driven by bandlimited signals v„(t)

and vY(t) can be modeled by

vQ = K[vxvY -TAvxvy -TBvxvY]

The three model parameters K, T-, and Tg can be determined by

frequency-domain measurements.

This simple equation can in turn be modeled by a circuit containing

2 linear capacitors, 2 linear controlled sources, and an ideal multiplier

described by vQ = K vxvy.
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I. Introduction

The four-quadrant analog multiplier [1] shown in Fig. 1 is a standard

nonlinear device which has numerous applications in the field of communi

cation, computation and measurement [2], [3], [4], [5]. The transmission

properties of communication subsystems such as modulators, demodulators

or equalizers built with analog multipliers are closely related to the

dynamic properties of the multiplier circuit. To evaluate the signal

transmission through a complex nonlinear system built with analog

multipliers, we need an accurate dynamic model for the multiplier

circuit.

The analog multiplier operation was analyzed by Gilbert in detail

with special emphasis on the "memoryless" nonlinear distortion parameters.

In his paper the transient performance was only commented but no

explicit relations for the dynamic properties are given. On the

manufacturer's data sheets, the frequency dependence of the multiplier

circuit is often characterized by phase shift and amplitude error

parameters. They are related to measurements where one of the multiplier

inputs is a sinusoidal AC voltage, and the other input is a DC voltage

component. These parameters are not sufficient to calculate the

multiplier output when time-varying signals are applied at both inputs.

In this paper we develop a circuit-theoretic model for the analog

multiplier which is valid for bandlimited input signals. The model

parameters can be determined by frequency-domain measurements. This

measurement will also give information on the frequency range where

our model is valid.
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II. The Dynamic Model

The dynamic model presented in this section for the analog

multiplier circuit represents the bilinear terms of the multiplier

output, thus the nonlinear distortion, feedthrough and slew rate

effects are not considered in the model.

We assume that the inputs vx(t) and vy(t) are bandlimited signals

with a maximum angular frequency bandwidth coD; namely,
D

vxM - i '"* vx(u>)ej(0tda) (1)
-"b

vy(t) =2i Bfyu))eja)tdu) (2)
J-u)B

where the symbol "a" denotes Fourier transform variables.

In Section IV, we show that for sufficiently small u>B, the multiplier

output vQ(t) can be represented by a dynamic model of the following form:

(3)vQ(t) = K[vx(t)vY(t) -TAvx(t)vy(t) -TBvx(t)vy(t)]

where the model parameters K, T«, and T„ can be determined by

frequency-domain measurements as discussed in section III.

The dynamic model given in (3) is based on the assumption that the

maximum signal frequency ujb is sufficiently small so that the higher-order

derivatives of the output signal may be neglected.

For computer simulation of systems containing analog multipliers,

an approximate circuit model of (3) is shown in Fig. 2. Here the

derivative terms are realized by capacitors connected across the respective

input terminals.

The output of this circuit can be obtained by inspection:
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v0(t) =.K[vx(t) -TAvx(t)][vY(t) -TBvy(t)]

= K[vx(t)vy(t) -TAvx(t)vy(t) -TBvx(t)vY(t) + TATBvx(t)vY(t)]

* K[vx(t)vy(t) -TAvx(t)vy(t) -TBvx(t)vy(t)] (4)

The last approximation is valid if TATBvx(t)vY(t) is negligible, which

is a basic assumption of our dynamic model.

For completeness we give also an exact circuit model for (3)

in Fig. 3. Here two ideal multipliers are necessary and the multiplier

outputs are added by an op amp circuit. The circuit equations are as

follows:

V01(t) = K[vx(t)vY(t) - 2TBvx(t)vY(t)] (5a)

vQ2(t) = K[vx(t)vv(t) - 2TAvx(t)vY(t)] (5b)

vQ(t) =^[vQ1(t) +vQ2(t)]

=K[vx(t)vy(t) -TAvx(t)vy(t) -TBvy(t)vx(t)] (6)

III. Measurement of the Model Parameters

The model parameters, K, T. and Tg can be measured by applying a

DC voltage at one of the input ports and a swept-frequency sinusoidal

signal at the other input port, and then measuring the phase shift

and the amplitude response relative of the AC signals.

Let vx be the DC voltage and vY the swept-frequency AC signal:

vx(t) =VXQ , vy(t) =Vyleja)t (7)

Substituting (7) into (3), we obtain

vQ(t) =KVX0VY1eja)t(l-jajTB) (8)
The voltage gain AY, phase shift <J>Y, and group delay xY can be expressed

as follows:
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AY(o>) =KVXQ/-hu2TB (9)
(j)Y(aj) = arctan(a)TB) (10)

ty(w) = S-t (11)
l4wTB

The parameters Kand Tg can be calculated from the zero-frequency

values of the voltage gain and the phase-slope (or the group delay)

characteristics:

4>„(u>)

V lim J^=Tx(0)

(12)

(13)

The time constant TA can be measured in a similar way by applying a

DC voltage at port Y and a swept-frequency AC signal at port X, and then

measuring the zero-frequency phase slope or group delay between the X

and the output ports respectively:

(14)

From the measurement outlined above we can also determine the frequency

range in which our dynamic model is valid by comparing the measured and

the predicted characteristics computed from (9)-(ll).

Using the results in section IV, the signs (positive or negative)

of the model parameters TA and Tg may be determined either from the

"zero" in the differential-input amplifier transfer function, or from

the "pole" corresponding to the parallel RC load impedance. In the

former case the model will be valid over a relatively wider frequency

range because the zero corresponds directly to a "time-domain"

derivative, whereas the pole corresponds to a derivative calculated

from a Taylor-series approximation.
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As a rule of thumb, it can be stated that our model is valid over

the frequency band where the phase characteristic is linear and the

amplitude distortion is negligible.

It should be noted that the phase error defined in (10) is usually

given in the manufacturer's data sheets for some specific loading

conditions. Consequently, under these same loading conditions,

the model parameters can be calculated directly from the device

specifications. As an example we calculate the model parameters for the

analog multiplier type MC 1495. On the data sheet the following parameters

are given (for DC currents Jx = Iy = 1mA, load resistance R, - llKft,

and differential-amplifier resistances Ry = RY = 15K&):

(a) 3° relative phase shift between vx and vY at 750 kHz.

(b) 1% absolute error due to input-output phase shift at 30 kHz.

From these parameters the following model constants can be

calculated:

t - 0.01 co „
T™ = r = 53ns
a 2ir •30 •10-3

TR - T» = t. = 11 ns
D M 180 •2tt 750- 10*

TB = 53ns + 11ns = 64ns

The analog multiplier (MC 1495L) circuit shown in Fig. 1 was

also simulated with the SPICE program [7] at the operating point

Ix = IY = 1mA. The following typical integrated transistor model

parameters are used: collector-base capacitance C. = 0.6pF substrate
j

capacitance C$ = 1.5pF, base resistance rb = 100ft, forward transit

time T = 0.6ns. For the stray capacitances, we pick Cx = CY = IpF

The 1%. "absolute error" in the data sheet means 1% "vector" error
which corresponds to a 0.01 radian phase difference.
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and CL = 3pF. Different external load resistances were used in the

computer simulation.

The model parameters K, TA> and Tg calculated from the simulated

characteristics are given in Table 1 and Table 2, respectively. The

simulated X-channel amplitude and phase responses for RY = Rv = 15K
A Y

and RL =1K are shown in Figs. 4 and 5, respectively. They agree

reasonably well with that predicted by (9) and (10) up to a frequency

of 3 MHz.

Table 1. Model parameters obtained from computer simulation with

Ry = Ry = 15K.

RL K TA TB
iik 9.4 x Kf^Volt)"1 53 ns 58 ns

5K 4.3 xlO'^Volt)"1 11 ns 13 ns

IK 8.6 xlO'^Volt)"1 -17 ns -16 ns

Table 2. Model parameters obtained from computer simulation with

RL = 50ft.

Rx - Ry K TA TB
1.5K 3.9 xlO'^Volt)"1 -0.3 ns -0.3 ns

IK 8.3 xlO^jYolt)"1 0.5 ns 0.6 ns

0.5K 0.3 (Volt)"1 1.8 ns 1.9 ns

The amplitude and phase characteristics corresponding to the load

resistance R, = 50ft have also been measured in an experimental setup.
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A considerable feedthrough error due to stray couplings in the

setup was observed in the measured characteristics. To eliminate the

feedthrough error, an averaging procedure using both positive and

negative dc input voltages is described in Appendix A.l. The

measured phase slope characteristics are shown in Figs. 6, 7 and 8,

respectively. The calculated model parameters are given in Table 3.

Table 3. Model parameters obtained from measurement with R, = 50ft.

RX = RY K TA TB

1.5K 3.8 x 10"2(Volt)_1 -1.5ns -1.1ns

1 K 8.1 x lO-^Volt)"1 -0.4ns 0 ns

0.5K 0.28 (Volt)"1 1.2ns 1.7ns

Note that the measured and simulated characteristics are in reason

able qualitative agreement. The discrepancy may be attributed to the

relatively high stray capacitances of the experimental setup.

The amplitude and phase characteristics within a frequency range of

30 MHz are shown in Figs. 9, 10, and 11. Observe that they are in

reasonable agreement with (9)-(11) up to a frequency of 10 MHz, 15 MHz

and 20 MHz respectively.

Finally, we remark that because of the various simplifying assumptions

made in the model derivation in Section IV, the preceding model parameter

determination procedure is only a approximate one. More accurate answers

can be obtained by standard computer optimization techniques which

minimizes the error between the characteristics predicted by our model

and that measured experimentally in an actual circuit — thereby including

all stray parasitics. In this case, the parameters determined by (12)-(14)

can be used as the initial parameters in the iteration procedure.
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IV. Derivation of the Model

The circuit configuration given in Fig. 1 shows that the multiplier

circuit is made up of two separate functional blocks. The block

denoted by N, is an input-voltage output-current converter realized by

a differential-amplifier Darlington stages.

The output current of the differential amplifier drives the

multiplier core, denoted by N2J which is made up of six transistors

(Q5 and Qg operate as diodes). The multiplier output current is

transformed into an output voltage by the load resistor R,. In the

following we calculate the transfer relation of each block separately and

combine the results to develop an overall model for the multiplier

circuit.

First we introduce the transistor model which will be used in

the computations.

IV.l. Transistor Model

Our derivation of the "multiplier core" equations is based on the

"charge control" transistor model [6]. Under normal operating

conditions, we can assume that the transistors are operating in the

forward active region with unity current gain, and the charge stored

in the base-emitter junction is controlled by the forward current only.

We will neglect all capacitances normally present in a general

nonlinear transistor model. The emitter-base capacitance is negligible

in the analog multiplier because the transistors are forward biased.

The collector-base and substrate capacitances are not negligible.

However, it can be shown that the effects contributed by these

capacitances can be included into the "stray" capacitances across

the load resistances to be discussed in Section IV.4.
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The transistor model corresponding to the above assumptions is

shown in Fig. 6 where the notation f(v) is used for the exponential

term and T denotes the inverse of the transistor cutoff frequency.

IV.2. Input differential-amplifier model

Consider the block labeled ^ in Fig. 1. Note that the emitter

current of the Darlington stage is provided by a current-mirror arrange

ment and the transistors in the Darlington stage have sufficiently high

$ values such that the transistor parameters can be neglected in the

computation of the transfer relation. The simplified equivalent

circuit of the X-channel input amplifier is shown in Fig. 7. Here

Ix is the constant current of the current source, Rx is an externally
connected resistor, Cx represents the stray capacitance associated

with the current source Ix and the resistor Rr In practical applications,
the resistor Rx is sufficiently large so the linear relation between

^X and VX can be aPPr0X1'mated by the equation

T/1 VX(S) VS>^•-fcy-T^-d+sV (15a)
where Tx is the time constant R^. The frequency-domain equation (15a)
corresponds to the time-domain relation of the following form:

ix(t) -± [vx(t) +Txvx(t)] (15b)

Asimilar expression can be derived for the AC current component
iy(t) feeding the Y-input of the multiplier section:

iY(t) -,jL [vy(t) +TYvy(t)] (16)
where TY is the time constant RYCY.
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IV.3. Multiplier Core Model

The circuit configuration of the multiplier core is repeated in

Fig. 8. In the computation of the output current i'(t) we use the

transistor model given in Fig. 6. We introduce the operator D for

T jf and we note tnat for bandlimited signals as defined

in (1) and (2), the operator D has the following norm [8]:

II DO =ojbT

Since we are interested in the frequency range which is much smaller

than the transistor cutoff frequency, we can assume

llDll « 1 (17)

The Kirchhoff equations of the multiplier section can be written

by inspection as follows:

vl " v2 = v5 " v6 (18)

v4 " v3 = v5 " v6 (19)

(^+D)(f1+f2) =Ix +ix (20)

(&+D)(f3+f4) =Ix -ix (21)

($+D)f5 -D(f2+f3) =Iy +iy (22)

(v9+D)f6 "D^+fy) =Iy -iY (23)

where $ denotes the "Identity" operator, and f. denotes f(vk). Using
the relationship

U *(v,.-vj
f
-J- = e J K (24)

Equations (18) and (19) can be rewritten in the form
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fl f5
r2 r6

f4 f5
r • r <26)
T3 T6

We want to calculate the output current i'z(t) given by the equation

2iz(t) =(f^) - (f2+f4) (27)

Recognizing the fact that for ODD « 1, ($+D) can be approximated

by ($-D), we can solve for (f1+f2) and (f3+f4) from (20) and (21) as
follows [8]:

(fi+f2} =h +(^-D)ix (28>

(f3+f4) =h ' ^-°)1x <29)
Using (25), we can express f, and f« in terms of (f-|+f2):

fi= ¥^ lfW (30)

Similarly, using (26), we can express f~ and f- in terms of (f^q)'-

f3 Bf^ <f3+f4> <32>

f4 "7^ <f3+V <33>
Using (30)-(33) the output current can be expressed as follows

2iz =X4 [{f1+f )-(f3+f4)] (34)
5 6

Adding (22) and (23) we obtain

(#+D)(f5+f6) -Dt^+f^+ty =2Iy (35)
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Now, the sum of (20) and (21) gives

(&+D)(f1+f2+f3+f4) =2IX (36)

Since this equation must hold for all times, it follows that

D(fl+f2+f3+f4} =° (37)

and

f, + f2 + f3 + f4 - 2IX (38)

Substituting (37) into (35) and using a similar reasoning, we obtain

D(f5+f6) =0 (39)

and

*5 + f6 = 2IY (4°)

Let us derive next a relationship for (f5-f6) which will be

needed later. Subtracting (23) from (22), we obtain

(v9+D)(f5-f6) -D(frf2-f3+f4) =2iy (41)

Using (30)-(33), we obtain

fl -f2 "f3 +f4 -tS£Cfl+f2 +f3 +V <42>
Substituting (38) and (40) into (42), we obtain

fl "f2 -f3 +f4 "if <VV <43>
Substituting (43) into (41), we obtain

[3 ♦ (l ♦ {*)>] (Vf6) -2iY (44)
Using again the operator inversion formula

I

vv 3' (l +r)o](21Y) (45)
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and substituting (28), (29), (40) and (45) into (34), we obtain

21Z =2T7^-(1+T7)D](2V^-D^21x) («)
Equation (46) gives i7 in terms of the two operators ^Oand D-T4-

l at

If we replaced and D by their defined operations and neglect all

higher-order and/or product terms involving i*x and iY (in view of
(17)), we would obtain

iz(t) =̂ [ix(t)iy(t) -T^OOIytt) -T2ix(t)iy(t)] (47)
where

Ti AT (48)

and

M'*y (49)

IV.4. Output impedance model

The multiplier current is transformed into an output voltage by

the load impedance RL in parallel with some parasitic stray

capacitance C,. The capacitance CL includes not only the external stray

capacitances, but also the equivalent capacitance due to the collector-

base and substrate capacitances which we have neglected from the

transistor model.

In the frequency domain the transfer relation is expressed by the

transfer function of the parallel RC impedance

2R

VS> "HiK^ ¥s> (50)
For sufficiently low-frequency inputs the transfer function can

be expanded into a Taylor-series about the origin

VQ(s) =2RL[1 -sTL +s2T2 -...]Iz(s) (51)

where T, = rici*
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The first two terms in (51) correspond to the following approximate

time-domain equation

vQ(t) =2RL[iz(t) -Tjz(t)] (52)

The neglected terms in the frequency-domain Taylor series expansion

(51) would of course result in an error in the time domain. This

can be neglected if the input frequency is sufficiently small.

IV.5. Complete model of the analog multiplier

The complete model of the analog multiplier can now be obtained by

substituting (15b) and (16) into (47) and then putting the resulting relation

into (52). Again, retaining only first-order terms involving i*x and iY,

we obtain

2R r . .
v0(t) =-j± ix(t)iy(t) -T^UJiyt) -T2ix(t)iy(t) -TLix(t)iY(t)

'Vx^M1^
2R

=j-rV [vx(t)vy(t) +Txvx(t)vY(t) +TYvx(t)vY(t) -T1vx(t)vy(t)
I A I

-T2vx(t)vy(t) -TLvx(t)vy(t) -TLvx(t)vY(t)]

(53)

This can be simplified as follows:

vQ(t) =K[vx(t)vy(t) -TAvx(t)vy(t) -TBvx(t)vY(t)] (54)

where

2R

K" ^¥7 (55)

TA = T! + TL -TX ^

TB = T2 + TL " TY (57)
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In actual operation, the time constants T. and TB are determined

by the external elements RL, Rx, Ry and the associated stray capacitances

CL, Cx and CY, respectively. Because of the presence of stray capacitances,

the time constants of the "multiplier core" give only a lower bound

on the performance limit.

V. Concluding Remarks

We have presented a simple dynamic model for the analog multiplier

which can be used for computer simulation of complex communication

subsystems containing analog multipliers. The model parameters can be

determined by frequency-domain measurements. We have measured these

parameters and also calculated them from computer simulation of the

complete analog multiplier circuit. The results agree reasonably well

over the frequency range of interest.
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APPENDIX

A.I. Elimination of Feedthrough Error in Model' Parameter Measurements

In addition to the bilinear product terms in an ideal multiplier,

the output of a "physical" multiplier normally contains also a number of

feedthrough terms such as ^vx(t), FRvY(t), G«vx(t), GRtfY(t), etc. These

extraneous terms could cause significant errors in model parameter measure

ments. As shown below, these errors can be eliminated if the measurements

are made with both positive and negative dc voltages, and then averaging

the respective measured parameter values.

A more realistic multiplier model which includes feedthrough terms

is given by:

v0(t) = K[vx(t) vy(t) -TA vx(t) vy(t) -TB vy(t) vx(t) (Al)

+FA vX(t) +FB Vt)+GA Vt)+GB Vt)]

Using the input signals given in (7) with positive and negative dc

voltages VXQ and -VXQ, we obtain the following output voltages:

vS(t) ' FA VX0 +t« Vxo 0-J*TB) +FB +J^jlVy^-* (A2)

v0(t) ""FA VX0 "lK VX0 (1-juTB} *FB -^GB]VYleJut <A3>
The respective voltage gains AY, Aw, phase shifts <|>Y, (|>Y, and group

delays ty, ty can be expressed in the form:

A^U) = (K VXQ +FB)2 +(K VXQ TB +GB)2 a,2 (A4)
+ (K Vxn TR + GR)«
♦v(«) = arctan *" p, F p (A5)
Y K VX0 i FB

+ K VXQ TB + GB

TY(W) =, , 2/KVxO^B^bV (A6)
1+Wl KVX0±FB
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The model parameters K and TR can be calculated from the average

zero-frequency values of the voltage gain and phase slope (or the group

delay) characteristics:

AY(0) + AY(0)
K=-1 J-1— (A7)

4>YU) + <f>Y(u)) ty(0) + xY(0)
TB =]™ 2^ = 2

or*)

The feedthrough error in the measurement of the time constant T« can

be eliminated in a similar way by applying positive and negative dc voltages

at port Y and measuring the average zero-frequency phase-slope (or group

delay) between the X and the output ports, respectively:

<J>v(<o) +*y>) 4(0) + x:(0)
V1™ 2a, •-—rJL~ (»)

arHD

From the difference between the zero-frequency values of the

respective voltage gain and group delay characteristics, the feedthrough

parameters FA, FR, GA, and GR can also be calculated.using the following

relation:

A!(0) - A'JO)
(A10)

(All)

*Y(0) - <j>~(0) xY(0) -x"(0)

0)->0

*y(°) " *v(0) Ty(O) - T~(0)
gb =lim ^ —= -—r^— <A13>

or*0

rB = lim =_i—_l_ (A8)

Ax(0) - A'(0)
FA = 2

AY(0) - AY(0)
B

GA = lim 2a) [ T^— <A12>
0)">O
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A.2. Effects of Parasitic Capacitances

In Section IV.4 we have neglected the transistor collector-base and

substrate capacitances and claimed that their effects can be included into

the stray capacitances across the load resistors. In the following we

will justify this claim. . .

Consider Fig. Al where C and C. denote the "substrate" and the
^ J

"collector-base" junction capacitances of the transistors in the multiplier

core. The inputs are loaded by capacitances C, which includes the

substrate capacitances of the differential amplifier transistors, and the

collector-base capacitances of the input transistors in the Darlington

configuration — which are at virtual ground in view of the voltage source

input. Hence, we have

Cj =2C$ +Cj (A14)

Since the substrate capacitances C are already in parallel with the

load resistors, it suffices to analyze only C
j

Since the parasitic capacitances contribute only to the derivative

terms in our model, we can evaluate their effects by perturbation method.

Here, we assume that the voltages across the parasitic capacitances are

determined by the memoryless terms in the original multiplier core

equations as given in (20)-(27) and (50).

The effect of the parasitic capacitances C, and C. can be calculated

in two steps. First, we assume that the ac emitter-base voltages are

sufficiently small to be neglected so that the input capacitances CT have

no effect on the multiplier dynamics. Hence, the junction capacitances

C. can be calculated as follows:
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Cj 3t «vj10> " Cj dt (vj30) • -Cj RL it (fl +f3> <A15>

Cj IF (VJ20> " Cj 3t (vj40> ' -Cj RL at (f2 +V <A16>

Here the subscript "zero" indicates that the emitter-base voltages have

been neglected.

Including the current terms given by (A15) and (A16) into the

multiplier core equations, we obtain:

(£+ D)f5 - D(f2 +f3) +C. RL fa (WV^) =IY+iY (A17)

(3+ D)f6 - D^ +f4) +C. RL fa (f^f^+f^ =IY-iy (A18)

2i2 =(f^W - C. RL fa (f^W (A19)

It follows from (37) that the junction current contributions in (A17)

and (A18) are zero.

Thus only the output current will be affected as in (A.19). This

equation, however, corresponds to the fact that C. is connected across
j

the load resistance R, as stated in Section IV.4.

Consider next the effect of the non-zero emitter-base voltages. From

Fig. Al, we observe that the v.k junction capacitance voltages will deviate

from Vj^q due to the base-emitter voltages:

Avjl =Avj4 =v6 (A20)

Avj2 =*vj3 =v5 <A21>
The multiplier core equation can be written by inspection:

(3+ DMfj +f2) =Ix +ix +Cj fa (-vrv6) (A22)

(£+ D)(f3 +f4) =Ix - ix +Cj fa (-v3-v5) (A23)
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(#+ D)f5 - D(f2 +f3) =Iy +iy +(Cj +C.) fa (-v5) (A24)

(£+ D)f6 - D(^ +f4) =Iy - iy +(Cj +C.) fa (-v6) (A25)

The output current can be written in the form:

2iz =(f1+f3-f2-f4) - Cj ^ (v5+v6+v5+v6) (A26)

To calculate the additional current terms in (A.22)-(A.26), we use

the static values of the base-emitter voltages because they will result

in the correct first-order derivatives which are necessary in our model.

The static voltage components v£ are calculated from the static multiplier

core currents f£ as defined below (corresponding to (20)-(23) and (25)-(27)

without differentiation operations:

(A27)

(A28)

(A29)

(A30)

(A31)

The following solutions of the static current equations are obtained

after some algebraic manipulations:

(Ix + ix)(IY + iY)
f* = ^T' (A32)

f * + f*z- !x + h

f3 + fi- h- h

f* f5
F6

nm iY + 1Y

f6 = IY" 1Y

(Ix + ix)(IY - iY)
f2= —^r— (A33)
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(Iy " iy)(lY " TV)
f! " 2XIy " " (A34)

(Ix - ix)(IY + iY)
fl ° 2Iy ' <A35)

•fg = (Iy + V (A36)

ft a (JY " V (A37)

Using the exponential characteristics defined in Fig. 6, the base-

emitter voltage derivatives can be calculated as follow:

£^4rTpVv^V (A38)

& {VV =i[ r-n r-n-] (mo)

^K)=l[Tr^ +T^] (A4D
dv£ i iY
•w-tIi-tt;! <A42>

dvfi l """v

tt^t^V (M3)
Substituting (A38) - (A43) into (A22) - (A25), we obtain:

(^+D)(f1+f2) =Ix +ix-iL[T-^_] (A44)

(£+D)(f3 +f4) =Ix-ix+^[T-4XT-] (A45)
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($* D) f5 -D(f2 +f3) =Iy +iy +-L^_J.(_^) (A46)

(,9+D)f6 -Off, +f4) =Iy -iy ♦ C-^ jp^ (A47)

2h " fl +f2 +f3 +f4 +Cj M [°] <A48>

Assuming that iY < IY and i'x < Ix, the above equations can be

interpreted as if the inputs i'x and iy were replaced by i' --ry-^- and
(Cj+C.)iY

iy --ji^ >respectively. Hence, the multiplier output current can
be calculated by substituting the modified input currents into the

original output current equation (47):

• •

, , 1 CTiY(t) CT + C. iv
^^[(ixW-^HMt)--^!^

• • •

-^ 1x(t) iY(t) -T21x(t) iy(t)] (A49)

Carrying out the multiplication inside the bracket and neglecting

the product term i'x(t)iy(t) we obtain the original expression but with

a modified time constants:

CITl "Tl +IT^ (A50)
c + c.

T2 =T2 +JH71 (A51)
This change in the time constants will cause a corresponding change

in the overall expressions for TA and Tg; namely,

TA "TA +-T4TA +ATA (A52)
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TB =TB +̂ T14 TB +ATB (A53)
For a typical multiplier circuit with C- = 1.5 pF, C. = 0.5 pF and

Ix = IY = I mA, we obtain from (14):

Cj - 3.5 pF , c, + C. = 4 pF

ATA = 0.09 ns , ATB = 0.1 ns.
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FIGURE CAPTIONS

Fig. 1. A typical 4-quadrant analog multiplier circuit.

Fig. 2. An approximate circuit model for the dynamic analog

multiplier model described by (3).

Fig. 3. An exact circuit model for the dynamic analog multiplier

model described by (3).

Fig. 4. Simulated X-channel amplitude characteristic.

Fig. 5. Simulated X-channel phase characteristic.

Fig. 6. Phase characteristics with R, = 50 ft, Rx = RY = 1.5 K.

Horizontal : 1 MHz per division

Vertical scale : 10° per division.

(a) Vyo =1.5 V (c) VXQ =1.5 V

<J>v(w) Y(oj)
-£ = -0.67MHz JL—

03 a)

(b) Vy0 =-1.5 V (d) VXQ =-1.5 V

<f>yM <Ou))
-*—= 1.77MHz JL—

0) a)

Fig. 7. Phase characteristics with R, = 50 ,Rx = Ry =1 K.

Horizontal scale : 1 MHz per division

Vertical scale : 10° per division

(a) VXQ =1V (c) VYQ =1V

JL 0.87MHz JL_

(b) VXQ =-1 V (d) VYQ =-1 V

*yfu)) <f>v(u)
-~ = 0.97MHz JL— =0.17MHz



Fig. 8. Phase characteristics with RL =50 ft, Rx + Ry =0.5 K.
Horizontal : 1 MHz per division

Vertical scale : 10° per division.

(a) VYQ =0.5 V (C) VXQ =0.5 V

-*5— s V/mz -\~ =-0.67MHz

(b) VYQ =-0.5 V (d) VXQ =-0.5 V
<J>y(0>) ^(Oj)
-V"=0-1O/MHz ~"=-0.67MHz

Fig. 9. Amplitude characteristic (upper curve) and phase characteristic

(lower curve) with RL =50 ft, Rx =Ry =1.5 K.

Horizontal : 3 MHz per division

Vertical scale : 1 dB per division, 10° per division

(a) VYQ= 1.5 V (c) VXQ =1.5 V
(b) Vyo= -1.5 V (d) VXQ= -1.5 V

Fig. 10. Amplitude characteristic (upper curve) and phase characteristic

(lower curve) with RL =50 ft, Rx = RY =1 K.

Horizontal : 3 MHz per division

Vertical scale : 1 dB per division, 10° per division

(a) VYQ = 1.5 V (c) VXQ = 1.5 V

(b) Vyo =-1.5 V (d) VXQ =1.5 V

Fig. 11. Amplitude characteristic (upper curve) and phase characteristic

(lower curve) with RL = 50 ft, Rx = RY =0.5 K.

Horizontal scale : 3 MHz per division

Vertical scale : 1 dB per division, 10° per division

(a) Vyo =0.5 V (c) VXQ =0.5 V

(b) Vy0 =-0.5 V (d) VXQ = -0.5 V



Fig. 12. Simplified transistor circuit model.

Fig. 13. Simplified equivalent circuit of the X-channel input

amplifier.

Fig. 14. The block N2 containing the multiplier core.

Fig. A.l. Multiplier core with parasitic capacitances.
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