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ABSTRACT

In this paper we show that hypothetical data bases can

be effectively supported by slight extensions to conven

tional view support mechanisms. Moreover, we argue that the

resulting structure may well be quite efficient and that

there are advantages to making hypothetical data bases cen

tral to the operation of a DBMS.

I INTRODUCTION

In a recent paper [STON80] we discussed the notion of

hypothetical data bases (HDB's). These are "what if" data

bases which result from a real data base by making some

alternate assumption about reality. Such data bases are

composed of hypothetical relations and are useful for debug

ging purposes, test data and a variety of simulations.

Also, in [ST0N80] we presented an implementation of

HDB's using differential files [SEVR76]. In Section 2 of
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this paper we present a much more elegant implementation of

HDB's by slightly extending the view mapping mechanism of

[STON75]. Then, in Section 3 we indicate some of the advan

tages of treating all data bases as hypothetical (including

real ones) and discuss the efficiency of the structure which

we have proposed. Section 4 closes with some conclusions.

II VIEWS

Views are well known objects in a relational data base

setting [CHAM75, STON75, ASTR76, DAYA78] and have been sup

ported at least in INGRES [STON76] and System R [BLAS79].

The INGRES algorithms were presented in [ST0N75] and effec

tively map all RETRIEVES and many QUEL update commands on

views into appropriate operations on base relations. In

this section we extend these algorithms to handle two rela

tional operators, UNION and SYMETRIC DIFFERENCE, which are

not present in QUEL and are not currently supported in

INGRES. Then, we indicate how these operators can be used

to support hypothetical relations.

2.1 Extensions to Views

In INGRES a view is defined as follows:
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RANGE OF R1 IS REL-1

RANGE OF Rn IS REL-n

DEFINE VIEW virtual-rel( col-1 = F1(R1,...,Rn),

col-k = Fk(R1,...,Rn))

WHERE Q(R1,...,Rn)

Here, Q is a valid QUEL qualification and F1,...,Fk are

valid target list functions.

For example, if EMP(name, salary, manager, age, dept)

is a relation with the obvious semantics, we can define a

view as follows:

RANGE OF E IS EMP

DEFINE YOUNG-EMPC name = E.name

birth-year = 1980 - E.age
age = E.age
status = "young")

WHERE E.age < 30

YOUNG-EMP has a row for each employee under 30 containing

his name, his age, his year of birth and a constant value

for a status field.

Now we extend this view definition mechanism with two

additional operators as follows:
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RANGE OF R1 IS REL-1

RANGE OF Rn IS REL-n

DEFINE VIEW virtual-rel( col-1 = F1(R1,...,Rn),

col-k = Fk(R1,...,Rn))

WHERE Q(R1,...,Rn)

NEW-OPERATOR ( col-1 = G1(R1,...,Rn),

col-k = Gk(R1,...,Rn))

WHERE P(R1,...,Rn)

Here, G1,...,Gk are legal QUEL target list functions and P

is a legal qualification. Moreover, NEW-OPERATOR is UNION

or SYMETRIC-DIFFERENCE In effect, virtual-rel is the UNION

or SYMETRIC DIFFERENCE of two union compatible [C0DD72]

relations.

The algorithms of [STON75] are powerful enough to han

dle the two individual views above; all we need to do now is

to show how to handle both values for NEW-OPERATOR.

2.2 UNION

Consider the relation W = R UNION S expressed as a view

as follows:

RANGE OF R1 IS R

RANGE OF S1 IS S

DEFINE VIEW W( R.all)

UNION

(S.all)
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We now indicate how to map the various QUEL commands defined

on W.

RETRIEVE

becomes:

DELETE:

becomes:

APPEND:

becomes:

REPLACE:

becomes:

RANGE OF W1 IS W

RETRIEVE (F(W1)) WHERE Q(W1)

RANGE OF R1 IS R

RANGE OF S1 IS S

RETRIEVE (F(W1)) WHERE Q(W1)
UNION

RETRIEVE (F(S1)) WHERE Q(S1)

DELETE W1 WHERE Q(W1)

DELETE R1 WHERE Q(R1)

DELETE S1 WHERE Q(S1)

APPEND TO W( {col-i = Hi(Wl)} ) WHERE Q(W1)

APPEND TO R( {col-i = Hi(R1)} ) WHERE Q(R1)
APPEND TO S( {col-i = Hi(S1)} ) WHERE Q(S1)

REPLACE W1( {col-i = Hi(W1)} ) WHERE Q(W1)

REPLACE R1( {col-i = Hi(R1)} ) WHERE Q(R1)
REPLACE S1( {col-i = Hi(S1)} ) WHERE Q(S1)

2.3 Symetric Difference

Consider the relation W = R - S. The four commands

from the previous subsection map as follows:

RETRIEVE

becomes:

DELETE:

becomes:

APPEND:

becomes:

RANGE OF W1 IS W

RETRIEVE (F(tf1)) WHERE Q(W1)

RANGE OF R1 IS R

RANGE OF S1 IS S

RETRIEVE 'F(RD) WHERE Q(R1)

RETRIEVE 'F(SD) WHERE Q(S1)

DELETE W1 WHERE Q(W1)

APPEND TO S(R1.all) WHERE Q(R1)

APPEND TO W( {col-i = Hi(W1)} ) WHERE Q(W1)

APPEND TO R( {col-i = Hi(R1)}) WHERE Q(R1)
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REPLACE: REPLACE W1( {col-i = Hi(W1)} ) WHERE Q(W1)

becomes: APPEND to S(R1.all) WHERE Q(R1)
APPEND TO R(R1.other, {col-i = Hi(R1)})

WHERE Q(R1)

APPEND TO S(S1.other, {col-i = Hi(S1)})
WHERE Q(S1)

2.3 Hypothetical Data Bases

Consider the relation, W = (R UNION S) - T. For this

composite view the two previous algorithms produce the fol

lowing update rules for W.

RETRIEVE: RANGE OF W1 IS W

RETRIEVE (F(W1)) WHERE Q(W1)

becomes: RANGE OF R1 IS R

RANGE OF S1 IS S

RANGE OF T1 IS T

RETRIEVE (F(R1)) WHERE Q(R1)
UNION

RETRIEVE (F(S1)) WHERE Q(S1)

RETRIEVE (F(T1)) WHERE Q(T1)

DELETE: DELETE W1 WHERE Q(W1)

becomes: APPEND TO T(S1.all) WHERE Q(S1)
APPEND TO T(R1.all) WHERE Q(R1)

APPEND: APPEND TO W({col-i = Hi(W1)} WHERE Q(W1)

becomes: APPEND TO T( {col-i = Hi(T1)}) WHERE Q(T1)
APPEND TO S( {col-i = Hi(S1)}) WHERE Q(S1)
APPEND TO S( {col-i = Hi(R1)}) WHERE Q(R1)

REPLACE: REPLACE W1( {col-i = Hi(W1)} WHERE Q(W1)

becomes: APPEND TO T(T.other, {col-i = Hi(T1)})
WHERE Q(T1)

APPEND TO T(S1.all) WHERE Q(S1)
APPEND TO S(S1.other, col-i = Hi(S1)})

WHERE Q(S1)
APPEND TO T(R.all) WHERE Q(R1)
APPEND TO S(R1.other, {col-i = Hi(R1)})

WHERE Q(R1)
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Intuitively, we can see that R is a read-only portion

of W and is not updated by any command. Moreover, S is a

differential file containing the additions to R while T is a

differential file with the deleted tuples. In the next sec

tion we do a simple example to clarify the situation.

2.5 Example

Consider the employee relation, W = W(name, age salary)

with component relations R, S and T with the same domain

names. SUPPOSE S and T are initially empty and R has the

following data:

R name age salary

Smith 30
Jones 40

After the command:

1000

2000

RANGE OF W1 IS W

APPEND TO WCname = "Baker",
age = "0,

salary = .8 * W1.salary)
WHERE Wl.name = "Smith"

we would find R and T unchanged while S had the following
data:

S name age salary

Baker 20 800

After the update:

REPLACE WKsalary = 1.1*W1.salary) where Wl.age < 35

we would leave R unchanged and update S and T to:

S name age salary

Baker 20

Baker

800
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Smith 20 1100

name age salary

Baker 20 800
Smith 20 1000

III DISCUSSION OF HDB's AS VIEWS

In this section we indicate some of the considerations

that apply to the use of such HDB's.

3.1 Problem Appends

The algorithms of the previous section successfully map

all update operations to hypothetical relations except one.

It is impossible to insert a previously delated tuple. Such

an operation will be transformed by the above algorithms but

will result in no effective change to the data base. It is

possible to successfully cope with this situation but only

by performing a DELETE operation to T. This removes the

append-only nature of the differential relations.

3.2 Performance

The algorithms in the preceding section suggest that

relations of the form W = R UNION S - T may be rather slow

to update. This subject is explored further in Table 1.

There we indicate four rows, one for each type of QUEL com

mand and in column one we suggest that each be given unit

cost (in some arbitrary units).

The second column suggests the cost of these unit com

mands when applied to a hypothetical relation. For example,
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note that a DELETE command is turned into two APPEND com

mands each with the original qualification to be evaluated.

If the storage structures of all relations involved are the

same, it is safe to assume that the cost of two APPENDS is

twice the cost of one DELETE. The rest of the rows in

column two are obtained in a similar fashion. A cursory

glance at column two suggests that hypothetical relations

are 3»25 times as costly as normal relations if all four

QUEL operations are equally likely.

Normal Hypothetical Batched Main Memory 3 plus 4

COMMAND INGRES relations commands S and T

RETRIEVE 1 1 1

DELETE

APPEND

REPLACE

Costs of Hypothetical Relations

Table 1

Column three suggests one possible speed-up technique.

In the previous section it can be noted that two of the five

commands into which a REPLACE operation is mapped evaluate

Q(R1) and two evaluate Q(S1). Then, they do slightly dif-
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ferent APPEND's to different relations. If these two pairs

of commands are "batched", it should be clear that each pair

will cost only slightly more than one of them. Column three

results by assuming such "batching" takes place and that the

cost of two commands with the identical qualification is

indeed equal to the cost of either one alone.

Column four indicates another possible assumption. If

S and T are reasonably small, they can be safely assumed to

reside in main memory. This might be the case if a utility

to merge S and T into R is run periodically, say once per

day. Hence, S and T have at most one day's changes. If S

and T are in fast memory, column four is obtained by assum

ing that access to such relations comes at no cost. (This

would only be the case if I/O accesses were the major

bottleneck). Consequently, all commands access R once

except REPLACE's which access it twice.

The final column suggests the case where both "batch

ing" and main memory S and T are present. The bottom line

is that the cost of hypothetical relations may not be sub

stantially more expensive than real relations.

3.3 Faster Commands

Some of the commands can be "special cased" in certain

circumstances at faster performance. At least the following

have this property.

APPENDS with no qualification
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For example,

APPEND TO W(name = "Smith", age = 30, salary = 1000) can

be accomplished with special code by:

APPEND TO S(list-of-constants)

which is faster than the normal algorithm.

Operations which always specify a unique key

Suppose name in the example from Section 2.5 is a

unique key, i.e. no two people have the same name. More

over, suppose all commands have a qualification of the form

"name = constant". In this case, one can access S and T

which may be in main memory and consequently inexpensive.

The following table indicates the resulting situation con

cerning R. For example, the first row indicates the case

that a particular name is in both S and T, in which case it

has assuredly been updated. As such, it exists in R but

there is no need to access it because the tuple is identical

to the one in T. The remaining rows are arrived at in a

similar fashion.

Present in S

Yes

Yes

No

Present in T

Yes

No

Yes

-11-

Present in R

ves , but don 't

need to access

No

Yes , but don 't



No No

need to access

Yes, and need

to access

Access Needed to R

Table 2

Consequently, after the accesses to S and T, one can avoid

the access to R in all but the last situation.

Moreover, access to S and T can be accelerated by the

addition of a Bloom filter [SEVR76]. One would access such

a filter to ensure that the desired tuple was in neither S

nor T. If so, one only needs to access R. Alternately, one

only needs to access S and T. Consequently, the cost of an

access to a hypothetical relation may be near the cost of an

access to a non hypothetical relation when a unique key is

present and always used in the qualification.

3.4 Crash Recovery

Suppose a unique time stamp (TS) is assigned to each

transaction. Moreover, consider widening S and T to have a

field for such a time stamp. In addition, suppose all

APPENDS to S or T include the time stamp of the transaction

making the change. Lastly, a transaction reaching its com

mit point [GRAY78] would execute the following QUEL command:
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APPEND TO DONE-XACT(TS = my_time_stamp)

Here DONE-XACTS is a relation containing only time stamps

for completed transaction.

Consider recovery from a soft crash, i.e. one for which

the data on the disk is intact after the crash. We can sim

ply define the following hypothetical data base and resume

normal operation on it.

RANGE OF R1 IS R

RANGE OF S1 IS S

RANGE OF T1 IS T

RANGE OF X IS DONE-XACTS
DEFINE VIEW W-CRASH (Rl.all)

UNION

(Sl.all) WHERE S1.TS = X.TS

(Tl.all) WHERE T1.TS = X.TS

Notice that crash recovery is instantaneous and that all we

have to do is switch users of W to W-CRASH. At some later

time S and T can be purged of offending tuples by a back

ground task which runs the following update:

DELETE T1 WHERE COUNT (T1.TS WHERE T1.TS = X.TS) = 0
DELETE S1 WHERE COUNT (S1.TS WHERE S1.TS = X.TS) = 0

Note that this update is somewhat syntactically unappealing

because QUEL does not contain a "there does not exist"

operator.

Another point to be noted is that conventional DBMSs

recover from soft crashes either by writing a log [GRAY78]
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or by using a deferred update mechanism [STON76]. Both tac

tics amount to less structured versions of S, T and DONE-

XACTS stored as normal files. Hence, overhead must be

included to write these extra structures anyway; the extra

overhead paid by hypothetical relations is that these extra

objects are structured as relations (which are slower than

normal files) and qualifications must be evaluated on them.

Notice finally that the code to implement soft crash

recovery is very simple, in stark contrast to current sys

tems .

Recovery from hard crashes, i.e. ones for which data on

the disk may be lost, amounts to periodically dumping S, T

and DONE-XACTS to an alternate medium and occasionally dump

ing R.

3.5 Clean Up of S and T

It should be noted that a tuple which is updated multi

ple times will appear several times in S and T. Hence, it

will enlarge the collection of tuples examined by subsequent

commands and presumably slow down the execution of them.

However, a background task can run the following update to

clean up S and T:

DELETE S1 WHERE SI.all = Tl.all

DELETE T1 WHERE Tl.all = Sl.all

Although it is obvious the effect which is intended, the

second DELETE will never have any effect because the
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matching tuple in S has already disappeared.

Moreover, it is equally unworkable to define a view W

S UNION T and then issue the command:

RANGE OF W1 IS W

DELETE W1 WHERE Sl.all = Tl.all

This will be expanded into the two incorrect DELETES above.

To obtain the correct effect we would have to extend

QUEL to have the notion of a TRACK VARIABLE as follows:

RANGE OF TRACK-VAR IS TRACK (S,T)
DELETE TRACK-VAR WHERE Sl.all = Tl.all

The semantics of track variables are that they can appear in

DELETE and REPLACE statements in place of the normal tuple

variable indicating the relation to be affected. Track

variables cannot appear elsewhere in a command. One imple

mentation of track variables would be to map the command as

if it were defined on a view consisting of the union of all

tracked relations and in addition to put all the resulting

updates inside a (begin-transaction, end-transaction) pair.

Such a transaction must also have the property that updates

inside the transaction CANNOT be visible to the transaction

making the changes. This is in contrast to the normal

mechanism where the opposite assumption is made.

3.6 Incremental Reorganization

It appears not uncommon to have relations in real

applications which are so large that physically reorganizing
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them is extremely costly. Such reorganizations occur when

the access structure for a relation is changed, i.e. from

indexed to hashed or when a relation is rehashed to achieve

better storage utilization. Moreover, it is possible that

the cost is so large that the relation cannot be quiesced

for an appropriate period of time. In such cases, incremen

tal reorganization becomes attractive. In fact B-trees have

exploited this situation fully [BAYE70].

However, HDB's are easily reorganized as follows:

RANGE OF R1 IS R

RANGE OF S1 IS S

RANGE OF T1 IS T

APPEND TO R(S1.all) WHERE Q(S1)
DELETE S1 WHERE Q(S1)
DELETE R1 WHERE Rl.all = Tl.all AND Q(T1)

DELETE T1 WHERE Q(T1)

An appropriate choice of Q will allow any desired portion of

the two differential files to be merged into R. Moreover,

with suitable locking this merging can be done as a back

ground task. Hence, an appropriate Q and a suitable inter

val between running the above transaction will yield any

desired reorganization characteristics.

3.7 Update Rules

Consider three hypothetical relations:

W = (R UNION S) - T

X = (R UNION S') - T'

Y = (W UNION S") - T"
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Conceptually, suppose W is the "real" relation, implemented

as a hypothetical relation consisting of R, S and T. Hence,

all "real" updates are directed to W and mapped according to

the algorithms of Section 2.4. Now X is a hypothetical

relation based on R. Here, X is a "what if" relation based

on a "snapshot" of the real relation W. This snapshot is as

of the time when S and T were last merged into R. Normal

updates applied to W do not affect X and vica-versa. The

result is a hypothetical relation with an alternate assump

tion about the state of W at a fixed point in the past.

Let us now turn to Y which is a hypothetical relation

defined on top of W. It can be updated according to the

normal rules and its changes will not be reflected into W.

Hence, it is a hypothetical relation based on the present

state of W. However, what if W is updated? We consider the

following illustrative sequence:

Initially Smith earns $1000 and appears in R. Next we

run the following update

RANGE OF Y1 IS Y

REPLACE YKsalary = 1.1*Y1 .salary)
WHERE Yl.name = "Smith"

The effect will be to add (Smith, 1000) to T" and (Smith,

1100) to S". Next, Smith is given a 20 percent raise in W,
i.e.

RANGE OF W1 IS W

REPLACE WKsalary = 1.2*W1 .salary)
WHERE Wl.name = "Smith"
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As a result (Smith, 1000) is added to T and (Smith, 1200) to

S. The last command is to retrieve Smith's salary, i.e:

RETRIEVE (Y1.salary) WHERE Yl.name = "Smith"

We will obtain two answers, 1100 and 1200, which is obvi

ously not the semantically desired result.

The curious result which we are left with is summarized

in Table 3-

updates

on views

views on

top of
views

updates to

views on top

of views

updates to
views on top

of which there

are other views

Normal

views

o.k. with

certain

restrictions

o.k.

o.k. if

composite
mapping
invertible

o.k. if

view is

updatable

Hypothetical
relations

o.k.

always

o.k.

o.k.

not always

o.k.

Updates to Views

Table 3

Normal views (as in [STON75]) can be updated if the

mapping describing the view is invertible. As pointed out

in [DAYA78] this is not always the case. On the other hand,

hypothetical relations can always be updated evn though the

mapping described in Section 2.3 is not invertible.
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Next, both types of views allow cascading of views on

top of views and allow such cascaded views to be updated.

However, updates to views on top of which there are other

views behave differently in the two situations. Normal

views can be updated without concern for whether there are

cascaded views on top of them. Such updates are automati

cally reflected correctly into cascaded views. On the other

hand, hypothetical relations do not have this freedom. Cas

caded views will be invalidated if a tuple is updated that

the cascaded view has modified or deleted or if a tuple is

deleted which the cascaded view has modified.

The fundamental problem is that the update rules for (R

UNION S) - T depend for their correct operation on R being

read-only. In the case of Y = (W UNION S") - T", W is NOT

read-only and correct operation is not assured. The update

rules for normal views do not have any requirements that an

underlying relation be read-only.

IV CONCLUSIONS

We have examined views of the form R UNION S - T and

indicated algorithms to support them. They appear to be

appropriate for hypothetical data bases, for assistance in

crash recovery, for efficiently providing snapshots and for

generating an automatic audit trail. Certainly, there may

be efficiency questions; however, it is suspected that a

novel DBMS organization can help overcome them.
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