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AN ERROR ANALYSIS OF THE MOTION OF A VEHICULAR ROBOT IN 2-D

by Gordon C. Fossura

INTRODUCTION.

In order to do interesting things with a self-propelled

robot, it would be nice if we could predict where the robot

might stop after executing a movement, with the hope that

the area thus defined is somehow "close" to where the robot

is supposed to be.

This paper defines a robot with a single executable

instruction with two degrees of freedom and describes what

is presumed to be a reasonably universal set of mutually

independent sources of errors. The result of each error is

investigated; then these independent results are gradually

combined to yield a composite closed curve which encloses

all possible stopping points of the robot after executing

its instruction.

The curve just described is dependent on several fac

tors: the pre-instruction position and orientation of the

robot, the two independent parameters of the instruction

itself, and the limiting values of each error source. The

"reserved" variables used in this paper, in order of appear

ance, are: t, d, e1, k1, e2, k2, e3, k3, and c.

ROBOT DEFINITION.

The robot may be viewed as a creature capable of moving

in straight lines and "turning on a dime" so that, in exe

cuting a turn, its center of mass remains stationary (all
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assertions regarding where the robot "is" or "is not" refer

to its center of mass, so the presumption of a "point robot"

may be appropriate). The only instruction the robot can

execute is of the form

ROTATE t AND MOVE d METERS1*

where t and d are real numbers satisfying -180<t<=180 and

d>0.

ERRORS.

There are seven error sources considered in this paper.

They are treated as being independent of each other (such

that changing the "severity" of any one of them has no

effect on the severity of the others). They are examined

singly (presuming that only one of them at a time has a

non-zero value) to determine the "error area" each one can

spawn. The errors are

ABSOLUTE ROTATIONAL SKID

RELATIVE ROTATIONAL SKID

ABSOLUTE ANGULAR ERROR

RELATIVE ANGULAR ERROR

ABSOLUTE PATH LENGTH ERROR

RELATIVE PATH LENGTH ERROR

PATH NON-LINEARITY ERROR.

In all figures contained in this paper, the "correct"

translational motion of the robot is toward the top of the

page, which is to say that whatever the original orientation

and angle of rotation prior to the translational motion, the
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"clever cameraperson" chose the appropriate angle to shoot

from.

1. ABSOLUTE ROTATIONAL SKID. Variable name=e1

Units=meters.

The first maneuver in the execution of the instruction

is a rotation. In any real machine, the act of starting and

stopping the rotation will cause the center of mass to move.

The variable e1 represents the maximum (radial) distance it

can "skid" due to starting and stopping, independent of the

magnitude of the rotation. If this error acts alone, the

robot, upon completion of its entire maneuver would stop

somewhere in a circle of radius e1, centered on its intended

destination (see Figure A).

2. RELATIVE ROTATIONAL SKID. Variable name=k1

Unitssmeters/degree.

Some skidding is caused by the rotation itself and will

be proportional to the magnitude of the rotation (unlike the

previous error). The variable k1 is the maximum constant of

proportionality which can be encountered. This error, act

ing alone, will cause the robot to stop inside a circle of

radius (k1)(|t|) centered on the intended destination (see

Figure B).

3. ABSOLUTE ANGULAR ERROR. Variable name=e2

Units=degrees.

The act of starting and stopping the rotation will
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cause some loss in what the true heading of the robot should

be. Roundoff error in calculating the rotation angle will

also be included here. The variable e2 bounds these errors.

Acting alone, e2 causes the robot to stop on (not inside)

the circle of radius d, centered on the starting point, such

that it is no more than e2 degrees of arc away from its

intended destination (see Figure C).

4. RELATIVE ANGULAR ERROR. Variable name=k2 (unitless).

Some inaccuracy is to be expected somewhere in the

linkage of the rotational mechanism. The variable k2 bounds

this proportional inaccuracy. This error causes the robot

to stop on the same circle as that of the previous error,

such that it is no more than (k2)(jtj) degrees of arc away

from its intended destination (see Figure D).

The first four errors above were caused by the rota

tion. The last three are caused by the "translation," or

linear motion of the robot.

5. ABSOLUTE PATH LENGTH ERROR. Variable name=e3

Units=meters.

The act of starting and stopping the linear motion will

cause some error along the direction of motion. Roundoff

error in calculating the path length will also be included

here. The variable e3 bounds these errors. Acting alone,

e3 causes the robot to stop on the line connecting the

starting and stoppng points within e3 meters of the intended
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stopping point (see Figure E).

6. RELATIVE PATH LENGTH ERROR. Variable name=k3 (unit-

less) .

Some inaccuracy will exist in the linkages of the

translational mechanism. This error, proportional to the

path length d, is bounded by the constant of proportionality

k3, so that the robot will stop on the same line as that of

the previous error within (k3)(d) of the intended stopping

point (see Figure F).

7. PATH NON-LINEARITY ERROR. Variable narae=c

Units=1/meters.

A variety of factors will cause the robot to follow

some path which is not, in fact, linear. The variable c is

the maximum curvature which the robot's path can exhibit.

The reciprocal of c is the radius of the circle which the

robot would trace if it exhibited worst case behavior. Thus

if the value of c were 0.05, the robot could conceivably

move in a circle of radius 20 meters. (Throughout the fol

lowing paragraph, refer to Figure G.)

This error is the tough one to analyze because it

allows the robot such freedom. The robot's path can be

visualized as a rope of length d, immovably anchored at one

end (the starting point) and projecting initially in a cer

tain direction, along some flat floor. The rope is only

slightly flexible, such that it can be bent to a curvature

of magnitude c at any point, but not more, the job is to
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describe the closed curve in 2-space such that points on and

inside the curve curve represent possible positions of the

free end of the rope, and points outside the curve simply

can't be reached by the free end of the rope. Three extreme

points can be shown to be on the curve immediately. The

intended destination is on the curve, because, in some

sense, you can't go "farther" than that point from the

starting point. Two other points on the curve are those

arrived at by proceeding "hard to port" or "hard to star

board" from the starting point, for the entire path length

d. The "hard to port" point is located (are you ready?) on

a circle of radius 1/c whose center is at a distance 1/c

from the starting point, to the "left", along the line per

pendicular to the intended path of the robot which contains

the starting point such that the length of the arc along

this circle from the starting point up to the "hard to port"

point is d. The "hard to starboard" point is found in an

analogous fashion.

These three points can be connected by a curve which

can be viewed as being obtained by swinging the rope from

"hard to port" through the intended destination to the "hard

to starboard" point, keeping it as taut as possible at all

times. A little reflection leads one to conclude that a

snapshot of the rope at an arbitrary point on this journey

will show the rope starting on a circular arc to some point

and then continuing as a straight line (see Figure H). This

curve forms the outer boundary to the error area, as there
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is no way for the robot to go beyond it (if all other errors

are zero). Another curve is found by "pushing" the rope

(perhaps by attaching a spring to connect the two ends of

the rope) so as to minimize the radial distance between the

two ends. A rope compressed in this fashion will assume an

S shape built of two circular arcs, each of radius 1/c, as

no other permitted configuration is as "short" in radial

length. (At this point, however, a proof of this conjecture

remains elusive.) This curve is not symmetric, however, and

we must superimpose two versions of it (one arrived at by

"peeling" the rope from left to right, the other from right

to left) and take, as our inner boundary to the error area

those portions "closest" to the starting point (see Figure

I). These curves, then, define the area comprising the PATH

NON-LINEARITY ERROR.

ERROR COMPOSITION.

The absolute and relative angular errors can be com

bined, resulting in an arch which is wider than either of

them. Similarly, the absolute and relative path length

errors can be combined. If all four of these errors are

considered together, the resulting error area resembles the

swath of a windshield wiper (see Figure J). This error area

represents the final answer if we could assume that the

robot really could "turn on a dime" and really did travel in

straight lines.

For the most general picture, though, it's best to
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start with the path non-linearity error area (Figure I), and

"fold in the other ingredients carefully."

First, add the path length errors in by considering

that the path non-linearity error presumes a path of exact

length. If we substitute for the "correct" path length the

longest path length permitted by the two path length errors

(taken together), we get a slightly larger path non-

linearity error area which is positioned slightly farther

away from the starting point. An analogous, smaller, closer

area is derived from the shortest path length permitted by

the path length errors. Now, recall that the "hard to port"

and "hard to starboard" points were on the circles of tight

est curvature that the robot could travel, but the curvature

itself is independent of (and therefore constant throughout)

the just-completed construction. Thus, as the path length

varies from longest to shortest, these two points sweep out

circular arcs, which, taken in union with the outer (upper)

curve of the larger path nonlinearity error area and the

inner (lower) curves of the smaller path non-linearity error

area, define the new composite error area which specifies

where the robot could be if paths of inexact length and

imperfect linearity were permitted, but all rotations were

presumed to be executed perfectly (see Figure K).

The angular errors can next be incorporated into this

composite error area easily by just rotating the entire area

about the starting point clockwise and counterclockwise to

the maximum angle permitted by the angular errors taken
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together (-e2-(k2)({ti) to +e2+(k2)(it!)) (see Figure L).

The final composite error area is achieved by incor

porating the "skid" errors. This is accomplished by stating

simply that the new error area consists of all points which

are within a distance of (e1+(k1)(}t!)) of some point on the

previous error area. This production can be roughly visual

ized as painting a border of this width, with rounded

corners, around the previous error area (see Figure M).

A MODIFICATION.

It's clear that the most "insidious" error here is the

path nonlinearity error. In severe cases (in which the

radius of curvature is significantly less than the path

length "d"), the path nonlinearity error can cause highly

undesirable results, which in the extreme, will cause the

error area (the area in which the robot can stop) due to

this error alone to be a circle of radius d centered on the

starting point.

One way to limit this "wanderlust" is to install a com

pass in the robot. This instrument can be of two types:

smart or dumb.

Type 1 (smart compass): This compass is kept informed

of all rotation commands, and maintains an up-to-date record

of where the robot SHOULD be headed and ensures that,

between the rotational motion and the translational motion,

any needed rotational corrections are made so that the

robot's heading is initially correct to within the error of
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the compass itself (a small, constant error due to the

operation of the compass). This compass also commands

"mid-course corrections" whenever the robot veers from its

initial heading by mote than some small angular tolerance in

either direction (see Figure N).

Type 2 (dumb compass): This compass merely takes a

reading at the instant the robot starts its translational

motion (after the rotation is completed) and then commands

midcourse corrections just like the smart compass. It has

no knowledge of what the true course should have been,

because it doesn't read the rotation commands.

Both of these compasses bound the path nonlinearity

error "c" to a narrow range of possible headings determined

by the pre-programmed tolerance of the compass* and its

error, (see Figure 0. The error area shown in Figure 0 is

only an estimate, due to the difficulties in incorporating

"mid-course corrections.") Note, however, that while the

dumb compass effectively adds this modified path nonlinear

ity error to the angular errors e2 and (k2)(!t|), the smart

compass negates the effect of the angular errors by compen

sating for them as needed, and thus REPLACES them with this

modified path nonlinearity error.
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