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Abstract

This paper consider the design of linear time-
Invariant single-Input single-output feedback
systems with a two-input one-output controller.
Three design algorithms for synthesis, computer-
aided design, and robust asymptotic tracking are
presented.

1. Introduction

This paper presents an easily undstood,
straightforward and algorithmic method for design
ing linear time-Invariant single-Input single-
output feedback system with a two-Input one-output
controller. It is closely related to the approaches
In [Bon.l] and [Ast.l]; 1t uses the more flexible
configuration of Astrom rather than the unity-
feedback structure.

Notations. t+, (t_resp.) :* the closed right half
plane (open left half plane, resp.). R[s],
(IRp(s), 1R Q(s), resp.) :« the ring of all
polynomials (proper rational functions, strictly
proper rational functions, resp.) with real
coefficients.

2. Problem

Consider the linear time-Invariant single-
Input single-output feedback system as shown in
Fig. 1; given a strictly proper plant transfer
function p, design a proper controller with two
inputs, namely v, and e^, and one output y^, such
that (i) the system 1s stable, and (11) prescribed
designed goals are achieved.

The controller can be viewed as consisting of
a precompensator tt :v-i •*• y, and a feedback compen

sator fce^M-y-j. Let [ir:f] a [n^iifl/dgt w1tn
nTr,nf,dc6F[s]; we realize the controller using
the observer canonical form [Kai.l, p. 43,
Fig. 2.1.9]. More precisely, 1/d is first realized
by using appropriate constant-gain feedbacks around
cascade Integrators; the Inputs v-j and e1 are then
fed through appropriate constant gains to the
integrator-Inputs to obtain n^ and n^, respectively.
Note that l/dc lies inside the system feedback loop.
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3. Analysis

We impose the following assumptions on the
system of Fig. 1:

(I) P ^€*P.o<*>
1x2(II) [*:f]» [vnf]/dc€IRp(s)

(3.1)

(3.2)

When (3.1) and (3.2) hold, the system 1s called the
system £. Note that (a) p Is strictly proper and
(n ,d ) are assumed coprime; (b) both tt and f are

proper while the polynomials n^, n^ and dc are not
necessarily coprime; (c) (3.1) and (3.2) imply
(1+fp)"1 •* 1 as |s| •+ «, hence all the eight
closed-loop transfer functions from u^, u2, v^, and
dQ to y1 and y- are all proper.

Clearly, £ obeys the differential equations:
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Thus, the closed-loop characteristic polynomial of
I Is

X :a dcdp +Vp '

and the closed-loop eigenvalues are the zeros of x-

Let U D t+ be the closed subset of S,
symmetric with respect to the real axis, which
includes all "undesirable" locations for poles of
transfer functions.

We say that the system z 1s (closed-loop)U-
stable Iff (1) all the closed-loop eigenvalues are
In S\U, and (11) all the closed-loop transfer
functions are proper.



Since the properness of closed-loop transfer
functions is guaranteed, we have

Fact 1. The system Z is U-stable

I Cx3 c t\ U . •

Given f proper, the properness of tt is closely
related to the system I/O map h :v^ y2;
precisely, 2 1

more

Fact 2. For the system of Fig. 1, let p€ Rpf0(s)
and f6 Rp(s). Then,

ireRpWp'1!! €Rp(s) .
k-l.Proof; By direct calculation, hw » p(l+fp) tt.
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or equivalently, p hu w » (1+fp) tt. Since

, y2vl
(1+fp)" •* 1 as |s| •+ *, the equivalence follows.

4. Synthesis

It is extremely useful for the designer to
know the class of I/O maps that are achievable by
U-stable closed-loop systems with proper
controllers. To exhibit this, we use the device
of the following

Algorithm 1. (Synthesis)

Ma: (!) p=VlBi €lRpf0(s) with (i)
(npuVdP} c°Pr1me» (11) zCnpu]CU,
and (ill) Z[nps] Cc\U;

n_.ru

(2) h . JBjL__l€]R (s) with (1)y2vi dh p

(4.1)

p'Vt eVs)' (ii) (nhi'dh>
coprime, and (111) Z[dh] C |\u. (4.2)

Step 1: Choose monic x € R[s] such that

(1)Z[X]CC\U; (4.3)

(2) 3X > 2.3d_ - 1; (4.4)

(3) npsdh|nhlX. (4.5)
Set

n - "hlx
%>"Vdh *

(4.6)

Step 2: Choose nf e IR [s] such that

(1) 3nf <3X - 3dp; (4.7)

(2) dp|(x-nfn_) .. (4.8)

Set U-"pnf)
(4.9)

Comments

(a) p strictly proper and condition (4.7) imply
that f := nf/d_ given by Algo. 1 1s proper.
Indeed, (4.7) gives 3nf+3n < 3X - 3d + 3n .
Now, since p is strictly proper, Sn^ < 3X. So
(4.9) Implies 3dc =3X -3dp. Thus, by (4.7),
f :• nf/dc is proper.

(b) Condition (4.4) guarantees that there will be
enough parameters in the polynomial nf such that
(4.8) can be satisfied. Indeed, (4.8) Imposes
3d equality constraints on the coefficients of nf.
Consequently, (4.8) can be satisfied 1f
3n* >. 3d - 1, or equivalently, if the polynomial

nf has at least 3d coefficients to be adjusted.
Now, with p strictly proper and f proper (see (a)
above), we have 3x a 3d +3d ; hence, condition

(4.4) reads 3d +3dc >.23d -1, or equivalently,
3d >3d -1. Consequently, condition (4.4) allows

us to choose nf such that 3nf >_ 3d -1.

(c) The expression h - nv - n and (4.6) show

that the resulting I/O map is actually that
required in (4.2).

(d) The polynomials nf and d given by the algo
may have common factors. By (4.9), such common
factors must be factor of x» and hence have all
their zeros In C\U: thus, 1f present, they do not
upset the (/-stability of the design. Furthermore,
the three polynomials nff, n^. and d may_ have
common factors. Such common factors, with zeros
necessarily in C\U, should of course be removed
before realizing the required controller. •

5. CAD Considerations

The computer - an efficient number cruncher -
and nonlinear programming algorithms (see e.g.
[Bha.l]) - I.e. algorithms that optimize over a
parameter set defined by a finite or infinite
number of inequality constraints - suggest a design
philosophy very different from the synthesis one.
In synthesis, one 1s given the precisely defined
goal and the algorithm delivers a design meeting
that goal: often the resulting design is not
acceptable because too big or too small parameters
are required. To avoid this pitfall, the design
procedure should lead to a parameterized family of
designs, say, over a parameter set n c Rm such
that, Vz € fit the design obeys the main requirement
(e.g. properness of compensators and u-stability).
Then the parameter z 1s determined by optimization
over n.
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The suggested computer-aided design (CAD)
methodology can be described as follows:

Algorithm 2. (Computer-Aided Design)

Data: p as 1n (4.1) with a frequency normaliza
tion such that the main poles and zeros are
0(1).

m .

Step 1: Let nf :* I * .s\ with m > 3d -1, and
T i»o ~ P

leave the coefficients (a*)™ free.
i o

Step 2: Choose monlc X € R[s], with 3x > 3d +m,

and include In x a number of real
parameters subject to simple Inequality
constraints such that, for all feasible
values of those parameters, Z[x] c c\ti.
(For example, for 3d » 2 and m = 1, let

with three parameters subject to say,
oi_ > 0.5, 0.7 < C < 1.2 and 6 > 1).

Step 3: Obtain 3d linear algebraic constraints

on (oj )jj by requiring that
dpKx-npnf) .

Step 4: Let n„ := V y. .s1, with k< 3X-3d_,tr ^0 K-i - p

and leave the coefficients fy)* free.

Step 5: Obtain the expressions
n_n. d_n_

y2vl X ;heoV
2V1

y2do X
Use nonlinear programming algorithm [Bha.1] to
adjust the parameters in x» "f and n_ so that
design goals are achieved. Typically, this Is done
by (i) requiring "nice" properties of the I/O map
K w (e-9-» "large" bandwidth, "good" step
y2v1
response, ...), and (11) putting bounds on the
output-disturbance sensitivity and on the size of
signals say, at the plant input. The bounds can
be implemented by imposing the following inequality
constraints:

max

O^ufw, y2ao ' 0<«<u)2 e2vl Z

Comment: This process leads to some "optimal"
design or, better, trade-off curves so that the
designer may select the trade-off between conflic
ting design goals. (For examples of such designs
see [Gus.1]). •

6. Tracking

The Inputs to be tracked are specified (in
terms of Laplace transforms) to belong to the class
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¥ :* (^ : v € R[s] with 3v <3^) (6.1)

where * € R[s] Is a given monic polynomial with

ZL>] CI+C||; and (6.2)

Zfo] n Z[n_] » *. (6.3)

We say that the system £ achieves robust
asymptotic tracking over the class y if and only 1f

(a) £ 1s a-stable;

(b) Vv, 6 v, the tracking error T\(t) »^(tj-v^t)
•*- 0 exponetially as t - «;

(c) the tracking requirement (b) holds for any
perturbed plant p :« n/3 € R Q(s) where
n and 3p € R[s] are arbitrary subject to
(1) (np,3p) are coprime, (11) ZL>] nz[iip]^,
and (11) Z[x] c|_, where x's dc3p+nf"p-

Fact 3. The system £ achieves robust asymptotic
tracking over *;

r
0) Z[X]CC\U; (6.6)

(11) *|dc;

i(111) ♦I(nir-nf) .

Proof:

(6.7)

(6.8)

•

Note that Vv, € y, the tracking error n is

given by
[n_(n -nx)-d_d_] „

P TT J' p C V

X ?
n:1 (Vr1)Vi (6.9)

•♦. By inspection, from (6.6), (6.7), and (6.8),
Vv € R [s] with 3v < 3^, we have P[n] C t\u c i_
and P[n] c |_ for the perturbed systems under
consideration. Hence robust asymptotic tracking
follows.

*•. For all the perturbed systems under considera
tion, we have Z[x] C f_; so the only way to have
P[n] c°. is to have ^|d_ and iH(n_.-nf). •

Note that (a) (6.6) and (6.7) imply that
Z|>] nz[n] =$, as expected; (b) (6.9) shows that
if ; 1s a zero of ^ of order m, then hu ,. (5) = 1

y2v1
(1)

y2vl
and h (?) « 0, for 1 « l,»««,m-l.

It is easy to verify that the following algo
leads to a system that achieves robust asymptotic
tracking.

Algorithm 3. (Robust Asymptotic Tracking)

Data: (1) p as in (4.1);
(2) V specified by (6.1), (6.2) and (6.3).



Step 1: Choose monlc x€ K[s] such that

(1) Z[x]C«\U;

(2) 3x >3* +2 3dp-l
Step 2: Choose nf € R[s] such that

(1) 3nf <_3X - 3dp;
(2) (♦dp)|(x-npnf) .

Set

._ x-yf

Step 3: Choose n_ € R[s] s.t.
r TT

(1) 3nu <3X - 3dp;
(2) <H(n_-nf).

7. Conclusion

(a) Three design algorithms for model matching,
computer-aided design, and robust asymptotic
tracking, respectively, are presented.

(b) The results obtained for continuous time
systems extend readily to discrete-time systems
by simply replacing s, 8_, and C. by z, D(1)
(:= {z 6 I :|z| < 1}), and -\D(1). respectively.
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