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ABSTRACT

The steady-state, axial plasma confinement by a muTtiple-mirror

device is studied in the "viscous fluid regime," X/i «1 (but not neglig-
m

iblejt where X is the ion-ion mean-free-path and I is the scale length
m

of magnetic field variations. One-dimensional axial flow of an isothermal,

low-3 plasma ( 8=plasma pressure/magnetic field pressure ) is considered.

An approximate analytical solution is obtained by averaging over the rapiu

variations caused by the individual mirrors. This solution is compared to

a numerical solution without averaging. There is found a smooth transi

tion with increasing values of \/l from sonic flow in which
m

the average density is uniform along the system to a diffusive

flow. Studies are made of the variation in density profiles and con

finement times versus X/im ,mirror ratio, relative mirror width, and

number of mirror cells. Using the scaling of the approximate analytical

solution with the above parameters, an empirical equation is obtained

for the confinement time which better fits the numerical results and

exhibits the individual contributions to the confinement .time of sonic
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flow and diffusive flow. The viscous fluid regime is found to have the

same characteristics as the ideal multiple-mirror regime for \/l -*-1 .
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NTRODUCTION

A multiple-mirror device in its simplest form consists of

a solenoidal magnetic field and a series of magnetic mirrors spaced by

a "cell length" I . The axial magnetic field for such a device is
c

sketched in Fig. 1. Here I is the scale length of magnetic field

variations and R =Bm /B . is the mirror ratio. In the "ideal
m max mm

multiple-mirror regime" in which I « X <scR i , where X is the ion-
m m c

ion mean-free-path, the axial loss process is diffusive and the confine

ment time scales quadratically with the number of cells (the system

length L increasing with the number of cells). » In their analysis

Makhijani et al. used random-walk arguments while Mirnov and Ryutov

employed a kinetic description. Miller*^ applied a viscous fluid analysis

to the ideal multiple-mirror regime by limiting the classical viscosity

for large X . In contrast to the ideal multiple-mirror regime, these

devices must sometimes confine a highly collisional plasma, as during

the initial fill of a laboratory experiment or startup of a conceptual

reactor. In the ideal magnetohydrodynamic (MHD) regime in which X/i ->»0 ,
m

treated by Makhijani et al., the axial loss process is sonic flow and

the confinement time scales linearly with the number of cells. Mirnov

and Ryutov further considered the "viscous fluid regime," X/Z «1 (but
m

not negligible), and found a diffusive loss process. However, they res

tricted attention to sufficiently large values of X/l such that MHD
m

flow effects were unimportant.

This paper unites the analysis of the MHD regime with that

of the viscous fluid regime in order to better understand the transition

from sonic flow to multiple-mirror diffusion with increasing values of X .

Exact numerical solutions of the viscous fluid equations are obtained and
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compared to approximate analytical solutions, over a parameter range encom

passing both dominantly flow and dominantly diffusive behavior. We assume

the flow is steady, resulting from an arbitrary plasma source in the

central cell and sinks at the ends. Radial motion is neglected by

making a "long, thin approximation" with the axial magnetic field large

enough to suppress any radial diffusion. Furthermore the plasma is as

sumed isothermal and of low $ ( g=plasma pressure/magnetic field pres

sure ). Isotherray originates from a large electron thermal conductivity

which maintains the electron temperature uniform along the device. To

lowest order the ion temperature equilibrates on the time scale x. *
le

(m./me)*T.., where x. and x.. are .the ion-electron and ion-ion scat-
k

tering times, and m and m. are the electron and ion masses. For
e i

a lbw-8 plasma the magnetic field is a known function of the

axial coordinate. Through conservation of magnetic flux the plasma cross

section is also known.

Section II presents the fluid equations and the derivation of

a second-order ordinary differential equation for the density. This equa

tion is cast in dimensionless form to select out the important parameters

of the problem and is referred to as the "flow equation." Section III

presents an approximate analytical solution for the density profile by

averaging the flow equation over the rapid variations caused by the indi

vidual mirrors. A confinement time is calculated and the nature of the

particle flux is examined as a function of X . Section IV presents direct

numerical solutions of the flow equation and compares these to the analy

tical solutions. A study is made of the scaling of the confinement time

with X , R , l /% and the total number of cells N . Finally in Sec.
m m c '

V these results are summarized and related to the ideal multiple-mirror

regime.
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II. FORMULATION OF THE PROBLEM

A. The fluid equations

The following are adapted from Dawson and Uman, applying

the assumptions discussed in the introduction.

Force equation for the electrons:

0 = " o7 (nkT) " enE • da)

Force equation for the ions:

VV£ •-sH)+ME+^^.(Ag) +„k(Tf.Tl)Ig
(lb)

Continuity equation:

£ (nAv) - 0. (1c)

Perpendicular ion temperature equation:

(tSt!) 2n* ,. ,2 t!v ja0 = _ \ i + |o /dv\ i dA
T.. 3nk \dz/ A dz

ei i J J

Parallel ion temperature equation:

2(t!-t!) 2nf mJ L_ + Jp_/dv\ | dv 1 '"e r ,2 i 1 ln
x.. +3nkldz; 2Ti d7 ^7^7 [T"(JTi+JTi)]

(le)
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Magnetic flux conservation:

B

Here z is the axial coordinate, n is the ion (and electron) density,

A is the plasma cross section, v is the z-component of the flow velo

city (same for ions and electrons), T is the electron temperature (as

sumed uniform and isotropic), T? and T"f" are the ion temperatures

respectively parallel and perpendicular to the magnetic field, E is

the axial electric field, B is the axial magnetic field, x . and x..
ei ii

are respectively the electron-ion and ion-ion scattering times, m and
e

m. are respectively the electron and ion masses, e is the electron

charge, k is Boltzmann's constant, and n,=anx..kT: with a*1 is the
o II I

longitudinal ion viscosity. The reader is referred to Ref. 5 for a thor

ough discussion of these equations.

B. Derivation of the "flow equation"

The following steps are performed on Eq. (1b): First the

difference of Eqs. (id) and (le) is solved for T^ -T? and substituted

into the last term. Hereafter we set Tf =T']=T . Equation (la) is
it ^

then used to eliminate the electric field. The resulting equation is

rewritten in terms of the following dimensionless quantities:

o s c o

Here n =n(0) , etc., and v = (2kT/m.)ris the sound speed. The normal

ized form of the continuity equation (1c),
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naM = M (3)

is used to eliminate M . Dividing the result by n , we obtain

M2d/l\ 1dn XMctd
--(tt ♦— • -~12 d? \n a J nd? Jlc 2 na d? 3 dc d? \nV/d? \na /J 3 dc d? \n

(4)

hereafter referred to as the "flow equation." (Use has also been made

k 2
of the.definition X=v /x.. and the relation x..«T/n .) The

terms on the left represent the ion inertia and scalar pressure, re

spectively, wh? le the term on the right is due to pressure anisotropy

(viscosity). The latter is seen to vanish with X /% .
o c

The solution of Eq. (4) requires specification of X /I ,
o c

Mq ,a(s) and the region over which a solution is desired. We consider

a multiple-mirror device with a central cell of arbitrary length, where

the plasma source is located. This cell, for example, could be a theta-

pinch for which the multiple-mirror cells play the role of end-stoppers.

We will not consider this cell here but restrict attention to the region

between one of its bounding mirrors and an end mirror as in Fig. 1. This

region we define as 0<c<N/2 , where N is the total number of multi

ple-mirror cells. With this definition, L=N£ is the total length
c

of the system minus the length of the central cell. The Mach number

at the origin, M , is not a free parameter as is X /Jt and is deter-
o o c

mined in the following section.
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III. ANALYTICAL SOLUTIONS

A. The averaged density profile

For X/l sufficiently large, so that viscosity is not
m '

negligible, we expect n(c) to vary little over a cell and its deri

vatives to be small. We then average Eq. (k) over each cell by inte

grating between two adjacent mirrors. (The choice of mirrors rather

than midplanes is made because of their dominant role in determining

the solution, as will be evident shortly.) On the right-hand side of

Eq. (4) we assume that all derivatives of n are small compared to

those of a and then remove n from beneath the averaging integral.

After some algebra, Eq. (4) reduces to

where

M2 d« /1\ 1dn X 1+a fM
o / \+ = o o

2 dz; \n2/ Mc i 2 n2 (5)
m

= J a3 W '
f =

c •'O

The details of the magnetic field are seen to appear only through the

constant f . (The motive for including the factor I /l in the defini
m c

tion of f will become transparent later on.)

Solving Eq. (5) implicitly for n(c) we obtain

n2 - M2 In n2 = 1-2~ fM c. (6)
o I o

m

(Here and in the remainder of the report a is set to unity.) There are
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two distinct solutions depending on whether M < 1 (subsonic flow) or

M >1 (supersonic flow). These are sketched in Fig. 2. The profiles

turn over (dn/d? -*- ±« )at C=?1 ,where

I 1-M2 +M2 In M2
r = -£ 2 2 o , v
41 X 2fM Kn

o o

which marks the location where n - M and M = 1 . In subsonic fluid
o

flow through a nozzle in which the exit pressure is low, the flow is

choked ( M= 1 ) in the nozzle. By analogy, we asume choking in the

last mirror throat and set Cj=N/2 , resulting in an equation impli

citly determining M0UQ/* ,f,N). In the limit X /% « (fN)"1 ,
this equation yields

n the opposite limit X tl » (fN) we have
o m

(8a)

o

B. Interpretation of the flow

We briefly return to Eq. (5) to examine the nature of the

particle flux. Rewriting in terms of n , v , A and z and defining

the particle flux F=n v A , we obtain a quadratic equation for F .
o o o

Solving ,



- 10 -

F = . 1 >A«2].
where

8 H V,A«ff'
m

5 = nv A
s o

For 5» 3 ,

F = 6 = nv.A ,
s o

dn
d?

-1

a result indicative of sonic flow, in which the average density is uni

form and M = 1 in each mirror throat.

For <S« 3 ,

<5 l n dn

6 Vs °X fd5 '
o

a result characteristic of a diffusive flow. A diffusion coeffi

cient may be defined via F=-D(dn/dz)A , where A is the area averaged

over a cell. With this definition

where

I n I
m c

D = T^
I R fg x..
c m 3 ii

dc a .

(9)
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For general multiple-mirror fields g •* 1 for I /% ->-0 . This expres-
m c

sion for D differs from that of Mirnov and Ryutov only in that their

values are smaller by the numerical factor 0.71 . This discrepancy

can be attributed to the slightly different form of the viscosity term

used in their analysis.

The condition 5« 8 can be shown to be equivalent to M «1 ,

which implies both that M «1 and that we are far from the ends of the
o

device (where M=1 ). Thus, the condition leading to Eq. (8b), namely

^Q/^ »(fN) , specifies diffusive flow near the origin, while the

opposite limit specifies sonic flow.

C. Calculation of the confinement time

The confinement time of the system is defined here as

L/2

JO

dz nA = d£ na
2v

(10a)

By this definition x for a straight solenoid ( a = 1 ) is L/2v .
c s

Thus the quantity in parentheses represents the enhancement of this time

by the mirrors. If r\ does not vary significantly over a cell

N/2 \

Evaluating this expression using Eq. (6) for n we obtain
r

c wr 2
— < 1 +
v 1

s I
m 1

X fNM2
o o

| - M-2M2 +M3 [l-ln M") >. Ola)
3 o o o \ 3 o! (

(10b)

4X
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-1In the limit X /i «c(fN) we may use Eq. (8a) for M yielding
o in o

c m3 2v 3U, 2, (nb)

Thus, to a first approximation, the confinement time of a solenoid in

the MHD limit X /I - 0 is enhanced by the factor R g due to the
o m m

mirrors. This expression is to be compared to the low-B result of

Makhijani et al., derived using an adiabatic equation of state,1

16^ - _L_
9 m 2v

where vg is evaluated in a midplane. This expression was derived in

the limit \/*c-»-0 ("point" mirrors), and represents an upper limit

to the MHD confinement time. The numerical factor represents the en

hancement of our expression by the effects of adiabaticity (slower sound

speed in the mirror throats) and density maxima in the midplanes. This

latter condition does not appear in our derivation, as will be borne out

in the following section.

In the opposite limit XA »(fN)"1 , hereafter referred
o m

to as the "diffusive-flow regime",

c " 3 I
x = T-oRfgN

m
m 2v

(11c)

Thus we see that t scales as L (since N = L/£ ) and also as X /%
c c o m

We now explicitly evaluate the quantities f and g for the physical

model of a solenoid plus a series of single loops of radius I . These
m

are calculated numerically for various values of R and I /I and
m m c
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presented in Tables I and II. It is evident that f asymptotes to a func

tion only of R^ as l^/l ->0 , as can be shown analytically. Further

more, f scales as In R for very large values of R . As mentioned
m m

earlier g approaches unity as I /S. +0 , and is less than unity for
m c '

finite values of ZJ% . Thus, for a given value of X 1% , x as defined
m c o c c

by Eq. (11c) is increased for large values of R and small values of
m

I /I .
m c

IV. COMPARISON WITH NUMERICAL SOLUTIONS

The flow equation (k) is solved numerically using the package

GEAR written by Hindmarsh. The code requires both boundary conditions to

be specified at the starting point of the integration, these being M

and dn/d?(0) . These were determined as follows: A series of trial runs

was made in which it was found that dn/d? -0 in all midplanes regardless

of the boundary conditions and input parameters. Hence, the integrations

are initialized in a midplane where the condition dn/d^(0)=0 is imposed.

(For *Q/£C *1 the solutions are relatively insensitive to this choice.)

A value of Mq is chosen and the package integrates to the last mirror

throat where the value of M is examined by a controlling program. The

code then varies M and begins again, repeating this cycle until M= 1±0.1

in the last mirror throat. The program also directly evaluates the confine

ment time, Eq. (10a), not including the initial half-cell.

The density profiles of three runs all with R =4 . I /I =0.1
m m c

and N=18 are shown in Figs. 3(a), 3(b), and 3(c) for X /% =0.001 , 0.01 ,
o c

and 0.05 , respectively. Superimposed are the profiles predicted by
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Eqs. (6) and (7) with Cj =N/2 . In the short mean-free-path case

V^c^0,001 we observe tnat the density is sharply depressed in the

mirror throats (Bernoulli flow), while the average level is signifi

cantly higher. Because of this, Eq. (6) underestimates the average

density since the analytical profile follows the density in the mirror

throats. We also note that the assumption dn/d£ «da/de is violated

on either side of a mirror, causing the analytical result to overesti

mate MQ =n(N/2) by about S% . In the long mean-free-path case

V^c550,05 »a comPletely different type of profile exists which we

call a "stairstep" pattern. The density is seen to be relatively uni

form over each cell, changing levels when crossing the mirrors. Although

the profile appears smoother than the short mean-free-path case, dn/dc

is quite substantial at the mirrors where da/d?=0 . This violates

the assumptions leading to Eq. (6), causing the analytic solution to

overestimate the density near the end. (We should note that at the end

X/&m= (x0/£c) (^c/£m)/n-5 ,which is dearly outside the range of valid

ity of the fluid theory. Thus, this profile should be considered an

extreme example of the. limiting case X /Z »(fN)_1 ,and should not be
o m

taken quantitatively.) For intermediate values of X /Z the previously
o c K 7

mentioned effects tend to cancel, leading to better agreement between

the analytical and numerical results.

Values of confinement time are computed numerically and

compared with those predicted by Eq. (11a). To investigate the scaling

of x with the four parameters X /Z , R , Z /Z , and N , the
c o c m m c

data is presented in three formats. In Figs. 4(a), 4(b), and 4(c) we

plot the ratio x /x , where x = 18£ /2v is the confinement time of
CO o c s
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a solenoid of length tf$Z , versus X /£_ for three values of Z /Z ,
c o c m c

R , and N , respectively. The values of the remaining two parameters

are in each case chosen from the set Rm=4 . Z /Z =0.1 , and N = 18 .
hi m c

In Fig. 4(a), curves of constant X /Z are included to indicate the
o m

relative independence of x /x on Z /Z for fixed X /Z . The
co m c o m

most striking feature of Fig. 4 is that the analytical values scale too

rapidly with X /£, , consistently underestimating x for small X /Z
o c c o c

and overestimating x^ for large X /Z . This behavior results from
c o c

the errors discussed in the previous paragraph. An empirical equation

for x can be obtained, using scalings of Eqs. (11b) and (11c), which

better agrees with the numerical results, namely

Tc - (1.6 +0.1,5 ^fN) R9lt_ . (12)
m s

The first term represents the MHD limit in which the density maxima in the

midplanes are included simply through the numerical factor 1.6 . Although

this factor actually varies slightly with R , Z /Z , and N , the above
m m c

approximation agrees to within 5% of the numerical results of Fig. 4

extrapolated to X /Z =0 . The second term of Eq. (12) represents the
o c r

contribution of viscosity in which the numerical factor 0.45 serves to

reduce the slopes of the curves x versus X fz . This factor was chosen
c o c

to make Eq. (12) best fit the numerical results with R = 4 , Jl /Z =0.1 ,
m m c

and N=l8 . In total, Eq. (12) better models the numerical results

of Fig. 4, the worst agreement being at X /Z =0.05 for the case R =4 ,
o c m '

£mAcs0.1 , and N=8 in Fig. 4(c) in which Eq. (12) predicts a value

of TVT~ that is 19% too large,
co
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V. SUMMARY AND DISCUSSION

In this work we have obtained a single expression, Eq. (12),

for the steady-state multiple-mirror confinement time of an isothermal

plasma in the viscous fluid regime X/Z «1 . In the limit X/Z =0
m m

we recover the MHD regime in which the confinement time x scales
c

linearly with L (or N ) and the average density is uniform along the

device. Its dependence on Z /Z is weak since x saturates with de-
m c c

creasing values of this parameter, in which case x is seen to scale
c

linearly with Rm . Comparing with the result of Makhijani et al. for

adiabatic MHD flow in this same limit, we see that their expression is

a factor of about 1.6 larger but also scales linearly with R . In
m

the diffusive-flow regime (fN)~ «X fZ «1 , we find a stairstep den-
o m

sity variation and recover within a numerical factor the diffusion coef

ficient of Mirnov and Ryutov, which leads to a confinement time that

scales quadratically with L (or N ). It is found that for fixed

values of ^/^ » the confinement time continually improves with de

creasing values of I /I and that x scales somewhat faster than R ,
m c c m '

going as R In R for R »1 .
mm m

Finally we relate our diffusive-flow regime to the ideal

multiple-mirror regime 1«X/Jt «R Z /Z in which the confinement time
m mem

in the limits Z /Z « 1 and R »1 is roughly
m c m s '

.max „ £ L ( }
c 4 m 2v v *'

s

Both regimes are thus seen to scale quadratically with L (or N ),

although over the range of validity of the diffusive-flow regime

t « x . In Fig. 5 we present a sketch of x /x in the limits
c c CO
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R »1 , Z /Z « 1 , and N »1 , in which both Eqs. (12) and (13) are
m m c

extrapolated into the region X/Z *v 1 . The dashed curve represents
o m

the form of the actual solution. Another similarity between the two

regimes lies in the fact that the diffusive-flow regime can be des

cribed in terms of a diffusion coefficient. The ideal multiple-mirror

regime is governed entirely by a classical diffusion process in which

the particles random-walk from cell to cell, the diffusion coefficient

u • 1being

1 X 1 z2
D . = — -± £•
m,n ^Z R x..

cm it
o

Comparing with Eq. (9) we observe D» D . . In addition, we find a
mi n

stairstep density profile, which is characteristic of the ideal multi

ple-mirror regime. These similarities show that the viscous fluid

regime and the ideal multiple-mirror regime have the same limiting pro

perties in the transition region where neither is strictly valid.

Although ours has been a steady-state analysis, the exis

tence of a diffusion coefficient allows for a straightforward extension

to a time-dependent problem via the diffusion equation

9n/9t = 3(D3n/3z)/3z .
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z r1 2TABLE I. Values of f=f- / ^ (^jf) for typical values of Rm
and Z /Z .

m c

z
m

R
m

Z
c

2 4 6 8 10

1

5
0.42 1.17 1.59 1.85 2.04

1

10
0.36 0.98 1.32 1.53 1.67

1

15
0.36 0.96 1.29 1.49 1.63

1

20
0.35 0.95 1.28 1.48 1.62
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R /m J
o

TABLE II. Values of g s — / d? a for typical values of R and Z /Z
m m c

z
m

R
m

11' • r-i f-s

Z
c

2 4 6 8 10

1

5
0.80 0.64 0.56 0.50 . 0.47

1

10
0.88 0.77 0.71 0.67 0.64

1

15
0.92 0.84 0.79 0.76 0.74

1

20
0.94 0.88 0.84 0.82 0.79
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LIST OF FIGURE CAPTIONS

FIG. 1. Multiple-mirror magnetic field profile.

FIG. 2. Normalized density n=n/nQ versus axial coordinate ?=z/Z for

subsonic flow (initial Mach number M <1 ) and supersonic flow ( M >1 ).
o o

Here ? =(Z /X )(1-M2+M2 in M2)(2fM )_1 .
1 mo o o o o

FIG. 3. Normalized density n =n/n versus £ = z/Jl as determined numeri-
o c

cally (solid lines) and analytically (dashed lines). All cases are with

Rmai» ,V^c^0*1 ' and N=18 • Ratio of initial mean-free-path X

to cell length Z is (a) 0.001 , (b) 0.01 , and (c) 0.05 .

FIG. 4. Ratio of confinement time x to that of an iSz - long solenoid,
c c

To51^c/'2vs >versus ^Q/^c as determined numerically (triangles) and analy

tically (circles). Each set exhibits scaling with respect to (a) il IZ ,
m c

(b) R^ , and (c) N . The dashed curves in (a) represent constant

values of X/Z .
o m

FIG. 5. Ratio of confinement time x to that of a solenoid of length

L » Trt - L/2v , versus X/Zm in both the viscous fluid regime and ideal
o s o m s

multiple-mirror regime. The dashed curve represents the form of the

actual solution.
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