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ABSTRACT

A geometrical approach to group choice theory is developed. Main

binary relation spaces of weak preference, strict preference and

indifference are described. Convexity in a binary relation space is

studied in connection with the Pareto principle. A method of constructing

admissible group decisions is suggested.
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1. Introduction

A general framework of a geometrical approach to the problem of

aggregation of individual preferences in group choice theory is

described in this paper. This approach is based on a study of geometrical

structures of binary relation spaces. One of these stuctures - distance -

has already been used for this purpose (see, for example, [1, 2, 5,

G, 11, 15]). The suggested approach is based on the notion of con

vexity in binary relation spaces; this notion turns out to be very

closely related to the classical Pareto principle in group choice theory.

In contrast to classical axiomatic methods a geometrical approach

considers an iterated procedure of constructing more and more "narrow"

sets of "admissible" preferences but does not define them by properties

or formulas. Sets of admissible preferences - they are called "radicals"

in the paper - are defined by simple geometrical properties and contain

preferences which are close to Pareto nondominacy binary relation.

2. Preferences

A binary relation R on a set S is a subset of a direct product

SxS. Both notations (x,y) e R and xRy will be used below; R denotes a

complement of R in SxS and the converse R" is defined by xR" y **-*• yRx.

Binary relations are classified here by their basic properties:

1. Reflexivity: Vx e S, xRx;

2. Antireflexivity: Vx e S, ~(xRx);

3. Symmetry: Vx, y e S, xRy -*- yRx;

4. Antisymmetry: Vx, y£S, (xRy & yRx) -*• x = y;

5. Asymmetry: Vx, y e S, xRy -»• -(yRx);
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6. Completeness: Vx, y6S, (x^y) -*• (xRy V yRx);

7. Transitivity: Vx, y, ztS, (xRy & yRz) -*• (xRz)L;

8. Negative transitivity: V x, y, z € S, xRz -*•* (xRy v yRz).

Various combinations of these properties separate classes of

binary relations. Firstly, the following classes of weak preferences

are defined:

1. Weak Preferences (WP). These are reflexive complete binary rela

tions.

2. Quasi-transitive Preferences (QT) are weak preferences with nega

tive transitivity property (see [21]).

3. Orderings (0) are transitive weak preferences (complete preorders

in [9]).

4. Linear Orderings (J.) are antisymmetric orderings (complete orders

in [9]). Obviously, we have the following inclusions:

Lc O^C QT c WP (2.1)

We recall definitions of strict preferences and indifference

relations for weak preferences [20]. Let R be a weak preference. A

strict preference P for R is defined by

xPy ++ [xRy & -(yRx)] (2.2)

An indifference relation I for R is defined by

xly *-*• (xRy & yRx) (2.3)

Now, the corresponding classes of strict preferences are defined:

1. Strict Preferences (SP). These are symmetric binary relations.

2. Strict Partial Orderings (£) are transitive strict preferences.
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3. Quasi-series (QS) are strict preferences with negative transitivity

property (weak orders in [9]). If P is a quasi-series then there is a

partition S = S-, u S2 u ... u Sk such that xPy iff x€ S., y e S. for

i < j (see [15]).

4. Strict Linear Orderings (SL) are complete strict orderings.

We have the following inclusions

SL c QS c_p c SP (2.4)

Finally, we define the corresponding classes of indifference

relations:

1. Indifference Relations (_I). These are reflexive symmetric rela

tions.

2. Trans i ti ve-ori entated Relati ons (TO) are indifference relations for

quasi-transitive preferences. If I is a transitive-orientated relation

then there is a strict partial ordering P such that the triple (P,I,P~ )

is a partition of a direct product SxS ([10]).

3. Equivalences (E) are transitive indifference relations.

4. Diagonal Relation (D) is a diagonal in SxS.

We have the following inclusions

£.C-LCI2CJL (2.5)

It follows from (2.2) and (2.3) that

P n I = <j>, P u I = R, (2.6)

P = R'1 , R= P-1 , and (2.7)

I = Rn R"1 =TOT"1 . (2.8)

where R is a weak preference. Let R be any binary relation on S. Then
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a : R -*• R" is a one-to-one mapping of the set of all binary rela-

tions onto itself. This is a mapping of period two, i.e., a is an

identity. By, (2.7), a establishes one-to-one correspondence between

WP and SP, qj_ and P, 0 and QS, L and SL, respectively. Let us con

sider mappings B : R •*• R n R" and 3' : R -*• R u R . Then 3 maps WP,

QT, 0 and J. onto U TO, IE and J), respectively. In the same way, £'

maps SP, P_, QS and ^L onto U TO, E and JD» respectively.

Classes of binary relations defined above are represented on fig.

2.1 (see, also, [17] where a similar diagram is introduced). Vertical

arrows represent natural embeddings defined by (2.1), (2.4) and (2.5).

The following theorem is proven in [13].

Theorem 2.1. Diagram 2.1 is a commutative diagram of mappings.

3. Binary relation spaces

Further in this paper, S is supposed to be a fixed finite set.

Each class of binary relations defined above have some natural

geometrical structures. We will use the term "space" instead of

"class" assuming these structures. Actually, these geometrical

structures may be defined in a more general case. We begin with the

following

Definition 3.1 ([12]). A binary relation space (over S) is any

non-empty subset of the set of all binary relations on S.

Any class from diagram 2.1 may be regarded as an example of a

binary relation.space. Binary relations constituting a space R.will

be called points of this space.

Most important geometrical structures on binary relation spaces

are listed below.
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1. Partial ordering. This relation on a binary relation space is

induced by a natural inclusion relation for binary relations regarded

as subsets of SxS:

VR', R" € R, R' a R" <-* R' C R,! (3.1)

2. Betweeness relation. A point R lies between points R' and R"

in a space R iff

R' n R" c R c R! u R". (3.2)

[R',R"] denotes a set of all points of a space_R which lie between R'

and R". Betweenness relation (3.2) on a space^R_is induced by a well-

known betweenness relation on the lattice of all binary relations (for

general case see [3,4,19]).

3. Convexity. A natural notion of convexity is based on betweenness

relation (3.2). A set X in a space^R is said to be a convex set iff

(VR', R") (R*,R" e X & R e [R',R"j) +(R G X).

A convex hull C(X) of a set X is defined as the smallest convex set

containing X. Convex structures on binary relation spaces were studied

in [12] and [19].

4- Distance. Let us define a distance on a space_R as a function

d(R',R") = |R' A R,!| (3.3)

where |A| denotes a cardinality of a set A and A is an operation of

symmetric difference. It is easy to verify that d satisfies usual

axioms of distance (see [15]). For spaces from diagram 2.1 a distance

can be defined axiomatical ly. Inall cases studied thus defined distance

is that of (3.3) within to a constant factor (see [14] for £, [5] for
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P and [9] for 0). Definitions (3.2) and (3.3) are consistent, since

Re [RrR2] iff d(RrR) +d(R,R2) =d(RrR2).

It should be noted that any binary relation space R_can be regarded

as embedded in the lattice B(S) of all binary relations on S. Then

all geometrical structures defined above are induced by corresponding

structures on the lattice B(S). On the other hand, a space R_, generally

speaking, is not a sublattice in B(S) with respect to operations of

union and intersection. This is the reason why many obvious geometrical

properties of lattices are not fulfilled in binary relation spaces

(lattice-theoretical study of the subject can be found in [19]).

Geometrical structures on binary relation spaces defined above are

closely related to each other; some more complex structures could be de

fined based on these structures, the most important of which is a notion

of a linear segment.

Definition 3.2. A linear segment in a space J^ between points R'

and R" is a sequence R,,...,R. of distinct points in R^such that:

1) R] = R' and Rk = R",

2) Ri G [Rm>RJl] for m_< i <£, and

3) R€ [RrRi+1] -^ R=Ri or R=R.+r for all 1 <k.
Theorem 3.1. ([12]). In any binary relation space_R_there is a

linear segment between any two points.

Linear segments in binary relation spaces are a natural extension

of the notion of segment in usual geometry. In particular, the following

property is fulfilled:

k-1

d(R\R") = I d(R.,R.+1),
i=l
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where R,,...,Rk is alinear segment between R' and R". However, it
should be noted that binary relation spaces admit, generally speaking,

a few different linear segments between given points. In spite of this

fact, linear segments are very useful in the study of binary relation

spaces.

At the conclusion of this section we return to diagram 2.1 of

binary relation spaces. Theorem 2.1 can be completed by the following

Theorem 3.2. The mapping a is a dual isomorphism of spaces ^P,

QT, 0, L and SP, P_, QS, SL, respectively, with respect to main geometrical

structures, i.e.

1) a inverts the partial ordering a ;

2) a preserves the betweenness relation;

3) a preserves distances;

4) a transfers convex sets into convex sets.

By this theorem, all spaces of weak preferences are dual isomorphic

to correspondent spaces of strict preferences.

4. Pareto-convexity

Geometrical properties of, well-known in a group choice theory,

Pareto principle will be studied in this section. The following version

of this principle is employed in this paper (see [15] for motivation):

Pareto Principle. Let R,,...,R be individual preference relations.

Then a group preference R satisfies

OR. C R CU R. (4.1)
1 — — . 1

1 1

From a formal standpoint, (4.1) is an immediate generalization of

betweenness relation (3.2). By using geometrical language., we read (4.1):
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"point R lies between points R-j,...,R ". A point R satisfying (4.1)

is also called a Pareto-point of a set {R,,...,R }.

A fixed binary relation space j<_is considered below. The set of

all Pareto-points of a set X CR will be denoted by P(X).

Definition 4.1. A set X is said to be a Pareto-convex set iff

R G p(x.) - R € X.

The following theorem shows that a set of all Pareto-points of a

set X can be regarded as a Pareto-convex hull of this set.

Theorem 4.1. ([12]). P(X) is the smallest Pareto-convex set con

taining X.

Connections between convexity and Pareto-convexity are studied

in the rest of this section.

Theorem 4,2. ([12]). Any Pareto-convex set in_R is a convex set

in this space. In particular, C(X) c P(X) for all X.

The following example shows that C(X) can be a proper subset

of P(X).

Example 4.1. Let us consider a space E_over a set S = {a,b,c}.

Points of E can be regarded as partitions of S. Let us consider points

l} ={a} u{b,c}, I2 ={b} u{a,c}, I3 ={c} u{a,b}. Let X=l^^'V
It is easy to verify that I4 ={a,b,c} belongs to P(X) and does not

belong to C(X).

Hence, convexity and Pareto-convexity are different notions in the

space E. It turns out that the space J_ (and, possibly, the space TO) is

an exception among spaces from diagram 2.1. The following theorem is

the main result of this paper.
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Theorem 4.3. For all spaces of preference relations from diagram

2.1 a set is a Pareto-convex set iff it is a convex set.

There is an important class of binary relation spaces for which the

previous theorem is true. We say that two distinct points R' and R"

in the space R are adjacent if they constitute a linear segment in R.

(Note, that in any space a linear segment is a sequence of adjacent

points, lying between two given points and "joining" them).

Definition 4.2. A space R_ is said to be a complete space iff for

any two adjacent points in this space the symmetric difference of these

points (regarded as subsets in SxS) is a singleton.

Obviously, all preference spaces from the fourth "floor" of diagram

2.1 are complete ones. Completeness of spaces QT and P_was established

in [12]. All other spaces from diagram 2.1 are non-complete ones.

In [12] the following theorem is proven.

Theorem 4.4. Convexity and Pareto-convexity coincide in complete

binary relation spaces.

Hence, theorem 4.4 provides the proof of theorem 4.3 for spaces

of preference relations on the fourth and third "floors" of diagram 2.1.

Spaces I, J. and SL have a structure which is yery close to that

of complete spaces (adjacent points in these spaces are distinguished

on symmetric pairs (x,y) and (y,x)). By using results of [19], the

statement of theorem 4.3 can be easily proven for these spaces (see,

however, [8] where the result is proven for L and [18].

It suffices now to prove theorem 4.3 for the space 0_only. We

begin with the following lemmas.

Lemma 4.1. (Generalized Szpilrajn's theorem [22]) Let P c R

where P is a reflexive partial ordering and R is an ordering. Then
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there is a linear ordering L such that

P C L C R.

Proof. Omitted. See [7].

We denote U = SxS - a universal relation with domain S; P-Q denotes

a composition of binary relations P and Q.

Lemma 4.2. Let R, and R« be orderings such tnat I, f I2. Then

there is an ordering RG [R..,R ] such that Rc R^ or Rc R2#

Proof. Let us define R' = P] u {i} n R..) and R!! = P. u (I£ n R^.

Then R' and R" are orderings. Indeed,

R« u(R')"1 «P1 u(l} nr2) up"1 u(i*1 nr"1)

=p1 up"1 u[i} n(r2 ur"1)] =P1 up^1 u^ =u

providing reflexivity and completeness of R\ Further, we have

R'.R = [P} u (l} n R2] • [P1 u (i} n R2)] = (P] . P^

u [(I. n r2) . p^ u [p1 . (ij n R2)] u [(^ n r2) . {i} n r2)]

c P] u [P1 n (r2 • p,)] u [P. n (p. . Rg)] u (I. n r2) = r« .

since i • p = p. • I1 = P, and I- n R is a transitive binary relation

Hence, R' is an ordering. Similarly, R" is an ordering.

Let us prove that either R' c R1 or R" c R2« We have

R' = P1 u {l} n R2) = (P] u 1^ n (P1 u r2)

= R} n (P1 ur2) CRr

In the same way, R" £ R2. Let us suppose that R' =R] and R" =Rg.

Then
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1} =R1 nR"1 =R' n iR'f1 =[P1 u (i} or2)] n[p"1 u (I"1 nr"1)]
=(P1 np"1) u {i} r. r. np"1) u (p] n^ ,-. r"1) u (i] nR2 nr"1)

= 4n4-

Similarly, I2 = I, n I which imply I, = I2- This contradiction

shows that either R' c R or.R" c R Let us suppose, for instance,

that R' c r Then

R1 n R2 c (r] n p^ u (R] n R£) « R] n (P] u Rg)

= R' C R C R1 U R£S

i.e. R' s [R,,R2] and one may take R = R' to complete the proof, a

By Ra we denote a restriction of a binary relation R on a subset

S\{a}.

Lemma 4.3. Let X = {R..} be a convex set in_0 such that ur. = u.

Then U G X.

Proof. By induction. The statement of the lemma is trivial if

k = |S| -2. Let k > 2 and a,,a2,a3 be distinct elements in S. By

inductive hypothesis, there are orderings R. such that R. q = U i for
Ki Ki

1 _< i <3. Since each R, is an ordering, we have either
Ki

R. = Uai U {(a.,x) : x e S} (4.2)
k. 1

or

Ru = Uai u {(x,a.) :xG S} (4.3)
Ki 1

for all i.

Let us suppose that R. u R f U for all i and j. Then all
Ki Kj

R. are different orderings. Indeed, if, say, R. = R. then
ki Kl K2
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K = K ~ u» ^ definition of R, , and R. u R = U. Moreover,

for i f j, R, and R. must have different representations (4.2) and
ki Kj

(4.3), for in the opposite case R. UR = u. It is impossible, since
Ki Kj

we have three different orderings R. . This contradiction shows that
Ki

R. UR = u for some i and j. Hence, U<= [R. ,Rk ], which implies
i j i j

U e x. n

The statement of theorem 4.3 follows from theorem 4.2 and the

following lemma.

Lemma 4.4. Let X = {R.} be a convex set in_0_and

n R. CRCUR..

Then Rex.

Proof. 1) u R = U.
i

Let X . be a set of all minimal elements in X with respect to
mm

the partial ordering induced by inclusion (see section 3). By lemma 4.2,

all orderings in X . have the same indifference relation I. The
3 mm

equivalence relation I is a congruence relation for all orderings in X,

by (4.4). Hence, without loosing generality, we may suppose that I is

the identity relation on S. Then all elements in Xmin are linear

orderings, and P = n R. is a partial ordering. By lemma 4.1, there is

a linear ordering L such that

P « n r. c l c R.

Let Xmin = {L..}. Then P=n Li ,and we have

n L. c l (4-5)
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which imply uL. 2L. Indeed, L7 UD=L. and L"1 UD=L, where D
i 1

is a diagonal relation. Then by (4.5),

U LT1 D I-"1

which imply u L. 2 L- Hence, L belongs to the set p(Xmin) in the space
i

L. But X . is a convex set in L, since it contains all minimal
mm

elements of the convex set X. We have P(*min) = xmin in L» since

theorem 4.3 is true in the space L. Hence, Le Xmin c X. By lemma 4.3,

U e X, which imply R G X, since L c R c U and X is a convex set.

2) u Ri t U.

By induction. The statement of lemma 4.4 is trivial if k = |S| = 2.

Since u R. f U, there is (a,b) ^UR., i.e. (a,b) £ R1 for all i.

(Note that a/b.) Moreover, we have (b,a) €0 R., since (a,b) £ R^ for all i.

By inductive hypothesis ,Ra and R coincide with some Ra and R.,

respectively. Let us prove, that R6 [R..,R.].

Let (x,y) e R, n r i.e. (x,y) e R. and (x,y) e R.. The following
i j I j

cases are only possible ones since (a,b) G u R.:
i

then (x,y) € Ra = Ra C R;

then (x,y) e Rb. = RD C R;2) x = a,y/b

3) x 7* b, y = a

4) x = b, y = a

then (x,y) e Rb «Rb c R;
j

then (x,y) = (b,a) e n R. c R.

Hence, (x,y) € R, which implies Ri n R^. C R.

Let now (x,y) e R. We consider the same cases again, since

(a,b) £ VRi 2RL:
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1) x f a, y f a; then (x,y) G Ra = Ra c R.

2) x=a, yf b; then (x,y) GRb =Rb cRJ
3) x^ b, y = a; then (x,y) e RD = R° c R.

4) x = b, y = a; then (x,y) = (b,a) 6 n R c R u R
i 'J

Hence RCR. UR

Finally, ReXsince R€ [Ri,R^\ n

5. Geometrical principles of group choice

In this section we consider only binary relation spaces for which

convexity and Pareto-convexity coincide. It may be, for example, any

preference space from diagram 2.1 as well as any complete space. Then,

from the geometrical standpoint, Pareto-points of a given set fill

out a convex hull of this set. Each such point lies between the

original points and can be regarded as an "admissible" group preference

in the sense that it satisfies the Pareto principle. Unfortunately,

convex hulls contain, as a rule, too many points and it is still a

problem to define a set of admissible preferences which would have some

kind of attractive geometrical properties, a relatively simple structure

and would be more "narrow" then the Pareto one. A constructive

method for this purpose is suggested below, based on a separation of a

convex subset -radical-in every convex set. Geometrically, a radical

lies "in the middle" of a given convex set and has some symmetry

properties. But a radical itself may have a quite complex structure.

Therefore, a sequence of embedded convex subsets is considered, such

that each consequent set is a radical of the preceding one. Naturally,

this sequence is stabilized and its least element is called a kermel

of an initial set. One can consider a kernel as the smallest convex

subset "lying in the middle" of a given set.
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Radicals and kernels will be defined and studied in the next

section. Here some general principles of geometrical approach are

stated.

First of all, two peculiarities of the approach developed should

be emphasized:

1) a set of admissible decisions is defined but not a unique

decision,

2) a set of admissible decisions is defined by iterated algorithm

of constructing more and more "narrow" nested convex subsets. These

peculiarities cause some difficulties in the attempt to compare the

geometrical approach with classical methods of group choice theory.

Wherever it is possible, we will present such a comparison.

Principle 1. All individual preferences and admissible group

preferences are considred as points in a given binary relation space R_.

A set of admissible group decisions is defined for every subset in R^

This principle can be regarded as analogous to the condition of

unrestricted domain in group choice theory. In accordance to principle 1,

a set of admissible preferences Y is some function F of subsets inj*:

F : X + Y

where X and Y are subsets in R_and X takes the values from all nonempty

sub-sets in R. A function F is considered in this paper as a generalized

collective choice rule. Since F does not depend on the order of points

of X, principle 1 contains anonymity condition too.

The next principle is based on the notion of "congruence" in j*.

One-to-one mapping 6 :jL+Jt is said to be a transformation iff it

preserves basic geometrical structures in R_. For example, if 6 is a

transformation, then R e [R\RH] iff 6(R) e [6(R') ,6(R")]. The set
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T(R) of all transformation of R,is a group with respect to natural

operations of composition and inverse map. Two subsets in R. are said

to be congruent if and only if there is a transformation which transfers

one of the given sets onto another. From the geometrical point of

view congruent sets are regarded as identical. Now we are able to

formulate

Principle 2. Let X' and X" be two congruent subsets in a space

R and 6 be any transformation such that 6(X') = X". Then correspondent

sets Y' and Y" of admissible group preferences are congruent and

6(Y') = Y".

Let F be a generalized collective choice rule. Then we have, by

principle 2, for any transformation 6

F(6(X)) = 6(F(X)),

i.e. principle 2 states that generalized collective choice rules are

commuted with transformations in spaces of binary relations.

Let us consider an important example of transformations. Let R_

be any preference space from diagram 2.1. Any permutation ir of the

set S induces a mapping it* :R -»- R71" where xR^y iff ir(x)R 7r(y). It is

easy to verify that it* is a transformation of R^. These transformations

form a subgroup n(Rj of the group T(R). Now it is obvious that

principle 2 contains a neutrality principle (a condition of object

equality) (see [9], p. 138) for spaces in diagram 2.1.

Principle 3. C(X') = C(X") implies F(X') = F(X").

In accordance with this principle a generalized collective choice

rule could be defined only for convex subsets in R.

As it was already mentioned above, a set of Pareto-points P(X)

of a given set X may be regarded as a set of admissible preferences.

-17-



By theorem 4.3, P(X) = C(X) for ail preference spaces in diagram 2.1,

i.e. the rule F = P satisfies principle 3. Principle 3 states that

even for more "narrow" rules a group choice should be based on the set

of Pareto-points of a given set, but not on this set itself. From this

standpoint, sets of individual preferences, which have the same Pareto-

set, are considered as equivalent.

In the form formulated principle 3 is a pure geometrical one;

because of theorem 4.3, one can also consider this principle as a

stronger variant of the classical Pareto condition.

6. Radicals and kernels

Only preference spaces from diagram 2.1 are considered in this

section.

Let X be a convex set in a space R. The partial ordering in this

space induces the partial ordering in X. Maximal and minimal elements

of X with respect to this partial ordering are denoted RITax,...,R

and R-ln,...jR?10, respectively. Evidently, X is a convex hull of the

set of its maximal and minimal elements; X can be regarded as a union

of all intervals [R^R™*] =X.. such that R™n cRmax, because
each point in X lies between some maximal and some minimal elements.

We consider now R as a subspace of the space B of all binary relations

on S. Then each X.. is an intersection of R with a hypercube X.. of
ij •"* •j

all binary relations lying between R?1" and Rmax. Let M be a minimal

hypercube in the space J3 with vertices U Rmin and n Rmax. Geometrically,
"* i 1 j J

this hypercube M may be regarded as lying "in the middle" between hypercubes

X... This general geometrical idea is a basis for the following

Definition 6.1. A radical r(x) of a convex set in R^is the set of

all points in R/iying between u Rmin and n Rmax. For an arbitrary set
j J

X we set r(X) = r(C(X)).
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Remark. Note that u Rmin and n Rmax do not, generally speakinq
i 1 j J

belong to the space R.

Theorem 6.1. A radical of any non-empty set is a non-empty convex

subset of its convex hull in any preference space from diagram 2.1.

In the framework of the approach developed, r(X) is considered as

a set of admissible group preferences which is, generally speaking, a

more "narrow" one then P(X). But r(X) itself may be still too

"large". Therefore we define a sequence of nested sets r^U) by

r0(X) = P(X) =C(X),

r-((X) = r(X), and

rk(X) = r(rk_](X)) for k> 1.

This sequence is stabilized because of finiteness of R.

Definition 6.2. A set

k(X) = n r. (X)

is said to be a kernel of X in the space R.

From theorem 6.1 we obtain immediately

Theorem 6.2. A kernel k(X) of any non-empty set X is a non-empty

convex subset of C(X) and r(k(X)) = k(X).

Notions introduced will now be illustrated by examples of spaces

from diagram 2.1. By theorem 3.1 it is sufficient to consider only

weak preference spaces L,_0_, QT and WP.

The space QT from this standpoint was studied in [12]. Each

convex set X in QT has a unique maximal element. It implies immediately

k(X) = r(X) = {R €QJ|R G [U Rmin, Rmax]} (6.1)
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Since u Rmin belongs to (JT, kernels, in QT have a wery simple structure:

they are intervals [R1,R"] such that R' c R", R», R" G (JT and any such

interval is a kernel of some convex set (for example, of itself). The

same description is true (trivially) in the space WP.

The space L provides an example, in some sense, opposed to that of

QT. The partial ordering is trivial in L, because linear orderings

are not comparable by inclusion. Hence,

k(X) = r(X) = X

for any convex subset in the space J^. Therefore, the approach developed

in this paper permits to separate the only class of admissible preferences,

namely, the class of Pareto-points. A weakness of geometrical approach

in the case of L is related to the exclusively "homogeneous" (from a

geometrical point of view) structure of convex subsets in this space.

In this sense, the problem in question is analogous to the search for

a "middle vertex" in a regular polygon.

Even simple examples demonstrate the non-triviality of introduced

notions in the case of the space_0_. In particular, theorem 6.1 is

non-trivial just in this case. We consider here only an important

non-geometrical property of radicals in 0. Let X be a convex hull of

the set {R,,...,R } of individual preferences (orderings) in the space

0. We define Rr as a Pareto non-dominancy relation for {R,,...,R }. i.e.

xRny +♦ -[(VOyR^ &(B^yPjx]

(see [20], p. 52). Note, that, generally speaking, Rjj does not

belong to the space 0. It may be proven that Rn lies between u R.. and
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nRmax in the space B^. Hence, if Rn belongs to 09 then this relation
j J
belongs to the radical r(X) of the set X= {R1,...,Rm>. Based upon this

fact, points of the radical in the space 0 may be regarded as orderings

similar to the Pareto non-dominancy relation. It could be considered

as a non-geometrical argument in favor of study of radicals in the

space CL

We complete this section with the proof of theorem 6.1. As it

was mentioned above it suffices to prove it only for the space 0_.

Proof of theorem 6.1. Let us consider a relation I = n I .
i

It is easy to verify that I is a congruence relation for

n Rmax. By Szpilrajn's theorem [22] there is an ordering R such that
max

I is an indifference relation for R and R Dn R . Obviously,
i

(n Rmax) n (u R?in) c r
i ' i 1 "

Let us prove that

rc (fiRmax) u (URmin).
i 1 i n

In the opposite case there is (a,b) e R such that

(a,b) £ (n Rmax) u (u Rmin)
i i

or, equivalently,

(a,b) €HRmax and (a,b) ? u Rmin . (6.2)

Then (a,b) € p. Indeed, if (a,b) e I, then

(a,b)enimaxcr,Rmax,
i i

which contradicts to (6.2). Hence, (a,b) G p. We have

pcu pmax, since RDn R1?^. Hence, (a,b) e P^ for some 1
i ** i . .

the other hand (a,b) ? u R™n implies (b,a) e n Rmin c n Rmax, which,
i i i

in its turn, implies (b,a) G Pl?ax and (b,a) G Rmax. This contradiction

completes the proof. H
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7. Conclusion

In this section some general remarks and problems related to the

geometrical approach to group choice are listed.

1) Diagram 2.1 can be extended by inclusion of different spaces

of preferences. For example, the space of all semi orders [14] and

related spaces of weak preferences and indifference relations are

naturally included in the framework of diagram 2.1 (in this connection

see [17]).

2) Basic geometrical structures of binary relation spaces are

defined in this paper internally whereby a structure of their points

(binary relations). In [19] a lattice-theoretical approach to this

problem was suggested, which involves only "external" definitions of

geometrical structures. This approach gives an equivalent result in

case of complete binary relation spaces. It is an interesting problem

to find an "external" geometrical description, of such spaces as, for

example, incomplete spaces 0_and E_.

3) An interesting problem is a study of "morphisms" of binary

relation spaces, in particular, a full description of transformations

in these spaces. For example, the space L admits a wider group of

transformations then that generated by permutations. We have seen

already that transformations generated by permutations have a natural

interpretation in terms in neutrality principle. What kind of general

group choice principles correspond to the full group of transformations?

4) The following peculiarity of the approach developed should be

noted. In all cases, when k(X) = C(X), i.e. when a kernel coincides

with a convex hull of a given set, it could be stated that X is a "bad"
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set from the geometrical choice point of view. It means that C(X) is

too homogeneous set to select a "middle" of it: all points of C(X)

have equal rights to be chosen as group preferences. A good example

of this situation is an interval X = [R1,R"] where R'C R" and both

points belong to a space considered.

5) Is it true that a kernel is always an interval [R',R!!] with

R' CR!1? The only non-trivial case is the space 0_ (and QS). Many

interesting properties of radicals in 0_may be proven which provide a

basis for their effective construction. The author intends to study

these problems in future papers.

6) It should be noted that the approach developed in the paper

does not take into account a "multiplicity" of points; namely, if two

or more individuals have the same preference, they are represented by

a single point in a preference space. More general approach should

involve "weights" of points and is not considered in this paper.

Nevertheless, note that any Pareto principle has the same "shortcoming".

7) Metric structures - which have not been involved in our study -

would provide more advantages in a geometrical construction of group

preferences. For example, "means" and "medians" may be used to

separate more "narrow" sets of admissible preferences from kernels

(see, for example, [2]).
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Fig. 2.1



Figure Caption

Figure 2.1. Diagram of Binary relation spaces



List of Symbols

WP, SI, 0., L., SP, P, QS, SL, I, TO, JE, D, R, B should be bold script

a, 3, 5, tt small Greek letters

A, S, TI capital Greek letters

V, ~, &, e, V logical symbols

—*• arrows

$ symbol for empty set

a alpha with tilde underneath

n, u, c, D set-theoretical symbols
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