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Abstract

In this report, we formulate a general class of linear time-invariant
discrete-time distributed systems; and we study in depth these systems
from the control system design point of view. We consider both
single-input single-output (SISO) and multi-input multi-output (MIMO)
systems, investigate their analytic properties, and establish design
procedures for these systems.

The input-output (I/0) behavior of a Tinear time-invariant system
is specified by its transfer function: For a causal lumped SISO system,

its transfer function is a proper rational function. Such rational

transfer functions have been extensively studied as functions of a com-
plex variable, which led to many important control theory results (e.g.
Nyquist theory, Bode plot, etc.). Vidyasagar pointed out that a proper
rational function can be expressed as a ratio of two elements in some
algebra other than the algebra of polynomials (e.g. the algebra of pro-
per "stable" rational functions): This observation has led to a broad
effort to investigate the relationship between the important properties
of Tinear time-invariant systems and their algebraic structures. Extend-
ing this idea to continuous-time (distributed) convolution systems,

F. M. Callier and C. A. Desoer (1978) developed an algebra of transfer



functions ﬁ(co) for describing their transfer functions: here every
element of §(co) is expressed as a ratio of two elements in an
algebra X_(co), the subalgebra of causal co-stab1e transfer functions.

In this research, we study discrete-time (distributed) convolution
systems, by making full use of the algebraic tools that have proved to
be useful in the study of the other system representations, we develop
a commutative algebra of transfer functions, B(po), for a general
class of SISO discrete-time convolution systems, which covers sampled
distributed-systems and, of course, lumped systems as a special case.
Each element of B(po) is formulated as a ratio of two elements in an
algebra I]_(po) of causal p)-stable transfer functions. We demonstrate
that i1_(p0) is indeed a Euclidean ring; we give necessary and suffi-
cient conditions for coprimeness between elements in E]_(po); and we
study the concepts of poles and zeros for elements in B(po). In
contrast to the existing theory on transfer functions corresponding to
Ql-sequences,the algebra 5(90) includes both stable and unstable
systems; and since Py < 1, this formulation allows us to study the
dominant poles inside the unit disc of the complex plane.

With the SISO theory well established, we study MIMO systems whose
transfer functions are matrices with elements in E(po), and we estab-
1ish the matrix fraction representation theory. Consequently, matrix
multiplication introduces many additional problems: commutativity is
lost, zero divisors are present, and the ring structure is lost in the
case of nonsquare matrices.

We then investigate in detail many results of MIMO 5(p0)-systems
that have similar counterparts in the other system descriptions: In

particular, we obtain the dynamic interpretation of poles and
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transmission zeros. We consider interconnections of such MIMO systems,

with feedback as a special case. We introduce the notion of charac-

teristic functions to study the overall stability of any such inter-

connection (an idea similar to but not identical with that of charac-

teristic polynomial); and we obtain necessary and sufficient conditions

for zp—stability, ¥p € [1,»]. The matrix fraction representation also
allows us to obtain procedures for designing feedback systems with

controllers to achieve stabilization (analogous to arbitrary closed-loop

eigenvalue assignment), asymptotic tracking and disturbance rejection;

finally, for the case of stable square plants (which can be obtained
from an unstable one by the stabilization procedure), we are able to

achieve complete decoupling with detailed pole assignment and finite

settling-time, subject to, of course, the limitations imposed by the

plant transmission zeros outside the open unit disc.
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1. Introduction

Consider a discrete-time convolution system whose weighting
sequence is obtained by sampling the impulse response of a continuous-
time linear time-invariant distributed system. Such a sampled system
cannot, in general, be represented by a rational z-transfer function.
In this paper, we develop a general theory to cover such cases. Our
approach includes the rational transfer functions as a special case,
and in many instances, the analysis exhibits some resemblance with the
existing techniques for the rational case.

In Section 2, we develop a model for a class of such systems,
whose transfer functions are elements of an algebra denoted by B(po).
The model encompasses both stable and unstable systems in the input-
output (I/0) context. We discuss some properties of the poles and zeros
for such systems, and we give some examples to demonstrate this more
general model of system description. We consider in Section 3 multi-
input multi-output (MIMO) systems whose transfer functions are matrices
with elements in 5(00): we examine the notion of coprimeness (left-
and right-coprime) and derive the matrix fraction representation theory
for these systems. In Section 4, we consider the poles and define
(transmission) zeros for MIMO systems and exhibit their dynamic interpre-
tations; an example is given to demonstrate the claimed propehties of
the transmission zeros. Interconnected systems are considered, in

Section 5: here we introduce the notion of characteristic function for

studying I/0 stability. As a special case of interconnected systems,
feedback systems and their I/0 stability are studied in Section 6. 1In

Section 7, we study the problem of controller design for feedback



systems to satisfy specifications on stabilization, tracking and
disturbance rejection; an example is provided to demonstrate the step-
by-step procedure to obtain the controller transfer function. In
Section 8, we extend the findings of [Des 5] to study feedback decoupling
when the given plant is square and stable. We conclude this paper by

some discussions in Section 9.

Notation
Let R (¢) be the field of all real (complex) numbers; let

= {0,1,2,...} be the set of all natural numbers, and N* := N\{0}

= {1,2,3,...} be the set of all positive integers. We denote by IRN

(respectively G:N) the set of all real (resp. complex) sequences on N,

N (resp. ¢N) := {(9(0),9(1),g(2),...)|g(k) ER (resp. €), Yke N};

and we denote by IRE‘

i.e. R

(resp. u‘,?) the subset of all z-transformable
N

belongs to ]RN

sequences in rN (resp. CN), i.e. g€ ]RE\l (resp C 7

(resp. C?) if and only if the series Z g(k)z converges for some
Z€(C. Forany k€ N, we define Gk G ttN as the complex sequence
on N with ék(k) =1, and Gk(1) =0 Vi#k. Let the superscmpt
denote z-transforms: if g € ¢]N then §(z) := Z g(k)z is
defined for z €( wherever the series converges; 1f S c (EN then
3 := {§|gEeSs} C¢Z. For any nonzero g G(IZ » we define the order
[Kuc 1] of its z-transform § as ord(§) := index of the first nonzero
component of g. Let ¢[z] be the ring of all polynomials in the
complex variable z with coefficients in ¢, €(z) be the field of
all rational functions, and (Ip(z) be the subset of all proper
elements of (€(z). The spaces of n-tuples and matrices are specified

by superscripts in the usual manner, e.g. €", R(z)™™,... . Let o,



be the zero element of C". For a € €[z], let 92a denote the
degree of a; if v € (t[z]n, then 3v denotes the maximum degree of

xn,

the components of v. For M E€([z] 0 1, we denote by ac M the it
i

column degree of M (i.e. the maximum degree of the components in the

ith column of M). Similarly, for a €¢[z”'], a polynomial in z7',

we denote by 3a the degree of a as a polynomial in z'].

Let

K€( beopen: for f: K—¢(, Z[f] denotes the set of zeros of f;
for F: K—->¢n0xni, P[F] denotes the set of poles of all components
of F. Let py>0; we denote by D(py) := {ZGEHZI <pg} the open

disc with radius fo about the origin in the complex plane.

h

')



2. E(po), the Class of Transfer Functions

2.1 Convolution systems

The I/0 characterization of discrete-time causal convolution
systems is most conveniently done through their weighting sequences.

When an input sequence u € ¢DI is applied to a causal convolution
system with weighting sequence h € Gmk the output sequence

y= (y(k)):’=0 := h*u is given by the convolution formula
k K
y(k) = } h(i)u(k-i) = J h(k-i)u(i) Yk €N (2.1)
i=0 i=0

where the summing variable i represents the age variable.

For any p € [1,»], let -!p be the usual norm defined on the
normed space zp ClIN. It is a well-known fact [Des 1, p.244] that if

h € Z], then, ¥p € [1,=],

€ :=h*yu € ,
u2p=>y ulp

and in fact, Y¥Yp € [1,=],
* . 2.2
|h u|p < |h|]|u|p (2.2)

The relationship, however, lacks the useful information of how fast the
sequence' y decays, even when u 1is zero except for a finite number
of compongnts.+

Suppose now that the sequence h satisfies the stronger condition
that, for some Py € [0,1[, the sequence h defined by

h := (h(k)pak)i;o belongs to %,. If the input sequence u has

TThe sequence g € Gml is said to decay to 0 exponentially at a rate
(at least) w iff 3Ju >1, 3M >0 such that |[g(i)] iM(]/u)1 YiEN.




finite support (i.e. there exists least NE€ N such that u(k) =0

Yk > N), then for any k > N,

k
Y91 = | ] h(3u(kh]

Ih(1)] |u(k=1)]

In
NESAx =~

0 for i >N

0
k
= E [h(i)||u(k-1)] since u(i)

A
=
8
~1

[h(i)| since |u]_ = max |u(i)]
i=k-N 0<iz<N

k

k-N
lul o )
0 i:k_

IA

i
N|h(1)|p0

ly (k)|

| A

ul fRl g™ vk 2 N (2.3)

Hence, the output y decays exponentially to 0 at a rate at least
96], where the constant’ M may depend on N (from (2.3), we may

take M := max{|y(0) |, ly(D) o5 ..o ly(8=1) [0y (V5 Jul Il 05N

2.2 The Class of Sequences 2](90)

The preceding discussion leads us to consider the class of weighted

sequences

2 (pg) := {g€¢w|kzolg(k)|p6k<w} cel (2.4)

where typically °0 € [0,1[. The properties of this class of sequences
are given below. Detailed proofs of these properties and the properties

in the next subsection, namely 2.3, are given in Appendix A.

TSee footnote of previous page.



zl(po) is a complex vector space. It forms a complete normed

space with the norm H-Hp : Ql(po)——»]R+ defined by

0

= ¥ -k
ol = kgolg(k)lpo Vg € 2,(0) . (2.5)

(2.2.1) If we choose :as multiplication in 21(p0) the convolution
operator, 2](00) is a commutative Banach algebra with neutral element

(unit, multiplicative unit, multiplicative identity) 60 := (1,0,0,...).
(2.2.2) For 0 <0y <pp %(py) € 21(0p).

(2.2.3) 2](p0) has no divisors of zero and is thus an integral domain

(entire ring [Lan 1]).

(2.2.4) For any g€ ll(po),
(i) the series ) g(k)z"k converges absolutely for all

k=0
= D(po)c and is bounded there by gl ;

0
(ii) ¥Ye > 0, it converges uniformly in D(p0+e)c, hence §(-)

is analytic in DipOS:;

(ii1) as |z —w, §(z) —g(0).

(2.2.5) E](po) is a commutative algebra of functions analytic in
Dipoic and bounded in D(po)c, with pointwise addition and multipli-
cation, with neutral element 30(2) =1 V¥|z| > py> and with no

divisors of zero.

(2.2.6) Inversion Theorem

g € Ql(po) has an inverse in zl(po) (2.6)



< inf |§(z)| >0 (2.7)
|ZIZPO

< (i) g(0) #0 (2.8)
(i1) d(z) # 0 V¥|z| >0,

Note that if h € 21(90) is the inverse of g, then
h(z) = 1/§(z). The next property will be useful for proving the

coprimeness condition of (2.3.6).

(2.2.7) Given f, g in the Banach algebra 21(90)’ Ju,v € 2](00)

such that
uxf + vkg = §; , (2.10a)
or equivalently, (uf+vg)(z) = 1 ¥|z| > o (2.10b)
e inf |[(f(z).a(z))| >0 (2.11)
|Z|Zpo
« (i) |(f(0),q(0))] >0 (2.12)
(1) [(f(z).q(2))| > 0 Y¥|z| 2 Pg
where |+| 1is any norm on ¢2. 0

2.3 The Class of Sequences 2, (p,)

For Po > 0 typically Po <1, we define a class of complex

sequences on N by

2log) = U nle) cel . (2.14)
05p]<p0

Note that 2]_(00) - 21(00)’ in view of definition (2.14) and
Property (2.2.2). ]



(2.3.1) 21_(p0) is a normed commutative subalgebra of zl(po) with
norm u'Hp » With neutral element 60, and with no divisors of zero.
Similarly 11_(p0) is a commutative pointwise-product subalgebra of
i](po), with neutral element 30(2) =1 VY|z| > pys and with no
divisors of zero. Consequently, Q]_(po) and il_(po) are both

integral domains.

(2.3.2) If g€ 21_(p0), then

(i) §(+) 1ds analytic in ﬁTE;TC for some P < 0y in particular,
it is analytic in D(po)c;

(1) §(+) {s bounded on D(p )¢ 3 D(p)®;

(i11) §(-) has a finite number of zeros in D(po)c.

(2.3.3) g€ 2]_(p0) has an inverse in 2]_(p0) (2.15)
< inf |§(z)| > 0 (2.16)

|Z|Zpo
< (i) qg(0) # 0 (2.17)

(1) §(z) # 0 ¥|z] > o,

(2.3.4) i]_(po) is a Euclidean ring (hence a principal ideal ring
[Sig 1, p.133]), with a gauge [Sig 1, p.132] [Her 1, p.143] (or stathm
[McD 1, p.30]) y: %;_(py)\{0}— N defined for all nonzero

§ €2, (05 by

Y(§) := ord(§) + number of zeros of § in D(po)c, counting (2.18)
multiplicities.

The Euclidean algorithm is given in Procedure A.1 of Appendix A.
Consequently, 2]_(p0) is a Euclidean ring (and thus a principal

ideal ring) with the same gauge defined for E]_(po).



(2.3.5) Definition. Given f, g 1in the commutative Euclidean ring

2]_(p0). Then f, g are said to be Po- oprime iff any greatest common

divisor of f and g, denoted by gcd(f,g), 1is an invertible element

of 11_(90) [Sig 1, p.142] [McL1, p.154].
f, g € 2]_(90) are also said to be Po- oprime if and only if

f, g € 21_(p0) are p,-coprime.

(2.3.6) Given f, g€ 2]_(p0). f, g are po-coprime, (2.19)
* Ju,v € 2y _(py) such that

uxf + v*g = 60 s (2.20a)
or equivalently, (ufF+vg)(z) = 1 V¥|z| 2 0y (2.20b)
e inf [(f(z),9(z))] > 0 (2.21)
IZIZPO
< (i) [(f(0),g(0))] > O (2.22)
(i1) [(F(2),52) >0 V|z| > oy,
where || s any norm on ¢2.

2.4 The Class of Sequences iT_(pO)
With 21_(p0) defined above as in (2.14), we define a subset of
it by

2y_(pg) := {9621_(po)i|;1ir_nm§(z)=g(0)#0} : (2.23)

Note that RT_(pO) and E?_(po) are multiplicative subsets [Lan 1,

p.66] [Zar 1, p.46] of &, (p;) and Z;_(p,), respectively.

Remark 2.1. Consider Property (2.3.6). A necessary condition for

f, g € 21_(00) to be po-coprime is that at least one of them must

0
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belong to QT_(QO). Under this condition, f and g are po-coprime
iff | (f(z),9(2))] >0 Y]|z| > g e f and g have no common

zeros in D(po)c. (]

2.5 The Transfer Functions in E(QO)

We now define a class of complex sequences on N whose zZ-trans-
forms form the class of (stable or unstable) transfer functions we are

concerned with.

Definition 2.1. Given the convolution algebra 21_(90) and the multi-
plicative subset 2?_(p0), 0 < Po < 1, the algebra of fractions S(po)
(Zar 1, p.46] [Lan 1, p.66] is defined by

-~

blog) 1= [X;_(0g)IET_(0))1™! (2.24)
{g=/d|i€q, (o), d€T]_(p)} .

Let b(po) be the set of complex sequences on N defined as
e Ni~cer N
b(pg) = {g€C" | §E€b(pg)t ¢, . O (2.25)

Remark 2.2. (i) The z-transform is a linear bijective map from b(po)
onto 5(90). The definition (2.25) shows immediately that it is a
linear map from b(po) into B(po). This map is bijective because

every g € B(po) can be expressed as a Taylor series (necessari]y

unique) about infinity, thus specifying a unique sequence in b(po) C mht

More precisely, § = fi/d where ii € i]_(oo) and d € ET_(OO) are
both analytic and bounded in D(po)c. Since d has a finite number of

0 such that

Iirf |d(z)| > 0. Thus § 1s analytic and bounded in the "annulus"

zeros in D(py)® and 1im d(z) = d(0) # 0, then Jp, > p
Z |9
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given by [z| € [py,=[. Hence V|z| > pq» §(z) can be expanded as a

unique Laurent series

N s - , k
§(z) = ] g(k)z K4 Y g'(k)z (2.26)
k=0 k=1
where, Vo > o4,
1 ~ k-1
g(k) = 77T 4(z)z" 'dz YK E N (2.27)
™) IZ =p
and
1 - ] ~ 'k‘] * !
a' (k) = ——3( §(2)27% 14z vk e N, (2.28)
ZTI'J IZ|=Q

Since the value of the contour integral in (2.28) is independent of

. ~ . ~ . (of
0> 0y and since §(z) 1is bounded by some Grax < in D(pd)

hence for k > 1, as p—», the integral in (2.28) goes to zero.

Hence g'(k) = 0 Yk € N*, and (2.26) represents § as a power series

in z']; thus § specifies a unique sequence (g(k)):=O in b(po).
(ii) From the proof of the preceding remark, it follows that if

g: D(p)¢—C s analytic and bounded on D(pg)C for some pg >0,

then § € 2]_(99). O

(2.5.1) It is well known [Zar 1, p.46] [Lan 1, p.66] that b(py) is a
commutative algebra of fractions with pointwise sum and product, and
neutral element given by 50(2) =1, Y|z| > Pp- Consequently, b(po)
is a commutative convolution algebra of complex sequences on N with

neutral element §, := (1,0,0,...).

0

(2.5.2) For any §=1f/d€bloy) with fi€2, (o)) and d €7 (p,),

0/
since fi, d are analytic in D(po)C and both have only a finite

number of zeros in D(po)c, g has a finite number of zeros in D(po)C

12



and is analytic except for a finite number of poles in D(po)C (i.e.

g 1is meromorphic in D(po)c). Moreover, ¢ 1is bounded at « because

l11im g(z) = n(0)/d(0) and |n(0)| < =, d(0) # O. a
Z |

Definition 2.2. The pair (fi,d) is called a po-representation (po-r.)
of §e5(po) iff

(1) el _(og), d€E (o)

[ |

(ii1) § = fi/d;
(iii) f#, d are py-coprime. O
Lemma 2.1. If §E€ E(po), then § admits a py-representation. 0

Note. The proofs of lemmas and theorems are relegated to Appendix B.

Lemma 2.2. Given g € B(po), let (fi,d) be one of its po—representa-
tions (whose existence is guaranteed by Lemma 2.1). Then for any

P € D(py)S,

th th

(1) § has an m™" order zero at p iff fi has anm"" order
zero at p;

(ii) § has an mt" order pole at p iff d has an mt order zero
at p. O

Recall that mp(z) denotes the set of all proper rational func-

tions in the complex variable z with coefficients in €, and let

1(og) = €,(2) NE;_(og) (2.29)
(pg) = 1(pg) NEY_(pg) = ¢, (2) NET (py) - (2.30)

It has been shown in [Mor 1] that n(po) is a principal ideal

ring. In fact, M(po) is a Euclidean ring, with a gauge

13
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v: n(po)\{O}-—+HV defined as in (2.18) when n(po) is viewed as a

subset of E]_(po); equivalently, for any nonzero a EAn(po),
yv(a) = number of poles of a in D(po) - number of zeros of a in D(po).

The Euclidean algorithm for n(po) is similar to the one for R(oo)
given in [Cal 2] [Cal 3], by noting that the role of D(po) with
respect to n(po) is the same as the role of 60 _ with respect

0
to R(oo).

Definition 2.3. A p,-representation (n,d) of g€ 5(00) is said to
be normalized iff
(i) d Elmw(oo)
(i1)  Tim d(z) =1
|2 ]+

(111) z[d] € D(py)® O

Remark 2.3. (i) Observe that d Gléw(po) is a rational function whose
numerator and denominator polynomials have the same degree, and all the

poles of d are inside the open disc D(po). Hence a po—representation
(n,d) of §e€ 5(90) is normalized if and only if d(z) can be

expressed as a finite product of rational factors of the form

(z-p)/(z-a) (2.31)

where p € D(po)C and a € D{p).
(i1) If (A,d) is a pp-representation of g€ B(po) with
de né(po), we can easily obtain a normalized po-representation (n,d)

of §e€ 5(00) by adjusting the factors in d: more precisely, put

d(z) in the form



s o T () r"2 (z-p;)
d(z) = d(0 )1 ]'(m -m _HTZ__a—Y (2.32)

where d(0) €€, d(0) # 0; a; € D(po), i= 1,2,...,m2; p; € D(po),

s . (o} .
is= 1,2,...,m], P, € D(po) , 1= m]+1,...,m2. Note that

] z-p )
¢ := d(0) z?-a_)-ell (po) (2.33)

is an invertible element of n(po) - E]_(po), and (fi,d) given by

-1

- -] ~

n:=n  , d:= EE (2.34)

is a normalized po-representation of 4. a

Theorem 2.1. If g€ E(po), then § admits a normalized Pg-represen-
tation. One such representation can be obtained by the following

procedure.

Procedure 2.1. Normalized po-representation.

Given § € B(po)

~ o~

~

Step 1. Obtain a pp-representation (n,d) of §.

Step 2. Determine all v not-necessarily-different zeros of d in

D(DO)C, call them Pys @ = 1,2,...,v
v (z-p_)

Step 3. Let d = d&¢ where d(z) := aE] z(x and we adopt the conven-
tion that I i——Rl = 1. Note that € := d/d is invertible in 2 (p ).
o=1 . v(Zp)

(Observe that d can also be chosen to be d(z) : 12—3—7- for any

choice of a, € D(po), a=1,2,...,v.)
> . ~

Step 4. Define i :=ng”' € E]_(po), then (fi,d) is a normalized

po-representation of 4.

Stop. O

15



16

Remark 2.4. a?(po) is a multiplicative subset [Zar 1, p.46] [Lan 1,

p.66] of both mp(z) and E]_(po). In view of Theorem 2.1, we
T, s vl | o yq-]

conclude that b(pg) = [2,_(pg)1[2y_(pg)1 " = [2, (o)1 (pg)]1". O

Theorem 2.2. Let g €CX. Then
€ B(po) (2.35)
if and only if Hp] < Py such that

§(z) = #(2) +d(z) vz € D(p))° (2.36)
where
(1) €7, (o) (2.37)

(i1) 7€ €,(z) is strictly proper, and is zero if and

only if g€ il_(po); (2.38)
(iii) if § ¢ E]_(po), then ¥ is the sum of the princi-
pal parts of the Laurent expansions of § at its

poles in D(po)c, in particular: (2.39)

N

(a) all poles of ¥ are in D(po)c, and (2.39)

th

(b) § has an m~ order pole at p € D(po)C if and

th

only if ¥ has anm"~ order pole at p € D(po)c.(2.39b)

The proof of Theorem 2.2 is given in Appendix B. Sufficiency is
proved by construction, and a procedure for obtaining a normalized
Pg-representation (fi,d) for § described by (2.36) through (2.39b)

is given next.

Procedure 2.2. Normalized po-representation from § = ¥+4q.

Given § 1in the form (2.36)-(2.39b).



set

w
o
®
—
L |
—h
\Q
m
=
—
!
P
©
o
S?
-
—
)
=
n
o
-

i=g, d=1 (2.40)
and stop.
Step 2. let ¥ =: n./d. define a coprime factorization of ¥ (2.41)
in the ring of polynomials in 2z, with dr monic.
Determine v := deg(dr). (2.42)
Step 3. Define (#,d) by

d(z) :=d (z)/z" (2.43)

r
i(z) := [n (2) +3(2)d (2)1/2°  |z] > o, (2.44)

r

and stop.

Observation. In both (2.40) and (2.43)-(2.44), (fi,d) dis a normalized

po-representation of 4.

Remark 2.5. In step 3 of Procedure 2.2, instead of using 2V as

denominator of both fi(z) and d(z), it can be generalized to be any

vth order polynomial in the form

Vv
I (z-a_) (2.45)
o=1 o
where a, € D(po), a=1,2,...,V. a
Theorem 2.3. Let § € E(po), and let (fi,d) and (ﬁ,é) be two

po-representations of 4.

U.t.c.

~

(1) 3h € 2, _(og), invertible in %, (ey), such that
= fih ,

-~

= dh

ar S



(ii) 1if, in addition, the representations are both normalized,
then h 1is rational with all poles and zeros in D(po), in particular,
(a) if d
(b) if d#1, 1let

1, then h =1

o= nr/dr (2.46)

be a coprime polynomial factorization of ¥ given in (2.36)-(2.39b)

with dr being a monic polynomial, then
d = dr/nh , d= dr/dh , h= nh/dh (2.47)

with dr’ o dh monic polynomials in ([z] of the same degree, and

such that N dh have zeros only in D(po). O

Remark 2.6. From Theorem 2.3, if (fi,d) is any normalized pg-represen-
tation of § € E(po), then d = dr/p, for some monic polynomial p
of the same degree as dr and has zeros only in D(po). By (2.43)-

(2.45) in Procedure 2.2, we can write

g = fi/d := [(n_+&d )/p1/(d,./P) (2.48)

and p appears as a common divisor (polynomial in ¢[z]) in defining
i and d. Hence the choice of p does not affect g, .and p could
thus be called a scaling polynomial in defining the normalized
po-representation: the restrictions of p being that it is a monic
polynomial with 3a(p) = a(dr) and Z[p] C D(po). Consequently, we
conclude that a normalized po-representation is unique up to a scaling

polynomial. a
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Theorem 2.4. Let g€ 5(90). Then

g 1is an invertible element of B(QO) (2.
if and only if
g(0) = |1}m d(z) # 0. (2.
Z—)OO

co

2.6 Examples. g =(g(k))k=0 € ¢E{
(2.6.1) g](O) :=

]
—

g, (1) := -]g ) (2.
1 2m-3
g, (k) := -5 T 5=, k = 2,3,4,
1 2=p M
By [Dwi 1, formula 5.3],
X = ] g (xS x| <1 (2.
k=0
Hence evaluating (2.52) at x = 1, we obtain
Z g](k) =0 . (2.
k=0

Note that g](O) =1 and g](k) <0 for k =1,2,..., hence by
(2.53)

X g](k) = -1 and Z |g](k)| =1,
k=1 k=1

i.e. ) |g](k)| =2 . (2.
k=0
Therefore, 9 € £1(1) . (2.

By Property (2.2.4), the series defining §1 converges absolutely i

D(p1)°; hence using (2.52), we obtain

19
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g,(2) = E 9](k)2'k = 551- vz € D(1)¢ . (2.56)
k=0

However, 51 in (2.56) is not analytic at z = 1, hence
9, §2,.(1) . (2.57)
Since g](O) # 0, thus
9y € £7_(pg) € 2,_(py) VYo > 1. (2.58)

(2.6.2) Consider the slight variation of example (2.6.1):

§,(2) := 2 2 €0D0(0.5)° ; (2.59)

then %eiﬁ&w,am %¢2Lw5h Mtgzeﬁj%)cgj%)
for all Py > 0.5.

(2.6.3) For any fixed a €¢, consider
g5(k) = a7kt . k= 0,1,2,... . (2.60)

Hence, for all z # 0,

ok -1
Gy(k) = [ AnTK - e, (2.61)
k=0
-1
p - !alp
j.e. kZo|g3(k)|p0k = e 0 o Yoq > 0 (2.62)

furthermore, by noting that g3(0) = 1, hence nonzero, we conclude that

93 € 2]_(90) - 2]-(00) - Z](po) Vpo >0. (2.63)

(2.6.4) Let g4(0) =0
94(k) =

(2.64)
» k=1,2,..

~|—
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By [Han 1, (5.13.4)],

co

I o= -n(i-x) vix] <1, x#1, (2.65)
k=1
i.e. kzoig4(k)|p6k = -In(1-pg') < =, Vo, > 1. (2.66)
Hence,
gq € 2y_(py) C 2](00) » ¥op > 13 (2.67)

but since the series in (2.65) does not converge for x = 1,
9, 2,(1) . (2.68)

By (2.65) and using the absolute-convergence property as in example

(2.6.1), we conclude that

a(z) = -1n(5§l , Yz eDdmrC. (2.69)
(2.6.5) Let 95(0) := 0
k 4 (2.70)
95(k) == T 7, k=1.2,..

i=1

Note that the sequence of positive numbers (gs(k)):=0 is unbounded,

hence
g5 § 2,(1) . (2.71)
By [Han 1, (5.13.21)],
A SN
) TJx = ;:Tﬁn(l-x) s Vx| <1, (2.72)
k=1 i=1
i.e E l9: (K) [onK = ——In(1-p7)) < = Yoo > 1 (2.73)
- L 195\%/10g 1 Po > TPg > I :
k=0 Py -1

Hence,

95 € 2 _(pg) © 21(py) 5 V¥pg > 1. (2.74)
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Using similar arguments as before, we have

§s(2z) = ]—f;m(-z;—]) , Y¥zeDme. (2.75)
2.6.6) (0) :=0
| s : (2.76)
gg(k) := zZ k=1,2,...

By [Han 1, (5.12.43)],

S 1 k. (XA
¥ —x = -| t In(1-t)dt , Vx| <1 (2.77)
k=1 k 0
In particular,
S s 1 ! -1 wz
T lgg)] = I = J ¢ n(1-t)dt = L (2.78)
k=0 k=1 k 0
hence 96 € 2](1) . (2.79)

However, the series in (2.77) does not converge for |x| > 1, hence

g € 21(0g) » Yoy <1, (2.80)
and thus 96 & 8,.(1) . (2.81)
2.6.7 0) :=0
( ) 97( ) (2.82)

By [Han 1, (5.9.16)],

o«

kz] k(k]+] “- “(];")‘"“‘X) s Ixl <1, (2.83)
. = -k _ 'l -]
1.8 I lg;(k)pg = 1+ (—-1n(l-py') <=, ¥o5 > 1. (2.84)
k=0 po

The case when Py = 1 is best calculated by using [Han 1, (5.9.17)]
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n
| I I
A (2
o0 . .I
hence Y g, (k)] = Tim (1-=5) =1 <=, (2.
k=0 o M

and so 95 € 2](1).

However, since the series in (2.83) does not converge for |x|
9; § 4(0p)  Vog < 1. (2
By (2.83) and the absolute convergence property as before,
3,(2) = 1+(z-1)1n(-z—;-‘-) , v¥zep(n° . (2
(2.6.8) Recall that n(po) c l]_(po); thus
221 € 37 (0g) 1, (og) » V¥og > 0, (2.

furthermore, it is also an invertible element of E](po), Vp0>»1. (2.

Using (2.89) and example (2.6.2), if

§(z) 1= 2 2‘3'5 , ¥z €D(0.5)° , (2.

then : g €blpy) » Yo

note that § has a pole at z = 1. Finally, from (2.90),

g € 'Q"I_(po) c 'Q'](po) ’ VDO >1. (2.

> 0.5 ; (2.

.85)

86)

.87)

.88)

89)

90)

91)

92)

93)
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3. Matrix Fraction Representation Theory

From this point on, we are concerned with multi-input multi-output
(MIMO) convolution systems whose transfer functions are matrices with
NP R ~ ~
elements in ¢Z s 2](p0), 2]_(p0) or b(po).

)nxn r

nxn
2 )

)nxn

~N\nxn =~ >
Observe that (¢z Y, 2](90 ]_(po and b(p0 are

all algebras with a pointwise sum and a non-commutative (pointwise)

product, with unit In.

Lemma 3.1. G € El(po)nxn (respectively E]_(po)nxn) is invertible in

2, (0)™M (resp. %, (0,)"") if and only if
1'"0 1-'70
inf |det G(z)| >0 (3.1)
Izlipo

~

i.e. det G is invertible in i](po) (resp. 2, _(pg))-

Comment. Such G is called a unimodular matrix in i.l(po)nxn

1)) 0

(resp.
[

xn

Lemma 3.2. G € B(po)nxn is invertible 1in B(po)n if and only if

I]im det G(z) # 0 , (3.2)
Z-)co

i.e. det & is invertible in b(p,). | O

The next lemma is a multi-input multi-output generalization of

Theorem 2.2.

R L. ngxn;
Lemma 3.3. Llet G € (mz ) . Then G € b(po) if and only if

for some o € [O,po[,

G=R+Q in D(p])c (3.3)

24
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. ngxn,
where (i) Q € 2,_(py) ;

.. ~ noxny | . ~ .
(ii) R € Gp(z) js strictly proper, and R = 0 if and only
naXn
‘e Re 01,
if G€2, (o) ;
(iii) if é¢i]_(

o™ .
po) , then R = (Fij) is the sum of the
principal parts of the Laurent expansions of G = (§..) at its poles

1J
in D(po)c; in particular, §1j has an mc" order pole at p € D(po)C

if and only if ¥.. has an mth

c
i order pole at p € D(po) . O

5 ngxn; . nxn,
Definition 3.1(x). Let N, € 21_(00) and D, € 2]_(00) .

The pair (N,,D,) 1is said to be py-right coprime (py-r.c.) iff any

. n.xn,
greatest common right divisor (g.c.r.d.) of Nn and Dn in £1_(p0) T
n.xn.
[McD 1, p.35] is an invertible element of i]_(po) L
. ny<ng . no<n;
Definition 3.1(2). Let 0, €2, _(py) and N, € %, (p,) .
The pair (D ’NZ) is said to be p0-1eft coprime (pg-1.c.) iff any
n.xn
greatest common left divisor (g.c.1.d.) of Dz and NK in E]_(po) 070
nAXn
is an invertible element of E]_(po) 0o, O
. ngxn; . n.xn,
Lemma 3.4(x). Nn € 2]_(p0) and Dn € 2, _(pg) are py-r.c.
n.xn . n.xn.
if and only if 3u, €%, (py) ' °, v, €%y_(p) | | such that
N *+V,0, = Ini (3.4)
- nOxn0 - noxn.
Lemma 3.4(2). DE € 21_(00) and NZ € 2]_(90) T are po-l.c.
xn . n.xn
if and only if EVE € i]_(po) 0 0, uz € 2]_(p0) 0 such that
N£U£+D£V2 = InO . (3.5)

a
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n-xn,

Definition 3.2(x). Let G € (M) O 7. The pair (N_,D.) is said to
z R n.xn.
be a po-right representation (po-r.r.) of G iff N, € E] (po) 07 and
n.xn, -
= i
Dn € 2]_(90) such that
X -1
(i) G = and
(i) (NK,DM) is Py-T-C-
(iii) det Dn € 2]_(p0).
N, "0*"
Definition 3.2(L). Let G € (mz ) . The pair (Dz,Nz) is said to
N~xn
be a p.-left representation (p.-1.r.) of & iff D, € &, (o) O ©
0 2o 0 2= M1-‘Po
~ 0 i
and N, € %, (0,) such that
(1) &=0,'n,
(1) (DZ’Nz) is po-l.c.
(ii1) det DI.EQL(QO)' O
Remark 3.1. By Cramer's rule and Definition 3.2(x) (respectively
NAXN
Definition 3.2(2)), if G € (¢§5 079 admits a Pg-T-T- (respectively
. NaXN.
po-l.r.), then G € b(po) 0 1 The next Theorem states that the con-
verse is also true. .

.. n.xn. -
Theorem 3.1. If G € b(po) 0 1, then G admits a Pgr-r- and a

-~

0g-1.r. More precisely, there exist matrices with elements in 2]_(p0),

namely
N/l.’ D’K.’ U/L’ VIL
Nps Dps Ups Vp
such that
(1) (N&,Dn) is a py-r.r. of G
(i1) (v Np) is a pg=1.r. of G



(iii) N, ng n. ng

gl =N, 1D, [[ N1 v, | 0 | In,

Remark 3.2. If we call the matrices on the left hand side of (3.6) W

and w'] respectively, then obviously W 1is an invertible element of
; (nj#mg)x(ngino) -1
2,_(pp) . In particular, we can scale ¥ and W

so that -1
det W=detWw ' =1. (3.7)

a

Theorem 3.7 can be proved easily by construction using the Euclid-

ean algorithm for E]_(po). However, this is an unnecessarily difficult

way to obtain a po-l.r. and Pgr-r- We give instead a proof based on
n,xn,

the following procedure for the general case when G ¢ 2]_(90) 0 T

this procedure uses the Euclidean algorithm for n(po) instead of the

one for 2]_(p0).

Procedure 3.1. pg-r.r. and po-l.r.
- ngxny . . No*N;
Given G € b(o,) , G¢€& 2, _(pg) 1

Step 1. Find R, § according to Lemma 3.3 so that

G=R+Q (3.8)
. N L n.xn.
with R € (o)) © ', §€%j(pp)
. - nXn; A nyxng
Step 2. Find Menmwo T and D, €x(py) with
det Dn € 1 (po) such that
R=A91 (3.9)
o :
A n; . th
e.g. set Dn = d1ag[dj]j=] where for j = 1,2,...,ni, dj is aj

27
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~

column least common denominator of R with respect to n(po).

Step 3. Consider the (ni+n0)><ni full rank matrix

ni

. N0 (n +n.)xn,
s T-Rlenpy) PO (3.10)
0 Nn

By performing elementary row operations based on the Euclidean algorithm
in the Euclidean ring n(po), bring M to "upper triangular" forms,

i.e. find an (n1+n0)><(n1+n matrix @ invertible in

(n1+n0)x(ni+n0)

)
- 0 nyxn,
R € 2(pp) T such that

[w}[ﬂ = :;[f{l . (3.11)

Observe that, as in the previous remark, ® can be scaled so that

0’

n(p and a full rank upper triangular matrix

det W = 1.

Step 4. Partition @ and Tk into

n.  ng nj ng
I N A . n.[D | -U
W= 1[._.;_5} . ‘[_’El-_!:«l (3.12)
", -Nzl Qe "o N&I V@
Step 5. Define
Op = Oy Pp =0
N/L N N/‘L+Q n Nf. s £+D£Q (3]3)
Vp = V- U0 Vp = Vﬂ'auz
Un - un u£ = u£

and stop. a
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Comments. (i) The eight matrices in (3.12) with elements in

n(pg) C 2y_(pg)s namely

satisfy Theorem 3.1 with G<—R.
(i1) The eight matrices in (3.13) satisfy the conclusions of

Theorem 3.1.

Remark 3.3. Observe that in Procedure 3.1, which is used in the Proof

of Theorem 3.1, we actually obtain

0 @
D, € /t(po) det 0, €2 (po)

D, €Exr

nAxn
00
2 (QO)

det DE En (po)

i.e. the denominator matrices of the Pgr-T- (Nn’vn) and the po-].r.

(DK’NZ) are rational. O

The next corollary follows from Theorem 3.1 and Remark 3.1.

n.xn.

Corollary 3.la. Llet G € (¢35 0 's then
. nAXn, '
6 €blog) 0 (3.14)
< G admits a pg-r-r. (N,.0,) (3.15)
© G admits a pg=1-1+ (D,5N,) (3.16)
O

Remark 3.4. In view of Corollary 3.la, we have

n.x

NAXN. n. -
b(pq) 0 {GG((IN) 0 1IG admits a p,-r.r. or p.-l.r.} . (3.17)
0 V4 O 0 D



The following corollaries are the MIMO generalization of Remark 2.1.

. noxni - nixni
Corollary 3.1b(n). Let N, €&, (o) and D, € 2, _(py)

with det D& € 2]_(p0). Then (Nn’va) is pg-r.c. if and only if

D
rank[} f(f)g] =n, VzE€ D(po)C . (3.18)
N, (z) !

. ngxn; - noxn0
Corollary 3.1b(£). Let N£ € 2]_(00) and D£ € 21_(00)

with det D£ € 2]_(p0). Then (Dz’Nz) is po-l.c. if and only if

rank[bz(z): Nz(zf] =n, Vz€ D(po)C ) (3.19)
- - a

In view of Corollary 3.1b(x) (Corollary 3.1b(Z)), we present next
an algorithm to obtain a py-r.r. (respectively, py-1.r.) for G given
by (3.3) and (3.8) that does not use the Euclidean algorithm in n(po)

(which is used in Steps 2 and 3 of Procedure 3.1).

N P
Procedure 3.2(1). py-r.r. for & € b(p) 1

Given - .
G =R+Q (3.20)

as in Lemma 3.3.
- NNy o n.xn,
Step 1. Find N_e ¢[z] , D eclz] T 1 such that

n
U
(i) R = NnDn

(i) (Nn’ﬁn) is right coprime in the ring of polynomials (¢[z]
(iii) det ﬁn £ 0.
n.xn,

1

Step 2. Find M € ¢[z] unimodular such that

D, =DM (3.21)



is column-reduced [Wol 1, Thm. 2.5.7]. Let

1

Now N,D.° is also a right coprime factorization of R.

Step 3. For 1 = 1,2,...,ni, let

Y, = ac.[Dn] (3.23)
i
and let m € ¢[z] be defined by
¥
wi(z) =2 (3.24)
n. n.xn,
Define S := diag(ﬂi)il] € ¢[z] . (3.25)
Step 4. Define
- 1 No™ "y
R, = NST € n(pp) (3.26)
- 1 nyn
D, = D,S € xlpy) (3.27)
Comment. (Nn’ﬁn) is a py-r.r. of R with elements in n(pg)
Step 5. Define
_ — - noxn1
N, := N, +Q, €2, (o) (3.28)
_ n.xn, n.xn,
0, =0, € fL(pO) C 4 (po) (3.29)
Comment. (N&’Dn) is a py-r.r. of G.
L. nyxn;
Procedure 3.2(2). po-l.r. of GE b(po) 1
A pg-l.r. (UK’NZ) of G in (3.20) can be obtained through
obvious modification of Procedure 3.2(x). O

.22)
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5 o 0N
Theorem 3.2. let G € b(po) .

G and any py-r.r. (N&,Dl) of G, there exist matrices with elements

Then for any py-1.r. (?Z’Nt) of

~

in 2]_(p0), namely

un, Vn’ Uﬂ’ V£
such that

n1. no n]. n

n,[ v lu[o ! -u In.| 0
1{5;4}[_@-%= (.".u-.—l. (3.30)
ngL-N, 10, [N, |V, L0 IIng] O

The next corollaries follow immediately from Theorem 3.1 and

Theorem 3.2.

n.xn.
Corollary 3.2(2). Let & €B(pg) ° '. Then for any oy-1.r. (D,,N,)

of G, there exist matrices with elements in §1_(p0), namely

u

2 Vﬂ; Nn, D, u,Vv

VAR AR 1
such that
(1) (Nn,D&) is a py-r.r. of G.

(i1) Equation (3.30) holds.

Corollary 3.2(4). A statement similar to Corollary 3.2(2&) holds by

interchanging the terms “po-l.r." and "po-r.r.", and by interchanging

the subscripts "£" and "1". O

The following theorem is an MIMO generalization of Theorem 2.3.

L. ngxn;
Theorem 3.3. Let G € b(po)

two po-r.r.'s of G (respectively, let (DZ’NK) and (D',Né) be two

and Tet (N&,Dn) and (Ni,vi) be

po-].r.'s of é). Under these conditions, there exists a unimodular

matrix

32



. n;xn,
R €2, (pg)

. nNeXNg
(respectively L € 21_(90) ) such that

D& = DMR ) Nn = NMR

(respectively Dz = LDz, Nz = LNz).

(3.31)

(3.32)
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4, Poles, Zeros and Their Dynamic Interpretation

4.1 McMillan Degree of Poles, Smith and McMillan Forms

Consider a proper rational function matrix R € mp(z)noxni. It is
well known that the McMillan degree of R is the degree of the charac-
teristic polynomial x(z) := det(zI-A) of a minimal realization
(A,B,C,D) of R. Since the zeros of the characteristic polynomial ¥

are the poles of R, we henceforth define the McMillan degree of

pEeCl as a pole of R to be the order of p as a zero of x. Noting

ng*n;
are identical to

that the McMillan degrees defined for Re ¢p(z)
those defined for the strictly proper rational function matrix ﬁo

defined by ﬁo(z) := R(z) -R(»), we consider the following:

n.Xxn,
Lemma 4.1. Let R € mp(z) 071 e strictly proper, with partial

fraction expansion given by

m
- v a VA ;
R(z) = } 7} —0‘—1.. (4.1)
a=1 i=1 (z-p )
o
For o = 1,2,...,v, the McMillan degree of P, 2asa pole of R is

equal to the rank T of the matrix

Iyl Loz Zama
H = ZOLZ ZO&3 e 0 e G(mano)x(mani) (4 2)
a . .
a
Zam 0 0
= a o

In view of this lemma, we give the definition of McMillan degrees
)10

of poles for matrix transfer functions in E(p0 as follows:
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- n.xn.
Definition 4.1. Let p € D(py)® be a pole of G € B(py) 09 and

let the principal part of the Laurent expansion of G at p be given

by
- m Z,
G (z) = ] ——. (4.3)

The McMillan degree of p as a pole of G is defined as the rank of

the matrix

R (mn)(mn,)
Z, Z, - 0 mn.)x(mn,
Ho= | 2 :3 . leg O ! (4.4)
c 5 I EURPRRL
Remark 4.1. (i) If p€ D(po) is a pole of R E Ep(z) C b(po)

then, by Lemma 4.1, its McMillan degree as defined in Definition 4.1
agrees with the definition discussed at the beginning of this section.

n~Xn, naxn.
(ii) For G € B(QO) 0 ', let Re Gp(s) 077 e given as in
Lemma 3.3, i.e. R is the sum of the principal parts of the Laurent
expansions of G at its poles in D(po)c. Then the McMillan degree of
p € D(po)c as a pole of G is equal to the McMillan degree of p as

a pole of R. ‘ a

Recall that if (Nn’Dn) (respectively (DK’NK)) is a right
coprime (respectively left coprime) polynomial matrix factorization of
Re Ep(z)noxni, then det Dn (respectively det Dz) is equal to the
characteristic polynomial of any minimal representation of R modulo a
nonzero constant factor: hence the McMillan degree of the pole p of
R is the order of p as a zero of det D, (respectively det D,).

The next theorem contains a generalization of this result.
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L. nyxn;
Theorem 4.1. Let G € b(po) 1

, with a Pg=r-T- (Na,vn) and a
po-l.r. (Dz,Nz). Under these conditions,
(a) pe D(po)C is a pole of G < det Dk(p) =0 < det Dz(p) =0
(b) If pe D(po)C is a pole of G, then the order of p as a
zero of det Dn (respectively of det Dﬂ) is its McMillan degree.

(c) There exists ¥ € il_(po) invertible in E]_(po) such that

det Dn = r » det D2 . (4.5)
O

We study next the Smith and McMillan forms, as these concepts are
closely related to the notion of McMillan degree (see Theorem 4.3
below), and the notion of transmission zeros (to be discussed in

subsection 4.3).
Smith Form [McD 1, p.40][McL 1, p.361][Sig 1, p.370]:

- xn,
Definition 4.2. Given N], N, € 2]_(p0) 0 T, N} and N2 are said

2

n.xXn
to be equivalent iff there exist unimodular matrices L € E]_(po) 0o,
n.xn.
R E€ 2]_(90) V1 sych that
N.I = LNzR .
0

- Nn~AxN.
Remark 4.2. Throughout this paper, we say that N € z]_(po) 0 (or
N NAXN .
b(po) 0 ') has normal rank r iff rank[N(z)] = r for almost all

z € D(po)c. a
Theorem 4.2 [McD 1, p.40][McL 1, p.361][Sig 1, p.370]. Given
n.xXn.

NE il_(oo) 0 ', with normal rank r. Then N is equivalent to a

. = o™
matrix S[N] € 2]_(00) which satisfies



) r ni~r_
n :
n
r 2. : 0
S[N] = e (4.6)
n
I rlo_ .
I
no‘r— 0 I 0 |
where "i|n1+1’ i=1,2,...,r-1.

Definition 4.3. S[N] 1in Theorem 4.2 is called the Smith form of N. O

Remark 4.3. (i) In Theorem 4.2, nilni+] means that Ny isa
multiple of n. as elements of the ring 11-(90)’

(i1) In general, the Smith form S[N] is not unique. To avoid
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any confusion, however, we can assume that a fixed normalization procedure

has been chosen so that S[N] is unique: for instance, if we have

obtained a Smith form S[N] as in (4.6), we can use Fact A.1 of

Appendix A to decompose

PR PR PP i=1,2,...,r,

such that the leading coefficient of n. (lowest z-]-degree term)

iu
is 1. Then
~ r n1-r_ ~ r n1-r_
My : Mg :
n2u | Nos |
r . I 0 I 0
S[N] = c C . (4.7)
Meu | Mg |
e - - - - - - = = = || = = = = = - - - -
no-r__ 0 | 0 1l 0 P"i'r_

On the right hand side of (4.7), if we call the left factor Su[N] and



the right factor SS[N], then Su[N] is a uniquely normalized Smith
- n.xn,
form of N, and S_[N] is a unimodular matrix in 2, _(p,) Tl that

can be absorbed by the definition of Smith form. a

McMillan Form:

n.xn,
Given G € b(p,) 0% et de i (p,) be a least common
0 1-**0

multiple of all denominators (obtained from the po-r's) of all elements
- o . n.xn,
of G; and let N := dG € 21_(00) 077 With the Smith form S[N] of

N defined through (4.6), we calculate

g N_ SN
) r I ni-r_
€

ik |

1 c |

2 |

r l”2 : 0

gl

L
- - e = e e r-l- - - -

|
no-r_ 0 | O il

€. Ns

where E% is a py-r. of 7}, i=1,2,...,r. The second factor in
j
(4.8),

|
|
|
|
I
. I . ng=n;
M[E] := R € Bloy) ~ (4.9)
I
I
|
|
I

no-r 0
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is called the McMillan form of G.

Note that Sil€i+], wi+]|¢]—’ .i = ]’2"°',r--l‘ D

Lemma 4.2. Given the McMillan form M[G] of G in (4.8) and (4.9),

let
r n.-r
€ |
€
r 2. : 0 . No*N;
€r |
- .- _T r--
no-r_ 0 : 0 |
K2 :
Y
2.. : 0 o n;xn,
y, = . € 7y _(pg) (4.11)
. - ___"T - - -
0 IIn.-r
» |1
¥ :
(7
2. : 0 - noxn0
y o= " € %, (p,) . (4.12)
4 | 1-'*0
wrl
. - __._T .-
I
0 [*n.-r
- | 0 ]
Then
(LER7TY,) s a pger-r. of & (4.13)
and (WZL'],ER) is a py-1.r. of &. (4.14)

Remark 4.4. If (N,,0,) is any pg-r-r. of G, then it is immediate
from Theorem 3.3 that

n.xn.
1

= = - i i i 2 ]
Nn LE, D& R ¥, modulo a unimodular matrix in 21_(p0)
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on the right.

Similarly, if (D,N,) is any pp-1.r. of G, then
-1 . = )
Dﬂ = ?KL , N£ = ER modulo a unimodular matrix in 2]_(p0)
on the left. 0

. L. N xn.
Theorem 4.3. Given the McMillan form M[G] of G € b(po) 0" in

r ~c0
(4.8) and (4.9). Let Xg := I wi € 2]_(p0). Under these conditions,
i=1 v
(a) pe€ D(po)c is a pole of G 1if and only if iG(p) = 0;
(b) if pe D(po)C is a pole of G, then the order of p as a

zero of ¥, is its McMillan degree. a

4.2 Dynamic Interpretation of Poles

nxn. _

Given that G € b(po) 0 1, G 1is a meromorphic function in
D(o])C (for some 0, € [0,05[), and G may have at most a finite
)C

number of poles in D(p0 The following theorem gives a dynamic

interpretation of such poles.

n.xn, .
Theorem 4.4. Let G € E(po) 0% Then p E D(po)c is a pole of G
if and only if there exists an input sequence
"3
e €2, _(pq) (4.15)

for some Py € ]o,po[, such that the output sequence y := G*e satis-

fies K
y(k) = yep +h(k) VkeEN (4.16)

n
where Yy € ¢ 0 is nonzero, and

© nO
h = (h(k))2. € 2_(py) (4.17)

for some Py € ]O,po[. ]
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Remark 4.5. (i) As k increases towards +o, y-pk is the dominant
term in the output (4.16): indeed, by (4.17) h(k) fis at most 0(oK)
whereas Y-pk is O(Iplk), and o, < p, < |p|. So for k 1large,

[n(k)| << Iy]+[p|* =

also dominates the input e(k).

v-p¥|. Similarly, by (4.15), the output y(k)

(ii) Note that, from the proof of the theorem, both the input e
and the vector y depend on G: The point is that the input is care-
fully chosen so that p 1is the only D(po)c-pole of G excited by the
input.

(i1i) The proof uses a Pg=r-T- of G. A slightly more involved
proof can be obtained with a po-l.r. of G.

(iv) In the Tumped case, the input sequence e can be chosen so

that e and h are identically zero except for a finite number of

indices (see continuous-time analog in [Des 3; Thm. III]). O

4.3 Zeros and Their Dynamic Interpretation
.. n-xn. . .
let G e b(po) 0 T with a pg-r-T- (Nn’vn)’ i.e.

PR
G = Nnvn (4.18)
and a po-l.r. (DK’N ), i.e.
x _ a1
G = Dﬂ NZ . (4.19)
c
Lemma 4.3. For any z € D(po) ,
rank[Nn(z)] = rank[Nz(z)] . (4.20)



42

Definition 4.4. Assume that

Nz (equivalently Nn) has full normal rank, i.e. min(no,ni). (4.21)

Then z, € D(po)c is called a (transmission) zero of G iff

rank[Nﬂ(zo)] < min(no,ni) (4.22)
(equivalently, rank[Nﬂ(zO)] < min(no,ni)). O

Remark 4.6. (i) In view of Lemma 4.3, the notion of transmission zero
is a property 6f the matrix transfer function G, independent of any
particular choice of matrix fraction representation.

(ii) Note that € can have a pole and a transmission zero at the
same point zy € D(po)c.

(iii) Let M[G] be the McMillan form of & as in (4.8)-(4.14).
Then z, € D(po)c is a zero of G if and only if z, is a zero of
€5 for some i € {1,2,...,min(n0,ni)}.

(iv) If assumption (4.21) is not satisfied, we can always ignore
some redundant input or output, and consider a smaller matrix transfer
function for which (4.21) is satisfied. Then the following theorems

can be applied to this reduced matrix transfer function. a

L. nyxn;
Theorem 4.5. Llet G € b(po) 1, with g 2 Ns-
(a) If zy € D(po)C is a zero of G, then there exists a nonzero
n.
geEC ' and a sequence
"
m € 2]_(p1) for some oy € ]0,90[ (4.23)

n.
such that the input sequence e € (¢N) T described by



e(k) = &z5+m(k) ¥k €N (4.24)
N, o
produces an output sequence y € (C) (i.e. y = G*e) such that
"0
y € 2 (o)) (4.25)

for some o, € 10,04[.
oo)C is neither a pole nor a zero of G, then for
n n,

all nonzero vectors £€¢ ', the input sequence e € (EDU !

(b) If v & D

described by
k

e(k) =&v-, k€N (4.26)
N, "0
produces an output sequence y € (¢™) which contains the nonzero
term .
G(v)evk . (4.27)

0

Remark 4.7. Consider part (a) of the theorem:

(i) In the lTumped case, we can prove that the sequences m and
Yy can be chosen to be identically zero except for a finite number of
indices (see continuous-time analog in [Des 3; Thm. I]).

(i1) For k 1large, since |20| > 0 and since (4.23) holds, the

term &zg in (4.24) is the dominant term in the input sequence (indeed,

Py < Py < |Zgl); furthermore, this term also dominates the output
sequence (since Pp < Py §_|20|)- In this sense, we still have the
interpretation that the zero blocks the transmission of the term
(gzg):=0. The purpose of m 1in the input is to prevent any contribu-
tion in y of any of the D(po)c-poles of G. O
- - noxn_i . C .
Theorem 4.6. Let G € b(po) with ng < N;. If z, € D(po) is

0
< n
a zero of G, then there is a nonzero n € ¢ O Such that for all

43
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n, n,
get 1 there is @ € n(po) T so that the input sequence described by

e(k) = e£z2X+m(k) YkeE N (4.28)

0

produces an output sequence y (i.e. y = G*e) that satisfies
n*y € 2;_(0q) (4.29)
for some o, € ]0,p,[, where n'y := (n*Y(k));::O- 0

Remark 4.8. Theorem 4.5 (which applies to cases where ng > "1‘) asserts
that for some &, the input c;.(k) = gzg+m(k) produces an output vy
which does not have a term in zg, i.e. the sequence (zg)z;o is
blocked for those £'s. Theorem 4.6 (where ng < "i) allows any & and

asserts that, in some direction dictated by n, y does not contain any
k

term in 23 O
4.4 Example
This example demonstrates Theorem 4.5(a) with a multi-input multi-
output transfer function G e B(po)zxz, where fg T 0.55, defined by
B -1 -T]
1 1 -2z 1 5 _1-3z
N -1 " ¢ | ) T 2zt .
G(z) = |- = = = = - = 1= -----1 , ZE D(po) . (4.30)
. 1 3.1-327)
_ z-2) 2 B
Note that the set of poles of G in D(po)c is
PLG] = {1,2,4} . (4.31)

A pg-1.r. (vz,uz) of G is given by
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z-1)(z-4) |
2 "
z |
Dy(z) 1= |- - < - - - oo (4.32)
o 4z:2)
| z
y 2771 1-3271]
(z-4)[z+(z-1)e ]: (z-1)[2z-1+5(z-4)e ]
3
Nz(z) S e - - - - Z .. -I ----- z -(2"2.-] )" '_-l- - =1 (4-33)
0 : z 3(z-2)e1 3z
(DK’NZ) are po-l.c.: indeed, they satisfy
(N, +D,V,)(2) = 1, , 2z € D(po)c (4.34)
with Uy, v, € &y _(pg)?% described by
(323-42%-322+32) : 2(z-1)
3 2
Up(z) o= | 3% 1% (4.35)
16(z-2)(z+4) | _2(z-4)
T N
and
(323-422-322+32)(2_6-22'])+§0(z-2)(z+4)A]-3z']:
32° 32°(22-1) |
Vz(z) i 4 -
-1 l
_]6$Z'§4?[z+3(z_2)e]"32 ] l
| 3z i
2z-1), (22 4 10(2-4) 1-327T]
Z3 z(2z-
(4.36)

(z+4) _6(z-4)

¥4

Z2

_1-3z7
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Observe that

[ ey
Ny(3) = 27 (4.37)
0 0

L

hence, by definition, G has a zero at z = 3. Consequently, we choose

£:=[0 117 ec? (4.38)
which satisfies (B.65). Next, as in (B.68), we define
~ - -
M(z) 2= -U,(2)N,(2)E-573y
= --I—
(2-1)[(22-1) (2-2) (32-4) (2+8)+(152%-11623+102°+7642-640)e ' 732 ]

32%(2-3) (22-1)

-1
_807+64) + (2-2)(z-4) (582%+1112-160)e ! =32 ]

323(2-3) (22-1)

_2[(22-1)(52°+202°

(4.39) )

Note that M 1is analyticat z =3, and mé€ 2](p1)2 with py = 0.51.
With the input

8(z) := g-zE%§7~+ﬁ(z) (4.40)
defined as in (4.24), the output is

§(2) 1= B(2)&(2) = [7,(2) F,(2)] (4.41)

where
:
32°(2-3) (22-1)

y,(2) = S (2-1)(22-1)%(2-2) (32-4) (2+4) (z-e"% )

5 4 2

-20442+640)e | 32
1-5271

-1812"-7423+15542
- (2-1)(22-1)(152%-11623+102°
2(2-2)(2-4)(582°%+1112-160)e

+ z(2z-1)(15z
+764z-640)e

=1
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and

=1 -1
e' "% 1[(22-1)(32-4) (z+4)-2(582°41112-160)e "2 ]

32%(2-3)(22-1)

yz(z) = (Z'4)[Z'3(Z-d)
Observe that y € 21(92)2, with Py i= 0.51, and ¥ 1is analytic at
z =1,2,3,4: note that 1,2,4 € P[G] and z =3 is a pole of the

input &.
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5. Interconnected Systems and Characteristic Functions

In order to discuss the stability of interconnected systems, we
introduce the notion of characteristic functions. Basically the tech-
nique is very simple: we illustrate it by an example. In this process,
we state without formal proof some properties that hold for more

general interconnections.

Example 5.1. Consider the system depicted by Fig. 5-1. All transfer
functions are matrices with elements in 5(90) for some Py €-]0,1[:

ép is the plant transfer function, éi is the inner-loop feedback,

an
(g}

is a precompensator, and éo is the outerloop feedback. The

vectors ﬁp, Gi, Gc and ﬁo are the respective exogenous input signals

to the summing nodes of these subsystems, and ¥

p’ .y1a _YC and yo are

the respective outputs of these subsystems. Let

(an,vpa) be a py-r.r. of Gp , (5.1)
(Nca’pcn) be a py-r.r. of Gc , (5.2)
(Dzz’“zz) be a py-1.r. of Gi , (5.3)
and (D,p:N,p) be a pp-l.r. of G . (5.4)

Let us denote by E the list of output vectors from all the D']

matrices with the appropriate subscripts, as depicted by Fig. 5-2.

Define



- o -
Y Yo 5
U y . 3 ,
o= - = S Eu= | S (5.5)
Y RN &5
1

By equating the respective input vector of each D ' matrix and the

output vector of each subsystem, we describe the whole interconnected

system (as in Fig. 5-2) by a set of equations in the form of

DE = N, (5.6a)
an =y (5.6b)
Specifically for this particular example, we have
o l-n_ 1T 0TTE 1ol ol oMU
LN MO R R 1k [
0 o 10l I3 olIl ol 0|l
S B C IR g | Bl -f-L-J-- - (5.7a)
-N.,N | 0 Ip.,l O |]|Z, oloIN,, | O ||Q,
Nl M A L | R I A R TR | B
:Noszn| 0l o lvoe-~§04 _OI ol o ‘Noe~-9
N_ 1 ol ' 07112 7 v ]
YP'LH_ -|_0-|_0_ >p. Ip
oIN_l O1O0]|E y
- -I—C’-‘:- ST I B B N (5.7b)
ololb1lo]||E, y.
S e R PR f R 8 -L
_OIOIOII__E. | ol

Now consider the matrices D, N£

they appear in (5.7). Using Corollary 3.1b(£) and the po-l.c. property

and N, defined in (5.6) as

of (Die’Niz) and (Doz’Noz)’ it is easy to see that the pair (D’NZ)

in (5.7a) is po-l.c. Similarly, by Corollary 3.1b(x) and the PgT-C-

D)

property of (an o1 and (N

ca’Dcn)’ the pair (Nn,v) is po-r.c.lj

49
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We now summarize the procedure for analyzing more general inter-

connected systems:

Procedure 5.1. Analysis of interconnected systems

Given: subsystems each described by a matrix transfer function Gk with

elements in E(po); the input to the transfer function Ek is the sum
of an exogenous input ﬁk and outputs (modulo sign) of conformable
size from other subsystems; the output of Gk is denoted by yk (see
Fig. 5-3).

Step 1. For each subsystem ék’ find either a py-r.r. (N,.0,,) or

a 90-1.r. (Dkl’Nkz)‘

Step 2. Denote by Ek the output vector from each D;] matrix.
Step 3. With the composite vectors i, ¥y and & (defined as in
(5.5)), equate the input vectors of each D;] matrix and the output
vector of each subsystem to get a description of the interconnected

system in the form of (5.6), namely

DE = N,ii pei (o))", N, €1, ( )nxn" (5.8a)
s 1-P07 0 T = PP '

. . ngxn

NE=T . N €L (o)) . (5.8b)

O
Then we have the following property:

Fact 5.1. (D,Nz) is po-l.c. and (5.9)
(Nn,D) is Pg~r-C- (5.10)
a

Remark 5.1. In this formulation, there is an additive exogenous input

to each subsystem, and the output of each subsystem can be observed. 0O
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Assume a well-posedness condition’ that det D € ET_(pO). Then,

by Cramer's rule,
-1

G£ =D N£ (5.11)
~ . _'l
Gd = NAD (5.12)
x -1

and G := NnD N£ (5.13)

are all matrices with elements in 5(90). In particular, (NA,D) is a

ppr.r. of Gn’ and (D,Nz) is a po-l.r. of Gz.

Definition 5.1. We call ¥ :=det D€ E?_(po) the characteristic

function of the interconnected system described in Procedure 5.1. a

Lemma 5.1. p € D(po)C is a zero of the characteristic function ¥

(5.14)

“ pE D(po)C is a pole of é& (5.15)
“ pe€ D(po)c is a pole of §£ (5.16)
“ pE€ D(po)C is a pole of G . (5.17)
O

Because of Lemma 5.1, the importance of the characteristic function
X 1is obvious by the dynamic interpretation of poles of & in

Theorem 4.4, and by the next Theorem.

Theorem 5.1. Consider the interconnected system described in Procedure
5.1. Let o> py. The characteristic function X has a zero p of

absolute value o if and only if there exist some m € N* and some

TNote that if l]im det D(z) = 0, then D'] has a pole at infinity; then
Z |2
1

for some 2]_(p0 -matrices uz and Vt, N£q£4-vv£ = I, so G£U£4-V£ =7

and éz has a pole at infinity: hence the map ul—=£& 1is noncausal.



input sequence u with support {0} such that the corresponding output
[ o]

sequence y = (y(k))k=0 := G*u includes a nonzero term which, for

large k, is 0(K™ 1K), O

Remark 5.2. In fact, a little more than Theorem 5.1 is proved: the
zero p of the characteristic function ¥ in D(po)c corresponds to
the mode p of the interconnected system which can be excited by some

exogenous input, and observed at some subsystem output. a

Definition 5.2. Let p € [1,~]. A map represented by a matrix transfer

n.xn.

function G € E(po) 01 s said to be zp-stable iff it takes zp-input
sequences to zp-output sequences, and there exists some k € IR.+ such
that for all u € g

|I I : .

(Note that k may depend on p.) O

Theorem 5.2. Consider an interconnected system described by Procedure

5.1 and assumed to be well-posed. For any o z_po,

= "0
€ 1, (o) (5.18)

[ep 14

if and only if
%(z) #0 vzeD(p)° . (5.19)
O

The next corollary follows from Theorem 5.2 and [Des 1, Thm. C.4.7].

Corollary 5.2a. Consider an interconnected system described by Procedure

5.1. 1Its input-output map represented by G is zp-stable ¥p € [1,=]
if and only if

(z) #0 v¥zep(1). (5.20)
]
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In such a case, we say that the interconnected system is zp-stable,

Vp € [1,=].

Applying Theorem 5.2 to a simple case leads to the following
useful corollary.

Corollary 5.2b. Consider a system with input sequence u and output

n.xn.
|

sequence y where ¥ = Gi; let G € E(po) , with a py-r.r.
(Nn’vn) (respectively po-l.r. (DZ’Nﬂ))‘ Then for any p > Py

- . ngxn,
6 e(p) 1 (5.21)

if and only if
det 0, (z) #0 Vz€ D(p)°© (5.22)

(respectively det Dz(z) 0 Yze D(p)c). O

ol

(93}



6. Feedback System Stability

We now apply the results developed in the preceding section to
analyze the multi-input multi-output feedback system S depicted in

Fig. 6-1. Let py € 10,1(.

n.xn,
(i) Let P e b(po) 0 be the plant transfer function with
. N, N, "0 Ll
input up € (¢z ) and output yp € (¢Z ) 7y let Ce€ b(po) be
n
the controller transfer function with input Ue € (¢35 0 and output
n.
yoe M.
n N
(i) ug € (¢EU 0 is the system (reference) input and Wy € (GZ) !
is the plant input disturbanca.
(ii1) Yg = yp is the system output and e = U -y  =u. is the

system error.

Observe that if an additive disturbance is present at the plant
output, say Wgo then its effect on Y is equivalent to an addi-
tional system input -Wg-
Next, we define the composite system input, output and error by

Tu y. 7l y e ] u |
u:=[é] .y:=£ij=Eé} e:=£ir=ﬁﬂ(&n

N0
where u, y and e are in (EZ ) . Then, from Fig. 6-1, the

feedback system is described by

J
| B

i = l!L (6.2)
'

and



n_n,
_o i
_onjclo
y= - -l-_-18 .
o ol P
Let
no nj
. njfolp . (n.+n_)x(n.+n )
G := .-:I-' eb(po)
n.|-Cl 0
'l._
ng ng
ol O :In (n +n0)X(n +n )
Ji= 1o € 4-(eg)
1 n-l
i
and observe that
clo
[-I-: =718
[0 P]

Assume the well-posedness condition that

Tim det[In +PC](z) = 1im det[In +CP]#0 .
|z |+ 0 |2 |+ :

Now the input-to-error transfer function ﬁeu: ul—~e and

input-to-output transfer function Hyu: b=y satisfy

v 5y =1
Heu (1+6)
~ _ = ~_'|_ ~
m&u-m1+e) = 1-H

]

Remark 6.1. (i) By assumption (6.7), 1im dét[In +PC](z) # 03

(6.3)

(6.4)

(6.5)

(6.6)

(6.7)

(6.8)
(6.9)

hence

- 4 i 0
by Theorem 2.4, det[In +PC] = det[In -PéP] is an invertible element

- 0 i
of b(po); then by applying Cramer's rule to (6.8) and (6.9), we

conclude that
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(n.+n_)x(n.+n )
o v io io
Hey and Hyu belong to b(po) (6.10)
(ii) For any p € R, due to (6.8), (6.9) and the closure
properties of §1(p) under addition and mulitiplication
(n.+n _)x(n.+n ) (n.+n_)x(n;+n_)
~ ~ io i o 0 = i'o i
Hoy € z](p) “ Hyu € 2,](p) . (6.11)
a
Let (Dpz,sz) be a po-l.r. of P, (6.12)
and let (Ncn’vcn) be a 0g-r-r- of C. (6.13)

Then Procedure 5.1, Definition 5.1, and simple calculations show that
X = det[Dpzpcn:+Np£NC&J (6.14)

is an element of il_(po), and is the characteristic function of the

feedback system S; furthermore, by assumption (6.7), ¥ € ET_(pO).

Theorem 6.1. Consider.a feedback system S described by (6.1)-(6.14).

Then
(i) p€ D(po)c is a zero of ¥ (6.15)
® pE€E D(po)c is a pole of ﬁeu (6.16)
c . ~
“ p€ D(po) is a pole of Hyu (6.17)

(ii) the McMillan degree of p € D(po)c as a pole of ﬁeu and

Hyu are the same and are equal to the multiplicity of p as a zero

of ¥. O

Remark 6.2. (i) By (6.11), Theorem 5.2 and [Des 1, Thm. C.4.7], ﬁeu

(equivalently ﬁyu) is Qp-stable ¥p € [1,] if and only if %(z) # 0
Yiz| > 1.
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(i) As discussed in Section 2.1, if for some p € [0,1[ and
¥|z| > p, %(z) # 0, then the map ub—(e,y) will take an input
sequence with finite support to an output sequence that decays expo-

. -1
nentially to 62(n1+n0) at a rate at least p .



7. Compensator Design for Stabilization,

Tracking and Disturbance Rejection

7.1 Preliminary Algebraic Result

Suppose
n_xn,

GeB(p0)° L with a py-1.r. (D,.N

ooy) - (7.1)

Recall that by Corollary 3.2(£) there exist six matrices with elements
in E]_(po), namely,

“z’ VK; Nn’ Dn’ un’ Vn
such that

(i) (Nn,vn) is a pp-r.r. of G (7.2)
ng n,oongong

n, vlu rvlu

0
(i) -4t L = P il __' (7.3)
n -N |D |
: 0! J
|

Let us call the two matrices on the left-hand side of (7.3) W and
w! respectively.

n_xn

Lemma 7.1. Given any D € E]_(po) oo
. noxng . nxng
(a) The pair X € 2]_(p0) , YE 2]_(p0) is a solution of
NpX+D,¥ =D (7.8)
n.xn

if and only if for some N €I, (oy) vo

- N -X=DN-U,D
P]w‘U i.e. { vt (7.5)
Ly ) Y = NN+U,D

or equivalently,
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) Ly D= NX+D,Y

Furthermore,

(X,Y) is Ppr-c. © (N,D) is a PgT-C- (7.7)
(b) If in addition

G(0) = |l}T@G(Z) = On()xn’i (7.8)

then

det ¥ € I)_(oy) « det D€ X (o) - (7.9)

O

7.2 Problem of Stabilization, Tracking and Disturbance Rejection

Consider the feedback structure depicted in Fig. 6-1. Suppose we
n_xn.

are given a plant P€b(p.) ® ' for some p,€ J0,1[ and that
0 0
: n_xn. n_xXn.
(i) Pe@) ° Tc@Elyo (7.10)
(1) P(0) = limP(z) =0 (7.11)
|z ]+ o i
n_xn
_ 5. 0 o
Let (Dpﬂ’sz) be a pg 1.r. of P, with Dp£ € n(po) . (7.12)

n
Reference signal sequences ug € GﬁN) 0 (to be tracked) are

generated as foltows: for some fixed q>u €R[z] with Z[q>u] c D(])C,

v

i =Y
U, = 3, (7.13)

n
where vy €R[z] ©, with a[.vu] < 8[¢u], is arbitrary.

n.
Disturbance signal sequences wp € GQN) T (to be rejected) are

generated as follows: for some fixed ¢, €R[z] with Z[¢w] c (1),

o
£

(7.14)

=R
1]



n.
where v €R[z] ', with a[vw] < a[¢w], is arbitrary.

Define ¢ €R[z] and g €N by

-
W

monic 1.c.m. of oy and O (7.16)

3 . (7.17)

and q :

Let ¢ admit v distinct zeros; let its ath zero be z, with multi-

plicity m. Then

{21’22’°"’Zv} = Z[¢u]LJZ[¢w] (7.18)
v
q= ) m ’ (7.19)
o=1
and z 1is a zero of order m_ of ¢
o o
ﬁ' Za is a zero of order m of ¢ . (7.20)

In addition, the maximal order of z, as a pole of any element of ﬁs

and wW_ is m_.
o

P
For tracking and disturbance rejection purposes, we assume for
- o~ n_xn,
P € b(pg) ° 7 that
ny 2N, (7.21)
rank[sz(z)] = n, ¥z € Z[¢u]lJZ[¢w] . (7.22)

Remark 7.1. (i) To track LS signals, (7.21) assures that at least
as many plant inputs are available to facilitate the tracking. Further-
more, (7.22) assures that P does not contain any transmission zeros
in Z[¢u], thus P will not block the control signal required for
asymptotic tracking.

(ii) To achieve asymptotic disturbance rejection, the disturbance

input Wp has to be either asymptotically cancelled by the controlier
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output Y. or blocked by some transmission zeros (of the plant P)
that lie in Z[¢w]. However, since such transmission zeros are not
preserved under plant perturbation, we cannot rely on them to achieve

input disturbance rejection. O

Stabilization, Tracking and Disturbance Rejection Problem (SP)

Given data (7.10)-(7.22), and a finite 1ist A of points in the
annulus  {z|py<|z| <1} such that A€A e X€A. Find a controller
L. ngxng _ noxn n.xng
Ce b(po) , with Ce€ (IRN) - (¢N) such that for the
feedback system S (6.1)-(6.14)

(a) Heu and Hyu both are 2p-stab1e ¥p € [1,=],

(b) the 1ist of zeros of ¥ in D(po)c, Z[i;D(po)c], is
exactly A;

(c) for any vy and v& satisfying (7.13) and (7.14) respec-
tively, the referehce signals ug will be tracked asymptotically and
the disturbances wp will be rejected asymptotically: more speci-

fically, there exists p € ]0,1[ such that

as k—o ;

~ n_xn,
(d) condition (c) holds for any perturbed plant P € B(po) o 1

for which the feedback system S (described in (6.1)-(6.14)) still has

Heu and Hyu lp—stab]e, Yp € [1,=]. O
- - nyxng
Remark 7.2. (i) By requiring C to be in b(po) , C is bounded

at infinity; hence the convolution operator C 1is causal.

(11) By the restriction (7.11) Tim P(z) =0, ., the well-
|z |0 0 i

posedness condition (6.7) is guaranteed.
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(iii) By condition (b) of problem (SP) and Theorem 6.1, A is the
. . ~ ~ . C
list of (dominant) poles of Heu and Hyu in D(po) .
(iv) Condition (c) of problem (SP) guarantees that the feedback
system S is a servomechanism; furthermore, the system error e

decays to zero at a rate at least p-].

S

(v) Condition (d) is a robustness condition that guarantees
asymptotic tracking and disturbance rejection under plant perturbation,
as long as the feedback system conditions (6.1)-(6.14) are satisfied

and Hyu and Heu are zp-stable ¥p € [1,=]. ]

7.3 Procedure for Controller Design

The problem (SP) is solved by obtaining a controller C with the

" following procedure:

Procedure 7.1

Data: Plant P with po-l.r. (Dpz’sz); the polynomial ¢ €R[z];
the 1ist of dominant closed-loop poles A.

Step 1. Pick any d €R[z] monic such that
3d =3¢ =q and d(z) # 0 ¥z € D(po)c ) (7.23)

Comment. (i) A simple choice of d 1is given by d(z) := z9.
(i1) %-E ﬂ?(po)rﬁR(z) C iT_(pO); furthermore, ¢ and %- have

the same 1ist of zeros.
~ 9™ Mo
Step 2. Pick D€ 21_(90) corresponding to a matrix sequence in

n_xn
GﬁN) © 0 such that

det D € 37_(p,) (7.24)

and such that the list of zeros of det D in D(po)c is



Z[det D; D(py)°] = A . (7.25)
nxn,
Comment. In particular, we can choose D E;m(po) .
Step 3. Observe that
Fi=pdeb(o)® | 7.26
F o= B e Blog) (7.26)
with a p0-1.r. |
.= o]
(Dﬁ’NZ) : (vpﬂd’Npﬁ) . (7.27)

Using Corollary 3.2(£), find the six matrices with elements in i]_(po),

corresponding to sequences in Pﬂ, namely

UZ’ Vz; Nn’ Dn, Un, Vn (7.28)

such that
(i) (Nk,vn) is a Pg=T-r- of F (7.29)
ni n0 ni n

. |
n.fCviu D l-u I 10

(i) ‘[. @|-".][.’L|-ﬂ = | M . (7.30)
no LN, 10, || N, 1V - -l -

011
| Mo

Step 4. Solve, according to Lemma 7.1,

NKX-FDLV =7 (7.31)
. nxn
for X and Y by (i) picking N € 21_(90)
n.xn

0 corresponding to a

)
io

sequence in OQN) such that (N,D) are Pg-T-C-3 and (ii) setting

-X 1= DnN"UED (7.32)
V= NN+ uzv . (7.33)

Comment. By Corollary 3.1b(n) the choice of N 1in (i) is equiva-
n.xn
lent to choosing N corresponding to a sequence in GﬂN) T 9 such

that
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(z
rankf- - <[ = n YzeE N . (7.34)
g(Z) 0
R n.xn
Furthermore, (X,Y) 1is a Pgr-r- of XY ' € b(po) by Lemma 7.1.
Step 5. Set o
Ncn =X, Dca 1= Vd (7.35)
and ¢ = va;l (7.36)
Stop O

Theorem 7.1. The controller C constructed in Procedure 7.1

. X
n_l n

(=]

(i) belongs to B(po) with Pg~r-T- (N..,D_), correspond-

(0% Al o7 &

n.xn
ing to a matrix sequence in GﬂN) 1o,

(ii) solves problem (SP). 0

Remark 7.3. It can be observed from the proof of Theorem 7.1 that the
controller € constructed in Procedure 7.1 (see (7.35), (7.36)) has

created blocking zeros [Fer 1] at every point in Z[¢] = Z[¢u]lJZ[¢w]

-~

for the transfer functions He " from ﬁs to és and for the trans-
- S°S

fer functions Heswp from wp to e

7.4 Example

Data. The plant P € 5(90)]x2, with py := 0.55, is given by

P 3. 5 1 2 171-227
M) = [ T] (7.41)

which has a po-l.r. (Dpz’“oz) described by

D p(2) 1= (z-1)(z-2)/2° ] (7.42)
o= 2'2)(112-8) | (Z-])[22+(Z_2)e]+22
Noe(2) E 22(22-1) : 3 :l . (7.43)

The polynomial ¢ and the 1ist of dominant closed-loop poles A are
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given by
o(z) 1= z+2 (7.44)
A := (0.6,-0.6) . (7.45)
Step 1. Since q :=23¢p =1, we pick d € R[z] as
d(z) := z . : (7.46)
Step 2. Choose D€ ET_(pO) to have zeros at z = 0.6, -0.6, as
D(Z) .= (Z+0.6)£Z'0.6) . (7.47)
z
Step 3. After defining F := ﬁ%-e 5(90)]x2, we obtain a py-1.r.
(DL’NZ) for F described by
- Lo(z) _ (z-1)(z- 2)(z+2) |
and Nz(z) = sz(z) (7.49)

which is given in (7.43).

Next, we find the matrices N&, D 2’ 2

that satisfy (7.29) and (7.30) (note that we do not need explicit

knowledge of UM

and Vn

in our computation):

N (z) == [?32-2)(2-1) (5z- 2)(z 2) 1422 -1 ])i

62°(22-1)

(2+2)

2 LI
+112°-162+4) . (72-2) (z-1)(z-2 (e1%2
2°-162+4) | (72- )(z4 )(z-2)  1+22 -1{} (7.50)

(7.51)

ILQZ "223
I 4(22 1) z
32-2)(2-1) _ (32=1)(2-1)(2-2) (z+2]
622 z4
002) 3= 1 (52.2)(2-2)  (72-2)(2-1)(2-2)(2+2)
622 24
J

65



[ (32-1) (2%+42-4) |

(2) := >

(7z-2)(22+4z-4)
6z3

_ (122-3234112%-162+4) _(72-2)LZ?+4Z-4)(e1+22-1_1) )

v 1=
o2) 62°(22-1) 625 (2+2)

2

(7.52)

(7.53)

Observe that these matrices are analytic in D(O.SS)C, despite some

denominator term (z+2).

Step 4. We choose N € E]_(po)zx] by

3 2

(-0.4273-3.82%-1.082+0.72) |

N(z) := z
0

Then we obtain a solution (X,Y¥) of (7.31) by setting

-X(z) := (D N-U,D)(2)
1.742%41.72-2.16]]
2
= 6z
L _ (4.92+12.04)
6z
¥(z) := (N&N+V£D)(z)

1

6z(2z-1) 6z(z+2) '°
Step 5. By setting
ch '

given in (7.55), and

(122°-4.262-2.62) _(4.92+12.08) 1422

(7.54)

(7.55)

(7.56)

(7.57)
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D(2) = V(2IE (7.58)
. (2#2)(127°-4.262-2.62) _ (4.92+12.04)  T#22" )
622(22-1) 622

. r- -1 -z 2x1
we obtain a controller C : Ncnvca € b(po)

which has (Ncn’vcn)

as a py-r.r. Note that this controller C solves problem (SP) with
data (7.41)-(7.45); in particular, it is easy to check that Dcn has a
zero at z = -2 (thus creating a blocking zero for He and Fle W

sls s'p
at z = -2), and

- (z-0.6)(z+0.6) ] 0

x(z) := (Dp!.Dcn+Np£NclL)(z) z2
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8. Decoupling Feedback Design with Square Stable Plant

8.1 Preliminary Result and Additional Notations

In this section, we study again the MIMO unity feedback system
depicted in Fig. 6-1. However, we now assume that the given plant
matrix transfer function P (with elements in B(po) for some

°o € ]0,1[) is square and zp-stable Vp € [1,=], 1i.e.

B € B(og) ™M NET . (8.1)

Observe that if the originally given plant does not satisfy these
assumptions, we can apply the Stabilization Procedure 7.1 of Section 7
and consider the resulting stable square closed-loop system as our new
plant P. For such P in Fig. 6-1, we propose a design method such
that the transfer function gysus from Gs to ys is decoupled, with
pole-zero assignment in each channel (subject to the constraint that
every D(1)%-zero of P must remain a zero of ﬁys“s’ cf. continuous-
time lumped-system analog in [Che 1]). The approach is based on the
recent result obtained by Desoer and Chen [Des 5], which contains a
refined stability theorem proposed by Zames [Zam 1].

In order to tie our description to the notations in [Des 5], we

note that the algebra A is here b(p.)™™, and the radical AAS of

o
A s Bs(po)m"“‘, where

bylog) = G<Bsg)] 1in §(2) = 9(0) <03 . (8.2)

Since we consider zp-stability for all p € [1,»], we take the algebra

B of stable maps to be ETX'"; and B, := A NB is hence given by

~“mX
szm, where
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2

]S:={gE%!dPLF&)=QW)=O} . (8.3)

~

(Note that while Bs(po) is a radical of E(po)m, %, 1is not a radical

of E‘]') The super-ring A of A is defined as ((f]:)mxm.
In the analysis, we need to extend the algebra (f]: to the field
62 := ([R(2) = 23(2), 3ed, kem . (8.4)

Furthermore, we extend the definition of order to tf%: for any nonzero
PPY/A
h €£¢Z,

ord(h) := k such that 1im z“fi(z) = constant # 0 , (8.5)

| 2|

i.e. ord(h) picks out the first nonzero term of h, e.g. ord(h) = -2

if B(z) = h_yz® +hyz #hy+hiz T+« with h_, # 0. In addition,

0= (K &L \mxm
for H (hij)e(mz) ,

ord_ [H] := min ord[h,.] . (8.6)
c; i ij

Let g < 1 and consider the feedback system of Fig. 6-1 with

S _xo M Avmxm % -z Nymxm ~ ~ .\ 2mx2m .
Pe b(po) ne™, Ce (ﬁlz) , and Hyu € b(po) as defined

in (6.9) and rewritten here

S R A . (8.7)
yu sxorsxyv=l 1 mor amy -l
PC(I+PC) P(I+CP)
By defining the transfer function from Gs to S‘/C as
q:=f = C+pe)T, (8.8)

Yels

ﬁyu in (8.7) can be rewritten as
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i g : - (
= f-ol- - = - 8.9
v 515059 %

¢ = §(1-pa)77 . (8.9b)

and from (8.8),

We can now state a stability theorem analogous to [Des 5, Thm. 3.4].

Theorem 8.1. Consider the unity-feedback system of Fig. 6-1 with
5 o= mxm  x <INymxm 5 I 2mx2m
og < 1> P, Q€blo)™", Te (@') and fi,, € b(py) . Under

these conditions,

(i) if Pe i?*m , (8.10)
then Jei™m & i g gom<2m (8.11)
1 yu 1 '
5~ - ~2mx2 N~
and de zT:m « H, € z]mx Mand € bs(po)mxm : (8.12)
(ii) if pe ET:” , (8.13)
then Q€ iTxm - ﬁyu S EmeZm and C € b(po)mxm (8.14)
~ ~] ~ ~2 2 ~ ~
and Qe B @ Hy, € UT M and T e b (o)™ (8.15)
0

Remark 8.1. (i) Note that for gyu to have elements in ng, the

transfer function € € (E?)mxm has to satisfy
det[I+P(0)C(0)] # 0 .

(i1) Based on the equivalence condition (8.14), we propose a
design procedure to achieve decoupling and pole-zero assignment of the
feedback system. Note that had P been the closed-loop system obtained

thraugh the stabilizing compensation of Section 7, it would satisfy
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condition (8.13) in view of assumption (7.11). (Note that the P
here and the P in (7.11) are different.) Now, by (8.14), we have the

following design capability.

Theorem 8.2. Suppose that we wish to design a unity-feedback system as

shown in Fig. 6-1 with B & B(p))™™ni™M, e (Eg")""‘"‘ and

A €B(p)2™2™  Then, for all H. € i™™ sych that A, . = Pg
yu 0 YsUs 1 YU

for some Q € iTxm, there exists a € € E(po)mxm for which

(i) the closed-loop system is zp-stable, vp € [1,»], and

(i1) the transfer function from u, to vy is described by the

S

specific H ) O
P YsUg

8.2 Procedure for Decoupling Feedback Design

Decoupling Problem (DP). Given a plant P € B(po)mxmr\iT:mrwﬂﬁg)mxm

such that det P 2 0 in D(pO)C, find a controller
Ce B(po)mxmn(ﬁ’:)‘""“‘ such that

(i) the closed-loop unity feedback system in Fig. 6-1 is 2p-stab]e,

Vp € [1 a°°]3

(ii) the transfer function ﬁy " representing the I/0 map from
s°S
ug to Yg is a decoupled, proper rational function matrix;

(i11) 1in each diagonal element of ﬁy y » the poles and zeros (in
Js"s
addition to the D(1)%-zeros imposed by P, see [Che 1]) can be speci-

fied by the designer. 0

Procedure 8.1: Decoupling Feedback Design

Data. Plant P e E(po)mxmr1§$:erGﬁN)mxm, det P =0 in D(po)c.

~

Step 1. Obtain a Pg=r-r- of P

P = anv;}t (8.16)
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~ mxm
where an, Dp& € 21_(p0) .

Step 2. Calculate

[y 5] 2= Nox € @)™ T (8.17)

Yij mxm pr
Step 3. For j = 1,2,...,m, choose a polynomial ﬁj €R[z] of least
degree such that for i =1,2,...,m,

MOLNOR 4 (8.18)

is analytic in D(1)S. (Comment: If P has no D(1)®-zeros, then we

can pick ﬁj =1, Yi.)

Step 4. Choose polynomials nj, dj €R[z], j=1.,2,...,m, in

. NNy NN in
i := diag ;‘32';‘“‘] (8.19)
YsUs 1 2 m J
such that for j = 1,2,...,m,
(1) Z[dj] C D(1) (8.20)

(ii) the polynomial "j can be chosen freely,
(i11) 3[d;1 > aln;]+3[A,1 - ord ' . (8.21)
J‘ .
Step 5. Calculate the controller

n.n A, nn
- =1, 171 22 mm
c Dp,LNp,Ld1ag [d]-ﬁ]n] Ty, T oAn ] (8.22)
STOP. .
Theorem 8.3. The controller C in (8.22) solves Problem (DP). O

Remark 8.2. (i) Equation (8.22) shows that a "stable" controller is
always possible: 1indeed, after the polynomials ﬁj and nj have been
chosen, the polynomial dj can always be found so that all zeros of

dn'"j"j 1ie inside D(1).
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(ii) Observe that it is not required that H of (8.7) be

yu
rational, but H ,_ can be made to be rational as in (8.19).

(iii) This przc:dure is not a direct application of [Des 5, Alg. 4.2],
because we are not restricting Ny ﬁj and dj to i]_(po) or n(po);
instead, we choose ns ﬁj and dj to be polynomials and we are only
restricting anJ/d to belong to x(1) (Note: it is easier to work
with polynomial "j’ ﬁj and dj')' A direct modification of [Des 5,
Alg. 4.2] can be obtained by letting ﬁj, n; € (o) and dj IS n”(po),
and by replacing (8.21) by

ord(ﬁjnj) 3.-ordcj[§']] >0 . (8.23)
(iv) Since we are working with dj in R[z] instead of in
n?(po), zeros of dj need not be restricted to D(po)c. In particular,
if we put all these zeros at z = 0, then Hysus is a transfer func-
tion corresponding to an I/0 map with finite settling time.

= -1 = mxm mxm
(v) Let [“1J]mxm = P Dpn pn € (m )™M Since P e 2]
hence det Dpa( z) # 0, ¥z €D(1)%; thus the term in (8.18), Yij(')ﬁj(°)’
is analytic in D(1)® if and only if T3 NE )n () 1dis analytic in

D(1)C. 0
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9. Concluding Discussion

In view of the need for a general theory to cover sampled-data
systems obtained by sampling continuous-time linear time-invariant
distributed systems, we have developed in Section 2 the algebra b(po)
which described a large class of such discrete-time systems. In contrast
to the continuous-time distributed case which is plagued by difficult
fine points of analysis, the discrete-time case can be treated by more
straightforward methods: in particular, for any g € B(po), there is

some o > py such that § is analytic and bounded in lz| > o,

moreover §(z) has a well-defined limit as |z| —«. Such nice
behavior at infinity is usually absent in transfer functions of

continuous-time distributed systems (consider g(s) = e'ST).

Conse-
quently, this paper is essentially self-contained.

The model of system description in this paper, with transfer
functions in B(po), is far more general than the model with rational
transfer functions (as demonstrated by the examples in Section 2.6):
indeed, the algebra B(po) includes, as a subalgebra, all the proper
rational functions in z.

By generalizing in Section 3 the concept of matrix fraction repre-
sentation to systems with E(po)-matrix transfer functions, we studied
the dynamic interpretations of poles and transmission zeros for MIMO
systems in Section 4. As in the rational case, each pole of E(po)-
transfer functions can be activated individually by some appropriately
chosen input signals (see Thm. 4.4). In contrast to the transmission

zeros of the rational transfer function case, a transmission zero of a

B(po)-transfer function cannot completely block out the corresponding
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exponential input-signal, but it can make the output asymptotically
"small" compared to the blocked exponential; hence transmission zeros

of B(po)-transfer functions still pose the same kind of nuisance on the
tracking problem as those in the rational transfer function case (see
e.g. [Des 4], [McF 1], [Dav 1]). Note that transmisssion zeros of
B(QO)-transfer functions also impose other limitations on the design of
feedback systems, parallel to the rational case: Consider a feedback
system with unity feedback, some zeros of the closed-loop characteristic
function approach the open-loop transmission zeros under high gain;
hence high loop gains lead to instability when there are D(1)%-zeros in
the plant transfer function (see discussions in [McF 1], [Dav 1] about
similar behavior for continuous-time rational case). In addition, for

a rather general feedback system defined as in Fig. 9-1, if z € D(l)c
is a transmission zero of the plant transfer function P, then under
reasonable assumptions, for any controller transfer function C and any
feedback transfer function F such that the closed-loop system is
zp-stable ¥p € [1,»] (as defined in Section 5), the closed-loop
transfer function ﬁyu from input U to output ¥ will have a trans-
mission zero at z; thus the D(1)®-transmission zeros of P impose

some fundamental limitations on the achievable closed-loop transfer

function ﬁyu (see [Che 1]). However, even though these transmission
zeros cannot be removed by appropriate compensation, sometimes they can
be relocated by judicibus redesign of the actuators and/or sensors of
the physical system [McF 1].

As for the analysis of interconnected systems using the notion of
characteristic functions as described in Section 5, it is stressed that

this method of analysis can be applied to any interconnection, as long



as the well-posedness condition (i.e. 1im det D(z) # 0) is satisfied.
Considering MIMO feedback systems, §e+:tudied in Section 6 the
problem of closed-loop stability and in Section 7 the problem of design-
ing a robust controller to achieve stabilization, tracking, and distur-
bance rejection. However, we have yet to investigate the possibility
of designing controllers with proper rational transfer functions that
can satisfy the same or relaxed specifications. We stress that if the
design procedure 7.1 is app]ied'to systems with rational transfer
functions, then the controller is gﬁaranteed to be proper, and arbitrary
"dominant" closed-loop eigenvalue assignment is achieved.
When the given plant is square and stable, we have in Section 8 a
procedure to design a feedback system so that the transfer function
from the reference input to the plant output is decoupled (or, equally
practicable, assigned a specific structure to satisfy other specifica-
tions), with arbitrary pole and zero assignment outside D(po) (subject

to, of course, the D(1)%-zeros of the plant).

Hence, by combining the results of Sections 7 and 8, we conclude

n_xn,
0 7 that satisfies certain reasonable

that, given any plant P € B(po)
assumptions, we can design a feedback system with an inner loop to sta-
bilize the plant (as in Section 7), and an outer loop to bring the over-
all system to satisfy certain specifications, e.g. decoupling (as in
Section 8). We are of course aware that there are many important
issues in control system design that are not addressed by the above
methods.

Finally, we should point out that most of the results in this paper

also apply to the continuous-time and lumped cases, by observing the

similar algebraic structures of the different cases.



Appendix A: Proofs of Properties of %,(pg)s %;_(ny)

Proof of (2.2.1). 2](p0) is defined by (2.4): it follows that z](po)

is a normed space over the field € with the usual definitions of
addition for sequences, multiplication by scalars in ¢, and a norm

"-Hpoz zl(po)—ﬂ-R+ defined by

g, = ] l9(K)eg*l (A.1)
0 k=0

By definition, (g(k))k =0 (21(p0),ﬂ'ﬂpo) if and only if

v = (1K) € (21,|-| , where y(k) := g(k)og"

Yk € N, and
|y|1 = HYH _] Z ly(k)| is the usual norm defined on 2 This
defines an 1somorph1sm of 2.(p,) onto & with lgl_ = |y|,.
1'*0 1 Po 1
Hence (2,(pn),0+l ) 1is a Banach space, since (%,,|*|;) is a Banach
1'F0 Po 1 1
space [Die 2, Thm. 13.11.4 (using the counting measure)]. zl(po) also

forms a commutative ring, with a "multiplication" in & (po) defined

1
as the convolution, namely,
k
fxg := Zof(k N9(i))zq for f, g€ () . (A.2)
J_.

Furthermore, the convolution satisfies the inequality

=k
If*gl = f(k-3)g(3))
o kg JZ o po
® K
< 2 Z | £(k-3)eg k=30 1g(4) oy |
= Ilfllpollgllpo (A.3)

where the last equality follows from [Apo 1, Thm. 8.4.6]. Note that

= (1,0,0,...) 1is the neutral element of 2](p0) under convolution:
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indeed
60*g=g*60=g VgES?,-l(pO) s (A.4)

and uaoup = 1. Hence zl(po) is a commutative convolution (A.5)
0

complex Banach algebra with unit [Rud 2, pp.227-228]. a

Proof of (2.2.2). Follows immediately from (2.4) and the equivalence

k>p6k, vk € N, - 0

p'l<90®p'l

Proof of (2.2.3). Given any two nonzero elements f = (f(m)):;0 and
g= (9(“)):;0 in ¢N, let My and Ny be the least indices corres-
ponding to a nonzero component of f and g respectively, then

h := f*g is nonzero because h(mytn,) = f(mg)-g(ny) # 0. H

Proof of (2.2.4). (i) By assumption, g € zl(po), then for |z| > Py

l3(2)] = |kgog<k)z'k

o) -k fo'e) _k
< T lgk)fz]™" < ¥ la(k)|pq = lgl
k=0 k=0 0 Pg

i.e. in |z| > pge the series defining §(z) converges absolutely
and is bounded by Ugnp .
0

(i1) For any € > 0, the series defining §(z) converges
uniformly in |z| > pptes hence §(z) represents an analytic function
in D(p0+e)c.

(iii) Consider the definition of §(z), as |z]—«, §(z)—g(0).
a

In order to prove Property (2.2.6) we need the concept of complex
homomorphism. Let A denote the set of all complex homomorphisms

mapping the Banach algebra 2](p0) into ¢ [Rud 1, Ch. 9][Rud 2, Ch. 11].



The following lemma characterizes A:

Lemma A.1. For ¢: Ql(po)—» ¢,

® €A « Either (a) o(f) = f(0), ¥f€ 2,1(90) (A.6)
or (b) 3z € D(po)C such that
o(f) = F(2), ¥fer (o) . (A.7)
0

Proof: («) By definition, ¢: !LT(pO)—HE belongs to A if and only
it o(f*g) = 9(F)e(g), olaf+Bg) = ad(f) +8e(g), ¥f.g € 2,(py),
Va,8 € €. By direct calculation, these requirements are satisfied for
any ¢ specified by (A.6) or (A.7).

(=) Let ¢y: f—>f(0) be the complex homomorphism defined by
(A.6). Let Ay := A\{d)o}. According to the definitions of 8 and

% 6=(6*)k-6*6*~*6 k> 1
k 1 RS bt M B :

Hence, for any ¢ € A.l s
0(8,) = [o(s)1* ke n . (A.8)
Now for any homomorphism ¢, [¢(g)| < gl [Rud 1, Thm. 9.21], in
particular -1
Hence, for any ¢ € 85 there exists z € ¢ with |[z] > fo such that
27V = 9(s)) (A.9)

Now ¥¢ €4, and Vg€ 21(p0), we obtain successfully
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) g(k)¢(6k) by linearity of homomorphism ¢
k=0

=<}

? (k)Co(s, )1 by (A.8) . (A.10)

By using (A.9) in (A.10), we conclude that there exists z € D(po)C
such that

- kgog(k)z"‘ = §(z) - o

Proof of (2.2.6). (2.7) # (2.8). This is obvious by noting that
g(0) = 1im g(z).

Z | Do

(2.6) <+ (2.8). By [Rud 2, Thm. 11.5(c)], g € 2

](po) is inverti-
ble in zl(po) iff ¢(g) # 0 ¥ € A. The result follows immediately

in view of Lemma A.1. O

Proof of (2.2.7). (2.10)=(2.11). By contraposition, suppose

inf |[(f(z),3(z))| = 0. Then there exists a sequence (zk):LO in
|Z|ZPO )

D(po)c such that

L
o

Tim|(f(z,),3(z, )] =
km|((k9 )
Hence, Yu,v € 21(p0), which are necessarily bounded in D(po)c,

1im(Uf + v3) (2 ) =0 .

k-

Then (2.10) cannot hold.
(2.11)«(2.12). This is obvious by noting that (f(0),g(0)) =

Tim (f(2),8(2)).

|z]>e



(2.12)=(2.10). Consider the ideal in 21(90) generated by f
and ¢
I := {h|h=uxf+vxg, u,vE€,(pg)} -

Either (i) I = 21(p0), or (i) Is_ll(po). If (i) holds, 60 €1

and we obtain (2.10). Otherwise, (ii) I 1is a proper ideal of Q,.l(po),

then by [Rud 2, Thm. 11.3(a)] I 1is contained in some maximal ideal
M g 52,](p0). By [Rud 2, Thm. 11.5(a)], there exists O € A such that
M= ¢71(0). Hence 1C 071(0), i.e.

dy(h) =0 YheET .

By Lemma A.1, either

(@) ¢y = ¢5: F>F(0), then f, g€ T implies
oy(f) = £(0) = 0 and ¢M(g) = g(0) = 0

and so |(f(0),g(0))] = 0 which contradicts (2.12)(i);
or (b) if ¢y # ¢g» then there exists z' € D(po)c (where z' is
specified by ¢M) such that

oy(h) = Fi(z') ¥h € 2(p) .

With this particular z', since f, g€ 1,
oy(f) = F(z') =0 and ¢,(9) = §(z') = 0

and so |(f(2'),3(z'))| = 0 which contradicts (2.12)(ii). Thus we

conclude that I = 2](00) must hold. |

Proof of (2.3.2). (i) and (ii) hold because § € Il(pg) for some

pg < fo°
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(iii) Let o € N be the least index corresponding to a nonzero

component of g. Then g(a) # 0 and

§(z) = ) g(k)z 7k = g(a)z™*[1+ § (0"";*" z'(k”)] . (A.11)
k=a k=0 9 .
. + |+ © .
Since g € 2,]_(p0), hence ( g‘ ; k )k=0 S 2,]_(90); thus there exists

P 2P such that

= glo+1+k)_-(k+ -1 3 +14+ -
e A O AR

Hence by (A.11), §(z) # 0 ¥|z| > p; and so the zeros of §(-) in

c o .
D(po) are all inside the compact annulus {leof_|7-| <p}. Since the
zeros of §(+) are isolated in the region of analyticity, () can
have at most a finite number of zeros in the compact set

{Z!poglzlio}, hence a finite number of zeros in D(po)c. 0
Before we prove Property (2.3.3), we consider next:

Lemma A.2. Let 0 < Py < Pge and let f: D(p])c——HR be continuous
at every point of S := {z||z| =p0}. If f(z) >0 V|z| = Pgs then
392 S Jp],po[ such that

f(z) >0 V]Z.| € [pz,poj . O

Proof. For the sake df contradiction, suppose that given any

P, € ]p],po[, Elzle[pz,po] such that f(z) < 0. Hence we can
construct a sequence (zk)k=‘l with Izkl € ]p],po] such that
|zk[—rpo and f(zk) <0, k=1,2,... . By compactness of the closed
ball D(pof, (zk):;] must have a convergent subsequence specified by

some index set K, i.e. 3IK C N such that z, K 2* for some



[2Y

z* € D(p,). Furthermore, |z*| = lim |z,|=p, = z*ES. Hence
0 o 12l =g
keK .
f(z,) <0, kE€K= f(z*) <0, because f 1is continuous at z* € S;

and this contradicts the hypothesis. O

Proof of (2.3.3). (2.16)<«(2.17). This is obvious by noting that
g(0) = Tim §(z).
2 |20
(2.15)=(2.16). g€ 2]_(p0) implies that g € 2](p.l) for some

Py < Po- It has an inverse in 21_(00) implies that for some 0y < Pgs

Bg-] € Jl,.l(pz) with g*g'] = g']*g = 60. Hence, g € l](p3) has an

inverse in 2](03), where Py := max(p],pz) < pp- By Inversion

Theorem (2.2.6), inf |§(z)| > 0. Hence,

|ZIEP3 X
inf [§(z)] > inf |§(2)] >0 .
|z| >0 IZI293

(2.15)«=(2.16). g € JL]_(pO) implies that Ep] < 0 such that
g € 2,(py). Hence the map zh—|§(z)| is defined for [z| > py and
is continuous at every point of S := {zl|z| =p0}. By Lemma A.2,
|3(z)] >0 on S implies that 3o, € ]p.l,po[ such that |g(z)| > 0

V|z| € [pz,poj. Hence  inf |§(z)| > 0. By Inversion Theorem (2.2.6),
1z]>p,
g has an inverse in 2](92), hence in 21_(p0). 0O

The next theorem is needed in some subsequent proofs.

Theorem A.1: Decomposition Theorem. Let § € E.l_(po) » and let
PE D(po)c. Under these conditions, Bp] P, satisfying 0<p, < Py <Pg
and such that

%éﬁ% = %éﬂg"*i(Z) ¥z € D(p,)\{p} (A.15)

where both Z and zl—zZ(z) belong to 'i]_(p]). ]
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Proof. With §€ i]_(po), 3o, < py such that §e€ E](pz) and hence
§ is analytic in |z| > p, and bounded in |z] > p,. Since § is

analytic at p with |[p] > 0y > Pys and since @g(z) -g(p) has a zero

at p, we see that

is analytic at p, hence it is analytic for |z]| > p,; note that

Z(z)—~0 as |z|—. Hence, by Laurent expansion, we obtain

with z(0) := 1im Z(z) = 0

k=0 |z ]+

which converges absolutely for |z] > Po- Hence, Vp] € ]pz,pol,
) |C(k)|o{k <w, j.e. tE 51 (p;) for any o, € Jo 05l Since
k=0 -
z(0) = 0, we see that zl—z%¥(z) € E]_(p]) for the same oq- O

Remark. (1) The decomposition theorem (A.15) expresses §(z)/(z-p) as
the sum of the principal part §(p)/(z-p) of the Laurent expansion at
p of §(z)/(z-p), and of the remainder term T € E]_(p]). Through
repeated use of the decomposi%ion theorem, for any g € E]_(po), any
pE D(po)c, and any m € N*, the same conclusion holds for

§(z)/(z-p)", giving

_§(z) . % Tk o+ E(2) (A.16)
(z-p)" k=1 (z-p)

where T € E]-(pl) for some oy < pg, and r, €C, k=1,2,...,m.

Repeated application of this last result (A.16) proves the following:
~ ] * C *

For any § € z]_(po), v € N*, and any P, € D(po) , m, € N,

v m
o =1,2,...,v, §(z)/ 1 (z-pa) % can be expressed as the sum of the
a=1



LY

i»

v m
principal parts of the Laurent expansions of §(z)/ H](z-pa) % at the
a:
pa's, and of a remainder term Z, i.e.
~ Vv (ma r
_8(z2) .oy {y Tk g, (A.17)
v "o o= lk-] )k
T (z-p ) % oa=1'k= (z-pa
a=1 o

where Z € %, (o)) for some p, < py, and rc €6 @ =1.2,...,v,
k=1,2,...,m.
0]

(ii) If, in (A.15), g(p) = 0, then ¥ := §(z)/(z-p) € i]_(p1).

Here f(0) = 1im f(z) = 0. We can easily verify that, VYa € D(py)

|z] >

F(z)(z-a) = §(z2)(z-a)/(z-p) € X, _(py) €% _(oy) - (A.18)

Thus g(z) can be expressed as a product of factors in E]_(po)

given by

d(z) = [(z-p)/(z-a)1[3(z)(z-a)/(z-p)] . (A.19)

Corollary A.la. Let § €%, (o)) and Tet p € D(py)C.

(i) If a€C such that a # p, then 30 ey <0 such that
5252 = 3L z(2) vz € (o))\ip} (A.20)

where I € 2]_(p0).

(ii) If aED(pO) and g has an mth-order zero at p, then

1‘%_5’-6 27 (o) (A.21)

h

and §(z)(::g € I]_(po) and has an (m-1)*" order zero at p. O

Proof. (i) By Theorem A.1, multiplying equation (A.15) by (z-a), we
see that Ep.i,pz satisfying 0 < Py < p.i < Py such that
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3(HEL = G2 (2)(2-2) ¥z € (o, \p) (.22)
where Z, € 11_(pi). Now since E:%-= 1-*55%3 we have, ¥z € D(pz)c\{p}
3212 = 3R+ 2, (2) (2-2) +3() (.23)

Here, we define the last two terms of (A.23) as

g(z) := g,(z)(z-a) +§(p)
g,(2)(z-a) +§(z) - T,(2)(z-p) using (A.22)

gy(z)(p-a) +§(z) € 51_(90) . (A.24)

The proof is complete by defining any oy € [pz,pO[.
(i1) This follows immediately from (i) and the fact that

aeE D(po). O
Corollary A.1b. Let g€ E]_(po) have zeros z € D(po)C of multi-
plicities m,» respectively for a =1,2,...,v. Let m:= Im.
Let ag € D(po), B =1,2,...,m. Under these conditions

(1) § = be (A.25)

where b € 1 1- (pg)s €€ z]_(po) are defined for some p, < p,; by

. Vv m.om
b(z) := T (z-z.) %/ 1 (z-a,) (A.26)
a=l * g1 B
&(z) := §(2) n (z-ag)/ H (z-2,) a |z > 04 (A.27)
g=1 a=1
and E(za) 0, a=1,2,...,v. (A.28)

(i1) If, in addition, § €2 (pp) and z, a=1,2,...,v, are
the only zeros of g in D(po)c, then € 1is an invertible element

of E]_.(po). (]



Proof. (i) This follows immediately by repeated application of
Corollary A.la(ii).
(ii) If §€§T_(p0), then

Tim €(z) = 7Vim §(z)/b(z) = g(0) # 0 . (A.29)

| 2] > |2]>

Hence ¢ € ET_(QO). From (A.27), the only possible zeros of ¢ in
D(po)c are the zeros of g. Now that 2, o= 1,2,...5v, are the

only zeros of ¢ in D(po)c, then in view of (A.28),

¢(z) # 0 ¥z € D(p,)¢ . | (A.30)

Po

Hence by Property (2.3.3), ¢ 1is an invertible element of E]_(po). a

Corollary A.lc.' Let g € §1_(p0). let ve N* and P, € D(po)c,
v
* = =
m EN*, a=1,2,...,u. Let m: ag]ma, and ag € D(po),
B = 1,2,...,m. Under these conditions .Ep] S [O,po[ such that

(2) 1 (z-a,)/ T (z-p_) & \z’maz-] (z-p )@ +3.(2)  (A.31)
g(z) m (z-a,)/ I (z-p = r /(z-p +d (z A.31
g=1 Blg=1 © as] k=0 oK' T p
V|Z| Zp]
where
(i) g, € £1_(rp)
(ii) for a=1,2,...,v, and k=0,1,...,ma-], rakEQ: is
given by
1 dk - m \Y) m_i
uk = kT Kk9(2) T (z-ag)/ T (z-p;) 1| (A.32)
dz =1 =] 2=p
ifa &
(iii) for o = 1,2,...,v
g(p,) #0 = r #0. (A.33)

87



88

Proof: This is achieved through multiple applications of Corollary A.la.
a

Proof of (2.3.4): il-(pﬂ) is a Euclidean ring

Since 51_(p0) is an integral domain (entire ring), it suffices
to prove [Sig 1, p.132] [Her 1, p.143] that the gauge v: E]_(po)\{o}-a-N
defined in (2.18) satisfies

(1) v(f§) > v(f) ¥f,g €L, _(py)\(0} (A.35)

(1) a Euclidean algorithm exists: vf,g € &, _(p,), f # 0,
34,7 € E]_(po) such that

§ = dqf+v (A.36)

with either 0 < y(¥) < y(f) or ¥ =0.
Observe that when ¢ # 0, ord(g) is finite, and the last term of
(2.18) is finite due to Property (2.3.2)(iii); hence the gauge Yy in
(2.18) is well-defined. Before we carry out the proof, we study the

following with the gauge y defined as in (2.18).

Fact A.1. For any nonzero § € E]_(po), we can decompose

3 = 5,3, (A.37)

such that
(1) g, €clz™'] with 3(3,] = v(3) and (A.38)
every zero z, of §u satisfies |za]| < 0 (A.39)

(1) §, € %_(py) 1is an invertible element of %, (oy).  (A.40)

Proof of Fact A.1. Define G, € &;_(p,) by

5(2) =: 27785 (2) . (A.41)



1]

Then the Tist of zeros of g (including multiplicities) and that of
§0 are identical. Let ng €(¢[z] be a polynomial whose zeros are
exactly all those of § in D(po)c, counting multiplicities. Then,

by definition of ng and by (2.18)

v(g) = ord(§)-+3[ng] . (A.42)
n (z) .
Note that ng has no zero at z = 0, hence ;g%ﬁaj- is a polynomial
in 271 with 2"V .degree equal to a[ng]. Define §, € ET_(po) by
)
§o(2) = 57+ 3s(2) (A.43)
g
z
3[n_]

89

Equivalently, §S(z) := §0(z)%ER37—, and by Corollary A.1b, §_ € i?_(po)

is an invertible element of i]_(po).

Define §u € G[z']], a polynomial in z'], by

~y n_(2)
§,(2) 1= 2700) . g (A.44)
u Za ng

Then combining (A.41) and (A.43), we obtain

3= 3,3,
and §[§u] = ord(ﬁ)-+a[ng] = y(§) by (A.42) . (A.45)
: ]
Procedure A.1: Euclidean Algorithm for i]_(po)
Given , €3, (o), ¥#0.
Step 1. Decompose f, § into
F=fofo. §=9,9 (A.46)

as in Fact A.1.
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Step 2. Use the Euclidean algorithm in ¢[z']] and find 6t, Ft € ¢[z'1]

such that
g, = 4,7, +F, (A.47)
where either a[rt] < a[fu] or F, = 0.
Step 3. Define §, ¥ € i]_(po) by
q =G, = (A.48)
=Gy = .
3
and (B Ft~§s (A.49)
Such g, ¥ satisfy
§ = Gf+v (A.50)
with either 0 < y(¥) < y(f) or ¥ =0. m|
We now continue the proof of (2.3.4):
() ¥nonzero ¥, § € ,_(p,),
ord(fg) = ord(f) +ord(g) >0 , (A.51)
and, by counting zeros of the analytic functions f and g,
a[nfg] = a[nf-ng] = a[nf]4-a[ng] ; (A.52)
Hence
v(§) = ord(f3) +3lne ]
= ord(?)-+ord(§)-+3[nf}-+8[ng]
= y(F) +v(§) > v(F) . (A.53)

(i1) Next, we prove that the Euclidean algorithm gives the

desired result: Step 1 follows from Fact A.1, and Step 2 is self-

~

explanatory. For Step 3, since §S, fs are invertible elements of

11_(90) and G, F, eqz ¢ %,_(pp), hence §, r defined in
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(A.48), (A.49) belong to i]_(po). Multiplying (A.47) by §_, we get

§ 45 = (3. +23)- 7.3
9,°9s = (Qg =5 -F,F + 73 (A.54)

which gives (A.50). Finally,

otherwise, by (A.47)

0 < v(F) < 8[F.] < 3[F] = v(f) . (A.55)
|

Proof of (2.3.6). (2.19)%(2.20). (2.19) holds if and only if &. is

0
a gcd(f,g), which holds if and only if (2.20) holds [McL 1, Thm. 25,

p.154].
(2.21)+#(2.22). This is obvious by observing that
(f(0),9(0)) = Tlim (F(z),3(z)).

|2+
(2.20)=(2.21). By definition, 3u, v € 2]_(90) such that
uxf +vxg = 60. With f, g, u, v € 2..[_(00), there exists Py < P
such that f, g, u, v € 9,.1(p.|). Hence, f and g are coprime in
!L.I(p]). By Property (2.2.7), inf |(f(z),§(z))] > 0, and thus
|ZIEP]

inf |(f(2),3(2))| > inf |(F(2),3(2))] >0 .
|z]>p, 12|20,

(2.20)=(2.21). With f, g € 21_(p0), there exists p; < N
such that f, g € J?,](p]). Hence the map z }— I(?(z),ﬁ(z))l' is
defined for |[z| > p; and is continuous on S := {z||z| =pg}. By
Lemma A.2, [(f(z),3(z))| >0 on S implies that Jo, € Joq.04l
such that |[(f(z),3(z))] >0 V¥|z| € [p,:p0]. Hence



I1'|m° [(f(z),§(z))| > 0. By Property (2.2.7), f, g are coprime in
z|>py

2,](p2), j.e. 3u, v € SL](pz) C 2,]_(p0) such that

uxf + vkxg = 60‘.
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Appendix B: Proofs of Theorems and Lemmas

Proof of Lemma 2.1. By definition, g € E(po) implies that
Eﬁeil_(po) and éEE?_(pO) such that § = n/d. If (n,d) are
po-coprime, then they give a po-representatiqn of g. Otherwise,
since i1_(p0) is a Euclidean ring, we can find a gcd(ﬁ,é) in
i]_(po): call it €. Define d := d/€ and # := ﬁ/E. By definition
of the greatest common divisor &, d and f belong to i1_(p0) and

are p.-coprime. Furthermore, both d, & € &7 (p.) because
0 1-*70

d € 2,_(pg)- a

Proof of Lemma 2.2. 1 € §1_(p0) and d € ET~(DO) imply that i, d
are both analytic in D(po)c. Since n, d are po-coprime, i and d
have no common zeros in D(po)c. Hence statements (i) and (ii) of the

lemma follow. O

Proof of Theorem 2.1. The steps in Procedure 2.1 are justified in the

following:
Step 1. The po-representation exists by Lemma 2.1.

Step 2. According to Property (2.3.2)(iii), de€ T

]_(po) can have at

most a finite number of zeros in D(po)c.
Step 3. By Corollary A.1b, &€ 2 (py) is invertible.
Step 4. Definition 2.3 is satisfied by (fi,d). In particular, since

inf |&(z)] >0 and |[E(z2)] g_uEup ¥z € D(po)c,
|Z|ZP0 0

rank(fi(z),d(z)) = rank(n(z),d(z))-&(z)") =1 vz € D(py)© -

Furthermore, by definition in Step 3, d € n?(po), lim d(z) = 1, and
~ Z o
Z[d] - D(po)c. a
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Proof of Theorem 2.2. (=) By assumption § € E(po). If §e E]_(po),

then (2.36) holds with ¥ = 0. Now suppose § € E]_(po). By
Theorem 2.1, § has a normalized po-representation (fi,d) such that
fie i1_(p0) and d € n”(po). Since § & i]_(po), then d £1 and

hence for some v € N*, there are Py, € D(po)c and m, € N* where
Vv

a=1,2,...,u, and for m:= ) m, there are a, € D(p,),
a=1 & B 0
B =1,2,...,my, such that
. v mom
d(z) = T (z-p,) %/ I (z-aj)
o=1 B=1

with ﬁ(pa) #0, a=1,2,...,V.
Hence (2.36) with all its properties (2.37)-(2.39b) follows from

~

Corollary A.lc, where ¢ 1is replaced by fi and where

- e )
r /(z-p =: r(z) .
o=l k=0 oK Mo
(<) Proof by construction, following Procedure 2.2: Step 1 is
self-explanatory. The pair (fi,d) generated by steps 2 and 3 satisfy
the following:
(i) by (2.43), de 7"(pg) € i7_(0g) with  1im d(z) =1 and
. . - 2]
Z[d] € D(py)™; by (2.44), €2, (py).
(i1) § nr/dr-+ﬁ by (2.36) and (2.41)
(n.+qd )/d,
= fi/d by (2.43) and (2.44)

(i11) Since (nr’dr) are coprime polynomials, then from (2.44),
V|Z| Zpo
d.(2)=0 = fi(z) =n_(2)/2°#0 .
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Hence
[F(2) n (2)
rankL; = rank =1 Y|z >0 s
d(z2) d (2)
s0 [(R(2),d(2))] >0 Viz| 2 0y

and by Remark 2.1, (f,d) are po-coprime. Therefore (fi,d) is a

normalized po-representation of g. O

Proof of Theorem 2.3. By Procedure 2.1 (normalization), we note that

any po-representation (fi,d) 1is equal to the product of its normalized
form with an invertible element of il-(po)’ Hence without loss of

generality, we assume that both (fi,d) and (fi,d) are normalized. By

th

Lemma 2.2, § has an m " order pole at p € D(po)C if and only if d

th

(ditto for 5) has an m~" order zero at p € D(po)c. Let dr be given

by the coprime factorization in (2.46). By (2.39b), § has an mth

th order zero at

order pole at p € D(po)c if and only if dr has an m
p E D(po)c. Since d, d € &m(po) and dr € ¢[z] have zeros only in
D(po)c, they have zeros of the same order at the same locations in
D(po)c, and nowhere else; furthermore, 1im d(z) = 1lim d(z) =1,
|z |+ z|s
hence - ~
d= dr/"h , d= dr/dh

where s dh € ¢[z] are monic polynomials of the same degree as dr’
and have zeros only in D(po). Hence h := nh/dh is an invertible

element of E]_(po), and is rational. Then h = "h/dh = 3/5 = ﬁ/ﬁ. O

Proof of Theorem 2.4. (=) By assumption, 3h € b(p.) such that
0

gh=hg =1 in D(pg)©. Hence 1im (3h)(z) = 1. Since

|2}

Tim |h(z)] = |h(0)] < = ,

|z|>



96

then 9(0) = Tim [3(z)] = h(0)™ # 0 .

|z[>=

(<) Let (f.d) bea po-representation of §. Then by assumption,

g(0) = lhim §(z) = 1lim fi(z)/d(z) = n(0)/d(0) # 0. Furthermore,
Z |+ Z | - 00
d(0) = 1imd(z) # 0 because d € 2]_(90). Hence 1im f(z) = n(0) =

Z 7> =] |Z|—>°°

g(0)d(0) # 0. Thus n € iT_(pO) and § ' := d/fi belongs to B(po)

and is the inverse of § in B(po). O

Proof of Lemma 3.1. This is immediate by Cramer's rule and Property

(2.2.6) (respectively Property (2.3.3)). O

Proof of Lemma 3.2. This is immediate by Cramer's rule and Theorem 2.4.

a
Proof of Lemma 3.3. This is immediate by applying Theorem 2.2 to
every element of G, so that for 1 = 1,2,...,n0, j= 1,2,...,ni,
§15 = Py * Ay
where §1j’ Fij’ aij satisfy Theorem 2.2. a

Proof of Lemma 3.4. (Nn,vn) are py-r.c. if and only if In. is a

i
g.c.r.d. of (Nn’vn)’ which holds if and only if (3.4) holds [McD 1,

p.35]. This proves Lemma 3.4(n). The proof of Lemma 3.4(2) is similar.
‘ a

Proof of Theorem 3.1.

- . n_.xn. .
Case 1. If G & 2]_(p0) ° 1, the theorem is immediately veri-

fied by choosing

N, := G ; D, :=1In; s U, =05 V :=1In,
Nz =G UZ = Ino H Ut =0 Ut = Ino
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n_xn,
Case 2. If G & 2]_(90) O 1 we use Procedure 3.1 to find the

eight matrices that satisfy the theorem.
Step 1 is self-explanatory.

Step 2. Since all elements r of R in (3.8) are elements of

iJ
mp(z) and have poles only in D(po)c, they admit a rational py-repre-
sentation (nij’di

to construct a least common multiple dj € nm(po) of all denominators

j) with N5 € n(po) and dij € n (po) such that

nij’ ) are po-coprime, with respect to n(po). It is then possible

d.. € £ (p,) of column j [McL 1, Ch. IV, §10]. Hence
1 0 n_xn.

n,
o . 0 i P i
N, [nijdj/dij] € n(po) and D, : dxag(dj)j=] € n(po)

satisfy the conditions of Step 2.

n.xn.
1 1

Step 3. M s full rank because det D, € (o)) and thus det D, fis
not the zero element of n(po). The rest is self-explanatory.
Step 4. Comment (i) relating to Step 4 holds as follows: Observe that

all matrices in (3.10)-(3.12) have elements in x(pg) C E]_(po) with

det ﬁ”_, det R € ;L°°(p0). Moreover, from M Wl [—g-:',

D =DR, ﬁn = LR

hence R=ND ' = with det ﬁn € nw(po)

and + =1

Hence (N

a’Dn) is a pg-r.r. of R, with R ag.c.r.d. of N and

ﬁn' From @i ™" I, we also get

and N, +D,0, =
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. o (ng#n )x(ng+n ) }
Since W ds invertible in n(po) » det W tends to a

nonzero complex constant as |z| —«. From (3.11), the matrix

T - o i
['Nzl DZ] = Dz['RI Ino], when evaluated at z = «, 1is a full rank
matrix; hence det 5£ S n(po) tends to a nonzero constant at infinity.
Thus (Dz’Nt) is a p0-1.r. of R.
Step 5 is self-explanatory. Comment (ii) regarding Step 5 can be veri-
fied by using (3.13) and a 1ittle computation 1ike the preceding

comment. 0

Proof of Corollary 3.1b. We present here the proof for Corollary 3.1b(x).

The proof for Corollary 3.1b(2) is similar and is omitted.

(=) By assumption, (Nn’vn) are pg-r.c., hence by (3.4)

D c
W, 1 4IF 202 = 1, ¥z € 0(a)",
_N}L i

D c
rank [U l N ] -(z)] = n; vz € D(po) .
Nn

"~ Hence, by Sylvester's inequality,

which implies

0 -
rankE 3‘-}(2) > n, Vz € D(po)c.

Vi

Equality holds because the matrix [01: NT]T has only n1 columns.
‘ . _ ‘n_xn,
(<) By Cramer's rule, G := Nnvn] belongs to b(po) 0 1.

Hence by Theorem 3.1, G admits a Pyr-T- (Nn,D&), i.e.

5 oos-]
§=R0



L nxn. - nxn, _ .
where N, € 2]_(90) ., D, € IL]_(pO) , det D, € 2]_(p0), and
I ngxng s oy 37N h th
there exist u, € 2]_(p0) . VU, 2]_(p0) such that
unN +v9 =1_ . (B.20)

. _=-1 - A
Define R := Qm Da’ Then Dn DnR and

Nl =79 Tp =&
N, =ND D =ND D =NR.

Using these identities in (B.20), we obtain

UN +VD =R. (B.21)

. nxn,
Hence R € &, (o)) ,» and so

det R = det Dn/det Dn S 2]_(p0) . (B.22)

By assumption, -

D D
n. = rank 4(3)- = rank| |- 4(3)-R(z)] Vz € D(po)c .
1 Na(z) N&(z)

Hence, by invoking Sylvester's inequality, rank R(z) =n, Vz € D(po)c,

i

i.e. det R(z) # 0 ¥z € D(po)c . (B.23)

Invoking Lemma 3.1, (B.22) and (B.23) together imply that R is an
n.xn.
invertible element of i]_(po) V1. Thus,

< X
1 n.xn

Y P ~ iTo
u, := R0 € (o) (B.24)

N PR 3N
and V, =RV, € 2]_(00) (B.25)

Premultiply (B.21) by R™' and using (B.24), (B.25), we obtain
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UnNmi'VnD& = Ini >

i.e. (N}L,D}L) is PyT-C- O

Proof of Procedure 3.2(n). Steps 1, 2 and 3 are self-explanatory. To
1

prove the comment in Step 4, we need to show that R = N&ﬁé' with

- non, noxn, _ o
(a) N, € (o) » D, € (o) ; (b) det ?%.G n (pg)s
(c) (Nn,vn) are py-r.c. The fact that R = O is obvious from
the procedure. Now consider:
(a) By Lemma 3.3, R 1is strictly proper. Hence for

i=1,2,...,n,
i

s, [N < 2 [0,] = vy = 3 [s] - (8.26)

Since S 1is diagonal, it is column-reduced. Hence, using (B.26),

- n_xn, n.xn,

o -1 o i . - S -1 i
Nn = NS € t(z) is strictly proper, and Dn : D&S €(C(2)

(z
is proper. Furthermore, by construction, all poles of Nn and ﬁ&
n_xn, nsixns;
_ - 0 3 = 1 1
are at z = 0, hence N, € n(po) and D, € a(po)

(b) By (3.21), Dn € (I[s]nixni is column-reduced, hence

n.
1
3[det D}L] = iz]y]. = 3[det S] .

Therefore det ﬁ& = det D,/det S belongs to né(po).
(c) Now (Nn’Dn) being r.c. implies

A

an
rank(-="4(z) = n; ¥z €0 .
N

I

D
Eﬂ}-‘](z) =n; Vz#0. (B.27)
N/L

Hence

rank

r‘anklz }(z)

(] 1
FES



101

By Corollary 3.1b(x), (nn’ﬁn) are py-r.c. This completes the proof

of the comment that (N ’Dn) is a pgT-T- of R.

)2
Similarly, to prove the concluding comment in Step 5, we have to
R R . o™i . Ny
show that G = N0, with (a) N, € Z]_(po) » D, € 21_(90) ;

(b) det D, € & (py)s (c) (N,,0) are py-r.c. By (3.20)-(3.29),

G=R+Q
P
= (N)r. + QD)L)D/L
_ -1
= N&Dn .

(a) Furthermore, by the closure properties of E]_(po) under

addition and multiplication,

n_xn. n.xn.
~ o i ~ T 1
Ny € %4y(eg) = s D, € 4y (ko) :
(b) Also, det D, =detD €= (DO)_C 2, _(pg)-

(c) Since, by (B.27), (-n’ﬁn) are py-r.c., there exist

xn n.xn,

) nono noxng _ ;
u, € n(po) C 2]_(p0) and V, € n(po)

n.xn.
1 ~ 1 1
C 2y_(pg)
such that
UGN +7D =1 in D(po)c i

Hence

[ ony
—~
+
N
b W]
~——
+
—
1
LN
~
=)
11}

. C
i I"i in D(py)~ »

I..» with
L 1 n.xng
€ 21_(p0) . O

i.e. (N&,vn) is po;:.c. because UnNni-V Dn
0

Ol &

- ~ nj - -
u, :=1u, € 2]_(p0) and v, =V, -u,
L . n.xn
Proof of Theorem 3.2. By assumption, there exist uz, u, € 2, (pn) oo,
n.xn. n 1-*70

n_xn
= 0 o = e i
92 € 2]_(p0) and V, € 2]_(p0) such that




o=
=
+
<!
S
]
—

{11]
—

and qu£+-vzv£ =

Rewriting (B.28)-(B.30), we obtain

N nyX
where X € 21_(90)

(B.28)

(B.29)

(B.30)

(B.31)

n
O due to the closure properties of z]_(po).

Observe that the right-hand side of (B.31) has determinant unity, and

(n,+n_)x(n.+n )
is thus invertible in i]_(po) voer oo

with the inverse Eé{ :¥J, we obtain (3.30) with

Vn = n.+XN£ R u,L = un-xvz
Vz = Vz s Uz 1= Ut .

Proof of Theorem 3.3. We restrict the proof to the Pp=r.r. case:

Define -1
R := (Dn) Dn .

3 ]
Since Dn’ 0, € 21_(p0) and
Cramer's rule that R € B(po) V1. Furthermore,

= !
D/L D,LR

_ -1 _ -1 ]
Nn = ND, Oy = N&(DA) Dy = NyR

Premultiplying (B.31)

T and det D} € ET_(pO), it follows by

and thus (3.32) holds. By the Pg-r-c. property, there exist matrices

u

w Vp» Ups Vy with elements in %, (py) such that
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UaanFVnDn = Ini (B.32)
and UAM&*-VLQL = Ini (B.33)
Postmultiplying (B.32) with R and (B.33) with R, we obtain
— o1
! ' =
UnNn-FVkvn =R (B.34)
' =
Ll)LNﬂ'-l-(/,'LD}L =R. (B.35)
. 1 - n.xn,
By the closure properties of z]_(po), R, R ' € 21_(90) ! and thus
(3.31) follows. 0

Proof of Lemma 4.1.

Case 1: only one poleat z =0, i.e. v=1, Py = 0.

ne-—3
N
N
1
-

R(z) = .
i

By [Bro 1, Thm. 18-1] or [Kai 1, Lemma 6.5-7], the McMillan degree of

ar

R 1is given by the rank of

e I ™
7,2+« - 0

Hie=| 23 : (B.41)
_Zm 0 « o e 0—

Case 2: only one pole at p (.

- m
R(z) = Z

n_xn,
The change of variable A := z-p, which defines R' € GP(A) O 1 by
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71, (B.42)

brings us back to Case 1. The conclusion follows by applying Case 1 to
R'(A) to obtain a minimal realization (A,B,C) for R'()A), thus
leading to a minimal realization (A+pI,B,C) for R(z) of dimension
r = rank H, with H given in (B.41).

Case 3: General case with R given by

m 3
Z Z Z,;(z-p,) -1
a=1 i=1 ¢
For a2 =1,2,...,v, define
m
R (2) := Z z,;(z-p, )1 (B.46)

=1

and r_ := rank H where H_ is defined as in (4.2). Then by Case 2,
Q. o o r xr

R has a minimal realization (A ,B ,C ) with A et ¢ ©. Letting

[0 a o o a

A := diag(A],Az,---,Av) s
.= rgllgTl.. . IgTqT
B = [B-‘l Zl"'le] Py (B-47)
and c:=[C IC l“~lC ]
' L2 B IRtV

the rank tests show that (A,B,C) 1is a minimal realization of ﬁg and
Aec™" with r := Z ry- Furthermore, by the block diagonal struc-
ture of A, the McM11Tan degree of p, asa pole of R 1is equal to

the dimension of Aa’ which is equal to re = rank Ha. O



Proof of Theorem 4.1. Parts (a) and (b) will only be proved for the

pa-r.r. case, the p,-1.r. case is similar.
0 0 . n.xn
(a) (<) By assumption, there exist un S 2]_(00) 1

n.xn,
1

0 and

~

;
v, € 2]_(00) such that

U&Nn-FVnDk = Ini

Postmultiplying both sides by D;], and noting G = NnD;1, we have
P =]
Unﬁ-+Vn = D& (B.48)

where, for some Py < Pgs both sides of (B.48) are meromorphic in
D(p])c, and u, and v, are analytic and bounded in D(p])c. Hence
if det D&(p) = 0, then D;] is unbounded in any neighborhood about
p. In view of (B.48), G must have a pole at p.
(=) G has a poleat p€ D(po)c implies that it must be
unbounded in any neighborhood about p. Since G = NnD;] and
N& (S E]_(po)noxni is analytic and bounded in D(p])c for some
Py < Pgs 1t follows that det Dn(p) = 0.
(b) By Theorem 3.3, if (Nn’vn) and (N&,D&) are two po-r.r.'s
n.xn, n;xn;

of G, then there exists R € E]_(po) V1 jnvertible in E]_(po) !

such that Dn = DAR. Hence
det D& = det DA.~det R .

By Lemma 3.1, det R is an invertible element of 11_(p0). Therefore
det D, and det D, are equal modulo an invertible element of 51_(p0),
which, by Property (2.3.3), has no zeros in D(po)c. Hence, to prove
Theorem 4.1(b), it suffices to show that it holds for a particular

Pg-r-r- In particular, we choose the Pg-T-T- (Nn’pn) as given in
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Procedure 3.2(#2). Then, for p € D(po)c,

McMillan degree of p as a pole of G

1]

McMillan degree of p as a pole of R given in (3.20)
(by Remark 4.1(ii))

order of p as a zero of det Dn € ¢[z]

(by right-coprime polynomial matrix factorization)

order of p as a zero of det ﬁn € n(po)

(by definition of ﬁn)

order of p as a zero of det Da

(since Dn = Dn) .

(c) Consider ¥ := det Dn/det D

Iz
both belong to ET_(QO), it follows that ¥ is an invertible element

Since ‘det vn and det DZ

of E(po) = [E]_(po)]-[ET_(po)]']. Furthermore, by Part (b), ¥ has

neither zeros nor poles in D(po)c. Hence ¥ and ol belong to

2’1_(90)- O

Proof of Lemma 4.2. We give here the proof for (4.13); the proof for

(4.14) is similar. To prove that (LE,R” W ) is a PgT-r of G,
n_xn,
we need to show that (i) G = LE(R™'Y ) ]; (ii) LE € 2]_(p0) o1 and
n.xn.
Rl €3 (0g) T s (1) det(RT'Y,) € T (og)s (iv) (LE,R7MY,)

1-
are py-r.c. Now condition (i) follows from (4.8), (4.10)-(4.12);
xn n.xn,
condition (i1) holds because L & %, (p,) "o and re 2 _(pg) 1T

are unimodular; (iii) R being unimodular also implies that
det(R” ly n) = (det R)™ 1, H b, € 2 (p0)° (iv) by construction of E

i=1
and ¥, in (4.10) and (4.11),



E C
rank} - - (Z) = n'i ¥z € D(po) s
\P/‘L
hence

LE FLI 0~ E
rank[— 3 -}(z) = rankj - + - {E - }(z) n, ¥z € D(po)c >
R Y, [ 0IR

and thus (LE,R']WA) are py-r.c. in view of Corollary 3.1b(x). O

Proof of Theorem 4.3. By Lemma 4.2, (LE,R"Wn) is a Ppr-T- Next,

we note that det(R 'Y ) = (det R)'li ; hence ¥. = det(R']W )
n G G R
modulo an invertible element of §1_(p0), which has neither zero nor

pole in D(po)c. The proof is complete by invoking Theorem 4.1. O

-1

Proof of Theorem 4.4. Let G = Nnvn be a PpT-T-

(=) Let p€ D(po)c be a pole of G. By Theorem 4.1,
n.
det Da(p) = 0. Hence there is a nonzero £ €€ ' such that

0,(p)g = O, - (B.51)
n.xn.

Choose the input &(z) := D&(Z)EIE%BSz Then since Dn = il-(po) L

we apply Theorem A.1 to the term Dn(z)g/(z-p) and get

&(z)

"
=
#A
N
oYy
j
N
o

p)ETZ:ET + Zie(z)
zie(z) by (B.51) (B.52)

n,
and hence e € 21_(91) 1 for some Pq € ]O,po[. Next we calculate the

output and apply Theorem A.1 to the term Nn(z)s/(z-p):
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&
o~
N
N”
n
=
&
-
N
>
&
o~
N
s
1)
P
N
N’

N/L(Z)g(zfpj
N (P)erzSoy + 22, (2) (8.53)

where, by defining h(z) := zZy(z),
n
0
h € l]_(pz)

for some P, € ]O,po[. Note that since (Nh’pn) is PgT-C-> then by
Corollary 3.1b(x), rank[D&(p)T: N)L(p)T]T = n, and thus
y := N, (p)E # 0,
0
(<) By contradiction: If p € D(po)c is not a pole of G, then
for any input e € 21_(91)ni (p] < po), Gé dis analytic at p and

hence the output cannot contain a term of the form y-pk. a

Proof of Lemma 4.3. Consider the McMillan form M[G] of G in (4.8)-

(4.14). By Remark 4.4, since multiplication by unimodular matrices does

not affect the rank of a matrix at any point in D(po)c, hence
c
¥z € D(po)
rank[Nn(z)] = rank[LE](z) = rank[E(z)]
= rank[ER](z) = rank[NZ(z)] . O
Proof of Theorem 4.5. Let & = DN, be a p.-1.r.
2 0 0 xn
. . . ~ 0o
(a) Since ﬁvgéNz) is 90-1.c., there exist Vz € 21_(p0)
and U, € E]-(po) 170 sych that
- c
(Dzvzi-Nzuz)(z) = In ¥z € D(po) . (B.64)

0



n.
By (4.22), rank[Nz(zo)] < n;. Hence there is a nonzero EE€( |

such that
Nz(zo)&; =06 . (B.65)

n
Now, since Nz(z)g € i]_(po) © by applying Theorem A.1 to the term

Nz(z)g/(z-zo), we obtain

z z -
Nﬂ(z)gTE:EET = NK(ZO)ETE:567'+ zZ(z)
= z#(z) by (B.65) (B.66)
. n
and z—2z%(z) € ll_(p3) O for some o3 € ]O,po[ . (B.67)
Choose
m(z) := -Ug(z)-zi(z) . (B.68)
. n.xn
By (B.67) and since U, € %, (o) ,
"
m € zLjp]) for some p, € ]O,po[ .

Using the input defined by (4.24), we calculate

¥(z) = §(2)8(2)
= 0,(2)7'[28(2) - N, (2)u,(2)-22(2)] by (B.66)
= 0,(2)710, (2)v,(2)-2%(2) by (B.64)
= Vﬂ(z)-zi(z) . (B.69)

n_xn
So, by (B.67) and since v, € &, (pg) © °

n
y € 2]_(p2) ° for some Py € ]0,p0[ .

(b) With the input e in (4.26), the output is given by

§(2) = 8(2) &5y
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= BIERSy * 002) T INy(2) - 0(2)0, () Wy ey - (8.70)

Since v is neither a zero nor a pole of G,

G(v)E # e"o

and the second term of (B.70) is analytic at z = v. (This follows

because v € D(po)c belongs to the domain of analyticity of D, e

and DE].) a

Proof of Theorem 4.6. Let G = DE]NZ be a py-1.r. By (4.22),

n
rank[Nz(zo)] < ngs hence there exists a nonzero y € ¢ ° such that

* = *
Nz(zo) e"i . (B.71)
Define

(B.72)

n.
Now given any £€C¢ ', choose = € n(po) (the choice of w(z) will

be specified below, see (B.84)), and consider the input (4.28) with

m(z) := w(z)g, i.e.

8(z) = [—=2 . B.73
z) [(g:gay*‘ﬂ(z)lﬁ ( )
Hence
~ * -1 z

* = y'D D N . B.74
n*¥(2) = ¥*0,(24)0,(2) £(2)6[13:367"+ﬂ(2)] (B.74)

Consider
§ 1= YD, (29)05 N,E € Blog) (8.75)

hence, by Theorem 2.1, § admits a normalized p0~representation
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3 = n/d (B.76)

with n € E]_(po) and d € 2" (p.). By (B.71), g(zy) = 0. Hence by

po-coprimeness

n(zo) =0, d(zg) #0. (B.77)

Applying Theorem A.1 to the term n(z)/(z—zo) and using (B.77), we

obtain
z n(ZO) ~ R 7
n(z) (z-zo) = (Z'ZO) z + z9(2) = z9(z) (B.78)
where z—23%(z) € Q]_(pl) for some o, € 10,p4[ . (B.79)

Using (B.75), (B.76) and (B.78) in (B.74), we obtain

(z'zo)

n*y(z) = z9(z)-[1+ m(z)]/d(z) . (B.80)

We will show next that = € n(po) can be chosen so that the second
factor of (B.80) is a constant for all z. Once this is done, the
conclusion (4.29) of the theorem follows.

Since d € nm(po), Tet
d(z) = a(z)/b(z) (B.81)

where a, b € C[z] are coprime polynomials such that b has no zeros
in D(po)c and %a = 3b. Since (B.77) holds, we can pick a €¢
such that

-1 + a-d(zo) =0, (B.82)
hence (z-zo) divides [-b(z) +a-a(z)]. Then with

p(z) := [-b(2) +a-a(z)]/(z-zj) (B.83)

p €¢[z] and 93p < 3b. Now define
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w(z) := zp(z)/b(z) , (B.84)

hence m € n(po). With this choice of =, the right-hand side of
(B.80) reduces to o-z%(z). a

Proof of Lemma 5.1. (5.14)<(5.15)«(5.16). Immediate by Theorem 4.1

)@
because (NR,D) is a py-r.r. of Gn and (D,Nz) is a po-l.r. of Gz.

(5.16)=(5.17). Since (Nn,v) is Pg-T+Ce> there exist matrices

un, Vn with elements in 21_(90) such that

U&“n4'VnD =1, (B.90)
Postmultiply (B.90) by §, := v“uz,

U}LG-I-V)LN£ = Gl . (B.91)

Since all elements of u,, v, and Nz are bounded in D(p])C for
some pq < ChE ﬁz has a pole at p € D(po)C implies that & has a
pole at p.

(5.16) =(5.17). Since G =NG, and all elements of N, are
bounded in D(p])c for some Py < Pgs G has a pole at p € D(po)C

implies that éz ‘has a pole at p. O

Proof of Theorem 5.1. (+) Since u has support {0}, then u(z) =

¥Yze¢. Since y(k) is O(km']ok) for large k, hence ¥ = Gii

must have a pole of order m at some p, where |p| =0 > pg- Thus
G must have a pole at p of order at least m. The conclusion
follows by Lemma 5.7.

(=) Assume X(p) = 0, with |p| =0 > pg- By Lemma 5.1, p fis
a pole of G. Let m be the order of p as a pole of G. Then
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n. .
there exists some u, €t ' such that GuO has a pole at p of order

n,
m. Choose an input sequence u := Ug*Sg € (¢N) V. Then the output
sequence y satisfies ¥ = éuo, which has a pole of order m at p.

Compute the Laurent expansion of y at p

3 -
j(z) = —"—+ Q"L4+-~+£0+£4(b©)+~-.
(z-p)" (z-p)
Hence, for large k, y(k) dincludes a term Em-[;:}]p(k'm), which is
0(k™ 15Ky, O

Proof of Theorem 5.2. (=) By contraposition: If there is p € D(p)®

such that {(p) = 0. Then by Lemma 5.1, G has a pole at p € D(p)c.

Hence G 1is not bounded in D(p)C and cannot belong to E1(p)n°xni.
(<) Since %(z) #0 for all ze€D()® and %€ 27_(pg)

(i.e. x(0) # 0), hence % :=det D is an invertible element of E](p)

by Property (2.2.6). Furthermore, since Nn’ D, N, all have elements

4

in 2. (p.) € 2.(p), it follows by Cramer's rule that & := N D']N

1-tP7 = M0l e
belongs to E1(p) o1, 0
Proof of Theorem 6.1. (i) follows from Lemma 5.1 and (6.9).

. n _xn,
(1) since P €blpy) ® ', thus by Theorem 3.1
P has a Pg"-T- (an,vpk) . . (B.100)

Hence by applying Theorem 4.1(c) to (6.12) and (B.100), there exists

P €2, _(py) finvertible in Z, _(p,) such that

det D = ¥Pedet D

o1 ) (B.101)

Recall the terms defined in (6.1)-(6.14), and consider the following
. (ni+no)x(n.+n0)
matrices in 21_(00) ! :



n n. n n.

0
n[0IN n{o | 0°
Ni= Of- - PA D= Oy |, (B.102)
n.|(-N nl 0 n.|] 0 1lvp

p

Then using Corollary 3.1b(x) (N,D) s a Pgr-r- of
- ni+n0)x(n1+no)
Ge b(po) . Moreover, (N,D) being Pg=r-C- implies that

1jlLo 1o,

«det Dcn . (B.103)

(D,D+N) is Py -C- By (B.102)

o, I'N "I | PI+PC
D+N=L- ST ) --1-{!-:
U ol 1 || -¢

det[D+N] = det[I+PC]-det D

and thus

pA

Hence using (6.7), det[D+N] € E?_(po), and so (D,D+N) is a py-r.r.

of
(n.+n0)X(ni+no)

Y <=1 _ -1 =7 i
Heu = (I+G) ' = D(D+N) ' € b(po) (B.104)

1

Similarly, (J 'N,D+N) is a py-r.r. of

. (n;+n_)x(n,+n )

Fiyy = 18+ = o o)1 Blog) ' ° 1 ©(8.105)

Now by (B.103), using (6.12), (6.13) and (B.101)

det[D+N] = det[I +D

-1 =14 <
pszchnvcn]or'det Dpﬂ

pLDcanNpﬂNcn]
¥+ by (6.14) . (B.106)

«det Dca

redet[?D

Observe that ¢ 1is bounded and bounded away from zero in D(p])c, for

some py < pgy- The conclusion follows by applying Theorem 4.1 to

(B.104) and (B.105), using (B.106). a
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Proof of Lemma 7.1. (7.5)<(7.6). This is immediate by (7.3).

(7.4) «=(7.6). This is immediate by the second equation in (7.6).
(7.4)=(7.5). By (7.3), (XP,¥P) := (U0,v,0) is a particular
solution of (7.4). Hence (X,Y) is a solution of (7.4) if and only if

(" 9") = (%-,0,¥-v,D) (8.110)

is a solution of the homogeneous equation

hypyh 2
N 0 = 0y (8.111)

It remains to prove that (xh,Vh) in (B.110) is equal to (-DaN,N N)
n.xn G

for some N € E]_(po) 1 Define
M= 07X e ’tS(pO)nixno : (B.112)
~Then by (B.111), using (7.2),
A R AR U (B.113)

By (7.3), anni-UnNd = I; hence postmultiplying by N

h h _
-V}LX +U}LV =N (B.114)

. n,xn .
and so N € 21_(p0) ' 0 by the closure properties of 2]_(90). Thus

by (B.110), (B.112) and (B.113), we obtain as required

X=UD-DN, V=UD+NN.

The proof of (7.7) proceeds as follows: (<) By Lemma 3.4(x), there
n_xn,

n_xn
exist U € 2}_(90) 0 1, S E]_(po) O 0 such that UN+UD = I.

Premultiplying (7.6) by [u :U], we get
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I = (—UV)L+VN£)X+(UU)L+ vo,)Y .

£

The matrices in parentheses have elements in i]_(po), due to the
closure properties of E]_(po). Hence (X,Y) are Pg-T-C- by
Lemma 3.4(x).

(7.7)(=) follows by interchanging (N,D) and (-X,Y) in the
above argument, and by using (7.5) instead of (7.6).

(b) Since N, =0,G and det D, € 21_(00)



(i.e. 1lim det Dz(z) £ 0),

|z |+
1im N,(z) = 0 by (7.8) . (B.115)
zZ | £ o™
. nxng
Now by (7.6), D = NX+D,¥ € 2]_(00) . Hence using (B.115),
1im det D(z) = 1im det Dz(z)- 1im det Y(z) . (B.116)
|2 ]+ |z |0 |z |
Conclusion (7.9) follows because 1im det D,(z) # O . 0
2]t

Leima B.1. Let p € ]0,1[ and g, u € z](p). Then y := g*u satis-

fies y, = o(pk) as k—o.

-}

- (u(k)o™)r

belong to 2,5 hence ¥ := g*u € %,- By simple calculations, y and

Proof. Since g, u € £,(p), g := (g(k)p'k) and u :

y are related by y = (y(k)p'k):=0. Consequently, since y € 21’
F(k) = y(k)o ¥ =0 as k—sw; hence y(k) = o(pX) as k—»e. O

Proof of Theorem 7.1. (i) We first verify Procedure 7.1 step by step:

Steps 1 and 2 are self-explanatory.

Step 3. To show that (Dﬂ’Nﬂ)
n_xXn n_xn.

~ 0 o ~ 0 1 el .
Dz € 21_(p0) , Nt € 21_(90) and det D£ € 2]_(p0),

is a py-1.r. of F, note that

F = DE1N£. Furthermore, in viewof (7.22), rank[vz(z)} Np(2)] =n,
C. . .

¥z € D(po) ; hence (Dz,NK) is pg 1.c.

Step 4 is self-explanatory, in view of Lemma 7.1.

Step 5. To show that (Nca’vcn) is a Pgr-T- of C, it is immediate
. eas . -1 n~ nixno
by definition that C = N_ D, where N_ €%, (o)) and

~

D, €% _(py) © °. Moreover, by (7.32), (7.33) and Lemma 7.1(a)

117



D= N£X+D£V
=X %Dpz" ; (B.117)
hence by (7.11) and Lemma 7.1(b), det 0_, = det(¥) € &7 (py). Lastly,
it remains to show that (Nca’vcn) are p,-r.c.: by (B.117) and (7.16),
D(z) = sz(z)x(z) Vz € Z[¢u]LJZ£¢w] ; (B.118)
by (7.25), det D(z) # 0, vz €2[¢ Juzle,]C D(1)° ;
hence by (B.118),
rank[X(z)] = n, ¥z € Z[¢u]lJZ[¢w] 3 (B.119)

since (X,Y) are PyT-C- by Lemma 7.1, then using (B.119)

X
rankF?é}(z) =n, ¥z € D(po)c ; (B8.120)

hence according to Corollary 3.1b(4), (Ncn’vcn) is py-r.c.
Throughout the procedure, all matrices concerned have elements
corresponding to sequences in RN: this property is preserved in C.
(i1) By (6.14), (7.35) and (B.117), the characteristic function of

the feedback system S is
X = det D 3 (B.121)

hence by (7.25), Z[X;D(py)°1 = A and condition (b) of Problem (SP) is
satisfied. Furthermore by definition of A, X(z) # 0 Vz € D(l)c;
hence condition (a) is also satisfied in view of Remark 6.2. To show
that condition (c) of problem (SP) holds, we calculate first the

transfer functions for the maps uSF—+es and wpk—+es, respectively,

118

(]



119

= [1+g]!

I
|

) [Dp£ cn pz cn] D pL
= %vv']vpK . (8.122)
and H = -[1+B6]71p

- D [Dpz cn p£ cn] N pLl

- Q
o sz . (B.123)

Since the list A 1is finite, there exists some p € ]po,l[ such that
det D(z) # 0 ¥z € D(p)®; hence by applying Corollary 5.2b to

- . n_xn _ - n_xn
D e b(po) © 0 we have D 1 € 11(p) O 0. consequently

-1 ~ noxno -1 ~ nox"i
yD DMER](D) , -yD NPLESL](D) . (B.124)

Also, by construction of ¢ and d,

n n

~ - ¢ Vu ¥ 0 (o]
s = § g e ilog) ° c hlo) (8.125)
and
v
R R ™ "
d'p = a5, € h- (pg) ' < 24(p) (B.126)

Now, for arbitrary vy and Vi satisfying (7.13) and (7.14)

H ﬁ
s e Ug Us egWy p

010,185, + (907w, 1+ Ddw T - (8.127)

M
1]

Applying Lemma B.1 to (B.127), using (B.124), (B.125) and (B.126), we

have

e (k) = o(oX) as k—re . (B.128)

- . n_xn,
To check condition (d), consider any perturbed plant P € b(po) 0 1

satisfying (7.10), and for which the feedback system S with controller



¢ and plant 5 has transfer functions ﬁeu’ ﬁyu that are 2p-stab1e,

€ [1,%]. 1 P admi -1.r. N
Vp € [1,]. By Theorem 3.1 P admits a Po 1.r (Dpz’sz) and the
characteristic function ¥ becomes
% = det D (B.129)
where
3 = o ¥ "o Mo
D x= D00, +R N, € 1, _(pg) .

By Corollary 5.2a, the zp-stability of the perturbed feedback system
implies that ;(z) #0 V¥ze€ D(])c and, since ; € i1_(po) and D(1)
is compact, there is a p € {po,l[ such that det D(z) = ;(z) 70,

¥z € D(B)c. Calculating as above, we obtain that

= _ dyn -1z = - _ oup -5
Hy | %vv B, and A, %v R (B.134)

s's s'p bt

- -] L Ngxng 1o o _noxn.
where VYD Dp£ S zl(p) s =YD sz.e z](p) . (B.135)

The arguments of (B.125)-(B.128) can be repeated here and thus condition
(d) of problem (SP) is satisfied. O

Proof of Theorem 8.1. The proof of this theorem with the general A,

B notation can be found in [Des 5]. Just to demonstrate this theorem
in terms of the system descriptions we are now concerned with, we give

the proof for equivalence (8.15):

~

(=) (8.13) and § € i?:m imply that all elements of H (see
(8.9a)) are in ET:m. Since P s in the radical Bs(po)mxm, I-PQ
has an inverse in B(po)mxm; and since Q is in ET:m, (8.9b)
shows that € is in the radical ES(pO)me.

(<) This is immediate since Q s a submatrix of H a

yu’

120
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Proof of Theorem 8.3. It suffices to show that ﬁy " and 6 satisfy
s°S

Theorem 8.2. We note that since P € ET:m, then in (8.21)

ord, (7110, §=1.2,...m.

J
Hence in (8.19), ﬁy w € &(1)mxmrﬂR(s)mxm C ETxm. Furthermore,
sUs
Q := P']ﬁy y € @)™™  Since all poles of B! in D(po)c are
S°s

zeros of P, and these poles are cancelled by ﬁj, j=12,...,m in

(8.18), hence Q 1is analytic in D(])C. By Remark 2.2(ii),

e T o @y :
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Fig. 5-3. Model for each individual system.
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Fig. 6-1.

Feedback system S with plant P and controller C.

129



=)

O
0

Fig. 9-1.

General feedback system.
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