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Abstract

In this report, we formulate a general class of linear time-invariant

discrete-time distributed systems; and we study in depth these systems

from the control system design point of view. We consider both

single-input single-output (SISO) and multi-input multi-output (MIMO)

systems, investigate their analytic properties, and establish design

procedures for these systems.

The input-output (I/O) behavior of a linear time-invariant system

is specified by its transfer function: For a causal lumped SISO system,

its transfer function is a proper rational function. Such rational

transfer functions have been extensively studied as functions of a com

plex variable, which led to many important control theory results (e.g.

Nyquist theory, Bode plot, etc.). Vidyasagar pointed out that a proper

rational function can be expressed as a ratio of two elements in some

algebra other than the algebra of polynomials (e.g. the algebra of pro

per "stable" rational functions): This observation has led to a broad

effort to investigate the relationship between the important properties

of linear time-invariant systems and their algebraic structures. Extend

ing this idea to continuous-time (distributed) convolution systems,

F. M. Callier and C. A. Desoer (1978) developed an algebra of transfer



functions 8(a0) for describing their transfer functions: here every

element of %{oQ) is expressed as a ratio of two elements in an

algebra A_(aQ), the subalgebra of causal aQ-stable transfer functions.

In this research, we study discrete-time (distributed) convolution

systems, by making full use of the algebraic tools that have proved to

be useful in the study of the other system representations, we develop

acommutative algebra of transfer functions, £(pQ), for a general

class of SISO discrete-time convolution systems, which covers sampled

distributed-systems and, of course, lumped systems as a special case.

Each element of b(pQ) is formulated as a ratio of two elements in an

algebra L (pQ) of causal pQ-stable transfer functions. We demonstrate

that £-i(Pq) is indeed a Euclidean ring; we give necessary and suffi

cient conditions for coprimeness between elements in £-1 (pQ); and we

study the concepts of poles and zeros for elements in 5(pQ). In

contrast to the existing theory on transfer functions corresponding to

£,,-sequences,the algebra b(pQ) includes both stable and unstable

systems; and since pn < 1, this formulation allows us to study the

dominant poles inside the unit disc of the complex plane.

With the SISO theory well established, we study MIMO systems whose

transfer functions are matrices with elements in b(pg), and we estab

lish the matrix fraction representation theory. Consequently, matrix

multiplication introduces many additional problems: commutativity is

lost, zero divisor's are present, and the ring structure is lost in the

case of nonsquare matrices.

We then investigate in detail many results of MIMO b(pQ)-systems

that have similar counterparts in the other system descriptions: In

particular, we obtain the dynamic interpretation of poles and



transmission zeros. We consider interconnections of such MIMO systems,

with feedback as a special case. We introduce the notion of charac

teristic functions to study the overall stability of any such inter

connection (an idea similar to but not identical with that of charac

teristic polynomial); and we obtain necessary and sufficient conditions

for £ -stability, Vp e [1,°°]. The matrix fraction representation also

allows us to obtain procedures for designing feedback systems with

controllers to achieve stabilization (analogous to arbitrary closed-loop

eigenvalue assignment), asymptotic tracking and disturbance rejection;

finally, for the case of stable square plants (which can be obtained

from an unstable one by the stabilization procedure), we are able to

achieve complete decoupling with detailed pole assignment and finite

settling-time, subject to, of course, the limitations imposed by the

plant transmission zeros outside the open unit disc.
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1. Introduction

Consider a discrete-time convolution system whose weighting

sequence is obtained by sampling the impulse response of a continuous-

time linear time-invariant distributed system. Such a sampled system

cannot, in general, be represented by a rational z-transfer function.

In this paper, we develop a general theory to cover such cases. Our

approach includes the rational transfer functions as a special case,

and in many instances, the analysis exhibits some resemblance with the

existing techniques for the rational case.

In Section 2, we develop a model for a class of such systems,

whose transfer functions are elements of an algebra denoted by b(pQ).

The model encompasses both stable and unstable systems in the input-

output (I/O) context. We discuss some properties of the poles and zeros

for such systems, and we give some examples to demonstrate this more

general model of system description. We consider in Section 3 multi-

input multi-output (MIMO) systems whose transfer functions are matrices

with elements in b(pQ): we examine the notion of coprimeness (left-

and right-coprime) and derive the matrix fraction representation theory

for these systems. In Section 4, we consider the poles and define

(transmission) zeros for MIMO systems and exhibit their dynamic interpre

tations; an example is given to demonstrate the claimed properties of

the transmission zeros. Interconnected systems are considered,in

Section 5: here we introduce the notion of characteristic function for

studying I/O stability. As a special case of interconnected systems,

feedback systems and their I/O stability are studied in Section 6. In

Section 7, we study the problem of controller design for feedback



systems to satisfy specifications on stabilization, tracking and

disturbance rejection; an example is provided to demonstrate the step-

by-step procedure to obtain the controller transfer function. In

Section 8, we extend the findings of [Des 5] to study feedback decoupling

when the given plant is square and stable. We conclude this paper by

some discussions in Section 9.

Notation

Let R (t) be the field of all real (complex) numbers; let

JN := {0,1,2,...} be the set of all natural numbers, and N* := W\{0}

= {1,2,3,...} be the set of all positive integers. We denote by R

(respectively (t ) the set of all real (resp. complex) sequences on N,

i.e. R*1 (resp. tM) :={(g(0),g(l),g(2),...) |g(k) GlR (resp. (C), VkeM;

and we denote by R^ (resp. C^) the subset of all z-transformable
sequences in R1^ (resp. C*1), i.e. geR1^ (resp. (D1^) belongs to R^1

TNI °° u
(resp. C ) if and only if the series £ g(k)z"K converges for some

k=0 ^
zG (t. For any k€ f|, we define 6k e (tf1 as the complex sequence

on M with <5k(k) = l, and 6k(i) =0 Vi f k. Let the superscript
_ oo

denote z-transforms: if g^d: , then g(z) := \ g(k)z"k is
k=0 w

defined for z£f wherever the series converges; if SCT, then

3 := {g|gS5} cf^ . For any nonzero g6$**, we define the order
[Kuc 1] of its z-transform g as ord(g) := index of the first nonzero

component of g. Let (£[z] be the ring of all polynomials in the

complex variable z with coefficients in (£, G(z) be the field of

all rational functions, and G (z) be the subset of all proper

elements of (E(z). The spaces of n-tuples and matrices are specified

by superscripts in the usual manner, e.g. £n, R(z)mxm,... . Let 9



be the zero element of tn. For ae G[z], let 3a denote the

degree of a; if v £ f[z] , then 3v denotes the maximum degree of

n0xni th
the components of v. For HSI[z] , we denote by 3 M the i

ci
column degree of M (i.e. the maximum degree of the components in the

•f*h 1 —1

i column of M). Similarly, for a e C[z~ ], a polynomial in z ,

we denote by 3a the degree of a as a polynomial in z" . Let

K e c be open: for f: K—*(D, Z[f] denotes the set of zeros of f;
nn*n.

for F: K—*(£ , P[F] denotes the set of poles of all components

of F. Let pQ >0; we denote by D(pQ) := {z€(&||z| <pQ} the open
disc with radius pQ about the origin in the complex plane.



2. b(pQ), the Class of Transfer Functions

2.1 Convolution systems

The I/O characterization of discrete-time causal convolution

systems is most conveniently done through their weighting sequences.
mi

When an input sequence u^t is applied to a causal convolution

system with weighting sequence h^C , the output sequence

y = (y(k))k=Q := h*u is given by the convolution formula

k k

y(k) » I h(i)u(k-i) = £h(k-i)u(i) Vk G IN (2.1)
i=0 i=0

where the summing variable i represents the age variable.

For any p G [ls°°]> let |-| be the usual norm defined on the
r

normed space i cq; . It is a well-known fact [Des 1, p.244] that if

hGJlp then, Vp G [1,«],

u€L => y:=h*uSjl ,

and in fact, Vp G [1,»],

|h*u|p< M-,Mp • (2-2)

The relationship, however, lacks the useful information of how fast the

sequence y decays, even when u is zero except for a finite number

+

of components.

Suppose now that the sequence h satisfies the stronger condition

that, for some pQ G [0,1[, the sequence h defined by

R := (h(k)pQ )k_Q belongs to £,. If the input sequence u has
f IN
The sequence g^c is said to decay to 0 exponentially at a rate

(at least) y iff 3y > 1, 3M >0 such that |g(i)| < M(Vy)1 ViGfJ,



finite support (i.e. there exists least Nen such that u(k) = 0

Vk > N), then for any k > N,

k

|y(k)| = | I h(i)u(k-i)|
i=0

< I |h(i)||u(k-i)|
i=0

k

= I |h(i)| |u(k-i)| since u(i) = 0 for i > N
i=k-N

k

1 luL I Ih ("») I since |u|= max|u(i)|
i=k-N 0<i<N

l|uLP0k-N l Ihd^lp"1
u i=k-N u

|y(k)l <|u|Jh|lP5"N Vk >N. (2.3)

Hence, the output y decays exponentially to 0 at a rate at least

-1 +
p« , where the constant1 M may depend on N (from (2.3), we may

take N:=max{|y(0)|,|y(l)|p-1)...,|y(N-l)|p-(N-1); |u|Jh|lP-N}).

2.2 The Class of Sequences &-i(Pq)

The preceding discussion leads us to consider the class of weighted

sequences

Vpq) :- {g^^l I |g(k)|p-k<»} C(J" (2.4)

where typically pQ G [0,1[. The properties of this class of sequences

are given below. Detailed proofs of these properties and the properties

in the next subsection, namely 2.3, are given in Appendix A.

t
See footnote of previous page.



&.j(Pq) is a complex vector space. It forms a complete normed

space with the norm II-II : £, (pQ) —*-R+ defined by

l90o =- I|g(k)|p~k Vge a(p ). (2.5)
p0 k=0 u ' u

(2.2.1) If we choose as multiplication in £-i(pn) the convolution

operator, A,(pQ) is a commutative Banach algebra with neutral element

(unit, multiplicative unit, multiplicative identity) 6Q := (1,0,0,...)

(2.2.2) For 0< P] < pQ, l}(P]) C z}(pQ).

(2.2.3) ^(pq) has no divisors of zero and is thus an integral domain

(entire ring [Lan 1]).

(2.2.4) For any gG ^(pg),
00

I
k=0

00 -k(i) the series £ g(k)z" converges absolutely for all

z G D(pn) and is bounded there by ||g|| ;
u p0

(ii) Ve >0, it converges uniformly in D(pQ+e)c, hence g(«)

is analytic in D(pQ)c;

(iii) as |z|-*-«, g(z)-*g(0).

(2.2.5) ^i(Pq) is a commutative algebra of functions analytic in

D(p0) and bounded in D(pQ) , with pointwise addition and multipli

cation, with neutral element 6Q(z) =1 V|z| > pQ, and with no

divisors of zero.

(2.2.6) Inversion Theorem

gG £-|(p0) has an inverse in Mpq) (2.6)



o inf |g(z)| > 0 (2.7)

o (1) g(0) f 0 (2.8)

(ii) g(z) f 0 V|z| > pQ D

Note that if hG ^(pq) is the inverse of g, then

h(z) = l/g(z). The next property will be useful for proving the

coprimeness condition of (2.3.6).

(2.2.7) Given f, g in the Banach algebra ^(pq). 3u,v g ^(pq)

such that

u*f + v*g = 6q , (2.10a)

or equivalents, (uf +vg)(z) = 1 V|z| > pQ (2.10b)

o inf |(f(z),g(z))| > 0 (2.11)
|z|>P0

~ (D l(f(o),g(o))| > 0 (2.12)

(ii) |(f(z),g(z))| >0 V|z| > Pq

2
where |«| is any norm on (t . Q

2.3 The Class of Sequences JL_(pQ)

For pn > 0, typically p« <_ 1, we define a class of complex

sequences on IN by

^.(P0) := u Vpl} c*z • <2-14)
0<p-|<pQ

Note that £i (p0) c &-.(pQ), in view of definition (2.14) and

Property (2.2.2). D



(2.3.1) A, (pq) is a normed commutative subalgebra of ^(prj) with

norm IIMl , with neutral element <Sn, and with no divisors of zero.P0 0
Similarly JL-j_(pQ) is a commutative pointwise-product subalgebra of

L|(p0), with neutral element 6Q(z) =1 V|z| > pQ, and with no

divisors of zero. Consequently, £, (pQ) and L (pn) are both

integral domains.

(2.3.2) If gej^Jp^, then

(i) g(«) is analytic in D(p )c for some p <pQ; in particular,
it is analytic in D(pn)c;

(ii) g(-) is bounded on D(p )c DD(pQ)c;
(iii) §(•) has afinite number of zeros in D(pn)c.

(2.3.3) gG i}JpQ) has an inverse in ^Jpg) (2.15)

o inf |g(z)| > 0 (2.16)
|z|>Po

^ (i) g(0) f 0 (2.17)

(ii) g(z) f 0 V|z| > pQ.

(2.3.4) ^i(Pq) is a Euclidean ring (hence a principal ideal ring

[Sig 1, p.133]), with a gauge [Sig 1, p.132] [Her 1, p.143] (or stathm

[McD 1, p.30]) y: J1_(pQ)\{0}->IN defined for all nonzero

ge ^.(P0) by

y(g) := ord(g) +number of zeros of gin D(pQ)c, counting (2.18)
multiplicities.

The Euclidean algorithm is given in Procedure A.l of Appendix A.

Consequently, &-i (pQ) is a Euclidean ring (and thus a principal

ideal ring) with the same gauge defined for L (pQ).



(2.3.5) Definition. Given f, g in the commutative Euclidean ring

£-j_(Pq)- Then f, g are said to be pQ-coprime iff any greatest common

divisor of f and g, denoted by gcd(f,g), is an invertible element

of ^.(P0) [Sig 1, p.142] [McLl,p.l54].

f> gG £-j_(Pq) are also said to be pQ-coprime if and only if
f» gG £-, (Pq) are pQ-coprime.

(2.3.6) Given f,gS£ (p), f, g are pQ-coprime, (2.19)

o 3u,v G £-j_(pQ) such that

u*f + v*g = 6Q , (2.20a)

or equivalents, (u? +vg)(z) = 1 V|z| > p , (2.20b)

o inf |(f(z),g(z))| > 0 (2.21)
|z|>P0

~ (i) |(f(0),g(0))| > 0 (2.22)

(ii) |(f(z),g(z))| >0 V|z| > p0,

where |*| is any norm on (£ . D

2.4 The Class of Sequences l™ (pn)

With £-j_(Pq) defined above as in (2.14), we define a subset of

it by

V(p0) := {9g*iJp0)I lim g(z)=g(0)^0} . (2.23)
|z|-*»

Note that £~_(Pq) and £~_(pq) are multiplicative subsets [Lan 1,
p.66] [Zar 1, p.46] of £-,_(p0) and IjJpq), respectively. D

Remark 2.1. Consider Property (2.3.6). A necessary condition for

f» gG £-j_(Pq) to be p0-coprime is that at least one of them must

10



00

belong to £-j_(p0). Under this condition, f and g are p^-coprime

iff |(f(z),g(z))| >0 V|z| 1 Pq> i.e. f and g have no common

zeros in D(p0)c. •

2.5 The Transfer Functions in b(pn)

We now define a class of complex sequences on ]N whose z>trans-

forms form the class of (stable or unstable) transfer functions we are

concerned with.

Definition 2.1. Given the convolution algebra £-. (p0) and the multi

plicative subset C (pq)» 0<pQ <1, the algebra of fractions b(pQ)
[Zar 1, p.46] [Lan 1, p.66] is defined by

b(PQ) := [^.(P0)][^(P0)]-1 (2.24)
={g =n/d|nGJ1_(p0), dGj~_(p0)} .

Let b(pQ) be the set of complex sequences on IN defined as

b(pQ) := {gG^|gGb(p0)} c»J . D (2.25)

Remark 2.2. (i) The z-transform is a linear bijective map from b(pn)

onto b(pQ). The definition (2.25) shows immediately that it is a

linear map from b(pQ) into b(pQ). This map is bijective because

every gG b(pQ) can be expressed as a Taylor series (necessarily

unique) about infinity, thus specifying a unique sequence in b(pQ) c C

More precisely, g = n/d where fi G L_(p ) and d G J? (p ) are

0'
both analytic and bounded in D(pn)c. Since d has a finite number of

zeros in D(pQ) and lim d(z) = d(0) f 0, then 3p, > pQ such that
lzl^°°

inf |d(z)| > 0. Thus g is analytic and bounded in the "annulus"

11



given by |z| G [pd,~[. Hence V|z| > p., g(z) can be expanded as a

unique Laurent series

9(z) - I g(k)z"k + I g«(k)zk (2.26)
k=0 k=l

where, Vp >_ p .,

1

2ttj

and

.k-1g(k) = o=7<» g(z)zN~'dz Vk G N (2.27)
z|-p

9'(k) so^t4 gUJz'^dz VkGlN*. (2.28)2irj ]
|z|=P

Since the value of the contour integral in (2.28) is independent of

P1 Ph» and since §(z) 1S bounded by some g a < °° in D(p ,)c,
" max q

hence for k > 1, as p—•«, the integral in (2.28) goes to zero.

Hence g'(k) = 0 Vk G in*, and (2.26) represents g as a power series
-1 COin z ; thus g specifies a unique sequence (g(k)). 0 in b(pn).

(ii) From the proof of the preceding remark, it follows that if

g: D(p) —•(& is analytic and bounded on D(p )c for some p > p,

then gG^Jp^. D

(2.5.1) It is well known [Zar 1, p.46] [Lan 1, p.66] that b(pj is a

commutative algebra of fractions with pointwise sum and product, and

neutral element given by 6Q(z) = 1, V|z| > pQ. Consequently, b(pQ)

is a commutative convolution algebra of complex sequences on N with

neutral element <$Q := (1,0,0,...).

(2.5.2) For any g=n/d G b(pQ) with nG^JpQ) and dG^_(pQ),
since n, 3 are analytic in D(pQ)c and both have only afinite
number of zeros in D(p0)c, g has afinite number of zeros in D(pQ)c

12



and is analytic except for a finite number of poles in D(pQ)c (i.e.

g is meromorphic in D(pQ) ). Moreover, g is bounded at <» because

lim g(z) = n(0)/d(0) and |n(0)| < «, d(0) f 0. D
|z|-*»

Definition 2.2. The pair (n,d) is called a pn-representation (pn-r.)

of gG b(pQ) iff

(i) nG^Jp^, aei"jP()),
(ii) g = n/d;

(iii) n, d are pQ-coprime. D

Lemma 2.1. If gG b(pQ), then g admits a pQ-representation. D

Note. The proofs of lemmas and theorems are relegated to Appendix B.

Lemma 2.2. Given gG b(pQ), let (n,d) be one of its pQ-representa-

tions(whose existence is guaranteed by Lemma 2.1). Then for any

Pe D(p0)c,

(i) g has an mth order zero at p iff n has an mth order

zero at p;

(ii) g has an m order pole at p iff d has an m order zero

at p. D

Recall that t (z) denotes the set of all proper rational func

tions in the complex variable z with coefficients in C, and let

*(P0) := Cp(z)nV(P0) (2.29)
^°°(P0) := HP0)ni~JpQ) =ap(z)n£~_(p0) . (2.30)

It has been shown in [Mor 1] that ^(pQ) is a principal ideal

ring. In fact, MPq) is a Euclidean ring, with a gauge

13



y: *(Pq) \{0}—»-]N defined as in (2.18) when a(pq) is viewed as a

subset of L (Pq); equivalently, for any nonzero aG^(p ),

y(a) = number of poles of a in D(p«) - number of zeros of a in D(pQ)

The Euclidean algorithm for ^(pQ) is similar to the one for R(crQ)

given in [Cal 2] [Cal 3], by noting that the role of D(pQ) with

respect to ^(pn) is the same as the role of (t with respect0 aQ-
to R(aQ).

Definition 2.3. A pQ-representation (ri,d) of gG b(pQ) is said to

be normalized iff

(D d€U°°(p0)
(ii) lim d(z) = 1

|z|-*°°
(111) Z[d]CD(p0)c D

Remark 2.3. (i) Observe that d G *°°(p ) is a rational function whose

numerator and denominator polynomials have the same degree, and all the

poles of d are inside the open disc D(pQ). Hence a pQ-representation

(n,d) of gG b(pg) is normalized if and only if d(z) can be

expressed as a finite product of rational factors of the form

(z-p)/(z-a) (2.31)

where pG D(pQ)c and aG D(pQ).

(ii) If (n,d) is a pQ-representation of gG b(pQ) with

^ ^p0^' we can eas^>y obtain a normalized pQ-representation (n,d)

of gG 6(pq) by adjusting the factors in d: more precisely, put

d(z) in the form

14



m, /_ _ \ m,

d(z) =d(o) nT-—' . n T—ly (2.32)
i=rz V 1=^+1 U~V

where d(0) €C, d(0) f 0; a.GD(p0), i=1,2,... ,m2; p.GD(p0),

i=1,2,...^^ pi GD(pQ)c, i=m1+l,...,m2. Note that

ml (z-p.) .
c:= AWn-tJ^jZ*- (P0) (2-33)

is an invertible element of /l(pq) cL (p ), and (n,d) given by

n := nc"1 , d := dc-1 (2.34)

is a normalized pQ-representation of g. D

Theorem 2.1. If gG b(pQ), then g admits a normalized pn-represen-

tation. One such representation can be obtained by the following

procedure.

Procedure 2.1. Normalized p^-representation.

Given gG B(pQ)

Step 1. Obtain a pQ-representation (n,d) of g.

Step 2. Determine all v not-necessarily-different zeros of d in

D(pn) , call them p , a= l,2,...,v.
z ^ v (z-p )

Step 3. Let d = dc where d(z) := n —-^- and we adopt the conven-
0 /, ^ a=l z

tion that n-^^-= 1. Note that c := d/d is invertible in L (pj.
*•! ~ , v (z-p ) 1- °

(Observe that d can also be chosen to be d(z) := n 7 2t_ for any
_-i \z-a )

choice of a^Dfpg), a = 1,2,...,v.)

Step 4. Define n:= nc"1 G^(pg), then (n,d) is anormalized
P0-representation of g.

Stop. D

15



Remark 2.4. ^(Pn) is a multiplicative subset [Zar 1, p.46] [Lan 1,

p.66] of both (£ (z) and J-i (pq). In view of Theorem 2.1, we

conclude that b(pQ) =[^.(PqJI^Jpq)]"1 =[J1.(p0)][^(p0)]_1. •

Theorem 2.2. Let g G (p\ Then

g^ b(pQ) (2.35)

if and only if 3p, < pQ such that

g(z) =r(z)+q(z) Vz G D(Pl)c (2.36)
where

(i) qe^_(p0); (2.37)

(ii) r G (C (z) is strictly proper, and is zero if and

only if gG 1}Jpq)\ (2.38)

(iii) if 9^ £-1 (P0)s then r is the sum of the princi

pal parts of the Laurent expansions of g at its

poles in D(pQ)c, in particular: (2.39)
(a) all poles of r are in D(pQ)c, and (2.39a)

th r.(b) g has an m order pole at pG D(pQ) if and

only if r has an mth order pole at pGD(pQ)c.(2.39b)
D

The proof of Theorem 2.2 is given in Appendix B. Sufficiency is

proved by construction, and a procedure for obtaining a normalized

pQ-representation (n,d) for g described by (2.36) through (2.39b)

is given next.

Procedure 2.2. Normalized pQ-representation from g = r+q.

Given g in the form (2.36)-(2.39b).

16



Step 1. If g€j (p), i.e. r = 0, set

n := g , d = 1 (2.40)

and stop.

Step 2. Let r =: n /d define a coprime factorization of r (2.41)

in the ring of polynomials in z, with d monic.
r

Determine v := deg(d ). (2.42)

Step 3. Define (n,d) by

d(z) := dr(z)/zv (2.43)

n(z) := [nr(z)+q(z)dr(z)]/zv |z| >P] (2.44)
and stop.

Observation. In both (2.40) and (2.43)-(2.44), (n,3) is a normalized

pQ-representation of g.

Remark 2.5. In step 3 of Procedure 2.2, instead of using zv as

denominator of both n(z) and d(z), it can be generalized to be any

v order polynomial in the form

n (z-a ) (2.45)
a=l a

where aaGD(pQ), a =1,2,...,v. •

Theorem 2.3. Let gG b(pQ), and let (n,d) and (n,d) be two

P0-representations of g.

U.t.c.

(i) 3hG£ (p), invertible in £, (pQ), such that

n = nh ,

d = dh

17



(ii) if, in addition, the representations are both normalized,

then h is rational with all poles and zeros in D(pQ), in particular,

(a) if d = 1, then h = 1

(b) if d £ 1, let

r =: nr/dr (2.46)

be a coprime polynomial factorization of r given in (2.36)-(2.39b)

with d being a monic polynomial, then

d=dr/nh , a=dr/dh , h=nh/dh (2.47)

with d , n. , d. monic polynomials in fl)[z] of the same degree, and

such that n. ,d. have zeros only in D(pQ). •

Remark 2.6. From Theorem 2.3, if (n,d) is any normalized pn-represen-

tation of gG b(pQ), then d =d /p, for some monic polynomial p

of the same degree as d and has zeros only in D(pQ). By (2.43)-

(2.45) in Procedure 2.2, we can write

g= n/d := [(nr +qdr)/p]/(dr/p) (2.48)

and p appears as a common divisor (polynomial in (t[z]) in defining

n and d. Hence the choice of p does not affect g, and p could

thus be called a scaling polynomial in defining the normalized

P0-representation: the restrictions of p being that it is a monic

polynomial with 8(p) = 3(d) and Z[p] CD(pQ). Consequently, we

conclude that a normalized pQ-representation is unique up to a scaling

polynomial. •

18



Theorem 2.4. Let gG b(pQ). Then

if and only if

g is an invertible element of 6(Pn)

g(0) = lim g(z) t 0 .
|Z|-HX>

2.6 Examples, g=(g(k))£=0 G$
(2.6.1) 9l(0) := 1

g^i)

g^k)
k

= _J_ n 2m-3 k = 2 ^ 4
2 , 2m » K ^>4"" •

By [Dwi 1, formula 5.3],

^ a Igi(k)xk V|x| <1
k=0 '

Hence evaluating (2.52) at x = 1, we obtain

I g,(k) = 0 .
k=0 '

(2.49)

(2.50)

•

(2.51)

(2.52)

(2.53)

Note that g-j(O) = 1 and g,(k) <0 for k= 1,2,..., hence by

(2.53)

i.e.

Therefore,

I g,(k) = -1 and I \9Jk)\ = 1
:=1 ' k=l '

I 19,001 - 2 .
k=0 '

(2.54)

(2.55)

By Property (2.2.4), the series defining g, converges absolutely in

D(p.,)c; hence using (2.52), we obtain

19



00

^(z) = I gi(k)z"k =v^i VZGD(1)C. (2.56)
1 k=0 ' z

However, g, in (2.56) is not analytic at z = 1, hence

9! **!_(!) • (2-57)

Since g,(0) f 0, thus

9] 6^(p0) C^.(P0) % >1. (2.58)

(2.6.2) Consider the slight variation of example (2.6.1):

g0(z) :-/^5 , zgD(0.5)c ; (2.59)
'2

then g2G^(0.5), and 32 $ 2^(0.5); but §2 G £~_(pQ) C^_(pQ)

for all pQ > 0.5.

(2.6.3) For any fixed a G(t, consider

g3(k) =ak/k! , k=0,1,2,... . (2.60)

Hence, for all z f 0,

g3(k) := I fa~k =eaz" , (2.61)
J k=0 K*

•k laIPn]i.e. I |g.(k)|pnk =e ° <~ VpQ >0 ; (2.62)
k=0 J u u

furthermore, by noting that g^(0) = 1, hence nonzero, we conclude that

93 G V(p0) C £l Jpo' c M'V Vp0 >° * (2*63)

(2.6.4) Let g4(0) := 0
i (2.64)

g4(k) =1, k=1,2,... .

20
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By [Han 1, (5.13.4)],

I r*k =-ln(l-x) V|x| < 1, x/1, (2.65)
k=l K
00

i.e. X|g4(k)|p~k =-Ind-PQ1) <~, VpQ >1. (2.66)

Hence,

g4 GV(p0} CMP0} » Vp0 >1; (2*67)

but since the series in (2.65) does not converge for x = 1,

g4$^(D • (2.68)

By (2.65) and using the absolute-convergence property as in example

(2.6.1), we conclude that

g(z) =-ln(^-) , VzGDTTI0 . (2.69)

(2.6.5) Let g-(0) := 0
* k , (2.70)
9c(k) *= I f' k=1'2'*** *

Note that the sequence of positive numbers (ge( 10)^-0 1S unbounded,

hence

g5* ^(D • (2.71)

By [Han 1, (5.13.21)],

00 k

z (i |)xk - 7Vln<l-x) • vw <'• <2-72>
k=1 i=l 1 x"'

00

i.e. I|g5(l<)|Pok =-i—Ind-p'1) <-, *p0>l. (2.73)
k=0 b u p~'-l u u

Hence,

g5 e ^Jpq) ca1(p()) , VpQ > 1. (2.74)
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Using similar arguments as before, we have

(2.6.6)

g5(z) =̂ jln^f1) , VzGDTlT

g6(0) :- 0

g6(k) := \ , k=1,2,...

By [Han 1, (5.12.43)],

In particular,

hence

L p*
k=l YT

t"1ln(l-t)dt , V|x| <1.

I l96(k)l B I V "f t^lnd-tjdt *\
:=0 b k=l r h D

g6e V1} •

(2.75)

(2.76)

(2.77)

(2.78)

(2.79)

However, the series in (2.77) does not converge for |x| > 1, hence

and thus

(2.6.7)

g6 $ ^(Pq) , VpQ <1,

g64-V(D *

g7(0) := 0

¥k) :=kTFTT' k=1'2

By [Han 1, (5.9.16)],

i.e.

I kTkTTT** *l+(l-l)ln(l-x) , |x| <1,£, k(k+l)
k=l

CO

I|g7(k)|p"k -l+f-r-Dlnd-p"1) <«, Vp >1.
k=0 ' Pn

(2.80)

(2.81)

(2.82)

(2.83)

(2.84)

The case when pQ = 1 is best calculated by using [Han 1, (5.9.17)]
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oo

hence "> |g7(k)| = lim (1 --—-) = 1 < « , (2.86)
k=0 ' n-~> n+l

and so g7 G £ (1).

However, since the series in (2.83) does not converge for |x| > 1,

97 * ^(P0) VpQ <1. (2.87)

By (2.83) and the absolute convergence property as before,

g7(z) =1+(z-l)ln(^.) , Vz 6D(l)c . (2.88)

(2.6.8) Recall that *(pQ) <= ^.(Pq); thus

r^.V ch-{Qo] • 7po

furthermore, it is also an invertible element of L(pQ), VpQ >1. (2.90)

Using (2.89) and example (2.6.2), if

§(Z) :=-!-./?E5U, VzGD(0.5)c, (2.91)

then gG b(pQ) , VpQ > 0.5 ; (2.92)

note that g has a pole at z = 1. Finally, from (2.90),

9e ^_(p0) C ^(po) , VpQ >1. (2.93)

zh^^G C (pn) CL (p ), Vpn >0, (2.89)
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3. Matrix Fraction Representation Theory

From this point on, we are concerned with multi-input multi-output

(MIMO) convolution systems whose transfer functions are matrices with

elements in tz , ^(p ), ^.(Pq) or b(pQ).

Observe that («*)nxn, ^(p/"", J1.(P0)nxn and b(p0)nxn are
all algebras with a pointwise sum and a non-commutative (pointwise)

product, with unit I .

Lemma 3.1. GGjL(p0)nXn (respectively ^.(Pq)"*") Is invertible in
^(Pg)"*" (resp. i-, Jp0)nxn) if and only if

inf |det G(z)| > 0 (3.1)

zHP0

i.e. det G is invertible in &-j(Pq) (resp. ^.(Pq))-

nxnComment. Such G is called a unimodular matrix in &-j(Pq) (resp.

V(po)nXn)* D

Lemma 3.2. Ge b(p0)nxn is invertible in b(p0)nxn if and only if

lim det G(z) f 0 , (3.2)
|Z|-K»

i.e. det G is invertible in b(pQ). D

The next lemma is a multi-input multi-output generalization of

Theorem 2.2.

tm nnxni nnxniLemma 3.3. Let GG {tp u \ Then Ge b(pQ) u n if and only if
for some p, G [0,pQ[,

G=R+Q in D(p1)c (3.3)
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where (1) QG i}_(pQ) u \
\n0xni(ii) R G C (z) is strictly proper, and R = 0 if and only

~ - nnxniif G6L (p )U \
- - nnxni(iii) if G^£1_(pQ)u ', then S»(L) is the sum of the

principal parts of the Laurent expansions of G = (g..) at its poles
'j

in D(pQ)c; in particular, g.. has an m order pole at pGD(pQ)c
th cif and only if r.. has an m order pole at pG D(pQ) . •

nnxn. n.xn.
Definition 3.1 W. Let \ G^.(p0) and 0 e^JpQ) 1 \
The pair (W^PJ is said to be pQ-right coprime (pQ-r.c.) iff any

n.xn.

greatest common right divisor (g.c.r.d.) of W„ and V in L (pn) ] 1
/L /L I- U

n.xn.

[McD 1, p.35] is an invertible element of 2-i (pQ) •

nnxnn n xn.

Definition 3.1(1). Let ^ €^.(Pg) and ^ e^Jp0^ 1-
The pair (t^.W^) is said to be pQ-left coprime (p0-1.c.) iff any

greatest common left divisor (g.c.l.d.) of Vp and Hp in L (pn) ° °
Vn0

is an invertible element of i, (pj . D

Vni ,„«=*, A*ni

nrtxn.

Lemma 3AM. W. G £ (p ) u ' and D G % (p0) ' l are pn-r.c.
ni nn - n-xn.

if and only if BU^ G^_(p0) 1 u, l/^ G i^Jpg) n n such that

nnxnn - nnxniLemma 3.4(1). ^ €^.(p0) and N. G I (p0) u n arepQ-l.c.
nnxnn ~ " nixnnif and only if 3l/£ G ^_(p0) u u, U£ G J^Jpq) 1 u such that

WA +V^!n * <3*5>
u D
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Definition 3.2U). Let GG ((jf1) u \ The pair (AL.PJ is said to
* n«xn.

be a pQ-right representation (pQ-r.r.) of G iff W g £-i (p0) "• and
n •xn •

P* G *1 (Pn) n 1 SUCh that

(1) G= MP"1
a. a.

(11) (\»^) is pQ-r.c.

(iii) det VK G 2^.(p0).

W,nOxniDefinition 3.2(1). Let G G (c*1) u '.The pair (P-.MJ is said to

- nnxnnbe a pQ-left representation (pn-l.r.) of G iff Vp G s. (p )
nnxn. u £ i- u

and W£ G1}Jpq) "• such that

(D 6-t>;\
(11) (^»w^) is P0-l.c.

(iii) det^Gl"_(p0). D

Remark 3.1. By Cramer's rule and Definition 3.2(^) (respectively

in nnxniDefinition 3.2(£)), if GG (ff1) u n admits a pQ-r.r. (respectively
~ ~ n0xnipg-l.r.), then GG b(pQ) . The next Theorem states that the con

verse is also true.

- - n0xniTheorem 3.1. If GG b(pfi) , then G admits a pn-r.r. and a

pQ-l.r. More precisely, there exist matrices with elements in L (pQ)>

namely

"*• v \> \

h> vv uv h
such that

(i) (\>^) is a p0-r.r. of G

(ii) {Vj^H^ is a pQ-l.r. of G



(Hi) n
i

n
0

n n,
i 0

_ J _ .

-N. IP< w. (A
0- *\£' ^e-U-'V v£_ L

In I 0

0 I In0-I

(3.6)

Remark 3.2. If we call the matrices on the left hand side of (3.6) W

,-1
and W respectively, then obviously W is an invertible element of

(ni+n0)x(n.+n0)
£-j_(Pq) . In particular, we can scale W and W

so that

(3.7)det W= det ftf1 = 1 .
D

Theorem 3.1 can be proved easily by construction using the Euclid

ean algorithm for L (pQ). However, this is an unnecessarily difficult

way to obtain a pQ-l.r. and pQ-r.r. We give instead a proof based on
nnxn.

the following procedure for the general case when G$ £, (pn) ':

this procedure uses the Euclidean algorithm for *.(pn) instead of the

one for ^_(p0).

Procedure 3.1. pQ-r.r. and pn-l.r.

Vni n0xn.
Given GG b(pQ) u ', G$ l}JpQ)
Step 1. Find R, Q according to Lemma 3.3 so that

G = R + Q

nQxn n xn

With RG*(p )u ', QG ^.(Pq)
nnxn n.xn.

Step 2. Find W^ G*(pQ) ° * and ^ G^(Pq) 1 "* with
det V^ G k (pQ) such that

(3.8)

(3.9)

_.the.g. set V^ =diag[d.].^ where for j=1,2,...^, d. is aj
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column least common denominator of R with respect to ^(pQ).

Step 3. Consider the (n.+njxn. full rank matrix

M :=
ni V.

M.
A.-J

♦= *(pQ)
(n1+nQ)xn1

(3.10)

By performing elementary row operations based on the Euclidean algorithm

in the Euclidean ring i(pn), bring M to "upper triangular" forms,

i.e. find an (n-j+no) x(n.+nn) matrix W invertible in
(n-j+n0)x(n.+nQ)

^(pn) and a full rank upper triangular matrix
u n.xn.

RG*(p0) n such that

MW-:0^ (3.11)

Observe that, as in the previous remark, W can be scaled so that

det W = 1.

Step 4. Partition W and ST into

n '0

- ni r "*' k
n0L-N£I^J

Step 5. Define

V. = P.

U.

and stop.

r1

P,

n.
i \ "U£

O^t &-1

= V
I

(3.12)

(3.13)

•

28



Comments, (i) The eight matrices in (3.12) with elements in

*(p0) c^_(p0)* namely

V V K> \

~Hv V V h

satisfy Theorem 3.1 with G+— R.

(ii) The eight matrices in (3.13) satisfy the conclusions of

Theorem 3.1.

Remark 3.3. Observe that in Procedure 3.1, which is used in the Proof

of Theorem 3.1, we actually obtain

n.xn.

VK G*(pQ) 1 n det VK G^°°(p0)
nnxnn

Vl e ^ det Vl e ^Po5

i.e. the denominator matrices of the PQ-r.r. (^ ,V ) and the Prfl-r.

(P»,W.) are rational. D

The next corollary follows from Theorem 3.1 and Remark 3.1.

N VniCorollary 3.1a. Let Ge (l^) u 1; then

~ - nnxniGG b(pQ) U n (3.14)

* G admits a pn-r.r. (W .0 ) (3.15)
U K a.

** G admits a pQ-l.r. (^,W£) (3.16)
D

Remark 3.4. In view of Corollary 3.1a, we have

nnxn. M nnxn.
b(pn) 1= (GGft^) u 1 G admits a Pn-r.r. or pn-l-.r.} . (3.17)

'0- z 0 a
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The following corollaries are the MIMO generalization of Remark 2.1

Corollary 3.1b(*). Let \ G^Jpq)
nrtxn

0 1 and t> e ^.(p,,)"1 "*
n.xn

with det P. € JT (pn). Then (M„,P„) is pn-r.c. if and only if
a. 1 - U n\ n. U

rank
P„U)

= n. Vz € D(pJc .

n„xn..

Corollary 3.1b(l). Let W^ GIjjpg) ° 1 and Vt G^Jpg)
with det Vp Gi, (p ). Then (P»,WJ is pQ-l.c. if and only if

rank^(z) jW^zfj =nQ Vz GD(pQ)c . (3.19)
a

(3.18)

Vno

In view of Corollary 3.1b(^) (Corollary 3.1b(£)), we present next

an algorithm to obtain a pQ-r.r. (respectively, pQ-l.r.) for G given

by (3.3) and (3.8) that does not use the Euclidean algorithm in ^(pq)

(which is used in Steps 2 and 3 of Procedure 3.1).

nQxn.
Procedure 3.2(4.). pQ-r.r. for GG b(pQ)

Given

G = R + Q

as in Lemma 3.3.

Step 1. Find N^ G £[z] u \ D^GI[z]

(D r-r^d;1

n.xn.

(3.20)

such that

(ii) (N >D ) is right coprime in the ring of polynomials d;[z]

(iii) det D £ 0.
n.xn.

Step 2. Find MG(D[z] 1 unimodular such that

\ := D*M (3.21)
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is column-reduced [Wol 1, Thm. 2.5.7]. Let

N^ := N^M . (3.22)

Now N D" is also a right coprime factorization of R,

Step 3. For i = 1,2,... ,n., let

y. :- 3^] (3.23)
1

and let ir. G q:[z] be defined by

tt.(z) := z i (3.24)
i

n.xn.

Define S := diagf^).^ € C[z] n ] . (3.25)

Step 4. Define
i nnxn.

K := V G/L(P0) ^ (3*26)
n n.xn.

K := V €^po} 1 n * (3*27)

Comment. (^ 9P ) is a pfi-r.r. of R with elements in >t(pQ).

Step 5. Defi ne

nnxn.

n.xn. n.xn.

Vp*6*<po> ' lc*i>o» ' '• (3-29)

Comment. (W„,l? ) is a pn-r.r. of G.
n. fi U

~ - nnxniProcedure 3.2(1). pQ-l.r. of GG b(pQ) u 1
A p0-l.r. (VvUf) of G in (3.20) can be obtained through

obvious modification of Procedure 3.2(/i). •
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Theorem 3.2. Let GG b(pQ)

6 and any pn-r.r. (WW,P„) of G, there exist matrices with elements
— U h\ a.

in It(Pq)» namely

n0xn.
Then for any pQ-l .r. (P»»N*) °f

v V ur ^
such that

ni

'o

n. n0

- L _

~h'^

ni no

K' ^J _o 'sj
(3.30)

D

The next corollaries follow immediately from Theorem 3.1 and

Theorem 3.2.

nnxn.
Corollary 3.2(1). Let GG B(pQ) u \ Then for an^ PQ-l.r. (^,W^)
of G, there exist matrices with elements in L (pQ)» namely

uv h> V V <V "*
such that

(i) (\>^) is aP0-r.r. of G.

(ii) Equation (3.30) holds.

Corollary 3.2(4.). A statement similar to Corollary 3.2(£) holds by

interchanging the terms "p0-l.r." and "p0-r.r.", and by interchanging

the subscripts "£" and "V. D

The following theorem is an MIMO generalization of Theorem 2.3.

Theorem 3.3. Let GG b(pQ) u n and let (A^.fl ) and (N^V^) be

two p0-r.r.'s of G (respectively, let (t^WJ and (P}^}) be two

pQ-l.r.'s of G). Under these conditions, there exists a unimodular

matrix
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n.xn.

Re5i-(po} 1 (3*31)
n xnQ

(respectively I G &-,(p0) ) such that

Vh = P'R , M_ = W'R (3.32)

(respectively Vt = LV^, W^ = LWp. D
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4. Poles, Zeros and Their Dynamic Interpretation

4.1 McMillan Degree of Poles, Smith and McMillan Forms

Vni
Consider a proper rational function matrix R G C (z) . It is

well known that the McMillan degree of R is the degree of the charac

teristic polynomial xU) *= det(zI-A) of a minimal realization

(A,B,C,D) of R. Since the zeros of the characteristic polynomial x

are the poles of R, we henceforth define the McMillan degree of

p G ffc as a pole of R to be the order of p as a zero of x- Noting

n0xni
that the McMillan degrees defined for R G i (z) are identical to

those defined for the strictly proper rational function matrix RQ

defined by RQ(z) := R(z)-R(°°), we consider the following:

Lemma 4.1. Let R G $ (z) n be strictly proper, with partial
r

fraction expansion given by

m
v a Zai

R(z) = I I
a=l i=l (z-p )

(4.1)

For a = 1,2,...,v, the McMillan degree of p as a pole of R is

equal to the rank r of the matrix

a

Zal Za2

a2 a3

Zan, °
a

am
a

(m nn)x(m n.)
x a 0' a l (4.2)

a

In view of this lemma, we give the definition of McMillan degrees
nQxn.

of poles for matrix transfer functions in b(pQ) as follows:
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Definition 4.1. Let pG D(pn) be a pole of GG £(pn)
n0xn.

0' U
and

let the principal part of the Laurent expansion of G at p be given

by
m Z.

(4.3)
m Z.

6p(z) - I 1
1=1 (z-p)1 '

The McMillan degree of p as a pole of G is defined as the rank of

the matrix

H :=

Zl Z2
Z2 Z3

m

m

0

6

GG

(mn0)x(mni)
(4.4)

•
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r ~ nnxn. nnxn.
Remark 4.1. (1) If pGD(pn)c is apole of RG(C (z) u nC B(pQ) ° 1

'0'

then, by Lemma 4.1, its McMillan degree as defined in Definition 4.1

agrees with the definition discussed at the beginning of this section.

(ii) For GG b(pQ) u \ let R€l(s)u n be given as in

Lemma 3.3, i.e. R is the sum of the principal parts of the Laurent

expansions of G at its poles in D(p0)c. Then the McMillan degree of

pGD(pQ)c as apole of G is equal to the McMillan degree of p as
a pole of R. •

Recall that if (N^,D^) (respectively (D^,N^)) is a right

coprime (respectively left coprime) polynomial matrix factorization of

then det D (respectively det Dj is equal to the

characteristic polynomial of any minimal representation of R modulo a

nonzero constant factor: hence the McMillan degree of the pole p of

R is the order of p as a zero of det D^ (respectively det DJ.

The next theorem contains a generalization of this result.

nQxn.
RG(Ep(z)



Theorem 4.1. Let GG b(pn) u \ with a pn-r.r. (W„,P ) and a
U U n\ K.

P0-l.r. (P/>NJ. Under these conditions,
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c
i

c

(a) pG D(p0)c is apole of G *> det P^(p) =0 <> det V^p) =0
(b) If pG D(pQ) is a pole of G, then the order of p as a

zero of det V (respectively of det PJ is its McMillan degree.

(c) There exists rG L (pQ) invertible in L (pn) such that

det VK =r-det Vt . (4.5)
D

We study next the Smith and McMillan forms, as these concepts are

closely related to the notion of McMillan degree (see Theorem 4.3

below), and the notion of transmission zeros (to be discussed in

subsection 4.3).

Smith Form [McD 1, p.40][McL 1, p.361][Sig 1, p.370]:

nnxn.
Definition 4.2. Given W-j, W2 G A, (pQ) u '. W- and AL are said

n0xn0
to be equivalent iff there exist unimodular matrices L G i. (p ) u u,

n.xn. i- u
R G I (p ) 1 ^ such that

M1 = Lhl2R .
D

nnxn.
Remark 4.2. Throughout this paper, we say that A/ G &, (pn) u (or

Vnib(pQ) )has normal rank r iff rank[W(z)] = r for almost all

z G D(p0)c. •

Theorem 4.2 [McD 1, p.40][McL 1, p.361][Sig 1, p.370]. Given

VniWG ^-i_(Pq) , with normal rank r. Then W is equivalent to a
nnxn.

matrix S[W] G £ (p ) u ' which satisfies
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r n.-r

S[W] = (4.6)

nQ-r

where n.|n.+,, i= l,2,...,r-l. D

Definition 4.3. S[W] in Theorem 4.2 is called the Smith form of W. •

Remark 4.3. (i) In Theorem 4.2, n.|n.,, means that n.A, is a
i l«• i+1

multiple of n.. as elements of the ring L (pQ).

(ii) In general, the Smith form S[W] is not unique. To avoid

any confusion, however, we can assume that a fixed normalization procedure

has been chosen so that S[W] is unique: for instance, if we have

obtained a Smith form S[W] as in (4.6), we can use Fact A.l of

Appendix A to decompose

ni = niu#nis • 1 = 1*2"-"r •

such that the leading coefficient of n. (lowest z -degree term)

is 1. Then

S[M] =

nQ-r

n.-r
i

r n.-r

"lu j
n2u 1

1 °

'nru!

"is |
"2s 1

1 o

nrsl

0 1 0 0 II
L i "i-d

• (4.7)

On the right hand side of (4.7), if we call the left factor S [N] and



the right factor S [W], then S [W] is a uniquely normalized Smith
s u ^ n.xn.

form of W, and S[M] is aunimodular matrix in £-i_(Pg) ] 1 that

can be absorbed by the definition of Smith form. •

McMillan Form:

n^xn.

Given GG b(pn) ° "•. Let dG£?_(pn) be aleast common
multiple of all denominators (obtained from the p0-r's) of all elements

nnxn.
of G; and let H:= dG G5. (pQ) u \ With the Smith form S[W] of
W defined through (4.6), we calculate

G = Ta ifR
r n.-r

r

el

*1
!2
^2

er

rr

0

V 0 0

= L (4.8)

ei ni .where -r- is a PQ-r. of -jr> i

(4.8),

= l,2,...,r. The second factor in

M[G] :=

nQ-r

Ii

n.-r
i

e b(p0)Vni (4.9)
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is called the McMillan form of G.

Note that ^|ei+1> ^j+|IV i= l,2,...,r-l. •

Lemma 4.2. Given the McMillan form M[G] of G in (4.8) and (4.9),

let

E :=

n.

^l *

Then

and

nQ-r

r n.-r
i

£1 1
£2 1

1 °

£rl

0 1 0

h
* i °

r i

0 l^.-r

h i
• i °

**r!
0 j!n0-r

nnxn.

e^.(p0) ° n (4.10)

n.xn.

e *T (p„) " "1-VH0'

~» , ,00
^^Jp0)

(4.11)

(4.12)

(LE^"1^) is aP0-r.r. of G

(^L'^ER) is apQ-l.r. of G.

(4.13)

(4.14)

Remark 4.4. If (W^P^) is any PQ-r.r. of G, then it is immediate

from Theorem 3.3 that

n.xn.
i i,-1W = LE, V. = R HV modulo a unimodular matrix in £, (pn)

A. n. n. 1-0
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on the right.

Similarly, if (^»WJ is any PQ-l.r. of G, then

-1 - nOxnOV» =VJ. , W« = ER modulo a unimodular matrix in £.,(p0)

on the left. •

„ nnxn.
Theorem 4.3. Given the McMillan form M[G] of GG b(pn) u ] in

r

(4.8) and (4.9). Let xr := n ^. G 2" (p ). Under these conditions,
c i=l .

(a) pG D(pQ) is a pole of G if and only if xg(p) = 0;

(b) if pG D(pQ)c is apole of G, then the order of p as a
zero of Xq is its McMillan degree. •

4.2 Dynamic Interpretation of Poles

~ ~ Vni ~Given that GG b(pQ) , G is a meromorphic function in

D(p-j) (for some p, G [0,pQ[), and G may have at most a finite

number of poles in D(pQ) . The following theorem gives a dynamic

interpretation of such poles.

Theorem 4.4. Let GG b(pQ) u \ Then pG D(pQ)c is apole of G
if and only if there exists an input sequence

eG^JPl) 1 (4.15)

for some p. G ]0,pQ[, such that the output sequence y := G*e satis-

fies .

y(k) = y-P +h(k) Vk G IM (4.16)

n0
where y6C is nonzero, and

h:= (h(k))~=0GJl1_(p2)n0 (4.17)

for some p2 G ]0,pQ[. D
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Remark 4.5. (1) As k increases towards +°°, y*P is the dominant

term in the output (4.16): indeed, by (4.17) h(k) is at most 0(p£)
k kwhereas yp is 0(|p| ), and P2<P0l|p|- So for k large,

|h(k)| « |Y|-|p|k= |*Y-Pk| - Similarly, by (4.15), the output y(k)
also dominates the input e(k).

(ii) Note that, from the proof of the theorem, both the input e

and the vector y depend on G: The point is that the input is care

fully chosen so that p is the only D(pQ)c-pole of G excited by the
input.

(iii) The proof uses a pQ-r.r. of G. A slightly more involved

proof can be obtained with a PQ-l.r. of G.

(iv) In the lumped case, the input sequence e can be chosen so

that e and h are identically zero except for a finite number of

indices (see continuous-time analog in [Des 3; Thm. III]). •

4.3 Zeros and Their Dynamic Interpretation

~ ~ nnxniLet GG b(pQ) u \ with ap0-r.r. (\,^), i.e.

G=HV? (4.18)
n. h\

and a Pg-l-r. (^»w^)» i-e.

G=^y . (4.19)
I 'I

Lemma 4.3. For any zG D(pQ) ,

rank[^(z)] = rank[W£(z)] . (4.20)
•
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Definition 4.4. Assume that

W. (equivalently M )has full normal rank, i.e. min(nQ,n.). (4.21)

Then zQ G D(pQ) is called a (transmission) zero of G iff

rank[W^(zQ)] <firing,n.) (4.22)

(equivalently, rank[W (zn)] < min(nn,n.)). D
n. U U 1

Remark 4.6. (i) In view of Lemma 4.3, the notion of transmission zero

is a property of the matrix transfer function G, independent of any

particular choice of matrix fraction representation.

(ii) Note that G can have a pole and a transmission zero at the

same point zQ G D(pQ)c.

(iii) Let M[G] be the McMillan form of G as in (4.8)-(4.14).

Then z G D(pQ) is a zero of G if and only if zQ is a zero of

e., for some iG {1,2,...,min(nQ,n.)}.

(iv) If assumption (4.21) is not satisfied, we can always ignore

some redundant input or output, and consider a smaller matrix transfer

function for which (4.21) is satisfied. Then the following theorems

can be applied to this reduced matrix transfer function. •

nQxn.
Theorem 4.5. Let Ge b(pj ], with nQ^n..

£G £ 1 and a sequence

n

(a) If zQ g D(pq) is a zero of G, then there exists a nonzero
n.

mGJ^Jp-j) 1 for some p1 G ]0,pQ[ (4.23)

IN ^i
such that the input sequence e G ((E) described by



e(k) =Szk +m(k) Vk G 1M (4.24)

produces an output sequence y € (b ) (i.e. y - G*e) such that

n0ye ^_(p2) u (4.25)

for some p2 G ]0,Pq[.

(b) If vG D(pQ) is neither a pole nor a zero of G, then for

all nonzero vectors £G (t 1, the input sequence eG ((t ) ]

described by

term

e(k) = Svk , k G IN (4.26)

yG((tV° which contains the nonzero

G(v)clvk . (4.27)

D

Remark 4.7. Consider part (a) of the theorem:

(i) In the lumped case, we can prove that the sequences m and

y can be chosen to be identically zero except for a finite number of

indices (see continuous-time analog in [Des 3; Thm. I]).

(ii) For k large, since |zQ| >_ pQ and since (4.23) holds, the

term £zQ in (4.24) is the dominant term in the input sequence (indeed,

P] < Pq £ lzoD; furthermore, this term also dominates the output

sequence (since p2 < pQ < |zQ|). In this sense, we still have the

interpretation that the zero blocks the transmission of the term

k oo(£z0)k=0. The purpose of m in the input is to prevent any contribu

tion in y of any of the D(pQ)c-poles of G. •
nnxn.

Theorem 4.6. Let GG b(pQ) u ' with nQ < n... If zQ G D(pQ)c is
nn

a zero of G, then there is a nonzero n^I such that for all
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n. n.

£G (E 1 there is mG ^(pn) n so that the input sequence described by
'0*

e(k) = CZQ +m(k) Vk G IN

produces an output sequence y (i.e. y = G*e) that satisfies

n*y g J^Jp^

for some p1 G ]0,pQ[, where r\*y := (n*y(k))£sg-

(4.28)

(4.29)

D

Remark 4.8. Theorem 4.5 (which applies to cases where nQ > n.) asserts

that for some $, the input e(k) = £z!: + m(k) produces an output y

which does not have aterm in zQ, i.e. the sequence (zq)7-q is
blocked for those £*s. Theorem 4.6 (where nQ < n.) allows an^ £ and

asserts that, in some direction dictated by ns y does not contain any

term in z^. D

4.4 Example

This example demonstrates Theorem 4.5(a) with a multi-input multi-

- ~ 2x2output transfer function GG b(pQ) , where pQ := 0.55, defined by

G(z) :=

1 ,1-2z_1 ! 1 5 l-3z"f
(z-l)'zc | (z-4)H(2z-l)°
" i V"

n ' T U"3z0 1 Ti^T? J

Note that the set of poles of G in D(pQ) is

P[G] = {1,2,4} .

A pQ-l.r. (Vp^i) of S is given by

, zGD(p0)c.(4.30)

(4.31)
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tyz) :-

(z-l)(z-4)
2

z

Iz^i
z

W^z) :

-2Z"1 ' 1-37-"1(z-4)[z+(z-1)e dz ]l (z-l)[2z-l+5(z-4)e' Jz ]
z3 ! z^(2z-l)

l-3zz-3(z-2)e
-1

(P»,W„) are pQ-l.c: indeed, they satisfy

(WeW£)(z) =T2 ' zG^O^

2x2with u\>, l/„ G &-|_(Pq) described by

and

^(z) :

^(z) :=

(3z3-4z2-32z+32) 1 2(z-l)
3z'

16(z-2)(z+4) I 2(z-4)
.2 I" z

3z'

(3z3-4z2-32z+32)(, c-2z"1},80(z-2)(z+4)cl-3Z"1
3z3 3z2(2z-l)

-1.T6^4i[z+3(z.2)el-3z-']
3z'

2(z-l),, „-2z"\ ,10(z-4)J-3z"T1
3 (z-e )+z(2z-1)G

(z+4) 6(z-4)J-3z

Z ""l2^
-1
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(4.32)

(4.33)

(4.34)

(4.35)

(4.36)



Observe that

Hz(3) =
(3+2e"2/3)

27

0

(4.37)

hence, by definition, G has a zero at z = 3. Consequently, we choose

5 := [0 1]T G(E2 (4.38)

which satisfies (B.65). Next, as in (B.68), we define

m(z) := -U,(z)W,(z)£
H=ST

46

(z-1)[(2z-l)(z-2)(3z-4)(z+4)+(15z4-116z3+10z2+764z-640)e1"3z ]
3z4(z-3)(2z-l)

2[(2z-l)(5z3+20z2-80z+64)+(z-2)(z-4)(58z2+lllz-160)e1~3z ]
32,3(z-3)(2z-l)

(4.39)

Note that m is analytic at z = 3, and m G £,(p,) with p, := 0.51

With the input

e(z) := £•
(z^3) + m(z)

defined as in (4.24), the output is

where

^(z)

y(z) := B(z)e(z) =[^(z) y2(z)]T

1 2[(z-l)(2z-l)2(z-2)(3z-4)(z+4)(z-e-2z )
3zJ(z-3)(2z-l)

+ z(2z-l)(15z5-181z4-74z3+1554z2-2044z+640)e1"3z

- (z-1)(2z-l)(15z4-l16z3+l0z2+764z-640)e]~5z
.2,_ „W_ ,Wr„_2.,.,,_ ,™n.2-6z

-1

- 10z*Mz-2)(z-4)(58z*^llz-160)efc"u'4 ]

(4.40)

(4.41)

-1

-1
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and

3 (7\ . (z-4)[z-3(z-2)e1'3z ][(2z-l)(3z-4)(z+4)-2(58z2+niz-160)e1"3z ]
c 3z^(z-3)(2z-l)

Observe that yG ^(p2) , with p2 := 0.51, and y is analytic at

z = 1,2,3,4: note that 1,2,4 G p[G] and z = 3 is a pole of the

input e.



5. Interconnected Systems and Characteristic Functions

In order to discuss the stability of interconnected systems, we

introduce the notion of characteristic functions. Basically the tech

nique is very simple: we illustrate it by an example. In this process,

we state without formal proof some properties that hold for more

general interconnections.

Example 5.1. Consider the system depicted by Fig. 5-1. All transfer

functions are matrices with elements in b(pQ) for some pQ G ]0,1[:

G is the plant transfer function, G. is the inner-loop feedback,

G is a precompensator, and G is the outer!oop feedback. The

vectors u , u., u and u are the respective exogenous input signals

to the summing nodes of these subsystems, and y ,y., yc and y are

the respective outputs of these subsystems. Let

W bea P0"r*r* of §p • (5J)

^'V be aP0"r*r* °f 6C • (5*2)

WjUL'Hju) be aP0-1*r* of gi > (5*3)

and (VoVHot) be a p0'1*r* of % * (5*4)

Let us denote by % the list of output vectors from all the V"

matrices with the appropriate subscripts, as depicted by Fig. 5-2.

Define
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u := - - -

u

- J3-

u

_c -

ti.
J -

u
L o-1

Lyj>.

y *= S *=

6l
(5.5)

.J*--

By equating the respective input vector of each XT matrix and the

output vector of each subsystem, we describe the whole interconnected

system (as in Fig. 5-2) by a set of equations in the form of

M*s = y *

Specifically for this particular example, we have

V,
PA

•WJ4V
W

•Will 0
CAi 1

fl I 0 I I
c*. 1

0 Jpu! °
0 1 0 ip

o^1

*1

"I I 0 I 0
- I. -I- •
01 I I 0
- I -I- -
ojoiw

01 01 0
0-1 i-

H
op

7L 1 0 1 0 1 0
-P^l - -I - -1_

0 IN 1 0 1 0j C^|

-R. -ypf
*c

0 1 0 1 I 1 0

_0 1 0 1 0 1 I_
5i.
Jo-

ft

ui

«-U<H

(5.6a)

(5.6b)

(5.7a)

(5.7b)

Now consider the matrices V, W and M defined in (5.6) as

they appear in (5.7). Using Corollary 3.1b(£) and the pQ-l.c. property

of (Pj^A^) and (P^x^), it is easy to see that the pair (fl,A/J

in (5.7a) is pQ-l.c. Similarly, by Corollary 3.1b(^) and the pQ-r.c.

property of (N^V ) and (W^,^), the pair (1^,0) is pQ-r.c. D
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We now summarize the procedure for analyzing more general inter

connected systems:

Procedure 5.1. Analysis of interconnected systems

Given: subsystems each described by a matrix transfer function G. with

elements in b(pQ); the input to the transfer function G. is the sum

of an exogenous input u. and outputs (modulo sign) of conformable

size from other subsystems; the output of G, is denoted by y. (see

Fig. 5-3).

Step 1. For each subsystem G. , find either a pQ-r.r. (Nu^PixJ or

a p0-l.r. (VV-
Step 2. Denote by L the output vector from each t?j~ matrix.

Step 3. With the composite vectors u, y and | (defined as in

(5.5)), equate the input vectors of each V7 matrix and the output

vector of each subsystem to get a description of the interconnected

system in the form of (5.6), namely

Vl »W£u , Ve ^„(p0)nxn, W£ Gi1 JpQ) i (5.8a)

U£ =y , W^ Gi1 JpQ) ° . (5.8b)
D

Then we have the following property:

Fact 5.1. (^'V is Po"1,c' and ^5*9'
(H^V) is p0-r.c. (5.10)

D

Remark 5.1. In this formulation, there is an additive exogenous input

to each subsystem, and the output of each subsystem can be observed. •



Assume awell-posedness condition that det Ve £T(pQ). Then,

by Cramer's rule,

and

=V~\ (5.11)
=W^P"1 (5.12)

=V'V (5*13)

are all matrices with elements in b(pn). In particular, (Uu9V) is a

P0-r.r. of S^, and (t?,N^) is a pQ-l.r. of G^.

Definition 5.1. We call x := det VG &? (pn) the characteristic

function of the interconnected system described in Procedure 5.1. •

Lemma 5.1. pG D(pQ) is a zero of the characteristic function x
(5.14)

«•> pG D(pn)c is a pole of G„ (5.15)

o pGD(pQ)c is apole of G£ (5.16)

*** PG D(Pn^ is a P°le of ^ • (5.17)
•

Because of Lemma 5.1, the importance of the characteristic function

X is obvious by the dynamic interpretation of poles of G in

Theorem 4.4, and by the next Theorem.

Theorem 5.1♦ Consider the interconnected system described in Procedure

5.1. Let o- >^ pQ. The characteristic function x has a zero p of

absolute value a if and only if there exist some men* and some

Note that if lim det V{z) - 0, then V has a pole at infinity; then

~ JZJ"*°° ~ -1for some &i (pQ)-matrices U„ and l/„, N/^ +Pl/„ = I, so G/Up +I/. =V
and GL has a pole at infinity: hence the map uH-£ is noncausal.
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input sequence u with support {0} such that the corresponding output

sequence y = (y(k))._Q := G*u includes a nonzero term which, for

large k, is Ojk01"1^). D

Remark 5.2. In fact, a little more than Theorem 5.1 is proved: the

zero p of the characteristic function x in D(pQ) corresponds to

the mode p of the interconnected system which can be excited by some

exogenous input, and observed at some subsystem output. D

Definition 5.2. Let p G [1,»], A map represented by a matrix transfer

n0xnifunction SG B(pQ) is said to be I -stable iff it takes £ -input

sequences to Z -output sequences, and there exists some kG IR+ such

that for all u G I
P

IIG*ull < klluil •
p - p

(Note that k may depend on p.) •

Theorem 5.2. Consider an interconnected system described by Procedure

5.1 and assumed to be well-posed. For any p >_ p«,

nnxn.
GG^(p) u n (5.18)

if and only if

X(z) f 0 Vz G D(p)c . (5.19)
D

The next corollary follows from Theorem 5.2 and [Des 1, Thm. C.4.7].

Corollary 5.2a. Consider an interconnected system described by Procedure

5.1. Its input-output map represented by 6 is l -stable Vp G [!,<»]

if and only if

x(z) f 0 Vz G D(l)c . (5.20)
D



In such a case, we say that the interconnected system is I -stable,

Vp G [I,-].

Applying Theorem 5.2 to a simple case leads to the following

useful corollary.

Corollary 5.2b. Consider a system with input sequence u and output
nQxn.

sequence y where y=Gu; let GG b(pQ) 1, with a pQ-r.r.

(\,2V (resPectively Po"1#r* ^i>Ni^' Tnen for any p- p0

if and only if

n_xn.

GG^(p) ° n (5.21)

det VK(z) f 0 Vz G D(p)c (5.22)

(respectively det V^z) f 0 Vz GD(p)c). D
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6. Feedback System Stability

We now apply the results developed in the preceding section to

analyze the multi-input multi-output feedback system S depicted in

Fig. 6-1. Let p G ]0,1[.
nnxn.

(i) Let PG b(p0) u 1 be the plant transfer function with
». n. mi nn nixnn

input u G (Cf1) n and output y G(0 u; let CG 5(pQ) n u be

the controller transfer function with input u G (G ) and output

yce(t?)Bl-
(ii) u G(C^) is the system (reference) input and w €(d )1

is the plant input disturbance.

(iii) y~ = y is the system output and e := u -y = u is the

system error.

Observe that if an additive disturbance is present at the plant

output, say wQ, then its effect on y is equivalent to an addi

tional system input -wQ.

Next, we define the composite system input, output and error by

?.s"
• y :=

y$~ = ?c" e : =
v

s
_uc;

Lwpj W [ypJ -V
(6.1)

M nn+ni
where u, y and e are in (G )

feedback system is described by

Then, from Fig. 6-1, the

u =

and

n n.
0 l

"Tn i P "
n„

o 1
- - -1

-C I
n,«

1 i

(6.2)



Let

G :=

J :=

and observe that

y= 1

n n.
_ o 1
C I 0"

0 I P
Qi-

n n,-
o i_

"0 I P

-CI 0
€ b(pQ)

(n.+n )x(n.+n )
N l o' v i o'

i -

ni no

I no
n'ro"

nil

C I 0

0 I P

h-^o*
(ni+n0)x(n1+no)

-j-'S

Assume the well-posedness condition that

(6.3)

(6.4)

(6.5)

(6.6)

lim det[I +PC](z) = lim det[I + CP] f 0 . (6.7)
z|-*» no |z|-k» ni

Now the input-to-error transfer function H : ul—»-e and
eu

input-to-output transfer function H : uH-y satisfy

fieu-"*8'"1
JB -Ba+Sr1 =I-Heu .

(6.8)

(6.9)

Remark 6.1. (i) By assumption (6.7), lim det[I +PC](z) f 0; hence
|z|-*» no

by Theorem 2.4, det[I +PC] = det[I +CP] is an invertible element
o ni

°f d(pq); then by applying Cramer's rule to (6.8) and (6.9), we

conclude that
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Heu and flyu belong to b(pQ) " ° " ° . (6.10)

(ii) For any pG ]R+, due to (6.8), (6.9) and the closure

properties of L(p) under addition and multiplication

(n.+n )x(n.+n ) _ K-+nJx(ni+nn)
HeuG Vp) ° RyuG Vp) *(6J1)

D

Let (^,Wp£) beapQ-l.r. of P, (6.12)

and let i^^V ) be a pQ-r.r. of C . (6.13)

Then Procedure 5.1, Definition 5.1, and simple calculations show that

is an element of L (pQ), and is the characteristic function of the

feedback system S; furthermore, by assumption (6.7), XG£-i (pn)-

Theorem 6.1. Consider.a feedback system S described by (6.1)-(6.14).

Then

(i) pG D(pn)c is a zero of x (6.15)

o pGD(pQ)c is apole of H (6.16)

° P̂ D(p0)c is apole of Hyu (6.17)

(ii) the McMillan degree of pG D(pQ)c as a pole of H and

fl are the same and are equal to the multiplicity of p as a zero

of x- n

Remark 6.2. (i) By (6.11), Theorem 5.2 and [Des 1, Thm. C.4.7], Heu

(equivalently H ) is I -stable Vp G [1,«] if and only if x(z) t 0

V|z| > 1.
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(ii) As discussed in Section 2.1, if for some pG [0,1[ and

vlzl 1 P> X(z) t 0» then the map uf-*(e,y) will take an input

sequence with finite support to an output sequence that decays expo

nentially to 92/ +n x at a rate at least p . •
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7. Compensator Design for Stabilization

Tracking and Disturbance Rejection

7.1 Preliminary Algebraic Result

Suppose

Se b(p0)
noxn.

with a P0-l.r. (^,W£) . (7.1)

Recall that by Corollary 3.2(1) there exist six matrices with elements

in i|_(P0), namely,

ur vv "*• V V \
such that

(1) (\»V is a P0-r.r. of G

n.

(ii) '
n

o

n. n n. n
10 10

p*! u*i n»*|-«i] ri i oi

j no_
:h\ h _w*! "*_

(7.2)

(7.3)

Let us call the two matrices on the left-hand side of (7.3) W and

W respectively.

Lemma 7.1. Given any VG L (pQ)

1-(p0

o o

n.xn n xn

(a) The pair XG 2.,_(pn) n , VG^Jpq) is asolution of

V +V =V (7.4)

if and only if for some WG £-i(p0)nixno

"-n
= «/-! i.e. < (7.5)

or equivalently,
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= ft/

"-X

V
i.e.

W = -1/X + liV

v = w^x +p^y
(7.6)

Furthermore,

(X,y) is pQ-r.c. o (M,P) is a pQ-r.c. (7.7)

(b) If in addition

G(0) = lim G(z) = 0
z -*»

n0xn.

then

(7.8)

det VGi"_(pQ) * det VG2^(p0) . (7.9)

7.2 Problem of Stabilization, Tracking and Disturbance Rejection

Consider the feedback structure depicted in Fig. 6-1. Suppose we
n xn.

are given a plant PG b(pQ) ° for some pQ G ]0,1[ and that

Let

tvi n *n. ,. n xn.j^j o i_ ,,11, o i(1) PG flR") u 1 c (O

(ii) P(0) = lim P(z) = 0
.z -*»

noxn. *

(7.10)

(7.11)

n xn

(V'V} be a po"1,r*of ^ with V€/l(po} ° • (7*12)

Reference signal sequences u s (if) ° (to be tracked) are

generated as follows: for some fixed 4> G]R[z] with Z[<f> ] c D(l)c,

s <J>
(7.13)

ii

where vu GR[z] °, with 3[vu] <3[<f>u], is arbitrary.
™ n_.

Disturbance signal sequences w G (Jfr) n (to be rejected) are

generated as follows: for some fixed A GR[z] with Z[<f> ] C D(l)c,

wp = *,
w

(7.14)
w
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n.

where v G]R[z] \ with 9[v ] < 3[<j> ], is arbitrary.

Define (j) G]R[z] and qeil by

<|> := monic l.c.m. of 4> and <b (7.16)

and q := 34> . (7.17)

•f-h

Let * admit v distinct zeros; let its a zero be z with multi-

piicity m . Then
a

{zrz2,...,zv} =Z[({>u]uz[(|)w] (7.18)

q - Inia (7.19)
a=l

and z is a zero of order m of d>
a a

*** z is a zero of order m of 4> . (7.20)
a a

In addition, the maximal order of z as a pole of any element of u

and ft is m .
p a

For tracking and disturbance rejection purposes, we assume for
n xn.

PG b(pQ) ° 1 that

n. >nQ (7.21)

rank[iy(z)] =nQ Vz G Zty^ uZC^] . (7.22)

Remark 7.1. (i) To track n signals, (7.21) assures that at least

as many plant inputs are available to facilitate the tracking. Further

more, (7.22) assures that P does not contain any transmission zeros

in Z[<j> ], thus P will not block the control signal required for

asymptotic tracking.

(ii) To achieve asymptotic disturbance rejection, the disturbance

input wp has to be either asymptotically cancelled by the controller
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output y or blocked by some transmission zeros (of the plant P)

that lie in Z[<f> ]. However, since such transmission zeros are not

preserved under plant perturbation, we cannot rely on them to achieve

input disturbance rejection. •

Stabilization, Tracking and Disturbance Rejection Problem (SP)

Given data (7.10)-(7.22), and a finite list A of points in the

annulus {z|pQ<|z|<l} such that XGA<>AGA. Find a controller
nixn« tm n,-xn« tm n.xn,CG b(pQ) n °, with CG(if)1 ^(H1 ° such that for the

feedback system S (6.1)-(6.14)

(a) Heu and H both are I -stable Vp G [1,~],

(b) the list of zeros of x in D(pQ)c, Z[x;D(p0)c], is
exactly A;

(c) for any vu and v satisfying (7.13) and (7.14) respec

tively, the reference signals u will be tracked asymptotically and

the disturbances w will be rejected asymptotically: more speci

fically, there exists p G ]0,1[ such that

es(k) =o(pk) as k-+~ ;
z n xn.

(d) condition (c) holds for any perturbed plant PG B(pQ) ° '

for which the feedback system S (described in (6.1)-(6.14)) still has

Heu and Hyu y stable, VpG[l,«>]. O

n.xn

Remark 7.2. (i) By requiring C to be in b(pQ) , C is bounded

at infinity; hence the convolution operator C is causal.

(ii) By the restriction (7.11) lim P(z) = 0„ vn , the well-
|z|-x» o i

posedness condition (6.7) is guaranteed.
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(iii) By condition (b) of problem (SP) and Theorem 6.1, A is the

list of (dominant) poles of H and H in D(pQ)c.

(iv) Condition (c) of problem (SP) guarantees that the feedback

system S is a servomechanism; furthermore, the system error e

decays to zero at a rate at least p .

(v) Condition (d) is a robustness condition that guarantees

asymptotic tracking and disturbance rejection under plant perturbation,

as long as the feedback system conditions (6.1)-(6.14) are satisfied

and Hyu and Heu are jystable VpG [!,«»]. •

7.3 Procedure for Controller Design

The problem (SP) is solved by obtaining a controller C with the

following procedure:

Procedure 7.1

Data: Plant P withpQ-l.r. (^.AL^); the polynomial <j>G]R[z];
the list of dominant closed-loop poles A.

Step 1. Pick any d G]R[z] monic such that

,c3d = 3<f> =q and d(z) /0 Vze D(pQr . (7.23)

Comment, (i) A simple choice of d is given by d(z) := zq.

(ii) Je*°°(p0) nR(z) c2^Jp0)5 furthermore, cj> and | have
the same list of zeros.

Step 2. Pick Ve I (p ) ° ° corresponding to a matrix sequence in
*, n xnrt '" u

(if) ° ° such that

det Ve £~Jp0) (7.24)

and such that the list of zeros of det V in D(pQ)c is
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Ct ^Z[det V; D(p0)u] =A . (7.25)

Comment. In particular, we can choose P^^(pQ) o o

Step 3. Observe that

~F:=pfeB(p0)
n0xn.

(7.26)

with a pQ-l.r.

(W := %ih v • (7.27)

Using Corollary 3.2(£), find the six matrices with elements in L (pQ)

corresponding to sequences in k\ namely

ur vv V V V \
such that

(i) (\>^) is a P0-r.r. of F

(11) 1
n

n. n^ n. n
10 10

"1/ I U
fix K \\-.h

-WJ V W. I I/,0J_ £ "£_ll-"* "£J

Step 4. Solve, according to Lemma 7.1,

V +vlv = p

(7.28)

(7.29)

(7.30)

(7.31)

nixnnfor X and V by (i) picking Ne &•, (pQ) corresponding to a
»• n.xn

sequence in (ST) 1 ° such that (W,P) are pQ-r.c; and (ii) setting

-X:= y,-u^ (7.32)

(7.33)

Comment. By Corollary 3.1b(^) the choice of W in (i) is equiva-
iM n-xn

lent to choosing W corresponding to a sequence in (F ) such

that
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rankI— -
V(z)

= nQ Vz G A .

n.xn0
-1Furthermore, (X,y) is a PQ-r.r. of XV € b(pQ)

-1

Step 5. Set

and

Stop

Nrh := X , fl := V-.

C := WpA,C^ C/L

(7.34)

by Lemma 7.1.

(7.35)

(7.36)

D

Theorem 7.1. The controller C constructed in Procedure 7.1
n.xn

(i) belongs to b(pQ) with PQ-r.r. (wc* »*?*)> correspond-
n.xn

ing to a matrix sequence in (3kj 1 °;

(ii) solves problem (SP). D

Remark 7.3. It can be observed from the proof of Theorem 7.1 that the

controller C constructed in Procedure 7.1 (see (7.35), (7.36)) has

created blocking zeros [Fer 1] at every point in Z[<|>] = Z[(j> ]uz[<f> ]

for the transfer functions H from u to e and for the trans-
s s

fer functions H ,, from w\ to e\.eswp p s

7.4 Example

1x2Data. The plant Pe b(pQ) , with pQ := 0.55, is given by

-V,2 +y-2z
w - Br 2TTIF3z

which has a pQ-l.r. (^D/»N ?) described by

V?l(z) := (z-l)(z-2)/z'

Mn/(2, := nz-2)(llz-8)l(z-1)r2z+(z-2)e1+2z"l .
P* L z2(2z-l) z3 -I(2z-l) ,

The polynomial <f> and the list of dominant closed-loop poles A are

(7.41)

(7.42)

(7.43)
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given by

<f>(z) := z + 2

A := (0.6,-0.6)

Step 1. Since q := 8<f> = 1, we pick d G ]R[z] as

d(z) := z .

(7.44)

(7.45)

(7.46)

Step 2. Choose VG £~_(pQ) to have zeros at z=0.6, -0.6, as

m .. (z+O.6Hz-0.6) _ {7>4?)
z

Step 3. After defining F:= p|-G b(pQ)lx2, we obtain apQ-l.r.
(P/tWJ for F described by

and

v-)-vz)^ =(z"1)(y)("2)
M£(z) :- W (z)

(7.48)

(7.49)

which is given in (7.43). Next, we find the matrices W„, V , Uoi V0
n. K X. -C

that satisfy (7.29) and (7.30) (note that we do not need explicit

knowledge of U^ and M in our computation):

\(z) :-

VK{z) :=

"(3z-2)(z-l) (Sz^Uz^^z'1^
6z2(2z-l) 6z2(z+2)

|(9z4-2z3+llz2-16z+4) ,(7z-2)(z-1)(z-2),Gl+2z"1 n
I z4(2z-l) z4

T3z-2)(z-l) (3z-l)(z-l)(z-2)(z+2n

(7.50)

(7.51)
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Ut(z) :-

(3z-l)(z^+4z-4)
6z

(7z-2)(z2+4z-4)
6z

v(z) .. (12z4-3z3+llz2-16z+4) (7z-2)(z2+4z-4)(cH2z"1 1}
1 ' 6z3(2z-l) 6z3(z+2)

(7.52)

(7.53)

Observe that these matrices are analytic in D(0.55) , despite some

denominator term (z+2).

Step 4. We choose HGi, Jpg)2*1 by

(-0.42z3-3.8z2-1.08z+0.72)

A/(z) :=

Then we obtain a solution (X,y) of (7.31) by setting

-X(z) := (P^W-U£P)(z)

7l.74z^+1.7z-2.16r
6z

(4.9Z-H2.04)
6z

V{z) := (W/+l/^)(z)

, (12z2-4.26z-2.62) (4.9z+12.04), J+2z"] ,x
6zWtl 6z(z+2) (e "1}

Step 5. By setting

given in (7.55), and

N „ := X
en.

(7.54)

(7.55)

(7.56)

(7.57)
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, (z+2)(12z2-4.26z-2.62) (4.9z+12.04), J+2z"] n
6z*(2z-l) 6z^

-1 2x1
we obtain a controller C := W 0 ' G b(pj which has (W„„,t? J

C/L Go. U C/L CL

as a p0-r.r. Note that this controller C solves problem (SP) with

data (7.41)-(7.45); in particular, it is easy to check that V has a
C/t

zero at z = -2 (thus creating a blocking zero for H and H
e u e wesus es p

at z = -2), and

«'> ••- 'Va-Va'^ - <z-°-6>r°-6) • •
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8. Decoupling Feedback Design with Square Stable Plant

8.1 Preliminary Result and Additional Notations

In this section, we study again the MIMO unity feedback system

depicted in Fig. 6-1. However, we now assume that the given plant

matrix transfer function P (with elements in b(pQ) for some

Pq e ]0,1[) is square and l -stable Vp G [1,~], i.e.

Peb(p0)mxmn£mxm . (8.1)

Observe that if the originally given plant does not satisfy these

assumptions, we can apply the Stabilization Procedure 7.1 of Section 7

and consider the resulting stable square closed-loop system as our new

plant P. For such P in Fig. 6-1, we propose a design method such

that the transfer function H from u to y is decoupled, with

pole-zero assignment in each channel (subject to the constraint that

every D(l) -zero of P must remain a zero of H , cf. continuous-
"sus

time lumped-system analog in [Che 1]). The approach is based on the

recent result obtained by Desoer and Chen [Des 5], which contains a

refined stability theorem proposed by Zames [Zam 1].

In order to tie our description to the notations in [Des 5], we

note that the algebra ft is here b(p0)mXm, and the radical A of
A is bs(p0)mxnl, where

b.(Pn) := {g€b(pn) lim g(z) =g(0)=0} . (8.2)

Since we consider I -stability for all p G [!,«], we take the algebra

B of stable maps to be 5mxm; and B :=>fl <"ffi is hence given by

2^m, where
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L := {gel \ lim g(z) =g(0)=0}
"IZI-KO

(8.3)

69

(Note that while b(pQ) is aradical of b(pn)m, JL is not aradical

of Ij.) The super-ring /A of yA is defined as (G^)mxm.
•JM

In the analysis, we need to extend the algebra Qr to the field

0? := (h|h(z)=zkg(z), gG^J, kG]N} . (8.4)

Furthermore, we extend the definition of order to £: for any nonzero

Kg$*,

ord(h) := k such that lim zkh(z) =constant f 0 , (8.5)
lz|-*»

i.e. ord(h) picks out the first nonzero term of h, e.g. ord(h) =

if h(z) =h_2z2 +h1z1 +hQ +h1z"1 +••• with h_2 f 0. In addition,

j' l z
for H=(h,,) G (Jz)mxm

N u' v z'

-2

ord [H] := min ord[h..] .Cj i U (8.6)

Let p0 < 1 and consider the feedback system of Fig. 6-1 with

PeBtp^nZp, E6dz")«, and Hy(j e b(p0)2mx2m as defined
in (6.9) and rewritten here

Cd+PC)"1 j-CP(H-CP)"1
yu

PC(I+PC) l I P(I+CP)"1

By defining the transfer function from u to y as

Q := Hv u =Cd+PC)"1 ,
Jc s

H in (8.7) can be rewritten as

(8.7)

(8.8)



H

Q I -QP
. -|

PQ IP(I-QP)
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(8.9a)

and from (8.8),

C= Q(I-PQ)"1 . (8.9b)

We can now state a stability theorem analogous to [Des 5, Thm. 3.4].

Theorem 8.1. Consider the unity-feedback system of Fig. 6-1 with

p0<l, P, qeb(por, Cs((^)M and y6(p/x2m. Under
these conditions,

(i) if PG £mxm , (8.10)

then QG*mxm o HyuG£2mx2ni (8.11)

and QG£mxm o Hy(J G£2mx2m and CGbs(P())mxm ; (8.12)

(ii) if PG5mxm , (8.13)

then QG£'»"'" o H e j^1'™" and CGb(p0)",Am (8.14)nmxm ^ q ^ n2mx2m ___, z ^ Zt. \mxm
yu

and QG£mxm » fiyu GJ2mx2m and CGb$(pQ)mm . (8.15)
•

Remark 8.1. (i) Note that for H to have elements in I , the
yu z

transfer function CG (J^)mxm has to satisfy

det[I + P(0)C(0)] f 0 .

(ii) Based on the equivalence condition (8.14), we propose a

design procedure to achieve decoupling and pole-zero assignment of the

feedback system. Note that had P been the closed-loop system obtained

through the stabilizing compensation of Section 7, it would satisfy



condition (8.13) in view of assumption (7.11). (Note that the P

here and the P in (7.11) are different.) Now, by (8.14), we have the

following design capability.

Theorem 8.2. Suppose that we wish to design a unity-feedback system as

shown in Fig. 6-1 with PGb(pQ)mmrumxm, cG (i®)mm and
Hvu eb(p )2mx2m. Then, for all H GExm such that Hv =PQ
y« ^s s ^s s
for some QG5mxrn, there exists a CGb(p0)mxm for which

(i) the closed-loop system is a -stable, Vp G [1,«>], and

(ii) the transfer function from u to y is described by the

specific H . D
ys s

8.2 Procedure for Decoupling Feedback Design

Decoupling Problem (DP). Given aplant PGb(pQ)mxmnJmxmn/lSlN,Nmxm
such that det P±0 in D(pQ)c, find acontroller
CGb(Pn)mxmn#)mxm such that
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(i) the closed-loop unity feedback system in Fig. 6-1 is I -stable,

Vp G [l,»];

(ii) the transfer function H representing the I/O map from
ys s

us t0 ys is a decouP1ed» proper rational function matrix;

(iii) in each diagonal element of H , the poles and zeros (in
s s

addition to the D(l)c-zeros imposed by P, see [Che 1]) can be speci

fied by the designer. •

Procedure 8.1: Decoupling Feedback Design

Data. Plant PGb(p0)mxmn£mxmn(#l)mxm, det P=0 in D(pQ)c.
Step 1. Obtain a pQ-r.r. of P



where M^, Pp/t e i^jpj
Step 2. Calculate

mxm

[Y..] := W"1 e (iZ)mxrnLTijJmxm p/L v*zy (8.17)

Step 3. For j = l,2,...,m, choose a polynomial n. G R[z] of least
j

degree such that for i = l,2,...,m,

Y..(-)n.(-) gJZ (8.18)

is analytic in D(l)c. (Comment: If P has no D(l)c-zeros, then we

can pick n. = 1, Vj.)

Step 4. Choose polynomials n., d. GR[z], j = l,2,...,m, in
j j

H := diag
Js s

nlnl n2n2 n n
m m

dl 'd2 '••*'dm

such that for j = l,2,...,m,

(1) ZCdjlCDO)

(ii) the polynomial n. can be chosen freely,
j

(111) 3[dj] >8[nj] +3[nj]-ordc [P'1] .
j

Step 5. Calculate the controller

STOP,

t r nini n0n« nmnm i

C-Wia9Ld1-h>1'd2-«2n2 a^n-1

Theorem 8.3. The controller C in (8.22) solves Problem (DP).

(8.19)

(8.20)

(8.21)

(8.22)

•

•

Remark 8.2. (i) Equation (8.22) shows that a "stable" controller is

always possible: indeed, after the polynomials n. and n. have been
j j

chosen, the polynomial d. can always be found so that all zeros of
j

d -n.n. lie inside D(l).
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(ii) Observe that it is not required that H of (8.7) be

rational, but H can be made to be rational as in (8.19).
•vsus

(iii) This procedure is not a direct application of [Des 5, Alg. 4.2],

because we are not restricting n., n. and d. to L (p0) or i(pn);
j j 3 1-VK0 XK0'

instead, we choose n., n. and d. to be polynomials and we are only
j j j

restricting n.n./d. to belong to *.(!) (Note: it is easier to work
j j j

with polynomial n., n. and d..). A direct modification of [Des 5,
j j j

Alg. 4.2] can be obtained by letting n., n. G *.(p0) and d. G ^(pg),

and by replacing (8.21) by

ord(n.n.) >-ordr [P"1] >0. (8.23)J 3 Cj

(iv) Since we are working with d. in 3R[z] instead of in
j

n. (Pq)9 zeros of d. need not be restricted to D(pQ) . In particular,

if we put all these zeros at z = 0, then H is a transfer func-
-^s s

tion corresponding to an I/O map with finite settling time.

(v) Let [tt,,] := P_1 =V Jf^ G (CZ)mxm. Since PG ffXm,x ' L ijJmxm pA. pi v zJ 1 '

hence det VAz) f 0, Vz G D(l)c; thus the term in (8.18), y--(OM-).
P^- 1J 3

is analytic in D(l)c if and only if tt..(-)n-(-) is analytic in

D(DC. D
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9. Concluding Discussion

In view of the need for a general theory to cover sampled-data

systems obtained by sampling continuous-time linear time-invariant

distributed systems, we have developed in Section 2 the algebra b(pn)

which described a large class of such discrete-time systems. In contrast

to the continuous-time distributed case which is plagued by difficult

fine points of analysis, the discrete-time case can be treated by more

straightforward methods: in particular, for any gG b(pQ), there is

some p _> p such that g is analytic and bounded in |z| _> p,

moreover g(z) has a well-defined limit as |z|—*•«. such nice

behavior at infinity is usually absent in transfer functions of

continuous-time distributed systems (consider g(s) = e ). Conse

quently, this paper is essentially self-contained.

The model of system description in this paper, with transfer

functions in B(pq), is far more general than the model with rational

transfer functions (as demonstrated by the examples in Section 2.6):

indeed, the algebra b(pQ) includes, as a subalgebra, all the proper

rational functions in z.

By generalizing in Section 3 the concept of matrix fraction repre

sentation to systems with 5(pQ)-matrix transfer functions, we studied

the dynamic interpretations of poles and transmission zeros for MIMO

systems in Section 4. As in the rational case, each pole of &(p0)-

transfer functions can be activated individually by some appropriately

chosen input signals (see Thm. 4.4). In contrast to the transmission

zeros of the rational transfer function case, a transmission zero of a

b(pg)-transfer function cannot completely block out the corresponding



exponential input-signal, but it can make the output asymptotically

"small" compared to the blocked exponential; hence transmission zeros

of b(pQ)-transfer functions still pose the same kind of nuisance on the

tracking problem as those in the rational transfer function case (see

e.g. [Des 4], [McF 1], [Dav 1]). Note that transmisssion zeros of

b(pQ)-transfer functions also impose other limitations on the design of

feedback systems, parallel to the rational case: Consider a feedback

system with unity feedback, some zeros of the closed-loop characteristic

function approach the open-loop transmission zeros under high gain;

hence high loop gains lead to instability when there are D(l)c-zeros in

the plant transfer function (see discussions in [McF 1], [Dav 1] about

similar behavior for continuous-time rational case). In addition, for

a rather general feedback system defined as in Fig. 9-1, if z G D(l)c

is a transmission zero of the plant transfer function P, then under

reasonable assumptions, fbr any controller transfer function C and any

feedback transfer function F such that the closed-loop system is

I -stable Vp G [1,«] (as defined in Section 5), the closed-loop

transfer function H from input u to output y will have a trans-
y

mission zero at z; thus the D(l)c-transmission zeros of P impose

some fundamental limitations on the achievable closed-loop transfer

function H (see [Che 1]). However, even though these transmission

zeros cannot be removed by appropriate compensation, sometimes they can

be relocated by judicious redesign of the actuators and/or sensors of

the physical system [McF 1],

As for the analysis of interconnected systems using the notion of

characteristic functions as described in Section 5, it is stressed that

this method of analysis can be applied to any interconnection, as long
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as the well-posedness condition (i.e. lim det V(z) f 0) is satisfied.

Izl"*°°
Considering MIMO feedback systems, we studied in Section 6 the

problem of closed-loop stability and in Section 7 the problem of design

ing a robust controller to achieve stabilization, tracking, and distur

bance rejection. However, we have yet to investigate the possibility

of designing controllers with proper rational transfer functions that

can satisfy the same or relaxed specifications. We stress that if the

design procedure 7.1 is applied to systems with rational transfer

functions, then the controller is guaranteed to be proper, and arbitrary

"dominant" closed-loop eigenvalue assignment is achieved.

When the given plant is square and stable, we have in Section 8 a

procedure to design a feedback system so that the transfer function

from the reference input to the plant output is decoupled (or, equally

practicable, assigned a specific structure to satisfy other specifica

tions), with arbitrary pole and zero assignment outside D(pn) (subject

to, of course, the D(l) -zeros of the plant).

Hence, by combining the results of Sections 7 and 8, we conclude

~ ~ noxnithat, given any plant PG b(pQ) ° that satisfies certain reasonable

assumptions, we can design a feedback system with an inner loop to sta

bilize the plant (as in Section 7), and an outer loop to bring the over

all system to satisfy certain specifications, e.g. decoupling (as in

Section 8). We are of course aware that there are many important

issues in control system design that are not addressed by the above

methods.

Finally, we should point out that most of the results in this paper

also apply to the continuous-time and lumped cases, by observing the

similar algebraic structures of the different cases.
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Appendix A: Proofs of Properties of Mpq)> ^ (Pq)

Proof of (2.2.1). Mpg) Is defined by (2.4): it follows that ^-j(Pq)

is a normed space over the field (E with the usual definitions of

addition for sequences, multiplication by scalars in (t, and a norm

U-11 : a,(pn)-»-]R. defined byp0 1 0 +
00

II9L :- I |g(k)p"k| . (A.l)
p0 k=0 u

By definition, g=(g(k))^=0 G U-,(p0) ,IML ) if and only if

Y=(Y(k))k=0e (Vl-h)> where y(k) := g(k)pOk vk€^' and
00

Iy|t •= ilYil =1 = I IyCOI is the usual norm defined on £,. This
1 p0 ' k=0 '

defines an isomorphism of £-,(p0) onto £, with llgll = |y|,.

Hence U-|(p0),ll-fl ) is a Banach space, since (£, ,|»L) is a Banach

space [Die 2, Thm. 13.11.4 (using the counting measure)]. &-,(Pn) also

forms a commutative ring, with a "multiplication" in ^(Pn) defined

as the convolution, namely,

k

f*9 :- (J f(k-j)g(j))~=Q for f, gG ^(pQ) . (A.2)

Furthermore, the convolution satisfies the inequality

if*gin =1(1 f(k-j)g(j))P"k
p0 k=0 j=0

k

1 I I |f(k-J)Po(k"j)l|g(J)Pnjl
k=0 j=0 u u

= imiD iigiL (A.3)
p0 p0

where the last equality follows from [Apo 1, Thm. 8.4.6]. Note that

<$0 '- (1,0,0,...) is the neutral element of &-|(p0) under convolution
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indeed

<5Q*g =g*6Q =g Vg G ^[9q) , (A.4)

and l|6n|| = 1. Hence £-i(pn) is a commutative convolution (A.5)u Pq i u

complex Banach algebra with unit [Rud 2, pp.227-228]. D

Proof of (2.2.2). Follows immediately from (2.4) and the equivalence

pl<p0<>plk>p0IC' vkeN*- D

Proof of (2.2.3). Given any two nonzero elements f = (fM)00^ and

g=(g(n))°L0 in QT, let mQ and nQ be the least indices corres

ponding to a nonzero component of f and g respectively, then

h := f*g is nonzero because h(m0+nQ) = f(m0)«g(nQ) 7*0. D

Proof of (2.2.4). (i) By assumption, gG Jl,(pQ), then for |z| ^ pQ

00

-k „ r i./..M.-i-k . r i.tuM -k

k=0

13(2)1 - Ig(k)z"K < I |g(k)||z|"K< I |g(k)|p"'= Hg
k=0 k=0 u p0
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i.e. in |z| ^. P0> the series defining g(z) converges absolutely

and is bounded by [|gll .
p0

(ii) For any e > 0, the series defining g(z) converges

uniformly in |z| 2lPn +e» hence g(z) represents an analytic function

in D(p0+e)c.

(iii) Consider the definition of g(z), as |z|—*<», g(z)—*g(0).

D

In order to prove Property (2.2.6) we need the concept of complex

homomorphism. Let A denote the set of all complex homomorphisms

mapping the Banach algebra £,(pQ) into G [Rud 1, Ch. 9][Rud 2, Ch. 11].



The following lemma characterizes A:

Lemma A.l. For (j>: £-i(Pq)—* &>

<j> G A o Either (a) cj>(f) = f(0), VfGj^pg) (A.6)

or (b) 3z GD(pQ)c such that
(J>(f) = f(z), Vf G £1(p0) . (A.7)

D

Proof: («=) By definition, (J>: Jl,(pQ)-*(t belongs to A if and only

if <j>(f*g) =<j>(f)<j>(g), 0(af+3g) =a*(f) +W(g), Vf,g G '̂(pg),
Va,3G(t. By direct calculation, these requirements are satisfied for

any <j> specified by (A.6) or (A.7).

(=») Let (j)^: fH-f(O) be the complex homomorphism defined by

(A.6). Let A, := A\{<{>0}. According to the definitions of 5, and

6k' k\ = (<$-,*) =61*61*--.*61 , k >1 .

Hence, for any $ G A,,

<J>($k) =[<i>(61)]k Vk GN . (A.8)

Now for any homomorphism <j>, |(()(g)| < llgl [Rud 1, Thm. 9.21], in

particular .

MVI i'Vp =p0 •

Hence, for any <j> G a.j, there exists zG (C with |z| _> pQ such that

z"1 =*(<$•,) . (A.9)

Now V<J> G A^ and Vg g £.(pQ), we obtain successfully
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♦(g) = ♦( I g(k)6.)
k=0 K

00

= I g(k)({)(6|.) by linearity of homomorphism (j>
k=0 K

a I g(k)[(J)(61)]k by (A.8) . (A.10)
k=0 '

By using (A.9) in (A.10), we conclude that there exists zG D(pQ)

such that

♦(g) = I g(k)z'k =g(z) . •
k=0

Proof of (2.2.6). (2.7) o (2.8). This is obvious by noting that

g(0) = lim g(z).
|z]-*»

(2.6) o (2.8). By [Rud 2, Thm. 11.5(c)], gG ^(p0) is inverti-

ble in &-.(pq) iff <|>(g) 7* 0 V<{> G a. The result follows immediately

in view of Lemma A.l. D

Proof of (2.2.7). (2.10) =>(2.11). By contraposition, suppose

inf |(f(z),g(z))| = 0. Then there exists a sequence Uk)k-0 In
|z|>P0
D(p«) such that

Hm|(f(z.),g(z ))| = 0

Hence, Vu,v G £,(pQ), which are necessarily bounded in D(pQ) ,

lim(uf+ vg)(z.) = 0 .
k-~o K

Then (2.10) cannot hold.

(2.11)^(2.12). This is obvious by noting that (f(0),g(0)) =

lim (f(z),g(z)).
|Z|"K»
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(2.12)^(2.10). Consider the ideal in ^(Pg) generated by f

and g

I := {h|h =u*f+ v*g, u,vG£.j(p0)} .

Either (i) I=^(p0), or (ii) I^J^Pg). If (i) holds, 6Q e 1
and we obtain (2.10). Otherwise, (ii) I is a proper ideal of &,(pQ),

then by [Rud 2, Thm. 11.3(a)] I is contained in some maximal ideal

M£ ^(Pq)- By [Rud 2» Tnm- 11.5(a)], there exists <j>M G A such that

M=^(0). Hence Ic^V), I.e.

0M(h) =0 Vh G I .

By Lemma A.l, either

(a) <f>M =*Q: fh*f(0), then f, g GI implies

♦M(f) = f(0) =0 and ^(g) = g(0) =0

and so |(f(0),g(0))| = 0 which contradicts (2.12)(i);

or (b) if $„ f <j)Q, then there exists z' G D(pQ)c (where z' is

specified by <J>.,) such that

*M(h).» h(z') Vh e^(pQ) .

With this particular z', since f, g G I,

4>M(f) = f(z«) =0 and ^(g) = g(z') =0

and so |(f(z'),g(z'))| = 0 which contradicts (2.12)(ii). Thus we

conclude that I= ^(Pq) must hold. •

Proof of (2.3.2). (i) and (ii) hold because gG Lj(p ) for some

Pg < P<r
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(iii) Let a G ]N be the least index corresponding to a nonzero

component of g. Then g(a) f 0 and

g(z) - I g(k)z"k -g(a)z"«[l +J2^^z"(k+1>] . (A.ll)
k=a k=0 9WN

Since gG^_(p0), hence (^gfc)^)^ G^_(p0); thus there exists
p >_ P0 such that

g(g+l+k),-(k+l)

k=0
z.^fgp^"^" <i*r-.z-1

k=0

g(g+l+k)
g(ot)

zfk <1 Vizi >p

Hence by (A.ll), g(z) f 0 V|z| >^ p; and so the zeros of g(«) in

D(pg) are all inside the compact annul us {z|pQ <Jz| <_p}. Since the

zeros of §(•) are isolated in the region of analyticity, §(•) can

have at most a finite number of zeros in the compact set

{z|p0<_ |z| <_p}, hence afinite number of zeros in D(pq)c. •

Before we prove Property (2.3.3), we consider next:

Lemma A.2. Let 0 <_ p, <pQ, and let f: D(p,)c—*-R be continuous
at every point of S := {z||z| =pQ}. If f(z) >0 V|z| =pQ, then
3p2 G ]p,,pg[ such that

f(z) >0 V|z| G [p2,pQ] . D

Proof. For the sake of contradiction, suppose that given any

P2 e ]p-j>Pg[» 3|z|G[p2,pQ] such that f(z) <_0. Hence we can

construct a sequence (zk)k=1 with |zfe| e ]p15pQ] such that

|zk|-^-pg and f(zk) £0, k= 1,2 By compactness of the closed

ball D(pg), (zk). , must have a convergent subsequence specified by

some index set K, i.e. 3K c ft such that zk -&- z* for some
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z* G D(pn). Furthermore, |z*| = lim |z. |=pn => z*^S. Hence
u k-Ko K u

kGK

f(zk) £ 0, k^K => f(z*) £0, because f is continuous at z* G S;

and this contradicts the hypothesis. •

Proof of (2.3.3). (2.16)<>(2.17). This is obvious by noting that

g(0) = lim g(z).

(2.15)^(2.16). gG I (p ) implies that gG iAq^) for some

p, < Pq. It has an inverse in £-i(p0) implies that for some p? < p«,

3g" e^(p2) with g*g =g-1*g =6Q. Hence, gG&-j(p3) has an
inverse in ^(p3), where p3 := max(p,,p2) < PQ. By Inversion

Theorem (2.2.6), inf |g(z)|>0. Hence,
|z|>p3

inf |g(z)| > inf |g(z)| > 0 .
|z|>P0 lzllP3

(2.15)^(2.16). gG £-j_(Pq) implies that 3p, < pQ such that

gG ^(p-j). Hence the map zl—*- ig(z) | is defined for |z| _> p, and

is continuous at every point of S := {z||z| =Pq). By Lemma A.2,
|g(z)| >0 on S implies that 3p£ G ]p19pQ[ such that |g(z)| >0

V|z| G [p2,pQ]. Hence inf |g(z)| >0. By Inversion Theorem (2.2.6),

g has an inverse in £,(p2), hence in £, (pQ). D

The next theorem is needed in some subsequent proofs.

Theorem A.l: Decomposition Theorem. Let gG L (pQ), and let

pG D(pQ)c. Under these conditions, 3p, ,p2 satisfying 0£p2<p, <pQ
and such that

W =W+S(Z) VZ eD(p2>C\{P} <A-15>
where both c and zh*z$(z) belong to ^.(p-i). •
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Proof. With gGS-jJPq), 3p2 <pQ such that gGL(p2) and hence
g is analytic in |z| > p2 and bounded in |z| > p2- Since g is

analytic at p with |p| > pQ > p2, and since g(z)-g(p) has a zero

at p, we see that

. z-p

is analytic at p, hence it is analytic for |z| > p2; note that

?(z) —*-0 as |z|—*-». Hence, by Laurent expansion, we obtain

C(z) = I c.z~K with c(0) := lim Z(z) =0
k=0 K |z|-*»

which converges absolutely for |z| > p2. Hence, Vp-, G ]p2,pQ],

I |c(k)|p^ <°°, i.e. ?e^_(p-j) for any p] G ]p2,pQ[. Sin

C(0) =0, we see that zl-*-z?(z) G i->_{p-,) for the same p]. •

Remark, (i) The decomposition theorem (A.15) expresses g(z)/(z-p) as

the sum of the principal part g(p)/(z-p) of the Laurent expansion at

p of g(z)/(z-p), and of the remainder term ?G £-, (p.,). Through

repeated use of the decomposition theorem, for any gG L (Pn)» any

pG D(pg)c, and any mG N*, the same conclusion holds for
g(z)/(z-p)m, giving

-2Hr= I —hr+gw (A.16)
(z-pf k=l (z-p)k

where C^L (p.) for some p-. < pg, and r, €C, k= l,2,...,m.

Repeated application of this last result (A.16) proves the following:

For any gel^JpQ)9 vG fl*, and any pa G D(Pg)c, ma G fl*,
v m

a = l,2,...,v, g(z)/ n (z-p )a can be expressed as the sum of the
a=l a
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v m

principal parts of the Laurent expansions of g(z)/ n (z-p )a at the
t 01

a=l

p 's, and of a remainder term c, i.e.
a

where

m

v~9(Z) „-iff -^4l+?(z) . (A.17)
a-1

I G £, (p.) for some p, < pQ, and r.G (J, a = 1,2,... ,v,

k = l,2,...,m .
a

(ii) If, in (A.15), g(p) =0, then f := g(z)/(z-p) G l^Jp}).
Here f(0) = lim f(z) = 0. We can easily verify that, Va G D(pn),

|z|-*» u

f(z)(z-a) =g(z)(z-a)/(z-p) G l^Jp^) c^_(pq) . (A.18)

Thus g(z) can be expressed as a product of factors in JL (pQ)

given by

§(z) - [(z-p)/(z-a)][g(z)(z-a)/(z-p)] . (A.19)

D

Corollary A.la. Let gG^_(pg) and let pG D(pQ)c.
(i) If aG(I such that a f p, then 30 £ p] <pQ such that

*{z)10) =§(P){f5f}+5(z) Vz GD(Pl)c\{p} (A.20)

where c^ ^i-(Pn)-

(ii) If aG D(pg) and g has an m -order zero at p, then

and g(z)||^|e l}JpQ) and has an (m-l)tn order zero at p. •

Proof, (i) By Theorem A.l, multiplying equation (A.15) by (z-a), we

see that 3p.j,p2 satisfying 0£ p2 < pj < pQ such that
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9(z)-jf5f} =g(P)||E|j-+C1(z)(z-a) Vz GD(p2)c\{p} (A.22)

where ?1 e^.(pj)- Now since |~=1+|^., we have, Vz GD(p2)c\{p}

9(z){l^= §(p)fe}+?l(z)(z"a)+9(P) • (A.23)

Here, we define the last two terms of (A.23) as

?(z) := ^(zKz-aJ+gfp)

=^(zHz-aJ+gfz) -^(zHz-p) using (A.22)

=?j(z)(p-a)+g(z) e^Jpg) . (A.24)

The proof is complete by defining any p, G [p2,pQ[.

(ii) This follows immediately from (i) and the fact that

a€D(Pg). •

Corollary A.lb. Let gG JL (pQ) have zeros z G D(pQ) of multi-
v

plicities m , respectively for a = 1,2,...,v. Let m := £ m .
a=l

Let ag G D(pg), 3= l,2,...,m. Under these conditions

(1) g = be (A.25)

where bG £* (p ), cG L_(p ) are defined for some p, < pQ by

v mm

b(z) := n (z-zJ °7 n (z-aj (A.26)
a=l a 8=1 B

m v m

c(z) := g(z) n (z-aR)/ n (z-zj a, |z| > p, (A.27)
3=1 pa=l a l

and c(z ) f 0 , a = 1,2,...,v . (A.28)

(ii) If, in addition, gG £~Jpg) and z, a=l,2,...,v, are
the only zeros of g in D(pQ)c, then c is an invertible element

of ^..(Pg). D



Proof, (i) This follows immediately by repeated application of

Corollary A.la(ii).

(ii) If gG £".(p0), then

lim c(z) = lim g(z)/b(z) = g(0) t 0 . (A.29)
|z|-*» |z|-*»

Hence c G S~ (p ). From (A.27), the only possible zeros of c in

D(pQ) are the zeros of g. Now that z , a = l,2,...,v, are the

only zeros of g in D(pg)c, then in view of (A.28),

c(z) f 0 Vz GD(p0)c . (A.30)

Hence by Property (2.3.3), c is an invertible element of L (pQ). •

Corollary A.lc: Let gG I (p ). Let veil* and p G D(p0)c,
m G N*, a= l,2,...,v. Let m := Jm , and ag G D(pQ),

a=l
8 = l,2,...,m. Under these conditions 3p, G [0,pQ[ such that

m v m v ma m -k
g(z) n (z-a )/ n (z-p )a = I I r /(z-p )a +3(z) (A.31)

8=1 * a=l a a=l k=0 aK a p
V|z|>Pl

where

(i) gpeV(p0)
(ii) for a=l,2,...,v, and k=0,1,...,ma-l, rak GC is

given by
•i Hk m v m.

rak =Fr^W n(z"a6)/ n(z"Pi) '3
aK k! dzK 3=1 3 i=l n

i^a

(iii) for a = 1,2,...,v

(A.32)
z=P,

a

a
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Proof: This is achieved through multiple applications of Corollary A.la.

•

Proof of (2.3.4): I, (pQ) is a Euclidean ring

Since £, (pQ) is an integral domain (entire ring), it suffices

to prove [Sig 1, p.132] [Her 1, p.143] that the gauge y: S^JpgJUO}-*^

defined in (2.18) satisfies

(1) Y(fg)>Y(f) Vf,g G^JPg)\{0} (A.35)

(ii) a Euclidean algorithm exists: Vf,g € £, (p0), f t 0,

3q,r G 1 (p ) such that

g = qf+r (A.36)

with either 0 £y(r) < y(f) or r = 0.

Observe that when g f 0, ord(g) is finite, and the last term of

(2.18) is finite due to Property (2.3.2)(iii); hence the gauge y in

(2.18) is well-defined. Before we carry out the proof, we study the

following with the gauge y defined as in (2.18).

Fact A.l. For any nonzero gG L (pQ)» we can decompose

g=§ugs (a.37)

such that

(D g^Ctz"1] with 3[gu] =y(g) and (A.38)

every zero zQ of g satisfies |zg |£ pQ (A.39)

(ii) g G 5? (p0) is an invertible element of L (pq). (A.40)

Proof of Fact A.l. Define gQ G^(pq) by

g(z) =: z"ord(9).g0(z) . (A.41)
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Then the list of zeros of g (including multiplicities) and that of

gQ are identical. Let n €G[z] be a polynomial whose zeros are

exactly all those of g in D(pQ)c, counting multiplicities. Then,
by definition of n and by (2.18)

y

Y(g) -ord(g)+3[ng] . (A.42)
n (z)

Note that n has no zero at z = 0, hence -A—T is a polynomial
g „"LnnJ

-1-1 z 3
in z with z -degree equal to 3[n ]. Define g G J? (p ) by

n(z)

90(Z) =:^TT-9s(z) • (A-43)
z g

3[ng3
Equtvalently, gg(z) := gQ(z)zn ^ , and by Corollary A.lb, g$ G£~Jp0)

y

is an invertible element of L (pj.

Define g €G[z"'], a polynomial in z"1, by

a^^-orfW).^. (A44)
-, g

Then combining (A.41) and (A.43), we obtain

g - gu-gs

and §[gu] =ord(g)+3[ng] =y(g) by (A.42) . (A.45)
•

Procedure A.l: Euclidean Algorithm for I (p )

Given f, gG 1}Jpq), f f 0.

Step 1. Decompose f, g into

? =V?< > §= g„-gc (a.46)us' * Ju 3s

as in Fact A.l.
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Step 2. Use the Euclidean algorithm in C[z ] and find q , r. Gfl;[z ]

such that

gu =qtV?t (A.47)

where either 3[r.] < 3[f ] or r = 0.
t u t

Step 3. Define q, rG £-,(p0) by

g

s

and r := r •§ . (A.49)

Such q, r satisfy

g = qf+ r (A.50)

with either 0 £ y(r) < y(f) or r = 0. D

We now continue the proof of (2.3.4):

(i) Vnonzero f, gG I^Jpq),

ord(fg) = ord(f)+ord(g) > 0 , (A.51)

and, by counting zeros of the analytic functions f and g,

3[nfg] =3[nf-ng] =3[nf] +3[ng] . (A.52)
Hence

y(fg) =o.rd(fg) +3[nfg]
=ord(f)+ord(g) +3[nf] +3[ng]
= y(f)+y(g) > y(f) . (A.53)

(ii) Next, we prove that the Euclidean algorithm gives the

desired result: Step 1 follows from Fact A.l, and Step 2 is self-

explanatory. For Step 3, since g , f are invertible elements of

£.j_(Pq) and q,, r.Gflfz" ]c^i(pg)» hence q, r defined in

q- qt y- (A.48)



(A.48), (A.49) belong to J-,_(pg). Multiplying (A.47) by g, we get
s

sv9s"<v?:>-Vs+¥s (A,54)

which gives (A.50). Finally,

otherwise, by (A.47)

r = 0 if r = 0 or g = 0 ;
t 3s

0£y(r) £ 3[rt] <3[?u] =y(f) . (A.55)
D

Proof of (2.3.6). (2.19)^(2.20). (2.19) holds if and only if 6Q is

a gcd(f,g), which holds if and only if (2.20) holds [McL 1, Thm. 25,

p.154].

(2.21)^(2.22). This is obvious by observing that

(f(0),g(0)) - lim (f(z),g(z)).
|z|-*»

(2.20)=>(2.21). By definition, 3u, vG l}_{pQ) such that

u*f+ v*g = 6g. With f, g, u, vG i^Jpg), there exists p] < pQ

such that f, g, u, v6^(p.), Hence, f and g are coprime in

^(p^. By Property (2.2.7), inf |(f(z),g(z))| > 0, and thus
l*l>Pl

inf |(f(z),g(z))| > inf |(f(z),g(z))| > 0 .
IZI>P0 |z|>p1

(2.20)^(2.21). With f, ge j^Jpg), there exists P] <pQ
such that f, gG ^(p^. Hence the map zH- |(f(z),g(z)) | is

defined for |z| 1 P-j and is continuous on S := {z |z|=pQ}. By

Lemma A.2, |(f(z),g(z))| >0 on S implies that 3p£ G ]p ,p [
such that |(f(z),g(z))| >0 V|z| G [p2,Pg]. Hence
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inf |(f(z),g(z))| > 0. By Property (2.2.7), f, g are coprime in
lzllP2
£.j(p2), i.e. 3u, vG ^(p2) c &-,_(Pg) such that

u*f +v*g = 6g . •
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Appendix B: Proofs of Theorems and Lemmas

Proof of Lemma 2.1. By definition, gG b(pg) implies that

3n G^_(pg) and dG JI?(pq) such that g=n/d. If (n,d) are
pg-coprime, then they give a pQ-representation of g. Otherwise,

since &•> (p0) Is a Euclidean ring, we can find a gcd(n,d) in

A, (pg): call it c. Define d := d/c and n := n/c. By definition

of the greatest common divisor c, 3 and n belong to £-i (pn) and

are pQ-coprime. Furthermore, both d, cG £?_(pQ) because

de^(p0). D

Proof of Lemma 2.2. nGL (pQ) and dG £~ (p ) imply that n, d

are both analytic in D(pn)c. Since n, d are pQ-coprime, n and d

have no common zeros in D(pg)c. Hence statements (i) and (ii) of the
lemma follow. D

Proof of Theorem 2.1. The steps in Procedure 2.1 are justified in the

following:

Step 1. The pQ-representation exists by Lemma 2.1.

Step 2. According to Property (2.3.2)(iii), d G 5? (p ) can have at

most afinite number of zeros in D(pn)c.

Step 3. By Corollary A.lb, c G L (p ) is invertible.

Step 4. Definition 2.3 is satisfied by (n,d). In particular, since

inf |c(z)|>0 and |c(z)|£ ||c||n Vz G D(pn)c,
|z|>P0 P0 U

rank(n(z),d(z)) =rank(n(z),d(z))-c(z)"1 =1 Vz GD(Pg)c .

Furthermore, by definition in Step 3, dG A.°°(pn), lim d(z) = 1, and

Z[d] C D(p0)c. D

93



Proof of Theorem 2.2. (=>) By assumption gG b(pQ). If gG &i (pQ)

then (2.36) holds with r=0. Now suppose g$ I, (pQ). By

Theorem 2.1, g has a normalized pn-representation (n,d) such that

nG^..(Pg) and dG^°°(pg). Since g$L_(p ), then d$1 and
hence for some v e II*, there are p 6 D(pJc and m G II* where

a = l,2,...,v, and for m := I m , there are ag G D(pQ),
a=l a

8 = T92,...,m, such that

v mm

d(z) = n(z-pj °7 n (z-aR)
a=l a 8=1 6

with n(p ) f 0, a = 1,2,...,v.

Hence (2.36) with all its properties (2.37)-(2.39b) follows from

Corollary A.lc, where g is replaced by n and where

v ma-] m -k
I I rak/U-Pa) a =: r(z) .

a=l k=0 aK a

(<=) Proof by construction, following Procedure 2.2: Step 1 is

self-explanatory. The pair (n,d) generated by steps 2 and 3 satisfy

the following:

(i) by (2.43), dG /t°°(p0) c £° (p ) with lim d(z) =1 and
r ~ |z|-*»Z[d]CD(p0)c; by (2.44), nG^JpQ).

(11) §= nr/dr +q by (2.36) and (2.41)

- (Vqdr)/dp

= n/d by (2.43) and (2.44)

(iii) Since (n ,d ) are coprime polynomials, then from (2.44),

VIzl >
±p0

vdr(z)=0 => n(z) =nr(z)/zv^0 .
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Hence

rank

SO

rn(zn Pv(zri
= rankLd(z)J d (z)

•1 V|Z| > Pg ,

(n(z),d(z))| >0 V|z| > p0 ,

and by Remark 2.1, (n,d) are pQ-coprime. Therefore (n,d) is a

normalized pQ-representation of g. D

Proof of Theorem 2.3. By Procedure 2.1 (normalization), we note that

any pQ-representation (n,d) is equal to the product of its normalized

form with an invertible element of L (pn). Hence without loss of

generality, we assume that both (n,d) and (n,d) are normalized. By

~ th c ~Lemma 2.2, g has an m order pole at pG D(pQ) if and only if d
.th(ditto for d) has an m order zero at pG D(pQ) . Let d be gi

by the coprime factorization in (2.46). By (2.39b), g has an m

order pole at pGD(pQ)c if and only if dp has an mtn order zero at
PGD(Pg) • Since d, dGA°°(pg) and dr ^C[z] have zeros only in
D(pg)C> they have zeros of the same order at the same locations in
D(pg)c, and nowhere else; furthermore, lim d(z) = lim d(z) =1,

|z|-*» |z|^o
hence

3-dr/nh , 3=dr/dh

where n^, d^ ec[z] are monic polynomials of the same degree as d ,

and have zeros only in D(pQ). Hence h := n./d. is an invertible

element of Ij_(pg), and is rational. Then h=n./dh =d/d =n/n. D

Proof of Theorem 2.4. {=>) By assumption, 3h G b(pQ) such that

gh =hg =1 in D(Pg)c. Hence lim (gh)(z) =1. Since
|z|-*»

lim |h(z)| = |h(0)| < ~ ,
z -*00

ven
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then g(0) = lim |g(z)| = h(O)"1 f 0
z -*»

M Let (n,d) be a pQ-representation of g. Then by assumption,

g(0) = lim g(z) = lim n(z)/d(z) = n(0)/d(0) f 0. Furthermore,
|z I-*30 |z |-x»

d(0) = lim 3(z) f 0 because deL (pn). Hence lim n(z) = n(0) =
Ul-*08 oo i lzl~°g(0)d(0) t 0. Thus nGC (pq) and g := d/n belongs to b(pQ)

and is the inverse of g in b(pQ). D

Proof of Lemma 3.1. This is immediate by Cramer's rule and Property

(2.2.6) (respectively Property (2.3.3)). D

Proof of Lemma 3.2. This is immediate by Cramer's rule and Theorem 2.4.

D

Proof of Lemma 3.3. This is immediate by applying Theorem 2.2 to

every element of G, so that for i = l,2,...,nQ, j = l,2,...,n.,

q.. = r.. + q..

where g.., r.., q.. satisfy Theorem 2.2. D

Proof of Lemma 3.4. (W .Pj are pn-r.c. if and only if I is a
n. a. u n.

g.c.r.d. of CVPJ. which holds if and only if (3.4) holds [McD 1,

p.35]. This proves Lemma 3.4(4.). The proof of Lemma 3.4(£) is similar.

D

Proof of Theorem 3.1.

n xn.

Case 1. If Gel. (pn) , the theorem is immediately veri

fied by choosing

V 8 J \ := rni '' u*--=0> \ •= Jni •

96



n xn.

Case 2. If 6$ SL (pQ) ° ,̂ we use Procedure 3.1 to find the

eight matrices that satisfy the theorem.

Step 1 is self-explanatory.

Step 2. Since all elements r.. of R in (3.8) are elements of

t (z) and have poles only in D(pQ) , they admit a rational pQ-repre-

sentation (n..,d...) with n..G/t(p) and d-.G^p) such that

(n..,d..) are pg-coprime, with respect to ^(pn). It is then possible

to construct a least common multiple d. G^(pg) of all denominators

d^ <= ^(pg) of column j[McL 1, Ch. IV, §10]. Hence
n *n. n. n.xn.

\ := [n.jdj/d^] G*(p0) ° n and ^ := diag^.).^ e*(Pq) " 1
satisfy the conditions of Step 2.

Step 3. M is full rank because det VG ^(pg) and thus det V is

not the zero element of i(pg). The rest is self-explanatory.

Step 4. Comment (i) relating to Step 4 holds as follows: Observe that

all matrices in (3.10)-(3.12) have elements in /l(p0) cL(p) with

det V^ det RG*°°(pg). Moreover, from M=Of1 |-q-1»

hence R=WJ)"1 =UQ ~] with det 5„ G /L°°(pn)

Snd ^A+SA E ^ •n. K K. h. n.

Hence (\,^) is apQ-r.r. of R, with R ag.c.r.d. of W and
a 1V . From m =1, we also get

and hUl +hh 5xn0 •
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Since W is invertible in *(pn)
(ni+no)x(n.+no)

det W tends to a

nonzero complex constant as |z|-»—. From (3.11), the matrix

C-W^i V^\ =0£[-R |In L when evaluated at z=», is a full rank
o

matrix; hence det 5„ G /i(pg) tends to a nonzero constant at infinity.

Thus (P^A/p is a Pg-l.r. of R.

Step 5 is self-explanatory. Comment (ii) regarding Step 5 can be veri

fied by using (3.13) and a little computation like the preceding

comment. •
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Proof of Corollary 3.1b. We present here the proof for Corollary 3.1b(;i)

The proof for Corollary 3.1b(£) is similar and is omitted.

(=>) By assumption, (W„,PJ are pn-r.c, hence by (3.4)

•\|<V>
o.

-"*-.
which implies

rank c*i^
V.

•A-

(z) =1 Vz e D(pQ)\
1

(z) =n. Vz e D(p0)

Hence, by Sylvester's inequality,

rank I- -*- (z)>n. Vz£D(P0)c.

T I T T
Equality holds because the matrix [P„ ,A/ ] has only nn- columns.

n xn.

H By Cramer's rule, G:= N^P"1 belongs to b(p0)"° "1
Hence by Theorem 3.1, G admits a pQ-r.r. (W ,V), i.e.



n xn. n.xn.

where ^G^Jp^ ° \ S^e^Jp^1 \ det V^ G^(pg), and
n•xn n^xn.

there exist U„ € J (pn) n °, (/ G J (p.) such that
/L I- U A I- U

A /L /L /L n

JR-1.Define R := P„ P„. Then Vu = OR and
A. n. A A

H»= WX\ =SA"\/L si A. A. AAA

Using these identities in (B.20), we obtain

n. xn.

Hence R G J (p ) n n, and so

det R = det V /det 5 G J? (p )
/L /L I - U

By assumption,

KM
n. = rank = rank R(z) Vz GD(p0)'

(B.20)

(B.21)

(B.22)

Hence, by invoking Sylvester's inequality, rank R(z) =n. Vz G D(pQ)c,

det R(z) f 0 Vz G D(p0)c . (B.23)i.e.

Invoking Lemma 3.1, (B.22) and (B.23) together imply that R is an
n.xn.

invertible element of £, (pn) ' '. Thus,

and

n.xnn

V=*~\6*l-(p0>

-1- - "iXni

Premultiply (B.21) by R'1 and using (B.24), (B.25), we obtain

(B.24)

(B.25)
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>t >t /l /l n.

i.e. (M^,P^) is Pg-r.c. D

Proof of Procedure 3.2U). Steps 1, 2 and 3 are self-explanatory. To

prove the comment in Step 4, we need to show that R = W V with
n xn. n.xn. * *

(a) \G*(p0)° \ ^G/L(Pn)1 n; (b) det Vu e*°°(pn);
'0' '0

(c) (W ,PJ are pn-r.c. The fact that R = UV~ is obvious from

the procedure. Now consider:

(a) By Lemma 3.3, R is strictly proper. Hence for

i = 1,2,...,n.
l

3c,^<ac[D^=Yi =8c[S]
l " "i -i

Since S is diagonal, it is column-reduced. Hence, using (B.26),

l nnxni l nixniK := Ha.S~ e(t(z) ° n is strictly proper, and V := DS"1 €(t(z) n

is proper. Furthermore, by construction, all poles of M and V
n xn _ n.xn.

are at z=0, hence W^ G*(pQ) ° 1 and P e/l(pq)

(b) By (3.21), D„ G(J[s] iX i is column-reduced, hence

3[det D ] = I y. = 3[det S] .
* i=l

Therefore det 5 =det D/det S belongs to A.°°(pg).

(c) Now (N ,D ) being r.c. implies

Hence

rank

rank
D,
--N(z) = n. Vz ec .
N. 1

V.

-\-
-/-(z) = rank

i-Vi

.-1 (z) = n. Vz ? 0

(B.26)

(B.27)
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By Corollary 3.1b(/i), (\,PJ are pg-r.c. This completes the proof

of the comment that (W >5) is a pQ-r.r. of R.

Similarly, to prove the concluding comment in Step 5, we have to

l nnxni nixnishow that G=iy?"1 with (a) W^ G^Jpg) ° \ V^e ^JpQ) ;

(b) det^G^_(p0); (c) (W^) are pg-r.c. By (3.20)-(3.29),

G = R + Q

= \VA '

(a) Furthermore, by the closure properties of L_(pg) under

addition and multiplication,

n xn. ^ n.xn.

w*e*i>o) • ^e*i-(po>

(b) Also, det VK =det P^ Ga°°(pq) c£~_(pg).
(c) Since, by (B.27), (\,PJ are pg-r.c, there exist

n.xn nixnn n.xn. n.xn.

^€/l(p0) cJiJpo} and ^Ae^] C^l-(p0)

such that

\\+\\-=\ in DV •
Hence
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i.e. (M ,t> ) is p0-r.c. because U^ +VVsl, with
n,-xnn . _ - - 1 n.xn.

u* := «*e *!><)> and "* := W e Vpo> •

Proof of Theorem 3.2. By assumption, there exist u\, U ^1, (pn)
n xn n.xn. L '" u

^ GV^o5 and ^ G v(<v] q such that

Vno



and

NA =V*

UW +(/!? =1A A tin. ni

Whh EV

(B.28)

(B.29)

(B.30)

Rewriting (B.28)-(B.30), we obtain

-"V °£.
n.xn
1 o

.^ L .4.

L\ i U Lo 'ino_,
(B.31)

wi

where XG L_(p )' ° due to the closure properties of £, (pq).

Observe that the right-hand side of (B.31) has determinant unity, and
(n,+n )x(n.+n )

is thus invertible in l- (pQ) . Premultiplying (B.31)

th the inverse -n-j -?- , we obtain (3.30) with

W^' VV***

h := h h ••- h •

Proof of Theorem 3.3. We restrict the proof to the Pg-r.r. case:

Defi ne

R := ^ Vjl •
n.xn.

Since P.P'SL (pQ) ' ' and det V e jt, (pQ), it follows by
n.xn.

Cramer's rule that RGb(pQ) "" \ Furthermore,

V. = P'R
/l A

,-1. »fr>» >"'

hk =MA °* =W \ = NAR

and thus (3.32) holds. By the pg-r.c. property, there exist matrices

u^, t/^, U^, l/^ with elements in £i(pg) such that

D
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and

/'l /l /i >^ n.

uX + i/'p' E K
^t A >t >x n.

,-1Postmultiplying (B.32) with R and (B.33) with R, we obtain

U U\ +V.V! = R"1
>t /L 'L A

n.xn.
l i

(B.32)

(B.33)

(B.34)

(B.35)
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.-1By the closure properties of £, (pQ), R, R" G &-, (pg)

(3.31) follows.

and thus

D

Proof of Lemma 4.1.

Case 1: only one pole at z = 0, i.e. v = 1, p, = 0

m

R(z) = I Z.z"1 .
1=1 n

By [Bro 1, Thm. 18-1] or [Kai 1, Lemma 6.5-7], the McMillan degree of

R is given by the rank of

H :=

"Zl Z2
Z2Z3

Z 0
m

Case 2: only one pole at p G i

m

R(z) = I Z.(z-p)
i=l 1

'm

(B.41)

-l

n xn.

The change of variable X := z-p, which defines R' G t (\) ° by



m
-lR'(X) := R(z) = I Z.X"1 , (B.42)

1=1 n

brings us back to Case 1. The conclusion follows by applying Case 1 to

R'(X) to obtain a minimal realization (A,B,C) for R'(X), thus

leading to a minimal realization (A + pI,B,C) for R(z) of dimension

r = rank H, with H given in (B.41).

Case 3: General case with R given by

v ma

a=l 1=1 al a

For a = l,2,...,v, define

ma

and r := rank H where H is defined as in (4.2). Then by Case 2,
a a a

_ r xr

R has a minimal realization (A ,B ,C ) with A G t a a. Letting
a a a a a 3

A := diag(A1,A2,...,Av) ,

B:= [b|!b^...|bT]T , (B.47)

and C:= [cjcj••-j Cv] ,

the rank tests show that (A,B,C) is a minimal realization of R, and
v

A G C with r := I r . Furthermore, by the block diagonal struc-
a=l

ture of A, the McMillan degree of p as a pole of R is equal to

the dimension of A , which is equal to r = rank H . •
a ^ a a
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Proof of Theorem 4.1. Parts (a) and (b) will only be proved for the

pg-r.r. case, the pg-l.r. case is similar.
n.xn

(a) (<=) By assumption, there exist U € £-i_(Pq) 1 and
n.xn.

(/ G I (p ) n such that
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M +VA i I
/L >T /I -'L n«

Postmultiplying both sides by V" , and noting G = MU" , we have

IU3 +1/ =tT1 (B.48)
A A. A

where, for some p, < pQ, both sides of (B.48) are meromorphic in

D(p,) , and u\ and V are analytic and bounded in D(p,) . Hence
I A A I

if det V(p) = 0, then V" is unbounded in any neighborhood about

p. In view of (B.48), G must have a pole at p.

(=») G has a pole at p6 D(pg)c implies that it must be

unbounded in any neighborhood about p. Since G = N.P" and
n xn.

W G 5,(pg) is analytic and bounded in D(p,) for some

p, < Pg, it follows that det V• (p) = 0.

(b) By Theorem 3.3, if {NU,V) and (M',P!) are two pn-r.r.'s
/L /t A. A U

n.xn. ^ n,xn.
of G, then there exists RG % (p ) ' invertible in ^ (PQ)

such that t> = V\R. Hence
A A

det Vu = det V! •det R .
A A

By Lemma 3.1, det R is an invertible element of 5L(Pn). Therefore

det V and det V^ are equal modulo an invertible element of L (pg)»

which, by Property (2.3.3), has no zeros in D(pg)c. Hence, to prove

Theorem 4.1(b), it suffices to show that it holds for a particular

Pg-r.r. In particular, we choose the pg-r.r. (N.»PJ as given in
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Procedure 3.2(/i). Then, for pG D(pQ) ,

McMillan degree of p as a pole of G

= McMillan degree of p as a pole of R given in (3.20)

(by Remark 4.1(11))

= order of p as a zero of det D e d)[z]

(by right-coprime polynomial matrix factorization)

= order of p as a zero of det V G /l(pq)

(by definition of V )
A

= order of p as a zero of det 0
r A

(since fl = V) .
v A A1

(c) Consider r := det P„/det P«. Since det Vu and det Q0
A JL A X,

both belong to 5" (pQ), it follows that r is an invertible element

of b(pg) =[IjJpgJM^Jpg)]"1. Furthermore, by Part (b), r has
c -1neither zeros nor poles in D(pg) . Hence f and r belong to

Proof of Lemma 4.2. We give here the proof for (4.13); the proof for

(4.14) is similar. To prove that (LE,R" ¥) is a Pg-r.r. of G,
i i nnxniwe need to show that (i) G= LE(R"'\)"'; (ii) LE G ^_(pg) and

, n.xn. , " .
R \G^1.(P0)1 > (i11) det(R"\) €^_(p0); (iv) (LEX\)
are pn-r.c. Now condition (i) follows from (4.8), (4.10)-(4.12);

n xn ^ n.xn.
condition (ii) holds because LeL (pj ° ° and ReLjpJ 1

are unimodular; (iii) R being unimodular also implies that
-i i r

det(R V) = (det R)'1- n 4>. G jl (p )• (iv) by construction of E
i=l i 1- u

and \ in (4.10) and (4.11),



hence

rank

LE

- -, - -|(z) = rani
3 \-

rank

i-Vi

(z) =n. Vz G D(p0)c ,

L I 0

0 IR ' A-l

(z) =n. Vz GD(pg)'
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and thus (LE,R H^) are pQ-r.c. in view of Corollary 3.1b(*).

Proof of Theorem 4.3. By Lemma 4.2, (LEjR"1^) is apg-r.r. Next,
we note that det(R-1^) =(det R)"1^; hence x6 =det(R-1^)
modulo an invertible element of L (p0)» which has neither zero nor

pole in D(pg) . The proof is complete by invoking Theorem 4.1.

Proof of Theorem 4.4. Let G = NV~ be a pn-r.r.
A. ^ 0

(=>) Let pG D(pQ)c be apole of G. By Theorem 4.1,
n,

det V(p) = 0. Hence there is a nonzero CeC such that

D

V (p)£ = 6AKV'^ n.

Choose the input e(z) := ^(z)C/zfp\. Then since V GL(p )
we apply Theorem A.l to the term 1? (z)£/(z-p) and get

A

5(z) =Vz)5(i^T

=VP^TFpT +Z?e(z)
= z?e(z) by (B.51)

(B.51)

nixni

(B.52)

II .

and hence eG &, (p )1 for some p, G ]0,pg[. Next we calculate the

output and apply Theorem A.l to the term W (z)£/(z-p):
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y(z) =N(z)P (z)-1e(z)

=M/t(p)5Tz^T+zS(2) (B-53)

where, by defining h(z) := zc (z),

hG^_(p2) °

for some p0 G ]0,p-I. Note that since (W •,£..) is pn-r.c, then by
CM A A. U

Corollary 3.lb(/t), rank[P (p)T jN^(p)T]T =n. and thus

Y :- M (p)5 * 6n .
0

(«=) By contradiction: If pG D(pQ) is not a pole of G, then
n,

for any input eG &. (p.) (p^ < pQ), Ge is analytic at p and

hence the output cannot contain a term of the form y*P • D

Proof of Lemma 4.3. Consider the McMillan form M[G] of G in (4.8)-

(4.14). By Remark 4.4, since multiplication by unimodular matrices does

not affect the rank of a matrix at any point in D(pQ) , hence

Vz G D(p0)c

rank[W (z)] = rank[LE](z) = rank[E(z)]

= rank[ER](z) = rank[W£(z)] . D

x -1Proof of Theorem 4.5. Let G = Vy W. be a Pg-l-r.

(a) Since (Pp»Wj is Pg-l.c, there exist t//G^i_(Pn)
- / xn,-xn.and Ute l^JpQ) 1 ° such that

(V*+WA)(z) =!n Vz G D(p0)C ' (B*64)

o o



iBy (4.22), rank[W„(Zg)] < n^ Hence there is a nonzero ^GC

such that

N^Zgk =en . (B.65)

n

Now, since w^(z)^ €£-j_(pg) °, by applying Theorem A.l to the term
A/^(z)^/(z-Zg), we obtain

¥z^(z%=¥zo^T^%7+z^z)
= zl{z) by (B.65) (B.66)

n

and zh-)-zc(z) Gi,_(P3) ° for some p3 G ]0,pQ[ . (B.67)

Choose

m(z) := -U£(z)-z?(z) . (B.68)

i

By (B.67) and since U^ G i,_(pg)

n.

mG Up.) for some p, G ]0,pQ[

Using the input defined by (4.24), we calculate

n.xno

y(z) = G(z)e(z)

^Vl(z)'\zl(z)^l(z)Ul(z)'zUz)] by (B.66)
-^(zj^p^zjl/^zj.zgtz) by (B.64)
= l/^(z)-z?(z) .. (B.69)

n xn

So, by (B.67) and since l/^ G^Jpg)

n

yG^_(p2) ° for some p2 e ]0,p0[ .

(b) With the input e in (4.26), the output is given by
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=6(v)^vT +viM']^M'hMhM^hM^l^vJ - (B-70>
Since v is neither a zero nor a pole of G,

G(v)5 t 6n
o

and the second term of (B.70) is analytic at z = v. (This follows

because vG D(pQ)c belongs to the domain of analyticity of P», W»,
and V"}.) •

Proof of Theorem 4.6. Let G=p"1!^ be aPg-l.r. By (4.22),
rank[W^(Zg)] < nQ, hence there exists anonzero y6C° such that

Y*W =en. • <B-71>
Define

n* := y\(zq) . (B.72)

Since (^»W^) is Pg-l.c, then by (B.71) and Corollary 3.1b(£),

n f e .
no

niNow given any £G i ', choose it G /t(pQ) (the choice of tt(z) will

be specified below, see (B.84)), and consider the input (4.28) with

m(z) := tt(z)£, i.e.

e(z) =tj£j+ *U)]S • (B.73)
Hence

n*y(z) =Y^ZgJ^zJ^W^zJ^-T^y+TTfz)] . (B.74)
Consider

9:= ^(Zq)^1!^ E^po} ' (B*75)

hence, by Theorem 2.1, g admits a normalized pQ-representation

no
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g = n/d (B.76)

with nGl|_(pg) and dG*°°(pg). By (B.71), g(zQ) =0. Hence by
Pg-coprimeness

n(zn) = 0 , d(z0) f 0 . (B.77)

Applying Theorem A.l to the term n(z)/(z-zQ) and using (B.77), we

obtain

n(z)7FTT =XFTTZ +z^(z) =z^(z) (B*78)

where z|—>-zv(z) G 5L_(p-,) for some p, G ]0,pQ[ . (B.79)

Using (B.75), (B.76) and (B.78) in (B.74), we obtain

(z-Zg)
n*y(z) =zv(z)-[l+-TiU(z)]/d(z) . (B.80)

We will show next that it G /i(pQ) can be chosen so that the second

factor of (B.80) is a constant for all z. Once this is done, the

conclusion (4.29) of the theorem follows.

Since dGA°°(pg), let

d(z) = a(z)/b(z) (B.81)

where a, b G fl)[z] are coprime polynomials such that b has no zeros

in D(pg) and 3a = 3b. Since (B.77) holds, we can pick a G t

such that

-1 + a-d(Zg) = 0 , ' (B.82)

hence (z-zQ) divides [-b(z)+a-a(z)]. Then with

p(z) := [-b(z)+a-a(z)]/(z-z0) , (B.83)

p G(t[z] and 3p < 3b. Now define



tt(z) := zp(z)/b(z) , (B.84)

hence it G^(pQ). With this choice of it, the right-hand side of

(B.80) reduces to a-zv(z). •

Proof of Lemma 5.1. (5.14) <>(5.15) <=>(5.16). Immediate by Theorem 4.1

because (Wu,P) is a pn-r.r. of G„ and (P,WJ is a pn-l.r. of G«.
A U A -c U X,

(5.16)=>(5.17). Since (W ,t?) is pn-r.c, there exist matrices
A U

U , Vu with elements in L (pn) such that
A A 1-0'

OW+O = I . (B.90)
/L /L A

Postmultiply (B.90) by G. := t?~V,

V +"A =V (B-91)
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Since all elements of u\, 1/' and W« are bounded in D(p,) for
A A JL I

some p.j <pg, G^ has apole at pG D(pg)c implies that G has a
pole at p.

(5.16)^(5.17). Since G = WbG„ and all elements of W„ are
v At A

C ""* pbounded in D(p,) for some p, < pQ, G has a pole at pG D(pQ)

implies that G« has a pole at p. •

Proof of Theorem 5.1. (<=) Since u has support {0}, then u(z) e uQ

VzG(t. Since y(k) is 0(k a ) for large k, hence y = Gu

must have a pole of order m at some p, where |p| = a >_ pQ. Thus

G must have a pole at p of order at least m. The conclusion

follows by Lemma 5.1.

(=>) Assume x(p) = 0» with |p| = a >_ pg. By Lemma 5.1, p is

a pole of G. Let m be the order of p as a pole of G. Then
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n.

there exists some uQ e &"" such that GuQ has apole at p of order
m. Choose an input sequence u:= Ug«6g G ((T) \ Then the output
sequence y satisfies y = GuQ, which has a pole of order m at p.

Compute the Laurent expansion of y at p

fk-ll (k-m)
Hence, for large k, y(k) includes a term £ • , pv ', which is

0(km"1ak). D

Proof of Theorem 5.2. (=>) By contraposition: If there is p G D(p)

such that x(p) = 0. Then by Lemma 5.1, G has a pole at pG D(p)c.
n xn.

Hence G is not bounded in D(p) and cannot belong to 2,(p) ° 1.

H Since x(z) t 0 for all zGD(p)c and xe^(Pq)
(i.e. x(0) i °)» hence x := det V is an invertible element of L(p)

by Property (2.2.6). Furthermore, since M , P, AT, all have elements

in L (pn) cL(p), it follows by Cramer's rule that G := Hjf H0
]" ° ] n xn. * l

belongs to I,(p) \ D

Proof of Theorem 6.1. (i) follows from Lemma 5.1 and (6.9).
n xn.

(ii) Since PG b(pQ) ° \ thus by Theorem 3.1

P has apg-r.r. (1^,0^) . .(B.100)

Hence by applying Theorem 4.1(c) to (6.12) and (B.100), there exists

rG J-, (pQ) invertible in L (pQ) such that

det Vwl =?"det Vpl ' (B.101)

Recall the terms defined in (6.1)-(6.14), and consider the following
(n,+n )x(n.+n )

matrices in iL (pQ) :



n
_ o

n
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ni

W : =

n n.
o 1

V : =
0 I V

_ C*. , (B.102)
n.

i «- p/L-i

Then using Corollary 3.1b(/i) (W,P) is a Pn-r.r. of
~ - (ni+n0)x(n,+n ) u
Ge k(Pn) • Moreover, (W,fl) being pg-r.c. implies that

(0,0+M) is pg-r.c. By (B.102)

P + W =

and thus

VIV
l-Aa.1 V

I I P
. -|- .

0 I I

n+pci o
- j. -

-C I I
?<*L°

0 I V
Pol

det[P +W] = det[I +PC]-det Pn -det 0 .
PA. ZA.

(B.103)

Hence using (6.7), det[P +W] G J?_(pg), and so (P,P+N) is a pg-r.r.

of

_ i -i (n..+njx(n..+nj
(B.104)

- -l i ~ (n.+n )x(n.+n )Heu -(1+6) ]=P(^)"1 Gb(p0) 1 ° 1°

Similarly, (J~ W,P+W) is a pg-r.r. of

-l- - -l -1 -l ~ (n.+n )x(n.+n )
H =J '6(1+6) ' =J lH(V+N) ' G b(pn) n ° 1 ° (B.105)
yu

Now by (B.103), using (6.12), (6.13) and (B.101)

det[tH*G =det[I+^WpA^].r.det t^-det V^

= r«x by (6.14) . (B.106)

Observe that r is bounded and bounded away from zero in D(p-,) , for

some p, < pg. The conclusion follows by applying Theorem 4.1 to

(B.104) and (B.105), using (B.106). •



Proof of Lemma 7.1. (7.5)^(7.6). This is immediate by (7.3).

(7.4)<=(7.6). This is immediate by the second equation in (7.6).

(7.4)=>(7.5). By (7.3), (Xp,vp) := (U^.I^P) is aparticular
solution of (7.4). Hence (X,y) is a solution of (7.4) if and only if

(xh,yn) := (x-u^y-i/^) (B.no)

is a solution of the homogeneous equation

M/+Vh =0nxn • (B.m)
0 0

It remains to prove that (Xh,/h) in (B.llO) is equal to (-P W,W N)
n.xn K

for some NGIjjp0) n °. Define

N:= -p'V Gb(Pg) 1 °. (B.112)

Then by (B.lll), using (7.2),

^ =~VlUl^ ="WAlxh =V ' (B.113)

By (7.3), V„V+U.H. = I; hence postmultiplying by W
A A A A

-^Xh +U^h =W (B.114)
n.xn

and so WGJ^_(p )1 ° by the closure properties of 3L (Pn). Thus
by (B.llO), (B.112) and (B.113), we obtain as required

X. A. X A.

The proof of (7.7) proceeds as follows: (*») By Lemma 3.4(a), there
n xn. n xn

exist UG^_(p0) \ 1/ G^.(Pg) ° ° such that UN +W=I.
Premultiplying (7.6) by [a !l/], we get
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The matrices in parentheses have elements in £-i(pg)> due to the

closure properties of L (pQ). Hence (X,y) are pg-r.c. by

Lemma 3.4(a).

(7.7)(=>) follows by interchanging (W,P) and (-X,y) in the

above argument, and by using (7.5) instead of (7.6).

(b) Since M. =pJl and det V^ G£~_(Pq)
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(i.e. lim det VAz) f 0),
|z|-x»

lim HAz) = 0 by (7.8) . (B.115)
|z|-k» *• 'o i

n xn

Now by (7.6), V=N^+P/ Gijjpg) ° °. Hence using (B.115),

lim det V{z) = lim det VAz)- lim det V{z) . (B.116)
|z Uoo |z|-x» lz|-*»

Conclusion (7.9) follows because lim det VAz)?Q. •
|z|-*»

Lemma B.l. Let p G ]0,1[ and g, u G £,(p). Then y := g*u satis-

fies yk = o(p ) as k-*~.

Proof. Since g, uG^(p), g:= (g(k)p" )~=Q and u := (u(k)p" )~=Q
belong to Jl-j; hence y := g*u G jl. By simple calculations, y and

y are related by y=(y(k)p" )" . Consequently, since yG Jl, ^

y(k) =y(k)p~k-+0 as k-*--; hence y(k) =o(pk) as k-*«. D

Proof of Theorem 7.1. (i) We first verify Procedure 7.1 step by step:

Steps 1 and 2 are self-explanatory.

Step 3. To show that (P„,Wj is a pg-l.r. of F, note that
n xn L L n xn.

^e^JPg)0 °, ^GJ1_(p0)° t and detP^G^Jpg);
F=V^U^. Furthermore, in viewof (7.22), rank[£L(z) , W*(z)] =n,
Vz GD(Pg)c; hence (t^,M^) ispg-l.c.
Step 4 is self-explanatory, in view of Lemma 7.1.

Step 5. To show that {U 9V ) is a pn-r.r. of C, it is immediate

by definition that C=M,,?"^, where H G^_(pQ)
n xn
o o

i ~ n.xnrt
-« ...I If ^0 i~ \ i o and

^e^Jp^ u °. Moreover, by (7.32), (7.33) and Lemma 7.1(a)
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V= N^X +P/

=v +V ; (B.117)

118

hence by (7.11) and Lemma 7.1(b), det V =det(*Y) G£~Jpg). Lastly,
it remaims to show that (.V 9V ) are pQ-r.c: by (B.117) and (7.16),

V(z) =Wp£(z)X(z) Vz GZ[(},u]uZ[({,w] ; (B.118)

by (7.25), det V(z) t 0 , Vz GZ[cj)u]UZ[({)w] CD(l)c ;

hence by (B.118),

rank[X(z)] =nQ Vz GZ[<j>u] UZ[<J>W] ; (B.119)

since (X,y) are Pg-r.c. by Lemma 7.1, then using (B.119)

rank

Lyd-l

(z) = nQ Vz G D(p0) (B.120)

hence according to Corollary 3.1b(/t), ^rh^rn) is po"r,c*

Throughout the procedure, all matrices concerned have elements

corresponding to sequences in IT: this property is preserved in C.

(ii) By (6.14), (7.35) and (B.117), the characteristic function of

the feedback system S is

X = det V ; (B.121)

hence by (7.25), Z[x;D(pg)c] =A and condition (b) of Problem (SP) is

satisfied. Furthermore by definition of A, x(z) t 0 Vz G D(l) ;

hence condition (a) is also satisfied in view of Remark 6.2. To show

that condition (c) of problem (SP) holds, we calculate first the

transfer functions for the maps u he and w H-e » respectively,



H^Cl+PCr1
•vtvpc*+Vc*]"V
=ftr (B-122)

and He =-[I +PC]"1?

SP ="^VcA+VcArlV
=- |W"1A/^ . (B.123)

Since the list A is finite, there exists some pG ]pQ,l[ such that

det P(z) f 0 Vz G D(p)c; hence by applying Corollary 5.2b to
1 nnXUn 1 ~ nnXnnP 6 b(p0) ° , we have P ' G^(p) ° °; consequently

n.xn , n.xn.

/trveVp) ' -^ veVp) • (BJ24)

Also, by construction of <j> and d,

K^T^V^^iW0 <B-125>
and

v.. n_. n_.

V£*re3[i>o>1cVp)1 • <B-126>
Now, for arbitrary v and v satisfying (7.13) and (7.14)

e = H u +H ws esus s eswp p

=[W1^]-^] +" [-VTf^Hlwp] • (B.127)

Applying Lemma B.l to (B.127), using (B.124), (B.125) and (B.126), we

have

es(k) =o(pk) as k—<» . (B.128)

- ~ noxniTo check condition (d), consider any perturbed plant PG b(pQ)

satisfying (7.10), and for which the feedback system S with controller
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C and plant P has transfer functions Heu, H that are i -stable,

Vp £ [l,00]. By Theorem 3.1 P admits a pg-l.r. (PD/»N *) and tne

characteristic function x becomes

X = det P (B.129)

where
n xn

120

By Corollary 5.2a, the £ -stability of the perturbed feedback system

implies that x(z) t 0 Vz G D(l)c and, since xG ^i_(Po^ and D^^
is compact, there is a pe [pQ9l[ such that det P(z) = x(z) t 0,

Vz G D(p)c. Calculating as above, we obtain that

Ku -KV and K.-'^'v (B-134)s s r s p

-, n xn , n xn.

where W~lQ~el}{p)° °, -VV Fi e l}{p) ° \ (B.135)

The arguments of (B.125)-(B.128) can be repeated here and thus condition

(d) of problem (SP) is satisfied. D

Proof of Theorem 8.1. The proof of this theorem with the general >A,

B notation can be found in [Des 5]. Just to demonstrate this theorem

in terms of the system descriptions we are now concerned with, we give

the proof for equivalence (8.15):

H (8.13) and Q G 2m^m imply that all elements of H (see

(8.9a)) are in £m^m. Since P is in the radical bs(pg)mxm, I-PQ

0
has an inverse in b(pg)mxm; and since Q is in Xls , (8.9b)

shows that C is in the radical bs(pg)mxm

(<=) This is immediate since Q is a submatrix of H . •



Proof of Theorem 8.3. It suffices to show that H and Q satisfy
y u
Js s

Theorem 8.2. We note that since PG £mxm, then in (8.21)
is

ord [P"1] <0 , j= l,2,...,m .

Hence in (8.19), Hw „ G A(])mmnR(s)mxm c £mxm. Furthermore,

Q := P H G 0T)mxm. Since all poles of P"1 in D(p )c are
ys s u

zeros of P, and these poles are cancelled by n., j = l,2,...,m in
j

(8.18), hence Q is analytic in D(l)c. By Remark 2.2(ii),

QeW™ n(#)mxm . •
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Fig. 5-3. Model for each individual system.
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Fig. 6-1. Feedback system S with plant P and controller C
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Fig. 9-1. General feedback system.
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