
 

 

 

 

 

 

 

 

 

Copyright © 1980, by the author(s). 
All rights reserved. 

 
Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 
lists, requires prior specific permission. 



A FORMAL MODEL OF CRASH RECOVERY

IN A DISTRIBUTED SYSTEM

by
Dale Skeen

Michael Stonebraker

Memorandum No. UCB/ERL M80/48
December 5, 1980

Electronics Research Laboratory
College of Engineering

University of California, Berkeley
94720



A FORMAL MODEL OF CRASH RECOVERY IN A DISTRIBUTED SYSTEM

by

Dale Skeen and Michael Stonebraker

Department of Electrical Engineering and Computer Science
University of California

Berkeley, California

ABSTRACT

In this paper we introduce a formal model for transaction processing in a distri
buted data base system. We use this model to study both failures of single sites and
communications failures. For site failures, we introduce a pessimistic crash recovery
technique called independent recovery, and identify the class of failures for which a
resilient protocol exists. For network partitions, we study the question of finding resi
lient protocols for the pessimistic case when messages are lost, and also for the
optimistic case when no messages are lost.

1. INTRODUCTION

In this paper we present a formal model for transaction processing in a distributed
data base and then extend it to model several classes of failures and crash recovery
techniques. These models are used to study whether or not resilient protocols exist for
various failure classes.

Crash recovery in distributed systems has been studied extensively in the litera
ture [ALSB79, GRAY79. HAMM79. LAMP78. MENA79, R0TH77. ST0N79. SV0B79]. Many
protocols have been designed which are resilient in some environments. All have an
"ad-hoc" flavor to them in the sense that the class of failures they will survive is not
clearly delineated.

The purpose of this paper is to formalize the crash recovery problem in a distri
buted data base environment and then give some preliminary results concerning the
existence of resilient protocols in various well denned situations.

Consequently, in the next section we give a brief introduction to transactions in a
distributed data base. Then, in section 3 we indicate the assumed network environ
ment and our model for transaction processing. In section 4 we extend the model to
include the possibility of site failure and give results concerning the existence of resi
lient protocols in this situation. Section 5 turns to the possibility of network failure
and shows the class of failures for which a resilient protocol exists. The paper con
cludes with a summary and description of future work.

All results are presented without proof. The reader is referred to [SKEE81] for a
more thorough treatment of the model and detailed proofs of all results.

This research was sponsored by the U.S. Air Force Office of Scientific Research Grant 78-3596, the U.S.
Army Research Office Grant DAAG29-76-G-0245, and the Naval Electronics Systems Command Contract
N00039-78-G-0013.



2. BACKGROUND

A distributed data base management system supports a data base distributed over
multiple sites interconnected by a communications network. A transaction in a distri
buted database is an atomic operation, in the sense that it is indivisible: either it exe
cutes to completion or it appears not to have executed at all. The goal of distributed
crash recovery is to provide transaction atomicity in the presence of failures for com
mands which may span several sites.

A transaction may not execute to completion because:

(1) one or more sites fails

(2) the network fails

(3) the transaction deadlocks with another transaction

(4) the user aborts the transaction.

During the processing of a transaction each participating site must be able to abort the
transaction for any of the above reasons. When a transaction is aborted at a site, the
state of the local data base is restored to its original state by local recovery pro
cedures. The one site recovery problem is fairly well understood [GRAY79, L0RI77].

At some point during transaction processing a site reaches a "commit point".
Once a site has committed, it will complete the transaction even in the presence of a
site failure.

For transaction atomicity to be preserved in a distributed environment, either all
sites must abort or all must commit the transaction. A state where some sites have
committed while others have aborted is an inconsistent state.

It is always an option for a distributed data base system to suspend operation
whenever a failure occurs and only resume processing when the failure is repaired.
Clearly, such a decision will render the distributed system exactly as resilient as the
weakest link. In this paper we will be interested only in nonblocking protocols for which
an operational site never suspends because of a failure.

Protocols designed to enforce atomicity are traditionally called commit protocols.
A commit protocol is said to be resilient to a class of failures, if the protocol enforces
transaction atomicity and is nonblocking for any failure within the appropriate class.
The nonblocking constraint guarantees that a resilient protocol will always terminate.
Similarly, a resilient protocol with an a priori upper bound on the number of messages
always satisfies the nonblocking constraint. We will be interested exclusively in proto
cols with predefined upper bounds.

3. THE TRANSACTION MODEL

3.1. The Network Model

The network is assumed to provide point-to-point communication between any pair
of sites. Moreover, it is assumed to have the following characteristics:

(1) it delivers a message within a preassigned time period. T, or
(2) it reports a "time out" to the sender.
When a time-out occurs, the sender can safely assume that the network or the reci
pient or both has failed. In the case of a network failure, it is not known whether the
recipient received the message.

3.2. Transaction Processing
Transaction execution at a single site is modelled as a finite state automaton

(FSA). During a transition a site can read one or more messages from the network, do
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local processing and^ write one message to the network. Adistributed transaction is
then a collection of FSA's, one per participating site, and the network serves as a com
mon mput/output tape to all sites. Figure 1 presents a four site example.

There are several restrictions on this collection of FSA's:

(1) The FSA's are nondetermmistic. The behavior of each FSA is not known apriorl
because of the possibility of deadlocks, failures, and user aborts. Moreover, when
multiple messages are addressed to a site, the order of receiving the messe -:s Is
arbitrary.

(2) The final states of the FSA's arp partitioned into two sets: the "abort" states, A,
and the "commit" states, C.

(3) There are no transitions from a state in Ato a state not in A Similarly, there are
no transitions from a state in C to a state not in C. Therefore, once a site enters an
"abort" state ("commit" state), the site remains in such a state. This corresponds
to the requirement that abort and commit are irreversible operations.

(4) The state diagram describing a FSA is acyclic. This suffices to guarantee that a
protocol is nonblocking.

FSA transitions are assumed to be instantaneous, and no two FSAs change state
simultaneously. Therefore, the transitions made by a group of sites can always be
linearly ordered.

3.3. An Annotated Example

We illustrate this FSA model by examining a two phase commit protocol (similar to
[GRAY79. LAMP76]) for a two site transaction. This protocol is given in Figure 2. In the
first phase each site receives the transaction, partially executes it, and indicates its
readiness to commit ("ready"). The commit decision is made by the co-ordinator (site
1) which receives ready votes and sends a "commit" message only if all sites vote
"ready". For a transaction to commit, three messages are exchanged: "start transac
tion" is sent to site 2; "ready" is sent to site 1; and "commit" is sent to site 2.

Figure 1. The model with 4 sites.



SITE 1

(1) Transaction is received.
"Start Xact" is sent.

(2) The vote is received.
If vote="yes" and site 1 agrees,

then "commit" is sent;
else, "abort" is sent.

SITE 2

"Start Xact" is received.
Site 2 votes: "yes" to commit,

"no" to abort.
The vote is sent to site 1.

Either "commit" or "abort" is
received and processed.

Figure 2. The two-phase commit protocol (2 sites).

The FSA state diagrams for this protocol are given in Figure 3. The initial states
are q, and q^. The execution of the protocol is initiated by the receipt of the special
message, "Xact request," at site 1. Each FSA then proceeds to make transitions asyn
chronously. For each arc, the message received is indicated physically above the mes
sage sent. Final states are double circled and labelled Commit (c,) or Abort (aj). All

Site I
Site 2

commit

Figure 3. FSA's for the two-phase commit protocol (2 sites).
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states are subscripted with their site number. This notation will be followed
throughout the paper.

3.4. Global Transaction State

The global state of a distributed transaction is denned to consist of:

(1) a global state vector containing the local states of the participating FSA's and
(2) the outstanding messages in the network.

The global state defines the complete processing state of a transaction.

A global state transition occurs whenever a local state transition occurs at a parti
cipating site. Therefore, in a global state transition exactly one local state in the global
state vector makes a transition while the others remain unchanged.1

If there exists a global state transition from global state g to global state g\ then
g' is said to be immediately reachable from g. A global state, together with the
definition of the protocol, contains the minimal information necessary to compute ail
of its immediately reachable states. The transitive closure of the immediately reach
able relation yields all reachable states. Figure 4 contains the reachable state graph
for the 2-phase protocol discussed earlier.

A terminal state is one with no reachable successors. Moreover, a path from the
initial global state to a terminal global state in the reachable state graph corresponds
to a possible execution sequence of the protocol.

A global state is said to be a final state if all local states contained in the state vec
tor are final states. A global state is said to be inconsistent if its state vector contains
both a commit state and an abort state. A protocol Is functionally correct if and only if
its reachable state graph contains no inconsistent states and all terminal states are
final states. Figure 4 verifies that, in the absence of failures, the 2-phase protocol is
correct.

Two local states are said to be potentially concurrent if there exists a reachable
global state vector that contains both local states. We define the concurrency set of a
local state Sj to be all of the states of other FSA's that are potentially concurrent with
it. We denote this set by C(Sj). From this definition it should be clear that if state Sj is
a final state and the set C(Sj) contains a final state of the opposite type, then there
must exist an inconsistent (reachable) global state.

Consider a local state, s., and all incoming messages that can cause a transition.
Define the sender set for s, to be the collection of all states, t., such that a transition
from tj sends a message to s,. We denote this set by 5(Sj).

Both the sender set and the concurrency set can be constructed from the reach
able state graph. Moreover, the concurrency set for a state in a canonical protocol
properly contains the sender set for that state.

4. SITE FAILURES

In this section we extend the model to Include the failures of individual sites. The
traditional method for detecting site failures, a time-out, Is used. We model one
recovery technique, and then show that only resiliency to single site failures Is possi
ble.

^s is true only in the absence of network partitions. When partitions are considered inalater section,
we will introduce global transitions that change only the outstanding messages.



Figure 4. Reachable state graph for the two-phase commit protocol.

4.1. Failure Transitions

When asite fails aspecial type of transition, called afailure *^^£™^ *
failure transition reads ail outstanding messages addressed to the site and writ
time-out message to each site. The failure transition originates in the state occupied
at the Ume'onfilure and terminates in the state that the site will enter after lt recov
ers This recovery state could be one of the normally occupied states of the protoco
or it could be part of a special recovery protocol. In aresilient ^°^f/jahcphh^
state must have a failure transition. Hence, the failure transition models the behavior
of the site both at the time it fails and at the time it does local recovery.

The failure of a site is detected at an operational site by the receipt of a "time
out" message from the failed site. Such a "time-out" may (but not necessarily does)
cause a transition to a special recovery protocol.

Like all other transitions, -failure" and "time-out" transitions must obey^thei rule
of commit protocols: once a site has entered acommit (abort state M*}*"*™$
transitions must be to acommit (abort) state. The addition of "failure" and time-out
transitions to a protocol greatly enlarges its reachable state space. Examination of the
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Figure 5. Two-phase commit protocol extended with an ack message.

extended reachable state space will reveal the mixtures of failures the protocol is resi
lient to.

4.2. Independent Recovery

In an independent recovery scheme, failed sites make a transition directly to a
final state without communicating with other sites. Hence, no communication is
attempted during the recovery process.

Independent reco.very is interesting for several reasons. First, it is easy to imple
ment and leads to simple protocols. One need not be concerned with messages to a
down site being queued in the network or at another site which may be down when the
failed site attempts to recover. Moreover, this model is of interest because it
represents the most pessimistic recovery model. Proving the existence of a class of
resilient protocols in this model implies its existence in all more sophisticated models
of site failures.

The remainder of this section uses the independent recovery scheme.

4.3. Failure of a Single Site

Here we treat the restricted case thai only one site can fail during the processing
of a transaction. Wc first develop two rules for assigning "failure" and "time-out" tran
sitions The first rule deals with assigning "failure" transition. The failed site must
make a transition consistent with the state of an operational site at the time of failure



Rule 1. For a state s,: if its concurrency set, C(s,), contains a commit (abort) state,
then assign a"failure" transition from sl to acommit (abort) state.

The observant reader will note that the two-phase protocol of Figure 3 cannot
satisfy this rule: the concurrency set of state p2 contains both c1 and ar Figure 5
gives a protocol similar to the two-phase one except for the addition of one state and
an acknowledgment message to the commit message. Figure 6 gives the reachable glo
bal state graph for the protocol. Since no concurrency set contains both commit and
abort final states, it is possible to assign "failure" transitions from all (nonfinal) local
states according to rule 1.

(initial stote)

Figure 8. The reachable global state graph for the commit protocol in figure 5.



The second rule deals with "time-out" transitions.

Rule2. For state st: if tj is in 5(s.). the sender set for s^, and L has a failure transitionto
a commit (abort) state, then assign a "time-out" transition from st to a commit (abort)
state. If 5(sj) is empty, then assign no '"time-out" transition from Sj.

This rule is less obvious than the previous one. A "time-out" can be viewed as a special
message sent by a failed site in state t. in lieu of a regular message. The "time-outM Is
received by the same state (in this case s,) that normally receives the regular message.
Moreover, the failed site, using independent recovery, makes a failure transition based
solely on its local state. Hence, the site receiving the "time-out" must make a con
sistent decision.

Figure 7 illustrates the application of both rules. The protocol displayed Is resi
lient to a single failure by either site. This can be verified by examining the reachable
state graph for this protocol. In fact, the rules always yield a resilient protocol under
independent recovery. Furthermore, since independent recovery is the most pessimis
tic (reasonable) model, protocols obeying rules 1 and 2 are resilient to a single failure
under any recovery model.

Site I Site 2

time out

Figure 7. The extended two-phase protocol of figure 5 augmented with failure and
time-out transitions according to rules 1 and 2.



M

Mi

•

Theorem 1. Rules 1 and 2 ar
to a single site failure.

are necessary and sufficient for designing protocols resilient

Although we have illustrated this result only for the two site case, it holds for
i-site protocols as well.mult

4.4. Two Site Failures

is in state p2. then an inconsistent final state results. In fact, no resilient protocol
exists in this situation.

Theorem 2. These exists no protocol using independent recovery of failed sites that
resilient to two site failures.

is

Again, this result applies to the multi-site protocols as well as to the two site pro
tocols. r

5. NETWORK FAILURES

Anetwork failure results in at least two sites which cannot communicate with each
other. We model such a partition in two ways. In the first model, all messages are lost
at the time partitioning occurs. In the second, no messages are lost at the time parti
tioning occurs; instead, undeliverable messages are returned to the sender.

We define a simple partition as one where all sites are partitioned into exactly two
sets with no communication possible across the boundary. Since all partitions can be
viewed as one or more occurrences of a simple partition, we specificlv address two
classes of failures: a single occurrence of a simple partition, and multiple occurrences
of a simple partition (or multiple partition for brevity).

We consider a protocol to be resilient to a network partition only if it enforces the
nonblocking constraint. That is. the protocol must insure that each isolated group of
sues can reach a commit decision consistent with the remaining groups. Since the
commit decision within a group is reached in the absence of communication to outside
sites, this problem is very similar to the independent recovery paradigm presented in
the previous section.

Throughout this section we will restrict our attention to network partitions
exclusively and ignore the possibility of site failures.

5.1. Partitioning With Loss of Messages
As previously, a site detects the occurrence of a partition bv a "time-out" and can

make a transition on such a message. First, we treat the two site'case.
A network partition is modeled as a special type of global state transition. Until

now all global state transitions were triggered by one local state transition. However, a
network partition is modelled as a global state transition that erases all outstanding
messages and "time-outs" are sent to all sites.

After a partition has occurred, each site will make a "time-out" transition. In fact,
we have a situation analogous to the double site failure in the independent recovery
model of the previous section except that "time-out" rather then failure transitions are
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made. It can be shown that a solution to the double failure problem implies a solution
to this problem. An immediate consequence of this result is is the next theorem.

Theorem 3. There exists no two site protocol that is resilient to a network partition
where messages are lest.

It is easy to generalize the model to partitions involving more than two sites and
prove theorem 3 for the more general environment.

5.2. Partitioning with Return of Messages

In this situation we assume that the network can detect the presence of a parti
tion and return undeliverable messages to their senders. This appears to represent
the most optimistic model for partitions, while loss of messages is the most pessimistic
one.

In this case a partition causes a global state transition that redirects ail undeliver
able messages back to their senders and writes "time-out" messages to the recipients
of undeliverable messages. As before, a site makes a transition on a "time-out" mes
sage. Also, a site makes a transition when an undeliverable message is returned to it.

5.2.1. Two Site Case

To study this optimistic situation, we now define two design rules that resilient
protocols must satisfy.

Rule 3. For a state st: if its concurrency set. C^Sj). contains a commit (abort) state,
thenassign a "time-out" transition from st to a commit (abort) state.

Here site i in state s, was expecting a message when the partition occurred. Instead, it
received a "time-out". This site will then make a decision to abort or commit the tran
saction consistent with the state of the site sending the undeliverable message.

The second rule deals with the site sending the undeliverable message. It must
make a commit decision consistent with the decision of the intended receiver.

Rule 4. For state Sj: if t, is in S(Sj). the sender set for s and tt has a"time-out" transi
tion to a commit (abort) state, then assign a "time-out" transition from sy to acommit
(abort) state upon the receipt of an undeliverable message.

An observant reader will note that these rules are equivalent to the rules given for
independent recovery of failed sites. In fact, the two models are isomorphic. To illus
trate the equivalence, consider the information conveyed by a "time-out" message
from a failed site. The following is true when the operational site. i. receives the'"time
out ' indicating a failure of the other site.

(i) the last message sent by site i was not received (the other site failed prior to its
receipt).

(2) communication with the other site is impossible (it is down).
(3) the other site will decide to commit using independent recovery.
Exactly the same conditions hold when an undeliverable message is returned to site i.



Applying the above design rules to the protocol of Figure 5 yields the protocol
illustrated in Figure 8. As expected, the protocol is identical, to the protocol of Figure

In light of this isomorphism, theorem 4 is not surprising.

Theorem 4. Design rules 3 and 4 are necessary and sufficient for making protocols resi
lient to a partition in a two-site protocol.

5.2.2. Multisite Case

In the absence of site failures simple partitions in multisite protocols are not very
different from partitions in a two-site protocol, since preserving consistency within a
connected group of operational sites is straightforward. Thus, design rules 3 and 4 can
be extended to multisite protocols in a straightforward way. This leads to the following
result.

Corollary 1. There exist multisite protocols that are resilient to a simple partition when
undeliverable messages are returned to the sender.

Site Site 2

ost message undejjvable

time out

Figure 8. The extended two-phase commit protocol (of figure 5) augmented with time
out transitions and transitions on undeliverable messages according to rules 3 and 4.



This result is the complement of the results obtained from the pessimistic model
discussed earher. The moaels differ in their handling of outstanding messages when
the network fails: in the pessimistic model, they are lost; ^J?"^^^"^
model, they are returned to their sender. Since this is the only difference between the
two models, the next result is implied.

Corollary 2. Knowledge of which messages were undelivered at the time the network
fails is necessary and sufficient for recovering from simple partitions.

We now turn to multiple partitions. Since we are dealing with ^Pj^1"1^"^:
tion we assume that "time-outs" and undeliverable m^sages are UMflfected by addi
tional partitions. This, in effect, is an assumption that the ne work is• parUtumid into
all subsets simultaneously, and that the process does not happen sequentially.

Even in this (overly) optimistic model, our results are negative, which implies
negative results for all realistic partitioning models.

Theorem 5. There exists no protocol resilient to a multiple partition.

Therefore, even complete information about message traffic during a partition arid in
particular, information about which messages are undeliverable. is insufficient for
recovering from multiple partitions.

6. CONCLUSIONS
We have presented amodel of transaction processing in adistributed environment

and used it to study both site failures and network partitions. Our results tend to be
more illuminating than surprising. Using independent recovery the classi of recover
able site failures has been identified. Using an optimistic model for network partitions,
we have shown that (nonblocking) recovery is possible only for simple partitions. In a
more realistic model, recovery from a simple partition is not always possible.

We feel that the model is an appropriate vehicle for further study of resilient pro
tocols. The topics that we are currently investigating include:
(1) Generalizations of independent recovery. We plan to include the possibility of

queuing messages for down sites as in [HAMM79].
(2) Treatment of degrees of resiliency. In this paper protocols were either resilient or

not. We plan to generalize this to adegree of resiliency between 0and 1and look
for minimal state protocols with a given resiliency.
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