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ABSTRACT

This paper examines several operating system services

with a view toward their applicability to support of data

base management functions. These services include buffer

management, file systems, scheduling, interprocess communi

cation and consistency control.

I INTRODUCTION

In this paper we examine several popular operating sys
tem services and indicate whether they are appropriate for

support of data base management (DBMS) functions. Often we

will see that the wrong service is provided or that severe
performance problems exist. When possible, we offer some

suggestions concerning possible improvements. In the next

several sections we treat the services provided by buffer

pool management, the file system, scheduling, interprocess
communication and consistency control. We then conclude
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with a discussion of the merits of including all files in a

paged virtual memory.

II BUFFER POOL MANAGEMENT

Many modern operating systems (e.g. UNIX [RITC75]) pro

vide a main memory cache for the file system. In brief,

UNIX provides a buffer pool whose size is set when the

operating system is compiled. Then, all file I/O is handled

through this cache. A file read returns data directly from

a block in the cache, if possible, else it causes a block to

be "pushed" to disk and replaced by the desired block. A

file write simply moves data into the cache; at some later

time the buffer manager writes the block to the disk. The

UNIX buffer manager uses the popular LRU [MATT70] replace

ment strategy. Lastly, when UNIX detects sequential access

to a file, it prefetches blocks before they are requested.

Conceptually, this service is desirable because blocks

for which there is so-called "locality of reference"

[MATT70, SnAV/74] will remain in the cache over repeated

reads and writes. However, the following problems arise in

using this service for data base management.

2.1 Performance

The overhead to fetch a block from the buffer pool

manager usually includes that of a system call and a core-

to-core move. For UNIX on a PDP-11/70 the cost to fetch ^12

bytes exceeds 5000 instructions. To fetch 1 byte from the
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buffer pool requires about 1800 instructions. It appears

that these .numbers are somewhat higher for UNIX than other

contemporary operating systems. Moreover, they can be cut

somewhat for VAX 11/780 hardware [KASH80]. This trend

toward lower overhead access will hopefully continue.

nowever, many DBMS•s including INGRES [ST0N80J and SYS

TEM R [BLAS79a] choose to put a DBMS managed buffer pool in

user space to reduce overhead, nence, each of these systems

has gone to the trouble of constructing their own buffer

pool manager to enhance performance.

In order for an Operating System (OS) provided buffer

pool manager to be attractive, the access overhead must be

cut to a few hundred instructions. The trend toward provid
ing the file system as a part of shared virtual memory (e.g.
PILOT [REDESO]) may provide a solution to this problem.
This topic is examined in Section VII.

2.2 LRU Management

Although the folklore indicates that LRU is a generally
good tactic for block management, it appears to perform only
marginally in a data base environment. Data base access is
a combination of:

1) sequential access to blocks which will not be re-
referenced

2) sequential access to blocks which will be cyclically re-
referenced

- 3 -



3) random access to blocks which will not be referenced
again

4) random access to blocks for which there is a non-zero

probability of re-reference

Although LRU works well for case 4), it is a bad strategy

for the other situations. Since a DBMS knows which blocks

are in each category, it can use a composite strategy. For

case 4) it should use LRU while for 1) and 3) it should use

"toss immediately". For blocks in class 3) the reference

pattern is 1,2,3,...,n,1 ,2,3,... Clearly LRU is the worst

possible replacement algorithm for this situation. Unless

all n pages can be kept in the cache, the strategy should be

to "toss immediately". Initial studies [r:A?L80] suggest

that the miss ratio can be cut 10-1u3 percent by a DBMS

specific algorithm.

In order for a OS to provide buffer management, some

means must be found to allow it to accept "advice" from an

application program (e.g. a DBMS) concerning the replacement

strategy. It appears to be an interesting problem to design

a clean buffer management interface with this feature.

2.3 Prefetch

Although UNIX correctly prefetches pages when sequen

tial access is detected, there are important cases where it

fails.
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Except in rare cases INGRES knows at (or very shortly

after) the .beginning of its examination of a block EXACTLY

which block it will access next. Unfortunately, this block

is not necessarily the next one in logical file order,

nence, there is no way for an OS to implement the correct

prefetch strategy.

2.4 Crash Recovery

An important DBMS service is to provide recovery from

hard and soft crashes. The desired effect is for a unit of

work (a transaction) which may be quite large and span mul

tiple files either to be completely done or look like it had

never started.

The way many DBMSs provide this service is to maintain

an "intentions list". V/hen the intentions list is complete

a "commit flag" is set. The last step of a transaction is

to process the intentions list making the actual updates.
The DBMS makes the last operation idempotent (i.e. it gen
erates the same final outcome no matter how many times the

intentions list is processed) by careful programming. The

general procedure is described in [GRAY78, LAMP76J. An

alternate process is to do updates directly as they are

found and maintain a log of "before images" so that backout
is possible.

Luring recovery from a crash the commit flag is exam

ined. If set, the DBMS recovery utility processes the

intentions list to correctly install the changes made by
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updates in progress at the time of the crash. If the flag

is not set, the utility removes the intentions list thereby

backing out the transaction. The impact of crash recovery

on the buffer pool manager is the following.

The page on which the commit flag exists must be forced

to disk AFTER all pages in the intentions list. Moreover,

the transaction is not reliably committed until the commit

flag is forced out to the disk, and no response can be given

to the person submitting the transaction until this time.

The service required from an OS buffer manager is a

"selected force out" which would push the intentions list

and the commit flag to disk in the proper order. Such a

service is not present in any buffer manager known to the

author.

2.5 Summary

Although it is possible to provide an 08 buffer manager

with the required features, none exists currently to this

author's knowledge. It would be an interesting exercise to

design such a facility with prefetch advice, block manage

ment advice and selected force out. This exercise is of

interest both in a paged virtual memory context and in an

ordinary file system.

Ill THE FILE SYSTEM

The file system provided by UNIX supports objects

(files) which are character arrays of dynamically varying
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size. On top of this abstraction, a DBMS can provide what

ever higher level objects it wishes.

This is one of two popular approaches to file systems;

the second is to provide a record management system inside

the OS (e.g RMS-11 for DEC machines or Enscribe for Tandem

machines). in this approach structured files are provided

(with or without variable length records). Moreover, effi

cient access is often supported for fetching records

corresponding to a user supplied value (or key) for a desig

nated field or fields. Multilevel directories, hashing and

secondary indexes are used to provide this service.

The point to be made in this section is that the second

service, which is what the DBMS wants, is not always effi

cient when constructed on top of a character array object.

The following subsections explain some considerations.

3.1 Physical Contiguity

The character array object can usually be expanded one

block at a time. Often the result is blocks of a given file

scattered over a disk volume. Hence, the next logical block

in a file is not necessarily physically close to the previ

ous one. Since a DBMS does considerable sequential access,

the result is considerable arm movement.

The desired service is for blocks to be stored physi

cally contiguous and a whole collection to be read when

sequential access is desired. This naturally leads a DBMS
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to prefer a so-called extent based file system (e.g. VSAM

LXEEii74j) to one which scatters blocks. Of course, such

files must grow an extent at a time rather than a block at a
time.

3,2 Tree Structured File Systems

UNIX implements two services by means of data struc

tures which are trees. The blocks in a given file are kept

track of in a tree (of indirect blocks) pointed to by a file

control block (i-node). Second, the files in a given

mounted file system have a user visible hierarchical struc

ture composed of directories, subdirectories, etc. This is

implemented by a second tree. A DBMS such as INGRES then

adds a third tree structure to support keyed access via a

multilevel directory structure (e.g. ISAM [I3M66J, B-trees

LBAYE70, KNUT78], VSAM [LACE76], etc.).

Clearly, one tree with all three kinds of information

is more efficient than three separately managed trees. It

is suspected that the extra overhead is substantial.

3•3 Summary

It is clear that a character array is not a useful

object to a DBMS. Rather it is the abstraction presumably

desired by language processors, editors, etc. Instead of

providing records management on top of character arrays, it

is possible to do the converse; the only issue is one of

efficiency. Moreover, editors can probably use records
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management structures as efficiently as the ones which they

create themselves [BIRS77]. It is suspected that OS

designers should change their thinking toward providing DBMS

facilities as lower level objects and character arrays as

higher level ones. This philosophy is already present in

[EPST80]..

IV SCiiEDuLIN'G AND PROCESS MANAGEMENT

often, the simplist way to organize a multi-user data

base system is to have one process per user; i.e. each con

current user runs in a .separate process. Hopefully, all

users share the same copy of the code segment of the data

base system and perhaps one or more data segments. In par

ticular, a DBMS buffer pool and lock table should be handled

as a shared segment. The above structure is followed by

System R and in part by INGRES. Since UNIX has no shared

data segments, INGRES must put the lock table inside the

operating system and provide buffering private to each user.

The alternative organization is to allocate one run

time data base process which acts as a server. All con

current users send messages to this server with work

requests. The one run time server schedules requests

through its own mechanisms and may support its own multi

tasking ^system. This organization is followed by IMS

[IBM74J and by Enscribe [TAND79].

Although Lauer [LAUE79J points out that the two methods

are equally viable conceptually, the design of most modern
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operating systems strongly favors the first approach. For

example, Ui«IX contains a message system (pipes) which is

incompatible with the notion of a server process. Hence, it

forces the first alternative. There are at least two prob

lems with the process-per-user alternative.

4.1 Performance

Every time a run time data base process issues an I/O

request that cannot be satisfied by data in the buffer pool,

a task switch is inevitable. The DBMS suspends waiting for

required data to appear and another process is run. It is

possible to make task switches very efficient, and some

operating systems can perform a task switch in a few hundred

instructions. However, many operating systems have "large"

processes, i.e. ones with a great deal of state information

(e.g. accounting) and a sophisticated scheduler. This tends

to cause task switches costing a thousand instructions or

more. This is a high price to pay for a buffer pool "miss".

4.2 Critical Sections

Blasgen [BLAS79] has pointed out that some DBMS

processes have critical sections. If the buffer pool is a

shared data segment, then portions of the buffer pool

manager are necessarily critical sections. System R handles

critical sections by setting and releasing locks which basi

cally simulate semaphores. A problem occurs if the operat

ing system scheduler deschedules a data base process while
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it is holding such a lock. All other run time data base

processes immediately queue up behind the locked resource.

Although the probability of this occuring is low, the

resulting convoy [BLA379J has a devastiating effect on per
formance.

As a result of these two problems with the process-

per-user model one might expect the server model to be espe

cially attractive. The following section explores this
point of view.

4.3 The Server Model

A server model becomes viable if the operating system

provides a message facility where n processes can originate
messages to a single destination process, however, such a

server must do its own scheduling and multi-tasking. This

involves a painful duplication of operating system facili

ties. In order to avoid such duplication, one must resort
to the following tactics.

One can avoid multi-tasking and a scheduler by a
first-come-first-served server with no internal parallelism.
Awork request would be read from the message system and
executed to completion before the next one was started.

This situation makes little sense if there is more than one
physical.disk. *ach work request will tend to have one disk
read outstanding at any instant. .Hence, at most one disk

will be active with a non-multi-tasking server. Even with a
single disk, there is the issue that a long work request
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will be processed to completion while shorter requests must

wait. The penalty on average response time may be consider

able [SHAW74J.

To achieve internal parallelism yet avoid multi

tasking, one could have user processes send work requests to

one of perhaps several common servers. However, such

servers would have to share a lock table and are only

slightly different from the shared-code process per user

model. Alternately, one could have a collection of servers,

each of which would send low level requests to a group of

disk processes which actually do the I/O and handle locking.

A disk process would process requests in first-in-first-out

order. Although this organization appears potentially

desirable, it still may have the response time penalty men

tioned above. Moreover, it results in one message per I/O

request. In reality one has traded a task switch per I/O

for a message per I/O; and the latter may be more expensive

than the former.

4.4 Summary

There appears no way out of the scheduling dilema; both

the server model and the individual process model appear

unattractive. The common solution for high performance

DBMSs is multi-tasking in user space, thus duplicating

operating system features.

One ultimate solution might be for an operating system

to create a special scheduling class for the DBMS and other
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"favored" users. Processes in this class would never be

forcibly descheduled but might voluntarily relinquish the

CPU at appropriate intervals. This would solve the convoy

problem mentioned in Section 4.2. Moreover, such special

processes might also be provided with a fast path through

the task switch/scheduler loop to pass control to one of

their sibling processes. Hence, a DBMS process could pass

control to another DBMS process at low overhead.

V INTERPROCESS COMMUNICATION

It has been pointed out that an operating .system mes

sage system often makes a server organization impossible.

The only other point to be made concerns performance.

5.1 Performance

Although the author has never been offered a good
explanation concerning why messages should be so expensive,
the fact remains that in most operating systems the cost for

a round trip message is several thousand instructions. ?or

example, in PDP-11/70 UNIX the number is about 5000. As a

result care must be exercised in a DBMS to avoid overuse of

a facility that is not cheap. Hence, otherwise viable DBMS

organizations must sometimes be rejected because of exces
sive message overhead.

5.2 Summary

The problem in Section 4 and 5 is at least in part the

overhead in some operating systems of task switches and
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messages. Either operating system designers must make these

facilities cheaper or provide special "fast path" functions

for DBMS consumers. If this does not happen, DBMS designers

will presumably continue the present practice; implementing

their own multi-tasking, scheduling and message systems

entirely in user space. The result is a "mini" operating

system in addition to a DBMS.

VI CONSISTENCY CONTROL

The services provided by an operating system in this

area include the ability to lock objects for shared or

exclusive access and support for crash recovery. Although

most operating systems provide locking for files, there are

a lesser number which support finer granularity locks, such

as ones on pages or records. Such smaller locks are deemed

essential in some data base environments.

Moreover, many operating systems provide some cleanup

after crashes. If they do not provide support for data base

transactions such as discussed in Section 2.4, then a DBMS

must provide transaction crash recovery on top of whatever

is provided.

It is sometimes proposed that both concurrency control

and crash recovery for transactions be provided entirely

inside the operating system (e.g. [LAMP76]). At least con

ceptually, they should be at least as efficient as if pro

vided in user space. The only problem with this approach is

buffer management. If a DBMS provides buffer management in

- 14 -



addition to whatever is done by the operating system, then

transaction management by the operating system is impacted

as discussed in the following sections.

6.1 Commit Point

When a data base transaction commits, a user space

buffer manager must ensure that all apppropriate blocks are

flushed and a commit delivered to the operating system.

Hence, the buffer manager cannot be immune from knowledge of

transactions, and operating system functions are duplicated.

6.2 Halloween Problem

Consider the following employee data:

Empname Salary Manager

Smith 10000 Brown

Jones 9000 none

Brown 11000 Jones

and the update which gives a 20 percent pay cut to all

employees who earn more than their managers. Presumably,

Brown is the only employee who receives a decrease, although
there are alternative semantic definitions.

Suppose the DBMS updates the data set as if finds

"overpaid" employees, depending on the operating system to

provide backout or recover-forward on crashes. If so, Brown

might be updated before Smith was examined, and as a result,

Smith might also get the pay cut. It is clearly undesirable
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to have the outcome of an update depend on the order of exe

cution.

If the operating system maintains the buffer pool and

an intentions list for crash recovery, it can avoid this

problem [ST0N76]. However, if there is a buffer pool

manager in user space, it must maintain its own intentions

list in order to properly process this update. Again

operating system facilities are being duplicated.

6.3 Summary

It is certainly possible to have buffering, concurrency

control and crash recovery all provided by the operating

system. However, to be successful the performance problems

mentioned in Section 2 must be overcome. It is also reason

able to have all three services provided by the DBMS in user

space. However, if buffering remains in user space and con

sistency control does not, then a lot of code duplication

appears inevitable. Presumably, this will cause performance

problems in addition to increased human effort.

VII PAGED VIRTUAL MEMORY

It is often claimed that the appropriate operating sys

tem tactic for data base management support is to bind files

into a user's paged virtual address space. V/e briefly dis

cuss the problems inherent in this approach.

7.1 Files are Large
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Any virtual memory scheme must handle files which are

large objects. Popular paging hardware creates an overhead

of 4 bytes per 4o96 byte page. Consequently, a 100 Mbyte

file will have an overhead of 100K bytes for the page table.

As a result, one should not necessarily assume that the page

table is main memory resident. Therefore, one has the pos

sibility that an I/O operation will induce two page faults;

one for the page containing the page table for the data in

question and one on the data itself. To avoid the second

fault one must "wire down" a large page table in main
memory.

Conventional file systems include the information con

tained in the page table in a file control block. Espe
cially in extent based file systems, a very compact
representation of the information is possible. A run of

10U0 consecutive blocks can be represented as a starting
block and a length field. However, a page table for this
information would store each of the 1000 addresses even

though they differ by one from their predecessor. Conse

quently, a file control block is usually made main memory
resident at the time the file is opened. As a result, the
second I/O need never be paid.

The alternative is to bind "chunks" of a file into ones

address-space. Sot only does this provide a multi-user DBMS

with a substantial bookkeeping problem concerning whether
needed data is currently addressable but also may require a
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number of bind-unbind pairs in a transaction. Since the

overhead of a "bind" is likely to be comparable to that of a

file open', this may slow performance substantially. -

An open question concerns whether novel paging organi

zations can assist with the problems of this section.

7.2 Buffering

All of the problems discussed in Section 2 concerning

buffering (e.g. prefetch, non LRU management and selected

force out) exist in a paged virtual memory context. How

they can be cleanly handled in this context is an open ques

tion.

VIII CONCLUSIONS

The bottom line appears to be that operating system

services in many existing systems are either too slow or

inappropriate. Existing DBMSs usually provide their own and

make little or no use of the ones provided by the operating

system. Hopefully, future operating system designers will

become more sensitive to DBMS needs.

A DBMS would prefer a small efficient operating system

with only desired services provided. The closest thing

currently available are so called "real time" operating sys

tems which provide minimal facilities efficiently. On the

other hand, most general purpose operating systems provide

all things to all people at much higher overhead, iiope-

fully, future operating systems will be able to provide both
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sets of services in one environment.
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