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Abstract

Problems on layout for IC's (integrated circuits) and PCB's (printed

circuit boards) are usually solved by heuristic approaches because they are

complex. This paper considers a special problem of double-row planar routing

The problem represents a generalization of the permutation layout problem to

which estimation of bounds and some algorithms have been proposed recently.

Our approach is based on the interval graphical representation intro

duced in the single-row single-layer PCB problem. The objective function

for minimization is the breadth of the realization, i.e., the total number

of vertical tracks required to realize a given net list specified in terms of

terminals on two parallel rows.

The problem is shown to be intractable in the sense of NP-completeness;

however, a polynomial-time heuristic algorithm is proposed. An upper bound

for the breadth for an initial solution is given. Iterative improvement is

next used. The algorithm has been programmed in FORTRAN and ran on the

VAX 11/780 computer.
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1. Introduction

This paper deals with the problem of double-row planar routing: Given

a net list defined on the nodes placed on two parallel horizontal lines,

connect all nodes in every net by conductor lines which are laid on a single

layer. This problem is not only of theoretical interest as a generalization

of the single-row single-layer routing problem1- *6,7^ but also has possib-

ities for practical applications to the wiring of PCB (Printed Circuit Board),

to the layout for hybrid IC's, and to the routing of gate arrays (the master

slice).

The permutation layout problem introduced by Cutler-Schiloach''1^ can be

considered as a special case of the double-row planar routing problem. In

this paper, the breadth, i.e., the total number of the intersections between

a row and the conductor lines is used as a criterion for optimization in

realizing a given net list. In Reference [1] three types of permutation

layout are given, namely: packed-packed layout, packed-spaced layout, and

spaced-spaced layout. Among them, only in the packed-packed layout, a good

algorithm for realization has been proposed. The packed-spaced layout

algorithm is similar to the routing method in [6,7]. However, no algorithm

was proposed for the spaced-spaced layout, which is the most general case.

As pointed out by Shirakawa1 J, the permutation layout problem can be

transformed into a single-row single-layer routing problem. Thus the technique

introduced in the single-row case can be used to solve the double-row problem.

In this paper, we introduce a more sophisticated transformation and solve

the double-row problem which is a generalized spaced-spaced permutation

layout. The crucial concept is the interval graphical representation introduced

in Ref. [4].

In Section 2, necessary terminology and concepts are given, and the

double-row planar routing problem is formulated as two subproblems with the
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use of the interval graphical representation. In Section 3, we analyze the

computational complexities of these subproblems and show that these are

f61
intractable problems in the sense of NP-completenessL J. We then devise a

polynomial time algorithm for one of two subproblems, which is described in

Section 4. By using this algorithm as a subroutine, we propose a heuristic

algorithm to the double-row planar routing problem in Section 5. In order

to evaluate the performance of the proposed algorithm, the upper bound for

breadth in the initial solution is discussed, which is shown to be slightly

better than that in Reference [1]. In Appendix I, the proof of Theorem 1

concerning NP-completeness is given, and in Appendices 2 and 3, the details

of the algorithms in Sections 4 and 5 are discussed, respectively.
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2. Preliminary Definitions

2.1 Double-Row Routing Problem

Let us consider two parallel horizontal lines called upper and lower

rows, respectively, and consider nodes placed on these rows, as shown in

Fig. 1(a), where r is tjhe number of nodes on the upper (and the lower) row.

A net is a set of nodes to be connected by conductor lines which are composed

of horizontal and vertical line segments. A net list is a set of disjoint

nets, and the total number of nets in the net list is denoted by n. In the

following, we represent agiven net list ^ by acombination of two sequences

Uand Wof nets, (i.e., ,d=[U,W]), where U=(nJ.nJ,•••.NJJ) and W«(NW,N^,
W M

•••,Nr). Thus Nt represents the net which contains the node u. in the upper

row, and similarly, N* represents the net which contains the node w in the
lower row.

A realization of net list is a set of conductor lines, each of which

connects all nodes in a net and does not intersect any other conductor lines.

Fig. 1(b) shows a realization of net list <£,« [(1,2,3,4,2,3,5,6),(1,3,4,5,

1,6,4,6)], where a net is represented by an integer. In this case, there

are six nets altogether, where the first net is n" =n"=N^ and the sixth

net is N8»N6«Ng. In the realization of a net list ,£, a crossing number

xu on the upper row is the number of intersections between the upper row

and the conductor lines, not counting the intersections at nodes. A crossing

number Xw on the lower row is defined similarly. For example, in a realiza

tion shown in Fig. 1(b), Xu =2 and Xw =3. A crossing number X is the maximum

of Xu and Xw, and a breadth is the sum of X and (r-1), where r-1 is the

breadth if the realization does not have any intersections.

The double-row planar routing problem (abbreviated DRP) that we shall

consider in this paper is stated as follows:

DRP Problem: Given a net list .,£ =[U,W], find a realization with the
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minimum breadth.

Since we are considering the case where the number of nodes on the upper

and the lower rows are equal, we can state the problem by using the crossing

number X instead of the breadth. It is easy to show that our treatment can

be generalized to the problem where the number of nodes on the upper and

the lower rows are different. We also want to point out that a spaced-spaced

layout defined in [1] is a special case where both sequences U and W consist

of distinct nets.

Now, we impose a restriction on the pattern of the conductor lines.

Restriction: We do not allow the conductor line for a net to run from

the upper row to the lower row more than once.

From the practical point-of-view, this is a reasonable assumption because

we always prefer to minimize the total wire length in any layout design.

The restriction is illustrated in Fig. 1(c), in which (I) is allowed, but

not (IE) or (HE). With this assumption, we can see that there always exists

a horizontal line between the upper and lower rows, which intersects exactly

once with any conductor line of net that connect nodes in the upper and lower

rows as shown in Fig. 1(b). Let us call such a horizontal line the middle

row. Let M= (N^,N^,*'*,N^) be asequence of nets on the middle row such

that for lsisc, N. indicates the net of the ith intersection.

We take the following approach to attack the problem DRP:

Step I: Construct asequence M»(N*,N^,* **,Nm), consisting of the nets which

have nodes on both the upper and the lower rows. Then, create two DRP

problems with net list £ =[U,W =M] and </, = [U =M,W].

Step IE: Find a realization of <£ » [U,W =M] such that the breadth (i.e., X )

is minimal and in addition, there exists no conductor line below the

middle row as shown in Fig. 2(a). Also, find a realization of J. =
^"w

[U =M,W] such that the breadth (i.e., X ) is minimal and there exists
w mi
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no conductor line above the middle row as shown in Fig. 2(b).

For example, for the net list <L given in Fig. 1(b), if sequence (3,1,4,5,6)

is generated as M, and if realization of / and /, are given as shown in
"^U "^w °

Fig. 2(a) and (b), respectively, then the realization of Ji is obtained by

combining these two realizations, which is the same as in Fig. 1(b).

The problem of finding a realization of JL, is similar to that of «£ ,
w \\

since the problems are the same if we turn two rows of £, upside down.

Thus, our problem of DRP is reduced to the following two problems:

Half-DRP Problem: Given a net list <C = [U,M], find a realization with

a minimum crossing number X (=X ) such that no conductor line passes below

the lower (i.e., middle) row.

Middle Sequence Problem (MSP): Given a net list £= [U,W], find a

sequence M which minimizes max[ X , X ], where X and X are the minimum
u w u w

crossing numbers of realizations of £ =[U,M] and £ =[M,W], respectively.
u w

2.2 Interval Graphical Representation

In this section, we introduce the interval graphical representation ^

for formulating and solving the Half-DRP problem.

Given anet list *du=[U,M], let us consider two subsequences M. and

M^ of M with ML__MR =M, where A_B represents a concatination of? two sequences

Construct a sequence ML_U_MR by concatinating >L, 17, and M^ in this order,

and consider (r +c) nodes on the single row as single-row problem. For

example, given anet list ^u=[U,M] and subsequences M_ and M^ shown in

Fig. 3(a), those nodes on the single row are shown in Fig. 3(b). Let us

denote the net list ,Cg defined on these nodes similar to the double row

case by the sequence S»M_ U_M_, i.e., £ =[S].

The interval graphical representation of the net list £ = [VL _U_Mj

on the single row is defined in the same way as [4]. For example, given
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a net list shown in Fig. 3(b), consider an ordering f:,£ -v {l,2,"-,n}

such that f(3)=l, f(6)=2, f(l)=3, f(4)=4, f(2)=5, and f(5)=6, then

the interval graphical representation associated with f is depicted as in

Fig. 3(c), where each horizontal line corresponding to a net is arranged

according to the ordering f from top down. Nodes which pertain to a net

are marked as shown by u± or m. Let us define the reference line^ in an

interval graphical representation: Introduce fictitious nodes (5) and 0 on

the top-left and the top-right of the representation, respectively. Connect

node (5) to the node u^ which belongs to the first net in sequence Uwith a
line seqment. Then connect the nodes u2, u3,...,u ,and 0 in succession

from left to right serially with line segments as shown in Fig. 3(c). This

continuous line from (o) to 0 is called the reference line.

Now, let us stretch out the reference line and map it into the upper row.

In the mean time, place the nodes m (lSiSc) on the lower row as shown in

Fig. 3(d). In such a topological transformation, each net represented by

an interval line is transformed into a path composed of horizontal and vertical

line segments. This gives a realization of the problem Half-DRP.

In order to ensure that, in the realization of Half-DRP Problem, conductor

lines do not go beyond the lower row, we require that the following two

conditions be satisfied:

CL: For nets N° and Nm in ML with i<j, there holds f(N*) <f(Nm).
CR: For nets N? and N* in tt^ with i<j, there holds f(N?) >f(Nm).

It is clear that for each interval graphical representation associated with

an ordering satisfying conditions CT and C_, there corresponds a uniaue

realization of Half-DRP Problem. Furthermore, the crossing number of such a

realization is simply the number of intersections between the reference line

and the interval lines, not counting the intersections at nodes. Let X (M_ ,

U,^) be the number of such intersections between the reference line and the *
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interval lines in the interval graphical representation of the net list

°^s =t*^-11-^ associated with ordering f. Then the crossing number X

in the realization obtained by the above topological transformation is equal

to Xf(ML,U,MR).
Therefore, problem Half-DRP is formulated as follows:

Half-DRP Problem: Given anet list *£u=[U,M], find subsequences M^ and

MR and an ordering t i /_, •*• {l,2,---,n} such that

i) ML_MR =M,

ii) («CL) for nets N? and Nm (i <j) in M^ there holds f(Nm) <f(Nm),
m (3CR) for nets N^ and N™ (i<j) in M^ there holds f(N?) >f(Nm), and

f J
&) X (M_,U,M_) is minimum.

Without loss of generality, we may assume that a net list .;£ =[U,M] of

the problem Half-DRP does not have any net consisting of an isolated node or

any net containing two consecutive nodes on a row.

Also, inherent in the approach of using the interval graphical repre

sentation, several patterns of conductor lines are excluded from consider

ations. These are shown in Fig. 4, where (a) indicates a tree-shaped connec

tion and (b) a forward-backward zigzagging around a row, and (c) depicts a

combination of conductor lines which cannot be generated by the method of the

interval graphical representation.
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3. Computational Complexity Analysis

In this section, let us analyze the computational complexities of

problems Half-DRP and MSP. For this purpose, we introduce the following

single-row routing problem stated as a decision problem.

Single-Row Problem (SR): Given a net list £, =[S] and a positive

integer K', does there exist an ordering f:£, -*{1,2,•••,n} with Xf(X,S,X)

£K', where X represents a null sequence?

For this problem, we have the following theorem.

F31
Theorem 1: Problem SR is NP-completel J.

Proof. See Appendix 1.

Now, given a net list <£ =[S] and a positive integer K as input for
s

problem SR, consider net list £, = [S,M=X] and positive integer R' =K as

input for problem Half-DRP. (In this section, we consider decision-problem-

version of Half-DRP.) We can easily see that problem SR is a restricted case

of Half-DRP, where M = X. Thus, we have the following corollary.

Corollary 1; Problem Half-DRP is NP-complete.

Let us next consider the Modified Half-DRP problem stated as a decision

problem, in order to see the intractability of problem MSP.

Modified Half-DRP Problem (MHD): Given a net list „£ = [U,M] with

Io^J =IMl and apositive integer K, is there an ordering f:£, -»• {1,2,•••,n}

such that Xf(X,U,M) <> K?

This problem is different from Half-DRP in the following sense:

i) sequence M must contain all nets,

ii) there is no choice about the partition of M into M^ and M^, i.e.,

ML =X and M=M, and

in.) the restriction C_ imposed on the ordering f in Half-DRP does not

exist.

Fig. 5 show such an interval graphical representation for a given net list
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,£u=[U,M], and in the figure, Xf(X,U,M) =10.

By using the same approach to the proof of Theorem 1, we can verify

the following theorem.

Theorem 2: Problem MHD is NP-complete.

Now, let us consider another problem called Restricted MSP Problem.

Restricted MSP Problem: When Half-DRP is solved by means of the interval

graphical representation, we assume that subsequences VL and M of M must be

X and M, respectively. In this case, given a net list .£,s [U,W] and a

positive integer K1, does there exist a sequence M on the middle row such that

max[ X ,X ] *K'?
u w

We can easily see that this problem is a restricted problem of decision-

problem-version of MSP, in the sense that Half-DRP Problem is solved by means

of the interval graphical representation and the conductor lines are not

allowed to go to the left beyond the leftmost nodes u.. and w..

Given a net list c£ =[U,M] and a positive integer K as input for

problem MHD, consider net list £= [U,U] and positive integer K1 =K as input

for problem Restricted MSP. Then, as readily seen from Fig. 6, the problem

of finding an ordering f satisfying the condition in MHD is equivalent to that

of finding a sequence M of Restricted MSP. Therefore, we have the following

corollary.

Corollary 2: Problem Restricted MSP is NP-complete.

From the above observation, we can conclude that we better try to find

a heuristic algorithm for the double-row planar routing problem. In a

certain special case, however, we can devise an algorithm for finding an

optimal solution to problem Half-DRP. We shall describe it in the next

section.
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4. Merging Algorithm

Let us consider the special case of problem Half-DRP where \J\ I= |M|

i.e., sequence M contains all nets. We adopt fhe following approach to

tackle the problem Half-DRP.

<Algorithm for Half-DRP>

Input : Anet list <£u =[U,M] with |«£J-|M|.

Output: Subsequences ML and M^ of M and an ordering f:<£ -». {1,2, •••,n}

such that fsatisfies conditions C and C and Xf(^,U,MJ is
minimum.

Step_^: Let M40**,***,•••,N™),then set ^ <- (N*) and MR-(Nm,Nm, •••,N*).
Put i«-l and X«-«.

SteP II: Solve the following problem called Simple Half-DRP Problem.

Simple Half-DRP Problem: Given a net list ^ =[M_ _U_Mj,

find an ordering f:«£g *{1,2,•••,n} such that fsatisfies

CL and CR' and xf(Ml»U'Mr) is minimum.
If for the solution f to Simple Half-DRP, there holds Xf(M ,U,MJ <X,

then store U^, MR, and f as the current solution to problem Half-DRP,

and set X«-Xf(M^U^).
Step__m: Set i«-i+l. If i£n-l, then return to Step IE by setting

ML^ML_(Nm) and M^(N^N^,•••,N*); else terminate.
If Simple Half-DRP is solved in polynomial time, then Half-DRP is also

solved. So, let us consider problem Simple Half-DRP, in the following.

Since |«£, |»jMl, we can see from conditions CT and C_ that all possible
* L R

orderings satisfying CL and CR correspond one-to-one to the sequences obtained

by merging ^ with 5R, where ^(s;^,-^) for ^ =(H^.S^,•••,
ST). Namely, for amerged sequence Q4(q1»q2,•••,qn> of U^ and M_, consider
ordering f such that f(qt) =i (i=1,2,•••,m), then this f automatically

satisfies CL and CR. Conversely, for an ordering f satisfies C and C ,
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consider the sequence QA(q1,q2,•••,qn) such that q.=f"1(i), then sequence
Q is a sequence obtained by merging fcL with lL.

From this observation, we can estimate the number of all possible orderings

as follows:
|ML+MR|! n,

# of possible orderings =
IM^I! |M^|! (n/2)! (n/2)!

v^ nn e"n /I 2n

[ v^n72(n/2)n/2e"n/2 ]2 /S
Thus, an exhaustive search algorithm cannot lead to a polynomial time algorithm

for Simple Half-DRP problem.

Now, let us define a labeled grid digraph G= [V,E], in which we will see

that all merged sequences of fcL and M_ correspond one-to-one to the directed

paths from source to sink.

Let ML4(N1,N2,-..,NJl) and ^4CNn»Nn-l'* "^JM^*' Then, each vertex

corresponds to a pair of integers, and vertex set V is defined as

V 4 {<i,j> ! lsin+1, l£j£n-a+l }.

In particular, vertices <1,1> and <£+l,n-£+l> are designated as source and

sink, respectively. Edge set E consists of two disjoint sets E_ and E_

defined as

ELA{ (<i,j>,<i+l,j>) I UiH, lSjSn-A+1 }, and

E^iC (<i,j>,<i,j+l>) IISiSM-l, UjSa-4 }.

Each edge (<i,j>,<i+l,j>) in E has label net N., and each edge (<i,j>,<i,j+l>)

in ER has label net Nn-.+1. Fig. 7 shows the grid digraph G for M»(N-,N2,NJ

and V(N8,N7,N6,N5,N4).
For each directed path from source to sink, we can create a sequence of

labels according to the edges passed by the directed path, which is a sequence

* We have dropped the superscript m, for convenience, since there is no

confusion.



- 14 -

obtained by merging M^ and MR. And, we can easily verify that each directed

path corresponds one-to-one to a merged sequence of M^ and Mp. Therefore, the

ordering f which satisfies both C and C corresponds one-to-one to the

directed path from source to sink in the grid digraph G.

For example, the directed path shown by the bold-line in Fig. 7

corresponds to merged sequence (N^Ng.N^N^N^N^Nj,^), and hence corresponds

to ordering f^(N^-l, f(N2)-5, f(N3)«7, f(N4)=8, f(N5)-6, f(Ng)=4,
f(N?) =3, and f(Ng) =2.

Therefore, if we can assign an appropriate weight to each edge so that

the total sum of the weights of all the edges on each directed path is exactly

equal to the crossing number X (tL ,U,M^) in the interval graphical represen

tation associated with the ordering f corresponding to the directed path, then

we can solve problem Simple Half-DRP by using a shortest path algorithm on

the grid digraph. Note here that if weights assigned to edges satisfy the

following two conditions, then the weights are appropriate ones,

(i) The weight of edge (<i,j>,<i-H.,j>) with label N. (1 <i<%) is equal to

the number of intersections between the interval line of N. and the reference
i

line, which are caused if N. is ordered between N . and N . ,. That is,
i n-j n-j+1 '

Ni' Nn-j »and Nn-j+l are arranSed in the order as (•••,N _.,•••,N.,•••,N ,

•••) in the merged sequence.

(ii) The weight of edge (<i,j>,<i,j+l>) with label N ... (l<Jj £n-l) is equal
n—j+l

to the number of intersections between the reference line and the interval

line of N . ., which are caused if N .,_ is ordered between N. , and N..
n-J+i n-j-KL i-l i

Thus, let us consider how to assign such weights satisfying these conditions.

An interval between two consecutive nodes is called a unit interval, and

the two nodes are designated as endnodes of the unit interval. A net

containing an endnode of the unit interval is an end-net of the unit interva'l.

If the net M containing the ith node u. belongs to sequence tL or JL, then
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u^ is called an L-node or an R-node, respectively. A unit interval is

called an L-L interval, an L-R interval, or an R-R interval, if both its

endnodes are L-nodes, one is an L-node and another an R-node, or both are

R-nodes, respectively, where the fictitious nodes (5) and Q are both

regarded as L-nodes. The portion of the reference line for a unit interval

H is denoted by RL(H).

Consider a unit interval H with end-nets N and N . As can be readily
a b J

seen, only the interval lines of nets which cover interval H may or may not

intersect RL(H), depending on the relative order with respect to N and N .
a b

Let us consider it in the following.

I. Let N± be a net in M which covers H. (See Fig. 8.)

i) H is an L-L interval. We can assume a<b without loss of generality.

En this case, RL(H) and Ni intersect each other when a<i<b. Thus,

edges with label N± (a <i <b) must have weights corresponds to this

intersection.

ai) L-R interval. Let N^ AN
b — n-j+1

Case 1 (a <i). In this case, RL(H) and N intersects, if and

only if the ordering fsatisfies f(Nj>) <f(Nb). Therefore, only edges

(<i,h>,<i+l,h>) with h <j must have weights corresponding to this

intersection.

Case 2 (a >i). In this case, RL(H) and N. intersect, if and

only if the ordering fsatisfies f(N±) >f(Nb). Therefore, only edges

(<i,h>, <i+l,h>) with h >j must have weights corresponding to this

intersection.

i£) R-R interval. Let Na 4Nn.k+1 and Nfe ANn_ and assume k<j without

loss of generality. In this case, RL(H) and N. intersect, if and
i

only if the ordering satisfies f(N ) <f(N.) <f(Nj. Therefore, only
a i b

edges (<i,h>,<i+l,h>) with k <h <,j must have weights corresponding to
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this intersection.

IE. A similar analysis can be given for a net in jL.

Based on the above discussion, we can devise an algorithm of finding the

desired weights for edges, by processing unit intervals successively from the

left to the right. This is given in Appendix 2.

If we apply the Weight Assignment Algorithm in Appendix 2 to a net list

o£s =tML_u_MR3 shown in Fig. 9(a), then we have the weights for all edges
shown in Fig. 9(b). In the figure, the number in a bracket and the sequence

of alphabets beside an edge show the weight of the edge and the unit intervals

at which the weight of the edge is increased by one, respectively. The

interval graphical representation shown in Fig. 9(a) is associated with the

ordering corresponding to the directed path from source to sink through the

lower left corner of the grid digraph. Hence, as shown by the weight and

sequence (d,k) beside edge label Nfi in Fig. 9(b), net N& has 2 intersections

at unit intervals d and k in the interval graphical representation of Fig. 9(a)

Let the length of a directed path in the grid digraph be the sum of the

weights of all edges on the directed path, then the following lemma can be

readily verified from the above discussion.

Lemma 1; The length of a directed path in the grid digraph for a net

list gCs °[ML_U_MR] is equal to the crossing number X(M^,U,M^) in the
interval graphical representation associated with the ordering f corresponding

to the directed path.

Thus, an optimum ordering f for Simple Half-DRP is obtained by a shortest

path algorithm on the grid digraph. In the following, we describe an algorithm

for Simple Half-DRP Problem.

<Merging Algorithm>

Input : A net list .£, =[\_U__M^].

Output: An ordering f :g£ +{l,2,---,n} such that f satisfies C and
S L
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C and X (M ,U,M^) is minimum.

S^P 1. Create grid digraph G=[V,E] for M. A(N*,*!*, •••,Nm) and Mn A(N^N m ,
i- J- * * R— n n-1

Step 2. <Weight Assignment Algorithm>.

Step 3. Compute shortest distance from source to each vertex <i,j>. Noting

that in the grid digraph any directed path from source to vertex

<i,j> passes though vertex either <i-l,j> or <i,j-l>, we can implement

this process in the processing time propotional to the number of

vertices of the grid digraph.

Step 4. Find a shortest path from source <1,1> to sink <*+l,n-4+l> by tracing

back from sink to source.

By substituting Merging Algorithm for Step H in <Algorithm for Half-DRP>,

we can complete the algorithm, for which we have the following theorem.

Theorem 3: <Algorithm for Half-DRP> can find an optimum solution to

problem Half-DRP in the processing time of order 0(n r) and in the memory
2

space of order 0(n +r), where n and r are the numbers of nets and nodes in

the upper row, respectively.

Proof. We can easily see from Lemma 1 that the algorithm can find an

2
optimum solution. Noting that 0(n ) space is required for the grid digraph

and that 0(n+r) space is sufficient for a given net list and for other sets

and sequences, we can also verify that the algorithm is implemented in 0(n2+r)

space.

Let us consider the processing time. In Merging Algorithm, Steps 1 and 3
2

can be executed in 0(n ) time and Step 4 in 0(n) time. As is shown in

Appendix 2, the total time required for Weight Assignment Algorithm is 0(n2r),

and therefore the total time of Merging Algorithm is 0(n2r). Hence, the

theorem has been proven, since the loop of Steps IE-F in Algorithm for Half-

DRP requires n-1 times iterations. Q
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5. Heuristic Algorithm

In this section, we propose a heuristic algorithm for Problem DRP, in

which Half-DRP is solved with the extended use of Merging Algorithm and

MSP is solved by an iterative improvement. Iterative improvement is carried

out by a displacement of a single net at a time. The proposed heuristic

algorithm is shown briefly in the following.

In a given sequence M4(N ,N2, •••,N.,•••,N ) on the middle row, if

position P. is allocated for the ith net N. in M, then P. is
J i j

i) immediately in front of N , for 1 £j <i,

iL) at the same place as N., for j =» i, or

iJL) immediately back of N , for i <j 5c.

A sequence M' is said to be obtained by displacing N. in M to position P.,

if M' ,B(»1.---,N ltNit» ..-.^^.M^j^,--,^) for lSj <i, M» =M for j=i,

or M' =(N1,-.-,Ni-1,Ni+1,...,Nj,N.,Nj+1,...,Nc) for i<j <c.
<A Heuristic Algorithm for DRP>

Input : A net list «£=[U,W].

Output: A realization of /, with a minimal crossing number X Amax[X ,X 1.

Phase I (Initial Step):

Step I: Generate an initial sequence M A.(Nn,N0,•••,N ) of the nets
— l z c

containing nodes in both rows.

Step IE: Solve problems Half-DRP with net list £, =» [U,M] and Half-DRP

with net list £r *[W,M].

Phase IE (Iterative Improvement Step):

Step 0: Put all nets in M into queue arbitrarily.

Step I: Repeat the following process l°-3°, until no more improvement

can be acheived.

1°; Delete a net N from the front of queue and put it to the back

of queue.
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*

2°: Compute the expected difference of the crossing number

EDC (p ) in the upper row and EDC (p.) in the lower row, for
u 3 w j

each position p. for N. in M, exclusive of p . Let X and X
J i i u w

be the current crossing numbers for £ =[U,M] and <£ =[W,M],
u w

respectively. And let X «-max[ X , X ], X «-min[ X , X ],
u w — u w

Y(Pj) -Hmax[ Xu +EDCu(Pj) , Xw +EDCw(p ) ], and Y(p.) +min[ Xu+

EDCCPJ. X +EDC (p.) ]. Then, set
U J w W J

p -1" { P. IY(p ) <X, or Y(p.) =X and Y(p.) <X }.
•J J J J

From the definitions of EDC , EDC , and P, we can see that, for

every sequence M* obtained by displacing N in M to p. £P, we

can get a better solution than the current one.

3°: By conducting the following process (i) -(±L) for each p. sP,

find the best position p, for N., and displace N. in M to p,.

(i) M' «-M and displace N. in M' to p..
i 3

(iL). Solve problems Half-DRP with net list X a[U,Mf] and Half-DRP

with net list £ =[W,M'].
w

Phase HE (Postprocessing Step):

Step I: Realize £ =[U,M] and & =[W,M] by the topological trans

formation from the interval graphical representations specified

by the solutions obtained in Phase IE.

Step H: Turn the realization of net list £ «[W,M] upside down, then
w

combine two realizations of f, and / into one.
^u ^w

In Step I of Phase I or Step I-3°-(iL) of Phase IE, if the sequence M

does not contain all the nets in £. , then we cannot use <Algorithm for

* EDCu(p ) shows the expected increment from the current crossing number

X caused by displacing N. in M into position p.,. So, if EDC (p ) <0, then
u J- j u j

the crossing number decreases at least by IEDC (p.) I. The details will be

discribed in Appendix 3.
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Half-DRP> described in the previous section directly. In such case, we adopt

the following procedure.

11: Find an ordering f* :J^*{1,2,•••,n} such that Xf*(M,U,A) is minimal.
Then, let M* A(N*,N*, •••,N*) such that N* =f*"1^) for l*i*n.

21: Solve problem Half-DRP with Zu=[U,M] by using <Merging Algorithm>,

where conditions (^ and CR are specified on M*. Then, let
f u
X ^L'^V be the ODtained solution.

21: Improve the ordering f obtained in 2° by displacing the nets not
f

contained in M so that X (M^U.fcL) for the improved ordering f*

is minimal.

In this procedure, 1° and 3° is conducted by a displacement of a net not

contained in M at a time, with the use of similar information to the expected

difference EDCu< The details are ommitted in this paper.

In the following,^ we shall consider the problem of finding an initial

sequence M.

Let u (1 <j £r) and w (1 £j £r) be nodes on the upper and the lower

rows, respectively. For a net N., the smallest and the largest subscript-

numbers of nodes in N on the upper row are denoted by uln(N.) and urn(N.),

and those on the lower row by wln(N ) and wrn(N.), respectively. In the

upper row, if the portion of the interval between u , ,„ N and u , %
uln(N.) urn(N )

contained in the left-half of interval [u ,u ] is longer than that contained

in the right-half of [u^u ], then net N. is said to be an upper-left net.

Namely, N± is a upper-left net, if Lr/2J +1-uln(N.) 2urn(N.) -Lr/2J, where

LxJ denotes the largest integer not greater than x. Otherwise, N is called
i

an upper-right net. Similarly, we define a lower-left net and a lower-right

net on the lower row.

If a net has nodes on the both rows, then the net is said to be a common

net_. A set of common nets can be partitioned into four subsets A , J? ,
1 J2
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sjf ,'and s$ as follows:

*?1 = ^Ni 'Ni is a lower~left, upper-right common net}.

<f2 4 ^Ni INi is a lower-left, upper-left common net*.

^3 4 tNi IN. is a lower-right, upper-left common net}.

z<^4 4 ^Ni IN± is a lower-right, upper-right common net}.

In an initial sequence M, the common nets are arranged in the order of xf ,

.<32, /O3, and xf4 from the left to the right, as shown in the following
algorithm.

<An Initial Sequence Algorithm>

Input : A net list c£=[U,W].

Output: An initial sequence M of common nets.

Step_l: Compute subsets xfr 4V ^y and ^ of common nets.
Step__2: Let Ul be a sequence obtained from the left half subsequence U A

(Nl,N2,"*,Ni,'"'NLr/2J) of Uby deletinS N? such that i#uln(Nu),
without changing the order of nets in U . And let U2 be a sequence

obtained from the right half subsequence U„ A(N, " N. u
R = ' Lr/2J+1' Lr/2J+2'

•••,Ni,***,N") of Uby deleting n" such that i#um(Nu). Namely,

Ul (U2) shows an order of nets according to which we meet each net

for the first time, if we explore sequence U form the left (the

right) to the right (the left). Let us define Wl and W2 similar

to Ul and U2, respectively. Then set Sl«-Wln<f , S2 -KJ1 n^ ,

S3«-U1 t\Jy and S4 «-W2 n^, where for aset ^ and asequence A,

An^ represents a subsequence of A by deleting all the elements

not contained in .<f from A without changing the order of nets in

A, and A denotes a sequence with the reverce order of A.

Step 3: Set M«- S1_S2 _S3_S4.

For example, if this algorithm is applied to net list <£, =[U,W] such

that
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U=UL_UR=(1,2,1,3,2,8,4)_(5,3,6,2,6,7,8) and

W=WL_WR=(6,2,6,1,8,3,1)_(8,4,5,3,7,4,5),

then we have

{ upper-left common nets } = { 1,2,3,4 },

{ upper-right common nets } - { 5,6,7,8 },

{ lower-left common nets } = { 1,2,6,8 }, and

{ lower-right common nets } =* { 3,4,5,7 },

and hence ^ -{6,8 }, ^ ={1,2 }, ^ =» {3,4 }, and A^ ={5,7 }.
Moreover, we have

Ul = (1,2,3,8,4), Ul= (4,8,3,2,1),

Wl = (6,2,1,8,3), Wl= (3,8,1,2,6),

W2 = (5,4,7,3,8), W2= (8,3,7,4,5).

Thus, sequence M is given as (8,6)_(2,1)_(3,4)_(7,5).

Another example is shown in Fig. 10, which illustrates the frame of the

initial sequence for the case where U and W are sequences of distinct nets.

As discussed in [1], let us consider the upper bound for the breadth of

a realization obtained by Phase I in the proposed algorithm. We assume that

a given net list <£,- [U,W] satisfies

i) U and W consist of distinct nets, and

ii) \L\ = IMI, i.e., n=r.

Then, a realization of ^ is a spaced-spaced layout defined in [1], and the

breadth of a realization corresponds to the length of a spaced-spaced

layout. Let us show that Phase I gives a better upper bound for the breadth

than [1] in what follows.

Given an interval graphical representation associated with ordering f,

let us define an unconnected node and block similar to an unconnected point

and block defined in [1], For a net N in the representation, a node
—~~—— a

contained in a net N, with f(N ) <f(N.) is said to be an unconnected node for
o a b
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Na, and a maximal set of consecutive unconnected nodes is called a block for

N . Moreover, let a be the number of blocks for net f~1(i) and let 8 be
<* 1 ^2.

the number of intersections between the reference line and the interval line

of net f (i). Then, as seen from Fig. 11(a), we have the following lemma.

Lemma 2L : For a net f" (i), there hold

8. ^ 2a. - 1 and
i i

a. £ min[ r -i + 1, i ],

where r is the number of nodes on the reference line.

Consider the interval graphical representations for £ =[U,M] and

i£ =» [W,M] shown in Fig. 11(b). Let X* and X* be the crossing numbers of
w U W

these representations, then we can easily verify from Merging Algorithm that

Xu*Xu and Xw*Xw* where xu and xw are the crossing numbers on the upper and

the lower rows obtained by Step IE of Phase I, respectively. By using X* and

X* and Lemma 2, we can show the following theorem.

Theorem 4: Let & =[U,W] be a given net list with n=r and let U and W

be sequences of distinct nets. Then, for the crossing number X, Amaxf X , X ]
1 = u' w J

obtained by Phase I (Initial Step), we have

XL £n2/8 +0(n),
and hence

breadth 4)^+(n-l) Sn2/8 +0(n).
Proof: Let us count X* and X*.

u w

n Tn/21 n
X* = Z B s 2( Z « + Z a ) - n
u i=l i i-1 i iofn/21+1 i

Tn/21

*2( ^ min[ rn/21-1 +1, 11+|^| )-n

^4( i+2+.-. +in^i±L }+2|^( _a
, (n +3)(,+9) +^

8 T*l^2

< (n + 5)(n + 9)
8

- n
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since ]•*£-] <Ln/2-l, where Txl denotes the smallest integer not less than x.

n Tn/21 n
X* = Z 8. £ 2( Z a. + Z a. ) - n
w i=l i i»i i i=rn/21+l x

, <j , Tn/21
£ 2( |<j\| + Z min[ Tn/21-i +l, i ]

, * , U/2J
+ I<S, I + Z min[ U/2J-1 + 1, i ] ) - n

Tn/21 Tn/21 n
* 2( Z min[ T^l-i +1, i ] + Z min[ ffl-i +1, i ] )

i=!^4l+l 2 1-L^I+l 2
+2( \jg±\ + I^J ) -n.

Noting that 1^,1+1^,1 • f"n/2l, there holds

Tn/2l
X* £ 2( Z min[ l*n/2l-i + l, i ] ) + 2l"n/2l - n
w i=1

, (n +5)(n+9) +1-
8

Thus, we have

X. Amax[ X ,X]£max[ X*, X* ]* (n +5)(n +9) + ±
1 a u w u w 8

= n2/8 + 0(n). 0

In [1], no algorithm is proposed for a spaced-spaced layout. Therefore,

2
their upper bound for a spaced-spaced layout is n /4+0(n), which is the same

for a packed-spaced layout. We can see from the above discussion that* the

upper bound for a spaced-spaced layout is almost half of that for a packed-

spaced layout, which can be expected from the definitions of both layouts.

Finally, it is easy to see that this Initial Sequence Algorithm is

implemented in 0(n + r) time and 0(n + r) space.
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6. Conclusion

In this paper, we have formulated the double-row planar routing problem

with the total breadth as a criterion for minimization. The problem repre

sents a generalization of the spaced-spaced layout ^and of the single-row

single-layer routing problem1 J. We have analyzed the computational complex

ity of the problem, and found that the problem is intractable in the sense of

NP-completeness. For a certain special case, however, we have devised a

polynomial-time algorithm called Merging Algorithm, which is to be used as a

subroutine in the final heuristic algorithm. The heuristic algorithm involves

iterative improvement from an initial solution. An analysis on the upper

bound for the breadth of an initial solution is given. This leads to a

slightly better results than that given in Ref. [1].

The crucial concept of our approach is to break up the complex problem

into manageable subproblems. The main idea here is to introduce a middle row

of nodes and consider two half layout problems each with specific constraints.

Principally, for the middle row, nets are not allowed to go beyond the row.

Also, in some of the derivations, we assume that the middle row contains all

the nets in the upper and lower rows. This last assumption, however, can be

removed with some modifications of the programs.

The proposed algorithm has been programmed in FORTRAN and run on VAX 11/780

Table 1 shows some experimental results. CASE I shows the results for the

general case of double-row planar routing, while CASE H represents the case

of Permutation Layout, i.e., for the net list £« [U,W], U and W are composed

of distinct nets and \£\ =|u| =|w|. In each case, two examples are given,

where the number n of nets and the number r of nodes are different, as shown

in the table. For each example, 10 net list are randomly generated, and the

average values taken over these 10 lists are shown in the table, where

X A max[ X X J and X A min[ X , X ].
uw — — u w
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In Fig. 12, two output of the program are shown, namely: an example of

CASE I in (a) and an example of CASE IE in (b).

Table 1. Experimental Results.

Phase I Phase H

X X

cpu time

(sec)
X X

cpu time

(sec)

>

M

n « 20

r = 30
40.8 31.5 0.3 26.8 25.6 24.4

n » 24

r = 36
56.7 43.1 0.5 39.1 37.3 46.8

>
en

n =» 15

r » 15
13.4 10.8 0.1 8.0 7.4 10.0

n - 20

r = 20
21.6 16.5 0.3 13.1 12.6 38.1
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Appendix 1: (Proof of Theorem 1)

We shall show that the following Simple Linear Placement Problem, which

is known as a NP-complete problem[ ], is plynomially transformable^ to
problem SR.

Simple Linear Placement Problem (SLP): Given an undirected graph G' «

[V',E'] and a positive integer Kf, does there exist an ordering f' :V +

{ 1,2,-..,|V| } such that

(vi}v.)£E' i J '

For a given G* * [V',E'] as input for problem SLP, let us consider the

Euler graph G" = [V".E"1 generated as follows:

V" = V A { v.,v9,.-.,v }, and
Li. n

E"S {(vi'Vj)r(vi»vj)2»*"»(VVj)2n2 I<VvJ)<Ef K
Without loss of generality, we assume that the graph G» in SLP is connected.

Hence, G" is also connected. Thus, we have a closed walk in G" passing

through all edges. Let A1 be the vertex-sequence of such a closed walk start

ing and terminating at vertex v .

For G1 =»[V',E'] and K*, the corresponding input for problem SR is defined

from G" as follows: Each net N± corresponds to a vertex v., and a sequence

Sof net list u£s =CS] is defined as (NX,N2,••. ,Nn-]_) _A_(N^^N^,... ,NX),
where A is a sequence of nets generated from A' by replacing a vertex by the

corresponding net. Integer K in SR is defined by

K= 2n2(K' -ef) + (n-l)(n-2),*

where e? aJe'I- Note that these processes can be done in 0(n2e*) time.

Let RL and RR be the portions of the reference line which connect first

* We can see that by setting K=2n2(K' -e') +(n -1) n, this same approach
can be applied to the proof of Theorem 2.
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n nodes and last n nodes, respectively, and let R be the remainder of the

reference line, i.e., the reference line between first nth node and last nth

f
node. By x (R ), we denote the number of intersections between R and the

A A

interval lines of nets in the interval graphical representation associated

with f. x (R^) and x (Rj^) are defined similarly. Then, we can easily see

that for any ordering f of nets, there holds

xf(RL) £niV-l) =^l2 i=fa'1""-2> ,and
L i=2 i=l 2

f,D ^ ^ (n-l)(n-2)
2

x"(RR) S

Moreover, noting that the number of intersections between interval lines of

nets and a unit interval on R with end-nets N. and N. is equal to |f(N.) -

f(N.)| -1, then we see that there holds

xf(R )= Z (|f(N.)-f(N.)| -1 ),
A (N.,N )£A i 1

*• J

where the summation is taken over all the unit intervals on RA. Since the
A

number of unit intervals on RA is equal to the number of edges in the Euler

graph G", we have

xf(R )= Z |f(N.) -f(N,)| -2n2e».
A (N^N^eA 1 J

Suppose that there exists an ordering f :V -*-{l,2, •••,n> such that

(v±,v )€E' 1 3 '

Let us consider ordering f:Z +(1,2,•••,n> such that for a net N. cor-
s i

responding to v±, f(N^ = f'(v ). Then, we have

2 ,

X(X,S,\) =xf(RA) +xf(RL) +xf(RR)

=2n2( Z |f*(v.) -f'(v.)| )-2n2e' +xf(RT)+xf(RT))
(v.,v.)eE' x J L K.

i 3

£2n2(K' -e') +xf(R^ +xf(RR)
£ 2n2(K' -e') + (n -1) (n -2) = K.

Therefore, this ordering f satisfies the condition in SR.
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Conversely, suppose that there exists an ordering f \ <£, -»-{l,2, •••,n}

,X) £ K. Then, we havesuch that X (X,S,X) £ K. Then, we have

(RA) + x (R^ + xi(RR) £ 2n (K' -e') + (n-l)(n-2).

Consider ordering f :V +{1,2,•••,n} such that for a vertex v corresponding

to N±, f'(v ) = f(N.), then there holds

xf(R )= Z |f(N.) -f(N.)| -2n2e'
A' (N.,N.)€A' ' i

i J

2s 2n ( Z |f (v.) -ff(v.)| )- 2n2e'.
(vt,v )«Ef * 3

Thus, we have

2n2( 2 |fT(v,)-f'(v.)| )-2n2e' +xf(RT) +xf(RJ
(v.,v.)eEf x J L r
i* j

and

5 2n2(K' -ef) + (n-l)(n-2),

^n- ±;m- d - i x

Z |f
(n-l)(n-2)-{ xf(R_)+xf(RD) }

'(v.) -f'(v.)| £ K' + = ^ ^
(v,,v,)€E' i j ' 2n2

<; R' + (n-l)(n-2)
2n2

< K' + 1.

Since the left side of the above inequality is an integer, there holds

2 |f'(v.) -f'(v.)| s K\
(vi>V )eE' i 3
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Appendix 2: (Weight Assignment Algorithm)

<Weight Assignment Algorithm>

Input : Anet list X3 =[M^U^M^ and agrid digraph G= [V,E] for
ML4(N1,N2,.-.,NJl) andMRA(Nn,Nn_1,.-.,NJl+1).

Output: Weight WT(e) for each edge e eE.

Step 1: Set WT(e) •*• 0 for every edge e€E.

Step 2: Pick up the leftmost unit interval H, on which the following steps

have not been conducted. If there is no such H, then terminate;

else execute the followings on H.

Step 3: If H is an L-L interval, then go to Step 4. If H is an R-R interval,

then go to Step 5. Otherwise, go to Step 6.

Step 4: Let N& and N^ be end-nets of H with a<b.

1% For each net N in M. which passes through H and satsfies a <i <b,

conduct (i).

(i). For every e =« (<i,h>,<i+l,h>) with l£h£n-Z+l,

WT(e) + WT(e) + 1.

2*_. For each net N +1 in M^ which passes through H, conduct (ii).

(ii). For every e» (<h,j>,<h,j+l>) with a<h<b,

WT(e) «- WT(e) + 1.

3°. Then, return to Step 2.

Step 5: Let N and N be end-nets of H with a<b.
n—a-ri n—D+i

1^. For each net N in M which passes through H, conduct (iH.).

(ifi.). For every e- (<i,h>,<i+l,h>) with a<h^b,

WT(e) <- WT(e) + 1.

21- For each net Nn .+1 in MR which passes trough H and satisfies a< j<b,
conduct (±7).

(±/). For every e=(<h,j>,<h,j+l>) with lsh^l + l,

WT(e) •*• WT(e) + 1.
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3°. Then, return to Step 2.

Step 6: Let Nfl €ML and Nn_b+1 cJ^ be end-nets of H.

1°« For each net N. in M. which passes through H and satisfies a<i,

conduct (v).

(v). For every e = (<i,h>,<i+l,h>) with h£b,

WT(e) «• WT(e) + 1.

2°. For each net N in M_ which passes through H and satisfies a>i,

conduct 04).

Oi). For every e= (<i,h>,<i+l,h>) with h>b,

WT(e) «• WT(e) + 1.

3^. For each net Nn.j+1 in *L which passes through H and satisfies b<j,

conduct (tzH.) .

CvfL). For every e» (<h,j>,<h,j+l>) with h£a,

WT(e) «- WT(e) + 1.

V\ For each net N +1 in M which passes through H and satsifies b>j,

conduct (\£&).

(wl). For every e» (<h,j>,<h,j+l>) with h>a,

WT(e) «- wr(e) + 1.

5°. Then, return to Step 2.

Let us consider the processing time required in this algorithm. We can

easily see that Steps 4, 5 and 6 are implemented at most in 0(n ). Therefore,

the total time required by the loop through Steps 2 to 6 is 0(n2r), and hence

the total time required for Weight Assignment Algorithm is 0(n2r), since
2

Step 1 is implemented in 0(n ) time.
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Appendix 3: (The expected Difference of the Crossing Number)

We shall describe briefly the way to compute the expected difference of

the crossing number EDCu(p.) in the upper row, which is introduced at Step 1-2°

of Phase IE in the proposed heuristic algorithm. Let MA (N.,N0,•••,N ) be the
== 1 2. C

current sequence on the middle row, and let M_, M^, f, and X be the current

solution to Half-DRP problem with the upper case net list ,£, »[U,M].

A strip qfc in an interval graphical representation associated with an

ordering f is defined as

i). the horizontal space above the interval line of net f (1), for k= l,

ii). the horizontal space between the interval lines of nets f (k-1) and

f"1(k), for 2£kSn,
.-1ifi.) . the horizontal space below the interval line of net f (n), for

k =» n+1,

where n is the number of nets in the representation. In Fig. 13(a), an example

of strips qk (k »1,2,•••,8) is shown.

Let Ni be a net selected at Step 1-1° of Phase IE for a displacement.

As mentioned in Section 5, EDC (p.) indicates the number by which the crossing

number may increase from X, if N. is displaced in M into position p.. In other
i *J

words, EDCu(p ) is required to show that the crossing number increases at most

by EDCu(p^) by displacing ^ <in M into p ,if EDCu(p.) >0, and more essentially

is required to show that the crossing number decreases at least by |EDC (p )|

by displacing N, in M into p., if EDC (pj < 0.
i j uNrj'

To compute such EDC (p ) for each p., we introduce the number LDF(q, ) of
u J J nk

intersections between the reference line and the interval lines of nets that

will be increased from the current crossing number X, if N. is displaced into

qk and into M^ and the number RDF(qfc) of intersections that will be increased

from X, if N. is displaced into q, and M_.

For example, if we displace net N2 in the interval graphical representation
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shown in Fig. 13(a) into strip q and into M_, then we have the interval

graphical representation shown in Fig. 13(b). Therefore, the current cross

ing number X=17 is reduced to 16, and hence RDF(q )=-1 as shown in the figure

Note here that for h-fO^), LDF(qh) =LDF(qh+1) and RDF(qh) =RDF(qh+1).

Therefore, we need not provide two strips q, and q, ,., and can combine them
n h+1

into one. For simplicity, however, we use both q, and q^ ,.
n ^h+1

Once we obtain LDF(qfc) and RDF(qk) for each strip q,, it is easy to

compute the expected difference EDC (p.) for each position p. for N . In
u j r rj i

Fig. 13(c), the relation among LDF, RDF, and EDCQ is shown, where EDC (p-),

for example, is given as min[ LDFCq^, LDF(q2) ]. From the relation shown in

the figure, we can easily see the way to calculate EDC values from LDF and
u

RDF. The datailed description is omitted here.

We shall consider how to compute LDF and RDF in the following.

Consider the interval graphical representation of net list .£, =[>L _U_

MR] associated with ordering f, and eliminate the interval line of N. together

with the segments RL(H) of the reference line on the unit intervals H with a

node of N± as endnode. With this elimination, we call the continuous line

segments of the reference line from node (o) to the right the left-RL, and

such line segments from node (•) to the left the right-Rl. The rest of the

remaining reference line is called the internal-RL. We define L0V(q ), I0V(q ),

and ROV(qk) for each strip q^ as the number of the segments of the left-RL,

the internal-RL, and the right-RL passing through strip q , respectively.

For net N± =N2 with f(N2) *3 in the interval graphical representation

shown in Fig. 13(a), the left-RL, the internal-RL, and the right-RL are shown

in Fig. 14(a), L0V(qfc) and ROV(qk) are shown beside the figure, and IOV(q )

in Fig. 14(b).

The remainder of the reference line other than the left-RL, the internal-

RL, and the right-RL, is on the unit intervals with N. as an end net. Let
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EX(q-) be the number of intersections caused by such remainder of the refer

ence line and the interval lines of other nets than N., when N. is placed on

strip qk in the interval graphical representation. This EX(q,) can be counted

by exploring every unit interval with N. as an end-net.

For example, consider the case shown in Fig. 14(b), in which there exist

six unit intervals from a through f with N. = N as an end-net. It is not

difficult to compute the number of intersections between RL(a) and the interval

lines of nets, when Nt=N2 is placed on strip qk (l£k*8), which is shown

on row qk of column a in the table beside the figure. Similarly, such nembers

of intersections for other unit intervals b-f can be computed. Then, EX(q )

is obtained as the sum of all numbers on the kth row in the table.

Now, from the definitions of LOV, R0V, I0V, and EX, we can see that the

current crossing number X is given as

fLOV(qh) + EX(qh) + IOV(qh), if N^M^

LROV(qh) +EX(qh) +IOV(qh), if * €M^
where h =* f (N^ . We can also see that LDF(q ) and RDF(q ) for strip q

(1 *k £n+1) is calculated by

LDF(qk) = LOV(qk) + EX(qk) + IOV(qk) - X, and

RDF(qk) = ROV(qk) + EX(qk) + IOV(qk> - X.

Moreover, we note that for a specified N ,LOV, IOV, EX, and ROV for all strips

qk's are computed in O(n-r) time, and hence LDF and RDF for all q 's in 0(n«r)

time.

Thus, the expected difference EDCu(p ) for all positions can be computed

in O(n-r) time. Since the expected difference EDC (p ) of the crossing number
w j

on the lower row for each p is calculated similarly, Step 1-2° in Phase H

is totally implemented in O(n-r) time and in 0(n+r) space.
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FIGURE CAPTIONS

Fig. 1 (a). Nodes on the upper and the lower row.

(b). A realization of net list <£ and the middle row.

(c). Allowed pattern (I) and prohibited patterns (H) and (HE).

Fig. 2 (a). A realization of £ .
u

(b). A realization of jf, .

Fig. 3 (a). Net list j£ =[U,M] and subsequences M^ and M of M.

(b). Net list <£s »[MLU_MJ.

(c). An interval graphical representation of <£ =[M^ _U_MR]

and the reference line,

(d). A realization transformed from the interval graphical

representation of (c).

Fig. 4. Exceptions of routing patterns due to the interval graphical

representation.

Fig. 5. Modified Half-DRP Problem.

Fig. 6. Restricted MSP Problem and Modified Half-DRP Problem.

Fig- 7- Grid digraph G for ML and Mp, and a directed path corresponding

to merged sequence (N^Ng.N^N^N^Nj,*^,^).

Fig. 8. Unit interval H and net N. which may intersect each other.

Fig. 9 (a). Net list Xg «[ML_U__MR] and an interval graphical represen

tation,

(b). Grid digraph for net list in (a) and weights of edges.

Fig. 10. A frame of initial sequence M.

Fig. 11 (a). Unconnected nodes and blocks for net f (i).

(b). Interval graphical representations of £ =[U,M] and j£ =[W,M].

Fig. 12 (a). A realization of a randomly generated net list. (CASE I),

(b). A realization of a randomly generated net list. (CASE IE).
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Fig. 13 (a). Strips in an interval graphical representations.

(b). LDF and RDF for each strip.

(c) . The relation among LDF, RDF, and EDC .

Fig. 14 (a). The left-, internal-, and right-RL's, and LOV and ROV.

(b). EX and IOV for each strip.
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Fig. 1 (a). Nodes on the upper and the lower row.
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Fig. 1 (b). A realization of net list «£ and the middle row.
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Fig. 1 (c). Allowed pattern (I) and prohibited patterns (IE) and (IEC).
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Fig. 2 (a). A realization of <£ •
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Fig. 2 (b). A realization of oC
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Fig. 3 (a). Net list ^ =* [U,M] and subsequences ML and MR of M.
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Fig. 3 (c). An interval graphical representation of <£, =* [M _U_M ]

and the reference line.

. 1 l.... i

» i

4

1

2

<4

5 6

i

3

Fig. 3 (d). A realization transformed from the interval graphical

representation of (c).
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Fig. 4. Exceptions of routing patterns due to the

interval graphical representation.
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ordering f <J J> squence M
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Fig. 6. Restricted MSP Problem and Modified Half-DRP Problem.

source <1 ,!>.-
>—9 > 9 >—9 > 0 > 9 — 1
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> Q > 6
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... 2

... 3

labels

fc 6—

-^ > sink <4,6>

Fig. 7. Grid digraph G for ML and M^ and a directed path

corresponding to merged sequence (N. ,NQ,N,,N,,N„,Ne,N„,N,)
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(ii) L-R interval, Case 2.
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(ii) L-R interval, Case 1.
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Fig. 8. Unit interval H and net N. which may intersect each other.
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Fig. 9 (a). Net list £g «[ML_U_MR] and an interval graphical representation.

source [1]

(A)

[5] [3]

(f.g.i.j,^) (g,i,A)

T --- CI 3V (a) [2]<r(f.9) [4]U (d,e,f,g) [2]|(d,g)

N, ... [4]

labels

[1] [5] [3]

(h) (f,g,h,j,A) (g,M)

(a,b,c,i) [3]if(c,f,j) [5]U (c,d,e,f,j) [2]f(d,c)IU,b,c,i)

Ei ]

(c,k)

C2]t(a,b) [o]^

[2]

(d,k)

[3]

(f,j,k)

[3]
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[0]

[0]V [0]

[0]

sink

Fig. 9 (b). Grid digraph for net list in (a) and weights of edges
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Fig. 10. A frame of initial sequence M.
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Fig. 11 (a). Unconnected nodes and blocks for net f (i).
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Fig. 12 (a). A realization of a randomly generated net list. (CASE I).
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strip q.
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Fig. 13 (a). Strips in an interval graphical representation.
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Fig. 13 (b). LDF and RDF for each strip.
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EDC.

position p.

Fig. 13 (c). The relation among LDF, RDF, and EDC .
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Fig. 14 (a). The left-, internal-, and right-RL's, and LOV and ROV.
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