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Abstract
It has been known for some time that many control system design

requirements can be expressed as differentiable inequalities., More

recently, it has been shown that important structural properties such as

robustness and Tow noise sensitivity can be expressed as nondifferentiable

inequalities involving the singular values of a system or return
difference transfer function matrix. This paper presents an optimization

algorithm which permits all these constraints to be considered.
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1. Introduction

The fact that multivariable control system design can be carried out
by using constrained optimization algorithms has been known for some
time, see e.g. [Pla, P21, P5, Z1, G2, G3, M1, M2]. Until recently, the
constraints used were in the form of differentiable inequalities. It is
now becoming clear that a number of fundamental design requirements can
be expressed as inequalities involving the singular values of appropriate
transfer function matrices, such as the complex valued compensator-plant
transfer function matrix G(x,w), with x denoting the design parameter
[L1, L2, D1, D2, D2a, S1]. These inequalities are usually frequency ()
dependent and have to be satisfied over a range of frequencies. Specifically,
the requirement that the closed loop systemremains stable in the face of
additive or multiplicative perturbations of G(x,w) is expressed in terms
of singular value inequalities in [L2, D2, S1]. In [S1] we find that to
ensure that a high order system is stable when modeled by a low order
system via singular perturbations, it is sufficient to'satisfy certain
singular value inequalities. Low sensitivity to additive noise and
parameter perturbations is expressed as singular value inequalities in
[D2a].

From an otpimization point of view these singular value inequalities
pose two serious problems; The first is due to the fact that neither
singular values nor their squares are differentiable, while the second
one is due to the fact that when some singular values of a matrix become
close to being equal, it becomes extremely difficult to compute the
corresponding singular vectors with any precision. At the present time
there are no published optimization algorithms which are directly applicable
to control system design in the presence of frequency singular value

inequalities. In this paper we present an optimization algorithm capable



of solving such problems. The algorithm makes use of outer approximations
for problem decomposition [G2] and of some concepts of nondifferentiable
optimization described in [C1, C2, M3, L3, P6, P3]. Computational results
forsimple problems such as those reported in [D1], appear to be quite

encouraging.

2. The problem and its.decomposition

In the context of optimization, the problem of describing a linear
multivariable control system presents itself as follows., We assume that
the structure of the compensators has been determined on the basis of
theory such as in [D1, D2, M4], and what remains to do is to compute a
compensator parameter vector x € R" which minimizes a differentiable

cost function f(x) subject to constraints of three kinds:

(a) gj(X) <0, j= "2""”“9 (2.1)

with gj :R™ > R! continuously differentiable,

(b) max ¢(x,v) <0, k = 1,2,...,m (2.2)
veN = ¢
with ¢k :R" x R] + R continuously differentiable and N C ]R] compact,
and
(c) 0<8,(0) < oy(x,0) < ugw) Suy < Vi=1,2,,..,m
Ve = 1,2,...,L
Yu € Q (2.3)

where for.i.#.1,2,...,m, c;'(x,w) is a singular value of an mxm complex
valued transfer function matrix Gz(x,m), zz(m), ul(m) are continuous
functions from R > R¥ and 0 is a frequency interval . In (b) v may be

either time or frequency (see [P5, G3, P4a, P4b]. As stated, the design



problem is quite complex and hence the presentation of the algorithm
for the full problem is quite cumbersome. Fortunately, there is no great
loss of generality in presenting our algorithm first in terms of the

highly simplified problem
P:min{f(x)| Hw) < o' (x,0) < ulw), i=1,2,...,m, w € Q} (2.4)

where the ci(x,m) are the singular values of a single mxm transfer
function matrix and G(x,w) and R € R is compact. At the end of
Section 3 we shall indicate how the algorithm is to be extended for the
full problem.

Our algorithm consists of two parts:

(i) a master outer approximations algorithm which decomposes P into

an infinite sequence of problems
Py : min{f(x)|2(w) < o' (X,w) < u(w), i =1,2,,.,,m,

weﬂk} k = ],2,... (2.5)

with @ CQ a finite set, and

k
(ii) a special nondifferentiable optimization algorithm for solving
the problems P, . We shall present the algorithm for solving Pk in the
next section, while the outer approximations algorithm will be presented
in section 4.
We shall need the following assumption and result which follows from

it.

Assumption 2.1: There exists an open set X C R" such that the transfer

function matrices G (-,w): X + ™M are componentwise analytic,

2:"],2’.'»"..0 "



We shall assume that %(w) < = for all w € Q. Since at points
x € X® at which Gz(x,w) is not analytic Gl(x,w) must have at least one
infinite element, it will have at least one infinite singular value.
Because of this, once our algorithm is started with an X € X, the entire
sequence it will construct will remain in X. The following result can

be deduced from analytic function theory:

Proposition 2.1: Suppose that assumption 2.1 holds and that for some

L€ {1,2,...,L}, x € X and w € Q, Gz(x,m) has multiple singular values.
Let the singular values of Gz(x,w) be cl(x,m) _>_02(x,m) > e > a™(x ,)
and let M C {1,2,...,m} be the largest set such that oj(x,w) = oi(x,w)
for all i,J € M. Then, given any vector w € Rn, there exists a A>0

such that for any i,j € M, either

ol (xAh,w) = o (x#Ah,w) VA € [0,1] (2.6)
or

o' (x+Ah,w) # o (x+Ah,w) VA € (0,X] | (2.7)
We now proceed to develop an algorithm for solving the Py

2. An Algorithm for Solving P,

To obtain a further simplification in exposition, we shall assume
temporarily that Qk in (2.5) contains only one point. In this case w

can be dropped as an argument in the functions in P, and Py becomes
P smin{f(x)[2 < o'(x) <u, i =1,2,...,m} (3.1)

where the ai(x) are the singular values of a complex valued mxm transfer
function matrix G(x). We recall that yi(x) A [oi(x)]z, i=1,2,3,...,m

are the eigenvalues of the matrix

Q(x) A G(x)"6(x) (3.2)



For the sake of convenience, we shall adopt the convention that

yHx) > ¥ (x) > ... y™(x) (3.2a)

The quantities yi(x) are more convenient to work with than the ci(x) and

hence we transform Pk into the equivalent form

l’5k : m'in{f(x)lf,2 iyi(x) 5u2, i€m} (3.3)

where m A {1,2,...,m}.

It was shown in [P2] that the yi(-) are locally Lipschitz c:.ontinuous
functions which are di fferentiatzle at all x such that yi(x) # y‘](x) for
some i # j €m. When yi(x) = y)(x) i # j the y'(+) fail to be
differentiable, but, as was shown in [P.3], they are semi-smooth [M.3],
i.e., they belong to the most benign class of nondifferentiable functions.
Because of these facts, Pk must be treated in the context of nondifferentiable

optimization. First, let

Py (x) A max{y’ (x)-u?, i € m} (3.4a)
let
b,(x) & maxie?-y' (x), 1 €m) (3.4b)
let
p(x) A max {y,(x),0,(x)} (3.5a)
and let
P(x), A max{0,p(x)} (3.5b)

It is well known [P.3] that if x is optimal for |“>k then, if P(Xx) <0
vf(X) = 0 and if y(X) = 0, then

0 € co{VF(X) U 3y(X)} (3.6)



where co denotes the convex hull and 3y(X) is the generalized gradient
[C.1] of ¥(-) at X. '

Given any x € R", € > 0, we define, with my A {0,1,...,m},

ky(%,€) & mintk € m|y(x-y* 1 (x) > e} (3.7a)
and

kz(x,e) A max{k € molyk'1(x)-yk(x) > e} (3.7b)

Let U, be any complex mxbu(x,s) matrix such that U:Uu = I and U::Q(x)uu
= diag(y](x), yz(x),...,yk(x’e)(x)) and let U, be any complex mx(m-kz(x,e)ﬂ)

seensy™x)). For

. * o * o [}
matrix such that Ul =1 and uzq(x)uz = diag(y
any x € X and £ > 0, we now-define

. k. (X,€)
Vﬁ(X) QCO{VEQnIVI = (Z,U:MUU Z), i= ]:2,.--9'\; zE€C ut™? s
oxX

izl = 1} (3.8a)

vE(x) A co{v € c"lvi = (z,U"r 3Q(x) u,z?,
2 = 2 ax] 2

n-k,(xy)+1
i=1,2,...m2€C XV gz

1} (3.8b)

Note that the same z must be used in computing every component of v in

(3.8a) or (3.8b). Also note tﬁat when U, of U, are not unique, the

definitions (3.8a,b) do not depend on the specific choice for Uu’ Uz'
We can now establish a characterization for 3y(x).

Proposition 3.1: Suppose that Assumption 2.1 holds. Then

To(x) if 9,(x) > y(x)
aw(x) =( -v°(x) if Yy(x) >, (x)
' cof(x)U-¥0(x)}  1F w,(x) = ¥ (x) (3.9)

-

The proof of this result is given in Appendix A. We now proceed to



extract from the optimality condition (3.6) a method for computing a descent
direction for ﬁk' This direction has to be a descent direction for ¥(-)
when x is not feasible and a feasible descent direction for f(-) when x
js feasible. The resulting algorithm will be in the family of phase I-
phase II methods with e-smearing (see [P.4]). We begin by developing an

g-approximation for 3y(x), with € > 0. For any x € R" and ¢ >0, we

define
ve(x) if g (x) >y (x) + e
v (x) AC-Vg(x) if Po(x) >y (x) + ¢
cb{Vu(x)U-Vi(x)} otherwise (3.10)

It will be shown in the Appendix that v®(-) is compact and upper
semicontinuous in the sense of Berge [B2]. Next, for any compact set

s C R", we define the real valued function Nr(S) by

Nr(S) A min{lhl|h € S} . (3.11)
and then
hw’s(x),é Nr(VE(x)) | (3.12a)

Nr(co(VF(x),v5(x)) if ¢(x) > -
he (x) A | |
fie vf(x) otherwise (3.12b)
We will see shortly that, for € sufficiently small -hw’s(x) is a
descent direction for y(-) and that -h e(x) is the analog of the feasible

H
descent direction found in methods of feasible directions [P.4]. To
obtain a phase I-phase II method we need a mechanism for crossing over
from hw g o hf ¢ S we go from the infeasible to the feasible region
for Pk. The reader familiar with the results in [P4] and in section 4.3

of [P.7] will find that we are following closely the general ideas used



in phase I-phase II methods for differentiable optimization. Let y > 1

we define
I(x) A e-w(x)+ (3.13)
and
T{x)he (x) + (1-T(x)hy, (x) i $(x) > -e
h (x) =

he e(x) = Vf(x) otherwise (3.14)

note that when zp(x)+ = 0, j.e. x is feasible, I'(x) = 1 and hs(x) = hg e(x),
while when IIJ(X)+ is very large, I'(x) = 0 and he(x) = h‘p e(x). Next, for

any x € ]R", € > 0, we define

0(x) & -max{Ir(x)hy ()17, 1(1-T(x)h, (x)1%) (3.15)
Finally, with g8 € (0,1) and

E A 10,1,8,6%,.... ) IENERT)
For any x € R", we define

e(x) = max{e € Elee(x) < <}’ (3.17)
With this, we can now define

h(x) A he(x)(x) (3.18a)

08(x) &8 (y(x) (3.18b)

For the algorithm to be of any usewe will need the following commonly occuring

fFor computational efficiency it is often desirable to use a test of the
form ee(x) < -8.ewiths > 0, The value of § has no effect on the analysis.



Assumption 3.1: For every x € X such that y(x) > 0, hw 0(x) #0. u
E ]

We now turn to the properties of the functions ee(-) 8(-) and €(-).

These will be proved in Appendix B.

Proposition 3.2: a) Forany x €X, 0<e <€’ =>ee(x) g_Be.(x).

b) For any € > 0, ee(-) is upper semicontinuous on X.
c) If X solves P> then e(x) = 0 and 5(2) = 0.
d) If X is such that 8(X) < 0, then there exist o > 0 and € > 0 such that

0.(x) < -e for all (x,e) € B(x,p) x [0,€]. (3.19)
~ -
Corollary 3.1: If X is such that 8(X) < O then there exists a
p > 0 such that
e(x) > Be(x) for all x € B(X,p) (3.20)
- |

For the sake of clarity of exposition, we shall state our algorithm in
three forms: first in conceptual, and hence simplest form, for the
special case of problem Ek (3.3), then in an implementable form for the
special case of problem Ek (3.3), and finally in implementable for the
most general form for the problem ﬁk' Our first form is conceptual
because it assumes that we can compute hw’e(x) and hf,e(x) exactly in

finite time.

Conceptual Algorithm 3.1

Data: x, €R".

Parameters: a,B,n € (0,1), b >> 1.

Step 0: Set i = 0.

Step 1: Compute h(xi) using the given value of 8 in (3.16). Stop if
h(xi) = 0.



Step 2: Compute the largest step size s; = nk € [0,M], with k an integer
(negative values are allowed), such that if w(xi) >0

W(x;-53h(x;))p(x;) < -s;alh(x;)12 (3.212)
If $(x;) < 0

F(xg-s5h(x;))-Flx;) < -s;alh(x;)1? (3.21b)
and

w(x'l-s'ih(x'i)) _<_0 (3.2]C)
Step 3: Set X;.q = X; -sih(xi), set i = i+1 and go to step 1, n

Lemma 3.1: Suppose that X; € is such that h(xi) # 0, then Si» as
constructed in Step 2 of Algorithm 3.1, $; > 0, i.e., the algorithm is

well defined.

Proof: Suppose the Lemma is false. Then there exists an X; € X such that
h(xi) # 0 for which the appropriate test cannot be satisfied with a

finite s = nk in Step 2 of Algorithm 3.1. Suppose at first that w(xi)

< -e(xi), then we clearly get a contradiction because f(-) is differentiable
on the basis of the usual arguments for methods of feasible directions.

Hence, suppose that w(xi) g.ee(xi). Then, if y(x;) < 0, we must have

either
k
f(x;=n h(x;) -f(x;)
Ll - > alh(x;)I12  for k = 0,1,2,... (3.22a)
n
or
k
P(x:-n"h(xs))-v(x;)
i 1 sualn(x)12 for k = 0,1,2,... (3.22b)

n
or both. Since xb(xi)+ =0, h(xi) = hf e(x )(xi) and hence, from the
. e (x;

strict separation property of h, e(x )(xi) R
»VY

(Vf(xi),h(xi)) >0 (3.23)



It therefore follows that (3.22a) cannot take place (e.f. analysis of
Armijo mehtods sec. 2.1 in [P.7]). Hence we only need to consider (3.22b).

By the mean value theorem of Lebourg [L.3],
k = -nK
Pxg=n"h(x3)) = ¥(x3) = -nXh(x;).E) (3.24)

where E € azp(x.i-)mkh(xi)) for some A € [0,1]. Hence from (3.22b) and
(3.24) .

(h(x;) > <alh(x;)12 (3.25)

without loss of generality, we may assume that ‘)Ek »> £ as k + =, Sir(ice)
R e(x, ©oelXx,
a(+) is u.s.c., we must have & C ay(x,) CV ! (x;) € colvf(x;),V ! (x;)1.

Now, taking limits in (2.25), we get that

Ch(x;), £) <alh(x,)1% - (3.26)
which contradicts the fact that
nx;) = he ooy y(x3) = Nr(cotoe(x,) 7o) (x)1)
I | _

Hence (3.22b) cannot hold either.
Now suppose that tp(x.i) > 0. We will again show that (3.22b) cannot

occur. By definition,

2 e(x;)
(hw,e(xi)(xi)’g) > “th,e(xi)'(xi)ﬂ VEEV (x.i) (3.27a)
and
2 e(x;)
(hf’e(xi)(xi),g) > uhf,e(xi)(xi ) YVEEV (xi) (3.27b)
Hence, by convexity of 1.1, we must haye

(x4)
(h(xi'),g) > Elh(xi)[l2 Vg € \7e % (xi) (3.27¢)



Hence (3.26) cannot hold and we get again a contradiction,

~ ~ K
Lemma 3.2: Let xle R" and let En’kz € m be such that y Y(X) # yﬁlﬂ(x)
and y 9‘(§) Fy % (x). Then there exists a p > O such that for all

x € B(X,5) the set valued

k .
7 Y(x) A cofv ec|v! = (z,u¥ X z),
a u 7 u

A

k
i=1,2,...,n; z€C Y, lzl = 1} (3.28a)
Ak . 3Q(x,)
¢ *(x) Acolvecyv = (z,0" 1.1 U,z?,
oxX
kg1
i=1,2,...,n3z€cCc”* , Izl =1} (3.28b)

defined, with Uu’ Ul any matrices such thatAU:';U’u = I’UIUz =1

la)

. ok . k
u,ax)y, = diag(y' (). ..y u(x))’EUzQ(")Uz = diag(y “(x),....y"(x)).
Furthermore, the maps ¥ Y(-) and ¢ jz’(') are continuous on B(X,p), in the

sense of Berge [B.2], i.e., they are both u.s.c. and 1.s.c. n

The proof of this result will be given in Appendix.
We now state our main result.
Theorem 3.1: If X is an accumulation point of a sequence {xi}, generated

by the Conceptual Algorithm, then 8(X) = 0 and ¥(X) < O.

Proof: For the sake of contradiction, suppose that X is an accumulation
point and 6(X) < 0. Then, by Proposition 3.2d) there exist p > 0 and

€ > 0 such that e(x;) > € for all x; C B(X,p). Now, suppose that

K C{0,1,2,...} is much that Xy =+ X. We consider three cases:

a) Suppose that P(x;) > 0 for all i € K. By construction this implies

that xp(xi) >0 for all i > 0 and that xp(xi) is monotonically decreasing.

K ~
Since x; + x and ¥(-) is continuous, it now follows that y(x;) v p(X).



Next, since k and k, €m, a finite set, there exists an infinite subset

AN

K' CK such that k (x’,i, (x3)) = k, and kz(xi’ (x-)) =k, for all i € K'.

Since e(x) < 0, there exists an € > 0 and an 10 such that e(x; ) > € for
K!

all i > iy, 1 €K'. Consequently, since x1A+x, the s§ts 7 u(x) and
K'
1?‘(x) are well defined and by Lemma § 29 u(x.i) ->( V)"(x) 7 z(x )
e(x
> TXx). Hence, since V % (x;) = u(x ) and v, 1 (x ) = V’(x ) for

all i €K', and r(-) is continuous, it follows that if K" C K is any infinite

A

subset such that VE(xi)(x;) =9 "(x.), or Ve(xi)(x.) =7 R‘(x ), or

e(x'i) k K"
v (Xi) co{¥ u(x yud }(x ) for all i € K", then h(x;) - h, with

= r(x)h + (1-1‘(2))3 (3.29)
A e(x;)
where, for V_ = lim V (x )s
K"
h, = Nr(T,) (3.30a)
and
he = Nr(co(vf(X),¥,) (3.30b)

e(x,i) ’*Eu "ESI, .
Now, if Vv (x;) = co{v “(x;) VV (x;)} for a1l i € K", then, clearly,

by continuity,

(X)) €7 (3.31)

e(x;) ku .
If v (x ) = (x.i) for all i € K", then we must have that wu(x.i)

- “’z(xi) > s(xi) for all i € K", Since by Corollary 3.1, there exists
an ¢ > 0 such that e(x.i) 33 for all i > K", and by "’9, are continuous,

wu(i) - .%(’?) _>_§ and again (3.31) holds. A similar argument holds

X dk‘) ' A~ A
wheny 9 (xi') = - z(xi). Finally, since 6(x) < 0, it follows from Corollary

(3.1) that A1 # 0.



It now follows from (3.30a,b) and (3.31) that
(h,g) > 112 g € ap(x) (3.32)
Now, by construction,

Wlxiyq) - V0xg) < -as T )12 ¥ (3.33)
'
Since h(x.i) + h, there exists an 1’0 such that

l])(x.i_”) - !P(Xi) < -asiﬂh(xi)llzi-asi[lﬁllzﬁ ¥i €K' i 31’0 (3.34)

Kl
and hence, since "’(xi) \s $(X) we must have that s; » 0. By construction

of Si» we must have

b(x;-87 530 (x;))9(x;)
B']si

> -alh(x;)1 (3.35)

And hence by the mean value theorem of Lebourg [L.3]

-(gi,h(xi))z-allh(xi)[lz Vi€ K' i (3.36)

where & € 3¢(X1,-X851h(x1-)) with A € [0,1]. It now follows from the u.s.c.
of 81'1')(-) that {£.};g must have convergent subsequences such that if

& g, with K" CK', then £€3y(x). Hence (3.36) yields, in the

limit that

(£,8) < aln(x)82 (3.37)

which contradicts (3.32). Hence w(xi) > 0 for all i is not possible,
b) Suppose that -e(xi) _<_zp(xi) <0 for all i > i4. Then I‘(xi) = 0 for
all i > 0. By construction in Step 2 of the conceptual Algorithm, we
must have that f(xi +1
we must have that f(xi) \ f(x). For the same reasons as in a) we must

) < f(xi) Vi > g and hence, by continuity of f(-)



have that h(x,) - i for some K" CK, and

h = he = Nr(cofvf(%),7,}) (3.38)
where 3y(x) C fV\w. Consequently, we must have that

(h, vF(x)) > IR12 (3.39a)

(h,e) > 1A1Z v € ay(X) (3.39b)
Since 1Al > 0 and since llh(x.i)ﬂ > llﬁil/Z for all i €K", i > i,, for some

iy € K" and f(x;) ¥ £(x), it follows from the fact that

f(xi_ﬂ)-f(xi)

S

2
: < -asiﬂh(xi)ll

< s;lft%2 viek i1, (3.40)

Kil
that S; * as i » =, By construction of Si» we must have for all i € K"

either

-1
flx.- sh(xs))-f(x;
(x1 B :1 (X1)) f(x1) S -aﬂh(xi)ﬂz (3.41a)
S.

i
or y(x;-8” s;h(x;)) > 0 so that, since y(x;) <0,

-1
P(x;-8""s5h(x;))-w(x;)
B']si

> -alh(x;)1? (3.41b)

Kll
or both. Taking 1imits in (3.41a,b) as i + =, we must have either

(VF(R) A < alhl? (3.42a)

or
(83h) < alht? (3.42b)



for some £ in aw(i) {c.f. case a)). Either way we get a contradiction of
(3.41) and hence b) cannot take place.

c) Suppose that ¥(x,) < -e(x;) < -€ ¥i €K. Then clearly, ¥(x;) <0
for.all i z_io, where 10 is smallest integer in K and hence, by continuity
of f(-) and construction in step 2, f(xi) ¥ f(X) (with monotonicity for
i>1dg). Now, for all i €K, h(x;) = Vf(x;) and vf(x) # 0. Clearly,
there exists an s3>0 such that ¢(Xi-§h(xi)) < 0 for all i € K. Hence,

(as in the case of the ordinary Armijo gradient method) there exists a

§ > 0 such that

flx;,)-F(x;) <-8 <0 WieEK (3.43)

But this contradicts the convergence of {f(xi)} and thus c) cannot take
place. This exhausts all possibilities. The fact that w(ﬁ) < 0 follows

from Assumption 3.1 and thus we are done. H
We are now ready to state our implementable algorithm.

Implementable Algorithm 3.2.

. n
Data: X €R

Parameters: a,B8.,n € (0,1), b >> 1.

Step 0: set i = 0.

Step 1: Use a proximity algorithm, such as the one in Appendix C, to
compute hfi’ hwi
and e(xi)) such that

and €; € E (approximations to hfs(xi)(xi)’ hf,e(xi)(xi)

~

2 €4
{15 vee v i(xg) (3.44a)

~

<k, &) > h,

~ ~ ) Es ‘
(R sEd > Wi 12 ¥E € cofuf(x;),v ' (x3)} (3.44b)



“h‘,,,gi(xi)ll2 Y R “hw’gi(xi)ﬂz (3.44c)

1

, 2 = ~ a2 2
g; 2 e(x;) (3.44¢)
and set
hy = Tlxjdhe 5 + (-T(x3)hy, (3.45)

Step 2: Compute the largest step size s; = nk € [0,M], with k an integer,

such that
I ¥(x;) > 0
Wlxg-s5hs) - B(x;) < -s;alh 12 ©(3.46a)

If w(xi) <0,

~ y 2
and
Step 3: Set x;.q = xi'sihi’ set i = i+1 and go to step 1. ﬂ

Theorem 3.2: a) Suppose that x; € X is such that h(xi) #0 (i.e, e(xi)

. >0,

< 0) then sy as constructed in step 2 of Algorithm 3.2 satisfies s

i.e., the algorithm is well defined. b) If X is an accumulation point
of a sequence {x;} constructed by Algorithm 3.2, then o(x) = 0 and
p(x) < 0. n

We omit a proof of this theorem since its proof is entirely analogous

to the proofs of Lemma 3.1 and Theorem 3.1.



To complete this section, we shall state the conceptual and
implementable algorithms for the simplest general case of problem Pk
(2.1)-(2.3), characterized by a single matrix G(x,w), i.e., one Q(x,w),

and a single function ¢(x,v), viz:

P min{f(x)[g'(x) <0, j €J; o(x,v) <0 W EN,

U
pw)? <y (x0) <u? Vel

where 2 CQ is finite. As in [G.3], we must make the following

Assumption 3: For every x € X, the set N(x) C N of local maximizers

of ¢(x,+) is finite. n

Next, we define

W(xsw) A maxty! (x,0)-u(@)?, 2(@)-y' (x,0)} (3.47)

z(x) A max ¢(x,v) (3.48)
and

a(x) A maxtg?,j € 35 v(xs0)s w € Qs z(x)} (3.49)

Next, for any x € X, € > 0, we define

3.(x) & {5 €3]0 (x) 2 ¥(x) -} (3.50)
,e(X) & {0 € lu(xw) > ¥(x) -€} (3.51)
Ne(x) A {v € N(x)|o(x,v) > ¥(x) -e} (3.52)

We now add the argument w to v¥(x) defined in (3.10) so that it

becomes V°(x,w) and, finally, we define



Up, (x:) = col¥g;.d € I (x); Vo(xuv)s v € No(x);
(u), 0 €9 (x)) (3.53)
Next, we define (c.f. t3.12))
hy,e(x) & Nr(vgk(x,m)) (3.54)
he (x) A Nr(VF(x) ,Vepk(x,m)) (3.54b)

and, with I'(x) defined as in (3.13), but with ¥(x) replacing y(x), we
define he(x), ea(x), e(x), h(x) and 8(x) as in (3.14)-(3.18). The
conceptual algorithm for PQ is the same as algorithm 3.1 except that
¥(x) replaces y(x). To obtain an implementable algorithm, if we assume
a high level of precision in the computation of the set Ns(x), we
simply substitute Vil(xi) for Vei(xi) and W(xi) for w(xi). If we wish
to use adaptive precision calculations in defining Ne(x), then the
implementable algorithm statement becomes more cumbersome. The specific
manner in which this can be done is stated in [G.3].

We now turn to the task of decomposing the problem P into a

sequence Pk'



4. A Master Outer Approximations Algorithm

Again, for the sake of clarity, we shall consider the design problem
in its simplest form P (2.4), since this. form contains all the relevant
difficulty and information as far as decomposition by means of outer
approximations is concerned. Since we are no longer worki.ng at a single
frequency w and single fixed subset Q CQq, we shall introduce the

quantities w, Qk in all of our relevant notation. Thus, P becomes

Py : min{f(x)]2%(w) < ¥’ (x,0) < u(@)? Vi €m, w e} (4.1)
Pk becomes
P, ¢ Mn(F(x) |2(w)? < ¥ (x0) < u()? Vi €m, wE Q) (4.2)

for any w C Q, we define

(x,0) A max{y' (x,0) - u(w)?, 2(w)? - y (x,0), i € m} (4.3)

and, for any w € @ and ¢ > 0, we define V¥(x,w) as in (3.10), for the

given value w. Next, for any @' CQ, we define
Uoi (x) A max y(x,w) (4.4)
weQ!
and for any 2'CQ and € > 0, we define
2l(x) A {w € Q' [v(x,w) > voi(x), -€} (4.5)
where 'y’n.(x)+ A max{}'n.(x),O}. Next, we define

Vg.(x) =co{ U V&(x,0)} (4.6)
uﬂzl

8)(

We are now ready to define the optimality functions for problems PQ..

For any x € X and € > 0, we define

hy fX:€) & NRLTE, (x)} (4.7)



and

heigi(x,€) A Nr co{VF(x),Ve,(x)}) ‘ (4.8)
we then define |

01 (X) & -maxdL{x)he o (x,e)12, 10-Tg (b, o (x,eN B (4.9)

-WQI(X)+ —
where I'Q.(x) Ae and 1])_9.()()_'_ A max{O,th.(x)}. It should be

clear from the analysis in Section 3 that if X is optimal for P.,, then

eg.,o(ﬁ) = 0. As before, we define

eqgi(x) 4 ma'x{seeleg.’e'(x) < -} (4.10)

and

Tlx) & 81 ) (¥ (4.11)

We are now ready to state an outer approximations algorithm for

decomposing Po (see [G.]1])

Outer Approximations Algorithm (4.1)

Data:
(i) 2 CQ a finite set.
(i1) A sequence {ekj}+ such that
a) ey =
b) Ekj¢ €5 as k = o,

0 for all j and Ekj > 0 for all j > k.

c) EjNOasj-*w.
(iii) B € (0,1).
Step 0: Set k = Q.
Step 1: Solve ng to the extent of finding an X) such that

Ehk(ik) <8 (4.12)

*A typical sequence with the required properties is defined by

y1/10

— 1aarl ] 1/10
Ekj = ]00{(]—"'3'- ) / ]'.

1
T+k:



3, (%) > -8 (4.13)

k
Step 2: Compute an Wy € e such that

%(xk) = ¢(;k’wk) (4-14)
Step 3: Set

Qk'l'] = {mk} v {wjeﬂkltb(fj,mj) > ekj} (4']5)
Set k = k+1 and go to Step 1. o

Since the ekj increase as k increases, a particular w; will be
retained for a certain number of iterations and then, quite likely,
dropped, never to be used again. Thus, the cardinality of Qk need not
grow indefinitely, indeed, it can usually be kept quite low, particularly
if the computation is carried out interactively. The reader should refer

to [G.2] for a detailed discussion of outer approximations methods.

Theorem 4.1. If x is an accumulation point of a sequence {ik} constructed
by Algorithm 4.1, then %(2) < 0and Bo(x) = 0, i.e. % is feasible and

stationary for PQ. H

To prove this theorem we need a number of preliminary results. We

define
2_(x) & Wwealy(x,w) > -€} (4.16)
Vo) Acol U E(x,u)) (4.17)

coene(x)

and we define

hy c(x) & Nr(¥_(x)) (4.17a)



he (%) & Nr(co{vf(x),7_(x)}) (4.17b)

and, finally, we define
Bgr (X) & max{lrg, (b ()12, 1(1-Tg, ()b, (x)1) (4.18)

We note that if %()’E) < 0, then 59 (x) =8 (x) for ¢ = €q (x). Also we
note that because Qé()i) C ﬁe(x), we have e (x) < e (x) < 0 for all
XEX, €= eg.(x) and for all @' CQ.

It follows directly from Theorem 3 in [G.2], that if X is an
accumulation point of a sequence {Yk} constructed by Algorithm 4.1, then

EQ(Q) < 0. Furthermore, by construction,

k - ~ —
-8 i'e'gk(xk) <8 (X)) <0 (4.19)

k*€k

where g, = (Y)*Oas k = o, Hencee (x) 0 as k > ». Now,
k k k k

because Eg(x) < 0, it follows that |I‘ (xk) - I‘ (xk)] -0 as k >, and

hence (4.17) implies also that

8 Ek(xk) -0 as k >, (4.20)
It remains to show that 59 0()’Z) = 0. OQur first result is obvious:

Proposition 4.1:

a) For any x € X,
(i) ﬁe(x) is monotone increasing in ¢,
(i) fz (x) is closed for all ¢ > 0 and

(iii) usz(x) ﬁo(x).
e>0 ©

(b) For any ¢ > 0 ﬁe(-) is u.s.c. o

This leacis to the following result:

«



Proposition 4.2:

a) For any x € X,

(i) Vv®(x) is monotone increasing in ¢,

(i) NvE(x) = T (x).
>0
b) For any € > 0, V¥(-) is u.s.c. u

The proof of this proposition is given in-Appendix 2

‘Lemma 4.1: If X € X is such that ﬂﬁf(§,0)ﬂ2 > 0, then there exist a
0 >0 and an € > 0 such that ﬂﬁf(ﬁ,e)ﬂz 3,}uﬁf(§,0)u? for all
(X,€) € 3(298) X [09€]°

Proof: Suppose that Hﬂf(Q,O)Hz > 0. Then, by Proposition 4.2a(i)

There exists an € > 0 such that ﬂ'ﬁf(Q,E)ﬂz > €. It now follows
from Proposition 4.2b that there exists a 8 > 0 such that for all
X € B(X,p) Uﬁf()?,g)ﬂ > g/2. It now follows from Proposition 4.2a(i)

that llﬁf.(x,s)ll2 > ilﬁf.(x,g)il2 > /2 for all (x,e) € B(X,p) x [0,€].

Proof of Theorem 4.1: It follows directly from Theorem 3 in [G.2] that

X 1is feasible, i.e. that sz(Q) < 0. Also, it has been shown earlier

thate ('k)*Oandek-*Oas k = =,

Now, suppose that o (X) < O and that % %, for K€ {a,1,2,...}.
Then there exists a kj such that ¥, (xk) <P (?k) < 0 for all k > kg,
k € K, and hence, since g, >0 as k ~ =, there exists a k; > ky such
that (xk) < -g, for all k > k], k € K. Therefore, for all k > k1,
k € K, e (xk) ﬂVf(xk)ﬂ which leads to VF(X) = 0, by the continuity
vf(-). Thus 8, o(X) = 4

Now suppose that T, (x) =0. ThenT (x) ] and 8 0(x) = -ilhf 0(x)ll2

For the sake of contradiction, suppose that 8 0(x) < 0. Then, from
9



Lemma 4.1, since € -+ 0 as k = », we conclude that ther exist a kz such

that for all k €K, k > k2’
b, (%002 > Th, (X)12/2 (4.21)
fge k - f,o ¢ -

Now T (xk) 1 as k = » and hence, since h (xk) and h (xk) must be

bounded, it follows that

—_ ~ ~Avnd
Tim 8, . (%) < -Tim I, _ ()07 < - plhe ()12 < 0 (4.22)
which contradicts the fact that @ (Yk) -0 as k > . Hence we are

Q,ek
done. n



5. CONCLUSION

To conclude, it may be worthwhile to summarize in what respect the
algorithm preSented in this paper is different from a general purpose
nondifferentiable optimization algorithm. First, in general, one has
no idea whether one is approaching a point of nondifferentiability or
not. In the case of singular values, the distance between them serves as
a "distance to probable'collision," i.e., to a nondifferentiable point.
Second, in general, one only has at one's disposal either generalized
gradients or approximations to smeared generalized gradients, both of
which are only U. S. C. In the case of singular values, we were able to
use sets v which are continuous. Thus, our algorithm exploits the
structure of thé singular value problem to a considerable extent. In
addition, it avoids the difficulties caused by the fact that singular
vectors cannot be computed with any kind of precision near a multiple
singular value (only the subspace can be computed accurately). As a
result, our new algorithm should be considerably superior to earlier ones

based on general nondifferentiable optimization algorithms.



Appendix A: Proof of Proposition 3.1

We prove Proposition 3.1 by establishing a sequence of facts.
"fgéﬁ_l: Consider the special case of problem P (and consequently of
Proposition 3.1) where x € lR] . Let RER'. Let L:‘_ (X) denote the right
derivative of ¥, at X, and let S?% (x) denote the r?éht derivative of
by at %, Tet Q') = R (R).

Let U, and U, be, respectively, m x kn(Q,O) and m x m+1-kz(§,0)

complex matrices such that

YT Tku(x,0) B T Tk (x,0)° | (A.1)
and

U0, = ¥ (01, (x,0), U *Q(x)U = Mgk (x,0)  (A.2)
Then

E?%(ﬁ) = the largest eigenvalue of Uu*Q'(Q) {A.3a)
and o A

gé%-(ﬁ) = the smallest eigenvalue of U£*Q'(§)U2 - (A.3b)

dy Wy .
Proof: We provide only the proof for a—%-(xx the Proof of ——%(x)isentire?y
X oX
analogous. From analytic function theory [A.1] and ‘from [R.1] we know that
there exists & > 0 such that:
. S o us € (D o
(i) The maps x ~ y (x) are analytic ¥i € k (x,0) on [x,x+§]
(i1) There exists an analytic function V :[X,x+81 > cmxky (x,0)
mxku(x,O)
(where C

that for all x € [?(,?(+6] V¥(x) - V(x) =

is the space of m x ku(Q,O) complex matrices) such

Iku(f,O), and

o | k (x,0)
WXV = diagly’ (x) 520K, eeny B

Finally define

(x)). (A.4)

A(x) 4 diag(y'(x),...y ¥ (x)) (A.5)



Then for all x € (X,x+8) we have from (A.4) that

& () V() + () JE () = 0 (A.6)

and
A () = D ()a(x)V(x) + V*(x)a(x) Sg (x) + VERIQIV(x). (A7)
Letting x = x we get that
Ak (3) =y (e (X) V() + ¥r(x) G (R +
+ VR)QRIV(R) = V*(R)Q* (RIV(R), (A.8)
and the last equality follows from (A.7). From (i) and (ii) we conclude

1 .
that 9¥—%§l = the largrst element on the diagonal of %%-(x)
dx

= V*(x)Q'(x)V(x). Since — y (x) = Qlléél, and V*(x)Q(x) - V(x) is
x dx
, , b, (%) , N
diagonal, it follows that +— = the largest eigenvalue of V*(x)Q(x)V(X).
dx

But V(X) and U_ are related by V(X) = U W, where W is a ky(X:0) x k,(X,0)
complex matrix, and W*W = WW* = Ik (x 0)* Thus V*(Q)Q'(Q)V(Q)
= WU Q (x)U W, and therefore V*(x)Q (x)V(x) and U *Q (x)U have the

same eigenvalues. The desired result now follows directly. n

The following fact is a direct corollary of Fact 1. Hence a proof is

omitted.

Fact 2: Let X be the Banach space of Hermitian m x m complex matrices.
let u, : X > R' be a functional such that ¥ A € X 1 (A) A the Targest

eigenvalue of A. Given A and B in X we order the eigenvalues of A in

decreasing order, i.e. y] z_yz, e 2 y where {y } are the eigen-
A A K kA+l A'1=1
u

values of A. Assume that y, = yA” #y, for some k €m. Let U, be



1

1 * = * = .
anm x ku complex matrix such that Uu Uu I, and Uu AUu Y I

k k °
u u
Finally, Tet u)(A,B) denote the directional derivative of u at A in
direction B. Then ﬁg(A,B) = the largest eigenvalue of Uu*BUu.
Similarly let ﬁz(A),Q the smallest eigenvalue of A. Assume that
k k,-1
L m ')

Yp =ypand y, # yAzfor some k, €m. Let U, be an mxm+1-k~

complex matrix such that uz*Uz = Im+1 k and U AU = Y Im+] k
Finally, let “z (A B) denote the d1rect10nal derivative of Uy at A in

airgct1on B. Then uzo(A,B) = the smallest eigenvalue of U,*BU,.

The following fact is recalled from [P.8],

Fact 3: Llet X and y be two Banach spaces. Let S:X—=>y be a fréchét
differentiable map and let p:y - R be a (nonlinear) locally Lipschitz
continuous, directionally differentiable functional. Let ﬁo(y,r)
denote the directional derivative of p at y in direction e, and let
S' denote the frechet derivative of S at x. Let o(x) A u(S(x)) and let
¢ (x,e) denote the directional derivative of ¢ at x in direction e.
. Then ¥x, e € X ¢ (x,e) exists and ¢ (x,e) = n (X(x),Sx(e))-

= I
We now return to the general setting of Problem Pk (and conseguently of
Proposition 3.1), i.e. we consider the case where X € RrR".

The following fact is a direct corollary of facts 2 and 3.

Fact 4: Given x and e € Bf',ku(f,o) and kz(i,O) as in (3.7). Let Uu
and U,, be, respectively, mxku(§,0) and mxm+l-kp(§,0) complex matrices,

- N - A avy L 1A .
such that 0,0y = T (%.0)* Y™V = Tmi-k (3,002 Yy UK, = ¥ O (%,0)
and U *Q(x)Uz y (x)Im+1 -k (x 0) Finally let wo(i e) denote the

directional derivative of w at X in direction e, and let WE(X e) denote



the directional derivative of 1’)2' at x in direction e
Then wU(x,e) = the largest eigenvalue of U *( Z e1 oA (x))U and

n
wz(x e) = the smallest eigenvalue of U *( 2 e1 aA (x))Ul, where
BX

=(e!,...eMTand x = (x',...x"). T .

At present, we shall discuss ¥y only, a treatment of “’2, will come later.
Fact 5: ¥ x € an,V e € R"

W0(x,e) = Max{(£,e)|£€VO(x)}. (A.9)
ku(x 0)
Proof: For all z €C , 1z0 = 1 we must have by Fact 4, that
n o
(€ zU* 8 2, (2,0 B (xu2),e =z, e B xu
aﬁ U ax" U121 ax’ u
n N
< ‘the largest eigenvalue of Uu*( ) e! ﬂ; (x))Uu = wo(x,e)
1=1 3x

(A.10)
Therefore '

Max{( £,& lgevg(x)} < wo(x,e) (A.11)

n . k. (x,0)
On the other hand Max{Z,Uu*( ) e! 39{ (x))UuZIZe¢ u Jzl = 13
1=1

n
= the largest eigenvalue of Uu*( ) e1 oA (x))U and hence we are done.

1= ax!
)=
We state the following fact without a proof, since the proof is
straightforward:
Fact 6: The map x »vg(x) is upper semicontinuous in the sense of
Berge ([B.2]). n

The "generalized directional derivative ¢'(x,e) of p at x in direction e"

is defined in [C.1] as .



¥ (x,e) A ng' ‘”(XJ'h”e%"”(xJ’h) (A.12)
o
=0

It is shown in {C.1] that

p'(x,e) = Max{{g,e) g€ ap(x)} (A.13)

The following fact holds when n =1, i.e. X € ]R] and follows directly

from the smoothness properties of eigenvalues.
Fact 7: If n =1 then yd(x,1) = y(x,1) ¥ x € R! . n
We also need the following auxiliary result.
Fact 8: Given E and F, two compact convex sets in R" , 1f for every
e € R" Max{(£,e)|£€EE = Max{{£,e)|EEF} | (A.14)
Then E = F.

Proof: If E # F, then, either there exists an f € F - E, or an
fE€E - F. Suppose that f € F - E. Let es = arg min{#f-gl|g€E} and
lete=f - Ef. Then for all g € E, we have that

: 2
Which implies that
(g, Ee - f) 3 (f, Eg - f) (A.16)
and hence (g,e) ;(f,e), contradicting (A.14). n

From now on we assume that n > 1 and x € RrR". First, we prove that the

point to set map x —>v8(x) has the mean value property with respect to

the function y.



Fact 9: For all x,e € R" there exist T € [0,1] and £ € Vg(xﬂe) such
that

P, (x+e) -y (x) = Ce,E). (A.17)

Proof: For all T € [0,1] define C(t) A A(x+te), and define
I'Bu(r) A highest eigenvalué of C(t). From Fact 5, (A.13) and Fact 8 we
have that

0~ W
vuwu(r) = awu(r) ¥ t€[0,1]. (A.18)
From the mean value theorem of Lebourg [L.3] we have that
v (xve) = ¥ (x) = §,(1) - v, (0) = (E,e (A.19)

for some £ € a%(r), and some t € [0,]]. From (A.18) € € vgz'f;u(r)
T ku(x-l-‘l’e,O) .
= cof( Z,UU-C'(T)Uuz)IZEC Lzl = 1}, where Uu Uu = Iku(x+-re)
_
and Uu*C(-r)Uu =y (x”e)lku(xﬂe)f Thus

£EE co{(z,Uu*(Zei B—Qi (x+'ce))Uuz>|llzll = 1} = co{( ((z,Uu*:;A[ (x+'re)Uuz),...,

X
(z,Uu* -—l; (x+ e)Uuz))T,e)lﬂzli =1} = {(g,e)[gevg(xﬂ:e)}, which concludes
X
our proof. n

Corollary: ¥ x,e € R" we have that

b, (x,e) = Maxi(g,e)|EEV(x)} (A.20)

Proof: ¥!(x,e) = m;p(x+h+xe);\tp(x+h) _>_Tﬁg (g, ,.e) (where
A0 p’ ’
0 h=0

Ena € Vg(x+h+s)\e) for all s € [0,1]) = Max{(zg',e>|&,‘.€vg(x)~}v,‘ where the
inequality follows from Fact 9 and the equality follows from Fact 6.

=



Fact 10: For all x € X Vg(x) = awu(x).
Proof: This fact follows directly from Fact 5, (A.13) and Fact 8.
Fact 11: For all x € X - Vg(x) = awz(x).

Proof: Define Wh(x) A the highest eigenvalue of -Q(x). Then

22 + E&(x) = wz(x) and hence éﬁi(x) = awl(x). But by Fact 10,
| _ 0

awz(x) = -Vz(x). Consequently awz(x) = Vz(x). =

We can now conclude the proof of Proposition 3.1 if wu(x) > wz(u) then
a(x) = 3y, (x) = Vo(x). If u,(x) < v,(x) then 3p(x) = ap,(x) = -¥0(x).

Hence, for these two cases we are done. It remains to considér the case
where wu(x) = wz(x).
In this case, it follows from [P.8], Theorem 3.2 that

wo(x,e) = MaX{wg(x,e), wg(x,e)} vee R" (A.21)
and from [P.8], Theorem 3.4 it follows that

co{vg(x) -vg(x)} = (ger'[(g,e) < v)(x,e) ¥ ee R"}. (A.22)
Now for x and e R", we have that

v'(x,e) = 1im
A0
h-0

= Max {90 (x,e) s (x,e)} = Max{(£,e)|£€ Colv)(x),-va(x)}}.  (A.23)

w(x+hf%e)-@(X+h) E_MaX{w;(Xa3)3 Py (x,€)}

with the last equality holding because of Fact 5,(A.13) and Facts 10 and
11. From Fact 8 it now follows that

aW(x) = Cofv)(x),-v2(x)}. :



Appendix B: Proof of Proposition 3.2, Corollary 3.1 and Assumption 3.2.

Proof of Proposition 3.2:
’ [}
a) If 0 <e <e' then V¥(x) CV® (x). Hence, !lhw 0> ﬂhw o (X)1
and Uhf,e(x)ll > llhf’s.(x)ll. Consequently, ee(x) < ee.(x).
b) First we show that the point to set map x - Vﬁ(x) is upper semi-

[--]

continuous. Let {x,},_

1 C X be such that Xy * 2, as i +». We know that
ku(xi’é) €m. Let K' CN_ be any infinite set of integers such that
for every i €K', ku(xi’e) = Kk, a fixed integer in m. From the definition

of ku(-,e) it follows that

yFxp) - ¥ Ux) <& Wik €K xR (8.1)
and that
¥ x) - ¥R ) > e 20 (8.2)

From (B.1) we conclude that y¥(X) - y**1(X) < € for all k € k-1, and
hence that ku(ﬁ,e) > k. From analytic function theory ([A.1]) and
from [R.1], we know that there exists ﬁu and ﬁu 5 complex m X ku(§,e)

matrices, and I € N such that for every i > I

Ak

UUUU = IKU(Q,Q) (B.3a)
and
.= (B.3b)
Uy,i%,i © I, (%.e) '
AKX ALA . ] A ku(i) A
U,ax)U, = diag(y (x),....y = (x))
and (B.4)

la)

- Ky (x)
o -
Uy,i QXU 5 = diagly (x)seeooy (%))

andﬁ . —>ﬁ.
Usi (e U



Let U be the mxk matrix consisting of the first k columns of
Kl
k

u. .. Now, for every sequence of unit vectors Z € C such that Z - Z

u,i
we have

«z, uu ; fT(xi) Uy 4240 24005 3A_ (%;) Uy 4Z;")
ax" (B.5)
K. AN * aA Ay, A A
> (Z,un7 20 (0,ND .. 42,0 T) AR_ v (in) ,
1+ X ax

where T is the k (2 €) X ﬁ matrix, the upper kxk block of which is IE’
and the Tower (k (x,€)-k) x k block of which consists of zeros only.

X
Let z0 TZ. Then zZy€¢ u and llzoﬂ = 1. It follows that

(«Z,(0,n" A (R O,nD .. «2,0,n" 2 (0,1D) € F(R).
90X

since the above analysis holds for every sequence {x ¥ 320 such that x; - X
and every Z € CKu(xu € , we conclude that the point to set map:
X - Vu(x) is upper semi-continuous.

In a similar way, one can show that the point to set map: x -+ Vi(x)
is upper semi-continuous. It follows therefore that the point to set map:
x + V¥(x) is also upper semi-continuous.

Proposition 3.2.b now follows directly from the fact that the map:

x + V&(x) is upper semi-continuous and that I'(+) is continuous.

c) If x solves Py
~ - A 2
es(x) = -ﬂhf,e(x)ﬂ . (B.6)

If 60(2) < 0 then th 0(x)ﬂ2 > 0. Consider first the case where ¥(X) = 0
From upper semi-continuity of VO(-), it follows that there exist 8 > 0

and 1 > 0 such that for every x € B(X,p) ﬂhf’o(x)ﬂ2 > u. Now for every



A > 0 we have that

P(E-Mh 0(R) - ¥(R) = -Khe ((),8) (8.7)

for some & € Vo(x) and some x € B(?,hf 0(2)?\).

We have therefore that

P(X=-2he o(x))-9(X) R
I'E ‘F,O}\ < ﬂhf’o(x)llz (8.8)

Therefore, there exists X > 0 such that for every A € [0,1] we have that
w(Q-Ahf 0(52)) < p(X). We also have the fact that

F(X-Ahp A(X))-F(X)
.m )‘
A0

= <the o(%),96%(3)) < .nhf’o(ﬁ)u2 < 0. (8.9)

Hence there exists A > 0 such that for every A € [0,;], f(i-khf,o(i))
< f(x) and w(ﬁ-khf’o(i)) < 9(X). Therefore X is not optimal.

If $(X) < 0 then he ((R) = VF2(X). If VFO(R) # O then we can
clearly find X > 0 such that f(Q-AVfO(Q)) < f(X) and (by continuity of
v) w(x-XVfo(ﬁ)) < 0, and X can not be optimal. ﬂ

d. Suppose that 6(X) < 0. Then there exists an € > 0 such that

8_(X) < -e. From (b) we know that there exists a p > O such that for
€ .

every x € B(X,p) eé(x) < -g. But for every x € B(X,p) and € € [0,e] we

have that 6_(x) < 8_(x) < -€. H
€

A Proof of Corollary 3.1.

If the statement of the corollary is not true, then there exists
a sequence {xi}?;], such that x; - X and e(xi) 5_62 e(X). Consequently,
o
ese(i)(xi) > -Be(x). Thus 688(2)(x) > -Be(x). However, eee(i)
5.e€(£)(2) < -g(X) < -Be(X), which leads to a contradiction, unless

e(x) = 0. But this implies that 8(X) = 0. Hence we are done. n



A Proof of Lemma 3.2:

&, S ¥ I
We prove only the case of V ~. We know that y “(x) #y_ (x).

Henﬁs+%here exists an p > 0 such thaé for every x € B(X,p) yku(x)

#y Y (x). For every x € B(X,p), ¢ U(x) is independent of U, provided
that U*U = IEU and U*Q(x)U = diag(y](x),...,y U(x)). Moréover, from
[R.1] we can find for every x € B(X,p) a U(x) such that U(x) is analytic
in x on B(X,p). From continuity of Qy it follows that Vk(-) is

. - A A
continuous in x on B(X,p). =



Appendix C: A Proximity Algorithm.

In Step 1 of Algorithm 3.2 we need to compute F‘fi’ ﬁwi and ;i

which satisfy (3.4a). First we state a suitable proximity algorithm.

Algorithm C.1.

. n ~0 _ ~0 €
Data: X; €R", € >0, hﬁ'(xi) = Vf(xi) and h ‘pi(xi) EV (xi).

Step 0: Set j = 0.
Step 17: set 9;’1' = arg min{(g,ﬁ%)]geve(xi)}

and set gj = arg min{(g,ﬁj Y g€ vE(x )}
1]).' lb.i u

. 3 pd J 2
step 2: a) If  (gl,hl) > Inl0° - e

J J

If then  (gfy,h3y) < (TF(x;),hE)

o, .
~ {geiahei? 5

then set hﬁ,E= W hfi .
fi

Else set
3 <Vf(x.),ﬁg.> -
ho. = L i RO
fie ™ TRI g2 MR
£i
1£ (g% i ) > 103,02 - ¢/
LI TR J .J
-~ Syl
then set h = » hy,
¥ie uhjwiuz i

, I+ _ ~] ]
Step 3: Set hf'i = Nr(Co{hﬁ.,gﬁ})
J+ ~J
set = ht s
e gwi Nr(Co{ v gwi})

set j = j+1 and go to Step 1.

TA discussion of the computation in (C.1) and (C.2) will follow.

(C.1)

(c.2)

(c.3)

(C.4)

(c.5)

(C.6)

(c.7)

{C.8)



Lemma C.1: If € > 0 then the proximity algorithm C.1 yields Eﬁ. and ~1P

j
in finitely many iterations.

Proof: If hﬁ is not construed in finitely many iterations then for all

j €{0,1,2,...} A N_ we have in Step 2 that

(gli bl < 32 - e/, (c.3)
Since for all J € N,, h?-'i € Vs(xi), and Ve(xi) is a compact set, it
follows that there exists r € (0,1) such that for all
JE ll\l_"llﬁ“:,ill2 - /4 < rﬂﬁ‘;iﬂz . From Proposition 5.8 of [P.6] it

follows now (by setting M = {-5‘1]_.1.}, T = {-g‘;‘]} and f = Co{Vf(xi),ve(xi})
that there exists a constant C € (0,1) such that llﬁf,';'] 12 < Max{r,c}-ﬂﬁ‘;i 12,

~

This implies that hY, .— 0. But then min{(g,ﬁg.ngeve(x.)} — 0.
1 . 1 Jo

fi
Thl:lS tt}ere exi§ts a JOJ:N+ such that for every j > .J0 we have that
<g‘1J.-1- ,5‘1].-1-) > “h‘;i 12 - e/4, contradicting (C.3), and hence ﬁﬁ. is construeded
in a finite number of iterations.
The proof for E v is similar and hence will be omitted. H
We now indicate an efficient way for solving the problems in (C.1)
and in (C.2),
Assume for simplicity that ve(x;) = Vi(xi). For a given vector
a € R", we need to compute arg min{(g,a)lgevﬁ(xi)}.
We note that
min{(g,a)lgeve(xi)} = min{(Z,Uu*(iaj 3% (xi))UuZ)|IIle =1}

2

J
(where a = (al,a2,...a%)7) = the smallest eigenvalue of

n -
u*( 3 al & (x.)u .
oX

Let z, be any unit eigenvector for the above eigenvalue. Then
3 € = * dA %* oA )
X X

9A T
LI Z ,U * - -
(£55Y9, ol (x1)UuZa)) .



To compute €5 and hence hwi = hw1~i and hﬁ = hfi’gi, we need to
find the largest € € I such that maX{UP(xi)hfi 8|l2, "(1-P(xi)hw. E:ﬂz) > €.

. i
Since in general, {ei} is an (almost) monotonically decreasing sequence,

we initialize the search for Ei’ by applying the proximity algorithm

with ¢ = 8251_]. If this value of € is too small, then the computation

~

in Algorithm C.1 can be continued with ge replacinge and h h

;€ fi,e
as a starting point. This will prove to be much more efficient then
starting with ¢ = 1 and decreasing it by a factor of g over and over

again.
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