
 

 

 

 

 

 

 

 

 

Copyright © 1980, by the author(s). 
All rights reserved. 

 
Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 
lists, requires prior specific permission. 



THE DISCRETE FOURIER TRANSFORM VIA CIRCULANTS

by

B. N. Parlett

Memorandum No. UCB/ERL M80/37

August 1980

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



Mathematics Department and Computer Sciences Division of the Department of

Electrical Engineering and Computer Science, University of California,

Berkeley, California 94720.

The author gratefully acknowledges support from the Office of Naval Research

Contract N000H-76-C-0013.



-1-

Introduction

The discrete Fourier Transform (DFT), defined below in (2-1), is a

valuable tool in many fields from signal processing to partial differential

equations. There is strong incentive for computing the transform quickly,

and, after two decades of active research, we now know the minimum number

of essential multiplications required for the task and have algorithms

which use precisely this number, It does not follow that, in the end,

these will be the most desirable techniques but they are certainly of

interest in their own right. Major credit for this fine work seems to

belong to I.J. Good, R.M. Rader, and S. Winograd. This story, and more,

is told in the book [5],

At the heart of these methods lie Winograd's algorithms for n point

DFT's, where n is a small prime, He used a quick way of forming the

product of two polynomials modulo a third one and that theory, in turn, uses

the Chinese Remainder Theorem and some abstract algebra. Section 5

exhibits the correspondence between his approach and ours.

This communication points out that these optimal algorithms follow

directly from the spectral factorization of certain matrices called

circulants. Specifically the real and imaginary parts of the eigenvectors

of these circulants take the place of polynomial representations in

Winograd's theory. Such an approach is not as strange as it may seem

at first gla.nce; if an arbitrary column vector must be multiplied by a

matrix C using few multipl ications then it is natural to see whether C

can be written as C = X D Y where the elements of X and Y are small

integers.and D is diagonal. All normal matrices can be factored into the

canonical form XDX and, for some small circulants, the eigenvectors X of

C are very simple. Another connection is that I.J. Good, in [3b], showed

how to use the DFT to invert large circulants. We are, in some sense,

inverting that work.
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The canonical factorization of circulants is not as powerful as the

number theoretical approach of Winograd. For example, the factorization

does not yield the fast algorithm for DFT(ll) nor the proofs of minimality.

On the other hand it does yield the algorithms which are in use and it

does so in a rather simple way. Some people may enjoy a low brow deriva

tion of these valuable schemes.

A recent survey article [2] linked the DFT with an impressive

variety of topics in pure and applied mathematics and yet no mention was

made of the circulants lurking in the background.

We barely mention the well known FFT and the reader is referred to

[5] to see its connection to the aTgorithms discussed here.

2. The DFT and Cyclic Convolution

The material in this section is standard but must be included if only

to establish the notation.

The vector or sequence {xQ,...,xn_1} to be transformed may be

thought of as data (complex values) given at n equally spaced points. The

transformed sequence {L x ,} is defined by

n-1 ,.

xk = £ a) Jx., k=0,...,n-l, (2-1)
K j=0 J

where

to = co = exp(2Tr i/~^l/n),

is the primitive nth root of unity. Different professional groups give

somewhat different definitions of DFT but the variations are minor. For
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example, signal engineers call (2-1) the inverse DFT. In order to

suppress indices we can use matrix notation. Let x and x denote the

column vectors associated with the two sequences and let F denote the

Fourier Transform matrix,

F(«) -

1 1

CO CO

2 4
CO CO

.n-1
CO

CO
n-1

CO
n-2 • [•'J] (2-2)

CO

Note that the order of F is implied by co. Note also that we have

used the relation co = 1 to reduce all the exponents in F below n. The

definition (2-1), commonly called DFT(n), now becomes

x = F(u )x.

F is a very special Vandermonde matrix and a well known property is

F4Un) =n2 I .

The letter I denotes the identity matrix

The inverse DFT is simple

x-I FU,,"1) x,

The eigenvectors of F are too complicated, see [2], to yield a fast

method for computing the DFT so we turn to other arrangements.

(2-3)

(2-4)

(2-5)
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It is customary to remove the trivial part of the computation of

(2-3) as follows. Since

*0 =x0 + xl + ••• +xn-l

the essential computation is

n-1

k " A0 =
j=l

or, equivalent!y,

*u -xn =£ wkj x. , k=l,...,n-l, (2-6)

n-1

xk - xn = £ (coKj - 1) x. , k = l,...,n-l (2-7)

The remarkable fact is that the x., k=l,...,n-l, can be computed using

2
between n and 2n multiplications instead of (n-1) as suggested by

(2-6) or (2-7).

In 1968 CM. Rader pointed out in [6] that when n is prime the

variables can be reordered so that (2-6) becomes a cyclic convolution.

Let us illustrate this for n = 5, in which case it is only necessary to

exchange the last two variables.



f x. - x,

Xo - x,

X. - X,

x^ - X,
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CO CO CO CO

CO CO CO CO

CO CO CO 10

CO CO CO CO

xi

x2

x4

x3

(2-8)

Note that each row of the matrix is obtained by shifting left the row

above in a cyclic fashion. The new ordering is monotonic when {1,2,3,4}

is seen as a multiplicative group modulo 5:

2° 21 22 23
(mod 5)

Y Y T Y

12 4 3

Rader's observation reduces the DFT computation to that of cyclic convolu

tion. There are several clever tricks available for doing this quickly

but it was Winograd*s achievement to determine the minimal number of

multiplications that are needed and to exhibit the algorithms which achieve

the minimum. The minimum depends quite strongly on n. It also depends on

the algebraic field in which the multiplication is taken to act but we will

not focus on this aspect of the algorithms which is treated fully in [5].

Finally we remark that the case when n is prime is the important one

as explained in Section 4.

3. Circulant Multiplication.

We take n to be prime and rewrite Rader's observation slightly.

Instead of taking both the {x.} and the {xfc} in the same new ordering we

reverse it for the {x.}. When n = 5 this yields



' x.
\

- X,

x0 - X,

x„ - X,

x^ - X,

V V
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CO
3

CO
4

CO
2"

CO
xl

2
CO CO

3
CO

4
CO

X3
4

CO
2

CO CO
3

CO
X4

3
CO

4
CO

2
CO 10

(3-1)

Of course the only difference from (2-8) is that each row of the matrix

in (3-1) is obtained from the row above by shifting right instead of left.

The advantage is that the matrix in (3-1) is a circulant matrix and a great

deal is known about them. See [1] and [4].

For all prime n Rader's observation reduces DFT(n) to multiplying

an arbitrary vector by a special circulant matrix of order n-1. We now

list the standard facts about circulant matrices.

FACT 1. Every m x m circulant is a polynomial in the full cycle

(or shift) matrix

0 0 . . 1

1 0 . . 0

P = Pm =m
0 1 . . 0

..010

(3-2)

The coefficients of the polynomial are given by column 1 of the circulant.

The degree is less than m.

There is nothing to prove here but we will illustrate the property using

the matrix in (3-1) which can be written as
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<f>(P4) =col +co2P4 +W4P42 +^3p 3.

0 4Note that I = P. = P^ and, in general, note the special pattern of

the l's in the powers of P .

(3-3)

FACT 2. Pm is a permutation matrix. Its eigenvalues are the roots of

unity and its eigenvectors are mutually orthogonal. Moreover

P is real and so it has a real canonical form A = A which
m m

is a direct sum of powers of

Rm =
cos e -sin q\

sin e cos ey
9 = 27r/m

together with 1 and, if m is even, -1.

Corresponding to each complex eigenvalue are the real and imaginary

parts of the eigenvector. These two real vectors span the associated

invariant plane and, of more importance to us, these two vectors are columns

of an orthogonal (real) matrix which reduces P to A . In symbols,
m m j >

m m m m , S = S (3-4)

Here S denotes the transpose of S. We call (3-4) the real spectral

factorization of ?m and show it for small values of m in Table 1.

[Table 1 could go near here.]
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Eigenvectors are only defined up to a constant nonzero factor.

Hence there is no loss in generality in writing

S = GA (3-5)

where A is diagonal and positive definite and may be chosen at our.

convenience.

FACT 3. Let <l>(Pm) be any m xm circulant and let Pm = (GA) A (GA)

be the real spectral factorization of the cyclic shift matrix

P . Then
m

<|>(Pm) =GA(j)(A)(GA)T (3-6)

is the associated spectral factorization of <f>(Pm)- In other

words, the eigenvectors of P are eigenvectors of Y-(Pm) for

any polynomial <j>.

Whenever G's elements are small integers then (3-6) provides a

minimal multiplication algorithm for forming the product (J>(P )x. In symbols,

<t>(Pm)x =GA<J>(Pm)AGTx
=G(D(GTx)), (3-7)

where

D= A<f>(Pm)A

is block diagonal with 2x2 and 1 x i blocks. Only the application of
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D involves genuine multiplications, G and G act via additions and

subtractions.

[Table 2 could go near here.]

The only way that the DFT affects the circulant product (3-7) is

kthrough the complex polynomial r. In Table 2 we list <j) and ${1^ )

for several small values of m. Recall from Fact 2 that R is the matrix
m

representing rotation through an angle 2ir/m. It turns out that <{>(Rk)

is also of the form (^ I) and» as abonus» B and y are either both
real or both pure imaginary. Multiplication of a real vector by such a

matrix requires 3 real multiplications and 3 additions. This holds even

when 3 and y are matrices. One implementation follows from the

matrix identity

B -C

,C B/ \I I 0/ ( 0 B+C 0 ) ( 0 I I (3-8)

In general (3-8) is preferable to

B -C\ / I I\ A(B+1C) 0 \ /I il

C B/ \-iI il/ \ 0 Js(B-IC)/ \I -11.

Another useful identity is

B C\ /I I\ /^2(B+C) 0 \ 11 I

C B/ \I -1/ \ 0 Js(B-C)/ \I -I

(3-9)

(3-10)
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which is just a block version of (3-7) when m = 2. We shall use (3-8) and

(3-10) later.

For completeness we give the nonzero elements of D in Table 3.

These numbers are the values, at the (n-l)st roots of unity, of a polynomial

of which the coefficients are nth roots of unity,

[Table 3 could go near here.]

Our interest is in the number of real multiplications required to

compute DFT(n), For reasons that appear in the next section we make the

peculiar definition

mult(n) = 1-+ no. of multiplications required for DFT(n).

If n is prime and G's elements are small integers then

mult(n) = 3(n-l)/2 = 2n - 1 - (n-1 )/2

when x is real. For complex data the counts are only doubled. On binary

computers the count can be reduced by 1 when n = 3,5 because multiplica

tion by H. or % can be accomplished by a shift.

It is clear that DFT(2) and DFT(4) require no multiplications.

However in dealing with larger values of n we must define

mult(2) = 2, mult(4) = 4.

More precisely

mult(n) = max{n, 1 + no. of multiplications required for DFT(n)}.
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In order to obtain a systematic development of the G matrices

for larger values of m it is worth noting that the factorization

developed in this section extends immediately to matrices of the form

-zA -z„ -z,

-z, -z.

-z

Such matrices are polynomials in the orthogonal matrix

P4 =

0 0 0-1

10 0 0

0 10 0

0 0 10

The only difference is that the eigenvalues of P are in the roots of -1

(instead of +1), The factorization (3-10) reduces a circulant of order 2m

to a direct sum of a circulant of order m and one of these "improper"

circulants of order m.

In order for G to have small integer elements it is necessary that

x -1 have no irreducible factors (over the rationals) of degree exceeding 2

4. The DFT Factorization

In order to deal nicely with DFT(n) for large n it is convenient to

recast the results of the previous section as a factorization of the DFT

matrix itself. The task is to compute F(w )x = x.
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The first step of eliminating xQ and xQ can be seen as performing
one step of triangular factorization of F(co ). This leads to (2-7)

rather than (2-6). For example,

0 0 0 0

F(co5) -

1 !o o c) 0

0

0

0

/ uv
(or - 1)

0 u^fI, ...,4

1111

Section 3 showed that, when n is prime, there are permutation matrices

H| and II2 such that

0 0 0 0 0 0 0 0 1111

w2 = (4-1)

When G's elements are small integers this leads to an algorithm with

minimal number of multiplications. The D matrices exhibited in

Section 3 were based on (2-6) but the only modification needed to conform

to (2-7) is to change the top element of D from -l/(n-l) to -n/(n-l).

Verification of this assertion is left to the reader.

With a slight abuse of notation we will write (4-1) as

niFH)n2= gdgTj (4-2)
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or

F(con) -vGDG1, (4-3)

and we call this the DFT factorization of F(co ). The context will make
n

it clear whether F(w ) or a circulant matrix of order n-1 is being

factored.

Note that ^ (equivalence under permutations) is a true equivalence

relation.

The important observation of I.J. Good in [3a] may be summarized as

Theorem. If I and m are relatively prime then

F(%)-F(^)0F(com) (4-4)

Here :® denotes the direct (or Kronecker or tensor) product of matrices,

namely

A® B =

anB a]2B .

a21B a22B .



Example: F(w6) ^ F(w2) ® F(w3)

1 1

2 4
CO CO

4 2
CO CO

1 1

2 4
CO CO

4 2
CO CO

= [F(co2) ® F(co3)]

Algorithm: Z, = F(t0o) x^ ,

x = F(io-) x ,

= X+ + X

-14-

z+

1 1

2 4
CO CO

4 2
CO CO

-1 -1

5
CO CO

CO CO

V

j CO - COCj

*+ X =

= X, - X

In order to emphasize the theorem's hypothesis we point out that

F(cog) t F(co3) ® F(co3).

Thus a 2 dimensional DFT on 3x3 points is not equivalent to a 1 dimensional

DFT on 9 points.

There is a routine procedure for changing the DFT factorization (4-3)

into an enlarged form G^DG, where D is diagonal (not just block diagonal)

and has an order not less than D, namely mult(n). It uses the identity

(3-8) to replace (^ ""*) by diag(Y,6+Y»3-Y). Note the G2 is not the
transpose of G-,. We illustrate the procedure when n = 5,
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Figure 1. Transition to strictly diagonal form

0 0 0 0

1110

1-10 1

11-10

1-1 0-1

0 0 0 0 0

1110 1

1-1110

1 1-1 0-1

1 -1 -1 -1 0

-5/4

a

-5/4

a

8 -Y

Y 3

3+Y

3-Y

11111

0 1111

0 1-1 1-1

0 10-10

0 0 1 0-1

Gl.

»

1 1 "1 1 1

0 1 "1 1 1

0 1 -'1 1 -1

0 1 -"1 -1 1

o o •1 0 -1

0 1 13 -1 0

The implication of Good's theorem is clear. Given fast algorithms for

DFT(£) and DFT(m), i.e.

FH>"VW

m m m m

Then, provided I and m have no common factors,

F(%) M(B,) 9 F(^),

^ (GA • Gm> <D* • D.) (% • G/>
(4-5)
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yields a fast algorithm for DFT(£m). Formula (4-5) invokes a valuable

property of direct products, see [4].

The number of multiplications required is best seen from the full

representation

F<%> " <G*(2) 9^H «^H^ «eM) (4-6)

/*. /N

Since D^ ® Dm is diagonal of order multU)'mult(m) we have

mult(5in) = multU).mult(m). (4-7)

For example, mult(210) = mult(2.3-5-7) = 324.

We say that (4-5), or (4-6), is the DFT factorization of F(co\, ).

In order to get a fast DFT algorithm for an^ natural number n it

is necessary to exhibit a DFT factorization for prime powers pr. Unfor

tunately this becomes very messy as r increases. Circulants do appear

but they have to be combined with subblocks which involve DFT(p ) for

k < r. We content ourselves with exhibiting the DFT factorization for n = 9

and n = 8 in Table 4.

[Table 4 could go near here.]

One consequence of this messiness and our ignorance of mult(p )

is that the favorite composite numbers for the DFT are those with a variety

of prime factors. This is in stark contrast to the FFT of Cooley and

Tukey which favors n = 2 .

This concludes our elementary presentation of Winograd's DFT. There

is far more to this subject than we have indicated here.
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5. Relation of Circulant Multiplication to Winograd's Formulation

It is instructive to see in detail the correspondence between our

factorization of the circulant and Winograd's derivation of cyclic

convolution using polynomials.

Let u be the indeterminate in the polynomials.

Cyclic convolution on n points can be rephrased as the formation

of the product of two arbitrary polynomials modulo the polynomial u - 1

This can be done rapidly with the aid of the Chinese Remainder Theorem.

For simplicity, we take n = 5 and define

2 3X(u) =x1 +x3u +x4u +x2u ,
2 4 2 3 3

fl(u)=co + cou+cou + CO u ,

C/ \ "" * ~ 2 ^3X(u) =x.j +x2u +x4u +x3u .

The object is to find X given any X and a fixed Q. It turns out that

X = ftX mod (u -1).

The fast algorithm requires knowledge of the irreducible factors

~£ .n-1 n ,
of u - 1. In our case

u4 -1=(u-1) (u+1) (u2+l),

5 Q-,(u) Q2(u) Q3(u),

defining Q1, Q2, and Q3» Also needed are another set of polynomials, of

degree less than 4, which are defined, for k = 1,2,3, by

skCu) =
1 mod Qk,

0 mod Q., j f k.
j
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The Sk are analogous to the fundamental polynomials for Lagrangian

interpolation in that they serve to reconstruct a polynomial given only

its values "at" the Qfc. The word "at" should be construed as "modulo"

in the previous sentence. The existence of the S. is the essence of

the Chinese Remainder Theorem.

Finally define fik(u) = fl(u) mod Qk, k=1,2,3.

Now we can formulate the algorithm succinctly.

Phase 1 (called the preweave by signal engineers):

Form Xk = X mod Qk, k = 1,2,3.

Phase 2 (multiply):

Form Xk =\'\ mod Qk, k = 1,2,3.

Phase 3 (called the postweave or recovery):
** ^

Form X= X1S1 + X2S2 + X3S3.

When the Sk have 0,±1 coefficients then Phase 3 needs no multiplica

tions. By the Remainder theorem X] =X(l), X2 =X(-l), X3 =X^ +
X^ u, X(3^ =x1 - x4, etc.

Let us determine the S. and ft. explicitly. It is easy to

verify that

51 =^Q2Q3 =k^ +u+"* +u3)s
52 =-^^3 =kO - u+u2 - u3),
53 =-3sQ1Q2 =̂ ""2 )•

Since co = exp(27ri/5) a little algebra yields
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&,(u)=co +co +co +co3 =-l, (since co5 =l),
ft2(u) =co - co2 +co4 - co3 = 2(cos ^ - cos ^ ),
^3(u) =(co - to4) +(co2 - co3)u

=2i(sin ?^+ sin ^u),

These values define the matrix D in Table 3. Note that the polynomial

product ft3*X3 mod Q3 involves more than one scalar multiplication. In

fact

X3(u) =(luU2) /OjW.XjW

•(I.) /S{°)x3(0)-"3O)-X3(1)\
U3(ivo) +s(0)-x3(1)/ raodQ3'

=0 u) /^ ^(Dx i%W
«3(1) «3(0)/ U(1>

When the steps are laid out in matrix form the connection with circulant

factorization is apparent. (See Table 1.)



Phase 1

Phase 2

Phase 3

(0)

0)

1

2

y (0)
3

(1)
3
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1111

1-1 1-1

10-10

0 10-1

a

^2 o o

o o a3(0U3(1)
o o fl3(1)a3(0)

xl

h
X <°>

X (D[X3 J

1110

1-10 1

11-10

1-1 0-1

S] S2 S3 S3u

k

0

0

0

0 0

k 0

0 Jg

0 0

f * "i
0 xi
0 x2

0 x (°)
*3

h x (D
lX3 j

A

To recover the polynomial X in Phase 3 it is only necessary to pre-

2 3
multiply by the row vector (1 u u u ). Of course the constants k,

h are absorbed into the matrix in Phase 2t
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Table 1

"Pm =(GA) a(GA)'"

"Real spectral factorization of the cyclic shift matrix"

Notation: A © B = diag(A,B) = direct sum of A and B.

m = 2: G =

m = 3: G =

m = 4: G =

m = 6: G =

A"2 =21, A=
f 1 0 '

0-1 t

2 0 1

1

"I J

, A"2 =diag(3,6,2), A=1

1 0 1

0 1

•1 0

0 -1

-2A"c = diag(4,4,2,2),

'10' ' 0 -1 '
A = 0

0 -1 1 0
k. J

2 0 2 0 1

11-11

•1 1 -1 -1

•2020

•1 -1 -1 1

1 -1 -1 -1 ;

„rt„ 2ir . 2ir )cos ^ -sin^-

sin *^ cos ^

-2
diag(6,6,12,4,12,4),

f 1 0 1

0 -1

cos tt/3 -sin tt/3

sin tt/3 cos tt/3

> A 0 R 0 R ,
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Table 2

"The circulant polynomial arising from DFT(m+l)."

f 0 -1)
co. = exp(27r /-1/j). J =

1 0

m = 2: cj>(t) = co~ + co~ t

4>(A) = (J)(l) + ({>(-!) = -1 0 Al

m = 4: <J>(t)

<t>0) =-1, <I>(-1) =2(cos 2tt/5 - cos 4tt/5) =2(cos ^ +cos £)

2 4 2 3 3COg + COc t + COc t + COr t

fsin 2tt/5 -sin 4tt/5*
4>(R) = 2/-1

sin 4tt/5 sin 2-17/5^

m = 6: 4>(t)

4>(1)

<J)(R)

*(R2)

CO- + CO- t + CO- t + CO
6.3 . -T.-r , w.

i- t + co- t + co- t
4.4

-1, <j>(-l) =2/-1 (sin ^ +sin ^ - sin ^),
to j. 3 2 „ 6 4 _,_ 5NT _,_ /T, 3 ^ 2 4 5x .
(2co + co -co -2co -co +co)I+/3(co +co -co -co)J,

/T{(2 sin ^- - sin ^ +sin ^f)I +/3(sin ^ +sin ^-)J},
/T{(sin y +2sin ^ - sin ^-)I +/3"(sin I +sin ^)J}.
,., t , ,, 3„2 _ ,., 2D x ,., 6T , ,., 4D2 _ ,., 5D3 2 2 6

= co-I + co- R - co- R + co- I + co-

- x,to,, 3 2i96 4 5Wj.vT',3 2 _, 4 Sx .= *$(2co -co -co +2co -co - co )I + -s- (co -co +co -co)J,

°" "~ .6tt\, . «•/ 4tt . 6tt>

2tt

5.5

=(2 cos 2l - cos ^ - cos^)I +,*(- cos ^ +cos ^)J
=Ccos j+ Zcos^^• COS ^y)I +A(- COS y+COS 2y)J.

4 5
0

4) J.
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Table 3. "D = A<j>(A)A"

A 0 B = diag(A,B), i = AT

n =3: D=-1® (1/2) /3 1

2tT . 7T
11^- o„ / sin -f -sin •£•n=5: D=-Iel(cosf+cosif)W . } . ^

\sin g- sin -F-

ji
6 -

y e / \ n 6

n

3=^ (sin j +2sin..^ -sin ^),
Y- ^(sinf+sin ^l),
6=̂ (COS y+2COS ~ +COS ^y),
n= }(-cosf +cos^).
3+y =̂ (2sin j +sin ^ +sin ^)
3-Y =1( -sin^+ sin^- 2sin ^)
6+n =I(- cos ^+cos ^ +2cos ^)
6-n =j(2 COS y+COS ^y -COS ~)

Note 1. Some minor modifications will be given in Section 4.

Note 2. All angles have been reduced to the range (0,tt/2).



Table 4a.
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The DFT Factorization for n = 3 .

11111111

n n 3 6 3 6 3 6
i i co co co co co co

t t 6 3 6 3 6 3
i i co co co co co co

3 6 5 7 8 4 2
cocococococococo

3 2 5 7 8 4
cocococococococo

3 6 4 2 5 7 8
cocococococococo

3 8 4 5 7
cocococococococo

3 6 7 8 4 2 i
cocococococococo
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ty[t) =co +cogt +co-t +cogt +co^t +co2t , co =exp(2iT /-1/9),

A- = -1 © a/-l 0
6

3 -y

Y 3

/-I 0
6 -e

e 5

mult(9) =3+8 + 3 =14. Dg =i|>(Ag)

, see Table 1.



-25-

Table 4b. The DFT Factorization for n = 2 .

f * >

x0

x4
As

x2

x6

xl 1 -1

x5 1 -1

x7 1 -1

I x3 J 1 -1

1

i

-i

-i

1

ii
0

! 1 l

,' 1 -1

1 Hi i

0
l ll-i -i

1 -lli-i

l -i !-i l

11111

1 -1 -1 -1 -1

•1 i i -i -i

•1 -i -i i i

•i co -to -ico ito

•1 -co co ico ico

i -ico ico co -co

i ico -ico -co co

diag
f 1 ?

1

1

i

1

i

a

ai

f \

x0

x4

x2

x6

x1

x5

x7

• x3 -

11111111

1 1 1 1-1-1-1-1

1 1-1-1

0 0 0 0

1-10 0

0 0 1-1

0 0 0 0

0 0 0 0

0 0 0 0

1 1-1-1

0 0 0 0

0 0 0 0

1-1 1-1

1-1 1-1

x,

where a = 1//2 = cos tt/4 = sin ir/4, i = /-l.

The cyclic convolution on {x-, ,x3,x5,x7> does not lead to an optimal
scheme here.

mult(.8) = max {8,2} = 8.
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