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ABSTRACT

Mappings that have been used to describe the Fermi acceleration

mechanism are examined. It is shown that results which appear to be con

tradictory are due to differences in the mapping equations. For those

mappings that can be locally approximated by the standard mapping, the

value of the nonlinear parameter of the standard mapping, for which the

last isolating KAM surface exists, can be used to predict the loss of

KAM stability with action for the more general mappings. Previous

results of the variation in the density distribution in the stochastic

region of the phase space, averaged over phases, is shown to be consis

tent with the ergodic hypothesis. Fine scale structure of the mappings

is found to be model dependent. The standard mapping is a member of a

class of mappings which retains some KAM trajectories at arbitrarily

large nonlinearity. This feature is not generic to a wider class of

mappings discussed in this paper. The stability of two-iteration fixed

points are discussed in detail, including the bifurcation sequence for

one type of mapping.
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I. INTRODUCTION

As an explanation for the origin of cosmic rays, Fermi [1]

proposed a mechanism for charged particles to accelerate by collisions

with moving magnetic field structures. The process is analogous to elas

tic collisions between a light and heavy object, and a simple version,

that of a light particle bouncing between a fixed and an oscillating

wall, was first examined by Ulam and associates [2]. If the phase of

the wall oscillation is chosen randomly at the time of impact, then the

obvious result is obtained, that the particle is accelerated on the aver

age, as found by Hammers ley [3]. The more interesting theoretical ques

tion is whether stochastic acceleration can result from the nonlinear

dynamics alone, in the absence of an imposed random phase assumption, i.e.,

when the wall oscillation is a periodic function of time. Numerical

simulations of this case, reported by Ulam [2] indicated that the parti

cle motion appeared to be stochastic, but did not increase its energy on

the average.

Ulam's result was explained by a combination of analytic and

numerical work by Zaslavskii and Chirikov [h] and, more completely, by

Brahic [5] and by Lieberman and Lichtenberg [6]. They showed that the

phase space was divided into three regions: (I) low velocities for
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which the phase space is essentially stochastic; (lI) intermediate

velocities for which islands of regular motion are imbedded in the

stochastic sea; and (ill) high velocities for which most trajectories

are regular and bounded. Furthermore, if the periodic wall velocity has

a sufficient number of continuous derivatives, invariant curves span

the phase space, separating the stochastic sea of regions I and II, from

region III, and thus bound the energy gainof the particles. This last result

is in agreement with the Kolmogorov-Arnold-Moser (KAM) theorem, which states

that for dynamical systems sufficiently close to integrable ones most regu

lar surfaces characteristic of integral systems continue to exist (see, for

example, Arnold [7]). The lowest value of velocity at which a KAM surface

isolates higher velocities from stochastic mot-ion at lower velocities can

not be determined from the rigorous theory. This transition has been found

numerically and compared with more heuristic theories (see Lieberman and

Lichtenberg [6]).

Because the Fermi particle acceleration mechanism was: (a)

one of the first considered for determining the regions of parameter

space where KAM surfaces existed, (b) easily approximated by simple

mappings for which numerical solutions are attainable for "long times",

and (c) has the important physical application of cosmic ray produc

tion, it has become a bellweather problem in understanding the dynamics

of nonlinear Hamiltonian systems with the equivalent of two degrees of

freedom. Consequently, it is important to understand which features of

the problem are generic to near-integrable systems and which are model-

dependent. This is of particular importance in that various models of

Fermi acceleration, and their approximations, have produced results that,

at least superficially, appear to be contradictory.
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There have been several important models considered in the

literature, each described by a different surface of section mapping.

The Ulam configuration of a particle bouncing between a fixed and an

oscillating wall is illustrated in Fig. la, and has been treated using

an "exact" dynamical mapping for a sawtooth wall velocity by Zaslav-

skii and Chirikov [k], and Lieberman and Lichtenberg [6], and with both

sawtooth and parabolic wall velocties by Brahic [5]. A "simplified" Ulam

mapping, in which the oscillating wall imparts momentum to the particle

but occupies a fixed position, was introduced by Lieberman and Lichten

berg [6] and studied for arbitrary wall velocity. This simplified ver

sion approximates many (but not all) features of the exact mapping, pro

vided the particle velocity ?s much larger than the wall velocity.

Pustylni.kov [8] has considered a different configuration,

illustrated in Fig. 1b, in which the particle strikes a single oscillating

wall and returns to it under the influence of a constant gravitational

force. He treats this problem using an exact dynamical mapping for arbi

trary wall velocities. Again, a simplified mapping may be introduced,

which approximates the oscillating wall interaction by one that imparts

momentum at a fixed position.

Pustylnikov showed rigorously, using the exact form of his map

ping, that, even for analytic wall velocities, parameters can be chosen

such that there is no bound to the energy gain of the particle; i.e.,

"globally isolating" KAM surfaces do not exist, differing from results

on the Ulam model, which exhibited KAM surfaces bounding the energy in

crease. In Section iI, we show that Pustylnikov's result arises from the

nature of his mapping, and that no contradiction to previous results exists
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In Section III, an apparent disagreement in the diffusion within

the primary stochastic sea, between the exact and simplified Ulam mappings,

is resolved. The resolution was first pointed out by Izrailev and

Zhdanova [16] for the case of a sawtooth wall velocity. Their calcula

tion is extended to arbitrary wall velocity in Section III.

When studying the motion in the neighborhood of a given energy,

it is often possible to linearize about a given value of the action to

obtain a "standard mapping" (see Chirikov [9]). For the standard mapping

two-iteration stable periodic points are known to persist for arbitrarily

large values of the nonlinearity parameter [9], corresponding to arbitrar

ily small values of the particle energy for the Ulam mapping which locally

approximates it. This is in distinction to the results in Lie

berman and Lichtenberg [6], who found a lower energy bound on the stability

of these periodic points. This difference is explained in Sec. IV

where it is shown that a fundamental difference exists between a class

of mappings including the Ulam version of Fermi acceleration, and a

class of mappings which includes the approximation of the standard map

ping, resulting in the contrasting stability conditions at two-itera

tion points.

II. EXISTENCE OF ISOLATING KAM SURFACES

In the version of the Fermi acceleration problem, treated in a

rigorous mathematical way by Pustylnikov [8], the particle strikes a single

oscillating wall and returns to it under the action of a constant gravi

tational force. The problem is similar to that formulated by Ulam, in

which the particle returns to the oscillating wall by reflection from a

fixed wall in that it is a one degree of freedom non-autonomous Hamil-
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tonian system that can be represented by an area preserving mapping. How

ever, in contrast to Ulam's configuration, Pustylnikov finds that, even for

an analytic wall velocity, there exist conditions for which a finite

measure of the initial conditions will result in an unbounded increase

in the particle velocity. He concludes that this result is "in agree

ment" with unbounded velocities found by Zaslavskii [10] for a sawtooth wall

velocity in Ulam's configuration, and is a counter example to the state

ment of Zaslavskii and Chirikov [k] that the stochastic motion will be

ergodic, i.e., uniformly fill the available phase space. These conclu

sions, with a rigorous mathematical calculation to back them up, appear

at first glance to throw into doubt the more heuristic techniques (see,

for example, Chirikov [9]) that have been developed to calculate the beha

vior of these systems.

We now demonstrate that there is no contradiction between the

implications of Pustylnikov's [8] results for the gravitational return pro

blem and those for the fixed wall reflective return problem, for analytic

wall velocities. Furthermore, the lack of a KAM barrier with a sawtooth wall

velocity arises from a different effect than that in the Pustylnikov calcula

tion. We show that with asmooth wall oscillation, for the Ulam configuration, a

particle bouncing between a fixed and oscillating wall is bounded in velo

city, while, for the Pustylnikov configuration, a particle returning to

an oscillatory wall due to gravity may have unbounded motion. The nature

of this difference lies in the physical difference between the two pro

blems. The transit time between wall collisions decreases wi th increasing

particle velocity for the Ulam configuration and increases with increas

ing velocity for the Pustylnikov configuration.
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We consider a wall motion x =aF(<j>) , where F is an even
w

periodic function of the phase <fr=wt , period 2ir , with F =-F =1
max min

For convenience, we consider the simplified Ulam and Pustylnikov mappings,

in which the moving wall imparts momentum to the particle but occupies

a fixed position, such that the transit time between successive colli

sions is independent of the phase of the moving wall. Then the motion of

the particle in either configuration is given by the difference equations

v, = u„-■"<♦„> o)

*n+1 • ♦n+"T<u„+1) <2>

t"h
where <j> =a>t is the wall oscillation phase just before the n col-

n n J

lision with the moving wall, u =v /2coa is the normalized particle
n n

velocity, x isthetime between the n and (n+1) collision, and

F' is the derivative of F with respect to 4» and represents the velo

city impulse given to the particle. Equations (1) and (2) consist of two

shears, that is, two mappings in which one variable is advanced with

the other fixed, and are area preserving. Furthermore, for F'

sufficiently smooth and for F'/u sufficiently small, KAM curves exist

(e.g., see Moser [11]). With F'sO , these equations describe integrable

motion on a torus u=const , with the phase advancing in equal increments.

For the simplified Ulam mapping,

x » 2£/v ., (3)
n+1

where I is the distance between the walls. For determination of KAM sur

faces we are interested in values of u»F' . In this limit, <f> changes

much more rapidly than v so that we can examine a localized region of the
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phase space in the neighborhood of some v satisfying

cjt(v ) = 2irm , m integer , w

which is the value of v for stationary phase (modulo 2ir ). We expand

x as

wt(v ,,) = 2irm + a)
n+l

dx

dv

Av
n+1

(5)

n+1

where x is given in (3). Furthermore, we take F= cos<j> , which is analy

tic and therefore satisfies the KAM smoothness criterion. With these sub

stitutions (1) and (2) become

Au ., = Au + sin Ad>
n+1 n Yn

A<f>
n+1

A$ -
n

2co2a£
2 AUn+1

(6)

(7)

where A<b = <J> - <f> and <j> ., = <{> + 2Trm .
Tn Tn ron on+1 ron

This mapping can be compared with that obtained from Pustylnikov's

problem. There we set

T= 2vn+l/9 (8)

which when substituted in (2), with F'=*-sin<J> , as above, gives the mappi

n+1

n+1

= u + sin (J)

. Aoj2a
> + u .,
n g n+1

(9)

(10)

ng
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The mappings in (6)-(7) and (9)-(10) have the same form, valid for a

localized region in velocity in the former case. However, a fundamental

difference is that the coefficient of u . is independent of velocity

in (10) while in (7) it is inversely dependent on v . The physical conse-
o

quence is that the change in <J> due to a change in v continues to have

the same proportionality, independent of v , in the case of (10); while

for (7) this proportionality factor becomes increasingly small with in

creasing v . Since it is the phase randomization resulting from this

term that we would expect to be the source of the stochasiticty, we would

therefore also expect stochasticity to be limited with increasing energy

in the case of the mapping in (6)-(7), but not in the case of the mapping

in (9)-(10). We can see this formally by introducing the changes in vari

ables

r

<

8 = <

2u>2a£

, 2
4 go a

A4>

Au in (6)

in (9)

in (7)

in (10)

(11)

obtaining for both equations a form known as the standard mapping.

I J_, = I + K cos 9
n+1 n

e ., = e + i .,
n+1 n n+1

(12)

(13)
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We emphasize that the mapping of (12) and (13) approximates that of (6)

and (7), only locally, while it is globally equivalent to (9) and (10).

A wide variety of other mappings have also been approximated by the stan

dard mapping over a limited portion of the action space, such as the se-

paratrix mapping of the pendulum (e.g., Chirikov [9]) and the motion of

particles in mirror machines (e.g., Chirikov [9], and Cohen [12]). The

standard mapping is periodic (period 2tt ) in both I and 9 . It has

been extensively studied by a combination of analytic and numerical

techniques (see Chirikov [9], Greene [13], and Lichtenberg [1*0), indi

cating the existence of a KAM surface, "globally" isolating regions of I,

separated by 2ir intervals for K^1 . (Green [13] obtains the most

precise result of K<0.97 •) For the mapping of (6)-(7) this implies

that a globally isolating KAM surface exists for

vq < 0.97 a)(2a2,)* . (14)

For the mapping of (9)"(10) this implies that no globally isolating KAM

surface exists for any v , provided

^ > 0.97 (,5)

This calculation interprets the mathematical result of Pustylnikov, and

resolves the apparent contradiction raised by him. Numerical calculations

have been performed by Lieberman and Lichtenberg [6], for the problem

of the ball contained between the fixed and oscillating walls. They found

that the position of the isolating KAM surface is in excellent agreement

with the prediction of the standard mapping approximation given by (H).
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We now discuss, briefly, the reason for the unbounded velocity

observed by Zaslavskii [10] and also by Lieberman and Lichtenberg [6], for

the sawtooth wall velocity, in the Ulam version of Fermi acceleration.

The sawtooth forcing function is discontinuous at its edges and conse

quently does not satisfy the KAM theorem which requires some number of

continuous derivatives of the function. Moser [11] estimated that three

continuous derivatives of F were sufficient for the existence of KAM

surfaces. In Lieberman and Lichtenberg, Figs. 2 and 3, the trajectories

of particles, were computed obeying the sawtooth velocity function

F' =Un>-j , (16)

and the cubic forcing function

F' =(2{<g- D[1 -(2{<J>nH)2] , (17)

where {<j> } is the fractional part of <f>
Yn r n

For the latter, F" is continuous and F'" discontinuous.

For the forcing function as given in (16), the results of the calculations

indicated no absolute barrier to particles, with initially low velocity in

the stochastic region, diffusing to high velocity; for the function in

(17) there existed an absolute barrier to diffusion as predicted by (1*0 .

Thus, we not only resolve the question posed by Pustylnikov, but also ar

rive at the interesting result that, at least for the particular pro

blem treated here, only two continuous derivatives of F are necessary

for the existence of an isolating KAM surface.
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III DIFFUSION IN THE STOCHASTIC REGION

We consider the Ulam version of Fermi acceleration with KAM

surfaces bounding the stochastic region from above. In regions I and II ,

in those portions of the phase plane which are accessible to a stochas

tic trajectory, the trajectory ergodicly covers the phase plane. This

implies that after long times, the probability density is uniform over

the phase plane (see, for example, Arnold and Avez [15]). Furthermore,
Significant siz<

in the low velocity region I, for which noyadiabatic islands exist, an

integration over phases results in a uniform probability density f ver

sus the canonically conjugate action. For the sawtooth wall velocity

Lieberman and Lichtenberg [6] computed the density f(u) both for the

simplified mapping, for which momentum is imparted without physical wall

movement, and for the exact mapping, as given by Zaslavskii and Chirikov

[4]. Although the sawtooth wall velocity does not strictly satisfy the

boundedness condition for ergodicity, the diffusion into the adiabatic

region III is sufficiently slow that approximate agreement is expected.

The results of the computation, however, while giving the expected re

sult for the simplified equations, gave an f(u) «u for the exact equa

tions. The reason for this apparent contradiction is that, for the exact

problem, as first pointed out by Brahic [5], the variables u and cj>
n n

are not canonical conjugates. As we shall show below, if the phase

is defined as that at the time of col 1ision wi th the f?xed wa11, the vari-

able conjugate to the phase is the energy E=u . If f(E)=f then
o

f(u) ° f(E) £ * u <18>
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which is the result found numerically. These ideas have been developed

by Izrailev and Zhadanova [16] in order to explain the numerical results.

They also performed numerical calculations in support of their discussion,
2

finding f(u )=constant.

To see how the canonical variables are formed, we write the dif

ference equations in terms of collisions with the fixed, rather than the

moving, wall. Defining w =v /2a)a to be the normalized velocity and
n n '

t*h(j>n to be the phase of the moving wall at the n collision of the parti

cle with the fixed wall, then we have, in implicit form, analogous to Eqs.

(1) and (2), the exact equations of motion

Wn+1 = wn - F'(*c) (19)

*n+1 = *c+ [*M+IF(*C)]/Wn+1 (20)

<f> = r\> + [irM +-J- F(<f> )]/w (21)
c rn L 2 c n

th
where $ is the phase at collision with the moving wall, after the n

collision with the fixed wall, and M« Jt/2ira . In this form it is easy

to see that, measuring the distance from the fixed wall as x , conju

gate to v , then the phase \J» is a time like variable conjugate to E .

That is, in the extended phase space (v,x,E,-t) the choice of a surface of

section at x = 0 gives an area preserving motion for the remaining pair

(E,-t) . This can be confirmed by direct computation of the Jacobian

from (19)- (21), with E=w2 ,

n+r n+1 = 1 , (22)
3(En,*n)
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This result is in contrast to the simplified form of the pro

blem in which the physical wall motion is neglected by dropping F in

(20) and (21). These equations are then equivalent to (1) and (2), with

tox = 2ttM/u ., , for which the phase <j> at collision with the moving wall
n+l r

is a position-like variable and therefore conjugate to u . This can

be directly confirmed by calculating

''Vi-Vi' . ^Vi-Vi* . , _ (23)
3(w ♦ ) 3(u * )

We now calculate f(u) , directly, for the simplified and exact

problems, for velocities sufficiently low that a random phase assumption

is a good approximation.

As shown in Lieberman and Lichtenberg [6] the evolution of the

velocity distribution f(u,n) for the simplified Ulam mapping can be

written in terms of a Fokker-Planck equation

& - -£<Bf> +r4(Df> <*•>
3u

where x is measured in units of bounces and

B(u) = (tyfto Pd(Au) (25)

D(u) = (n")/(Au)2 pd<A") (26)

and P is the probability of a particle being at u if it were at u-Au ,

n collisions earlier. Assuming for n= 1 that no phase correlations

exist, i.e., the phase <f> is uniformly distributed over 2-rr , one
n '
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obtains

B = 0 (27)

D- 27 / F'2(<|)) d* * (28)
-rr

For a sawtooth wall velocity F'=<J>/(2tt) , and one obtains D = 1/12 .

In the steady state, assuming perfectly reflecting barriers at u=0

and u=ug , one obtains a uniform distribution in velocity f(u)=f

A similar calculation can be made for the exact Ulam mapping

with a sawtooth wall velocity. However, the non-uniform phase distri

bution at the moving wall must be taken into account. Izrailev and

Zhdanov [16] showed that this could be done explicitly be relating the

uniform phase at the fixed wall to the nonuniform phase at the moving

wall, obtaining the Fokker-Planck coefficients. We here generalize

their result to obtain the steady-state distribution, for the exact

equations, with arbitrary wall velocity, but do so directly in terms

of the canonical variables (E,^) . We let g(E,n) be the energy dis

tribution and write the Fokker-Planck equation

|£ =.^flgJ^jLfo, (29)

which form holds for any canonical variables with

B(E) = ^/AE pd<AE) (30)

6(E) = 1/(AE)2 Pd(AE) . (3D
n J
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From (19) and the definition of E

AE = - 2E* F' + F'2 . (32)

Then making the random phase assumption for the canonical phase \\>

1 F
B = 57 J AE d* ' (33)

From (21)

d(j>c = to, +1e"* F' d*c (34)

which gives, since F' is an odd function of
c

2-rr J 2 F'2 d4 . (35)
-IT

A similar calculation gives

= 27 f (1,EF'2 +3F'*) «♦
-7T

(36)

For a sawtooth wall velocity F' =cj> /2ir , one finds

§=1/6 and, D=E/3+3/80 . In the steady state with perfectly

reflecting barriers, and neglecting the factor 3/80 in D , one

then finds a uniform distribution in energy g(E) =g

Since from (18) f=2ug , we find the velocity distribution varies line

arly with the velocity u . These results are in agreement with the

results of numerical simulations in Lieberman and Lichtenberg ([6],

Fig. 12), and Izrailev and Zhadanova ([16], Fig. 3). The first of these

figures is reproduced here in Fig. 2, showing the velocity distribution
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of the simplified (solid line) and exact (dashed line) Ulam mapping,

with a sawtooth wall velocity. The deviations below the stochastic

4 2
velocity limit, us=M72^16 (M=2u> a£ =1000 in thi s example), for

which all fixed points are unstable, are due to inadequate time for a

quasi-steady state to be achieved and to the flux leakage at high

velocities. For u>u adiabatic islands become increasingly impor

tant.

If (19) is transformed into the form of (24), then, from the

energy coefficients 5 and B , we obtain, for the exact Ulam mapping,

the velocity coefficients

D = D/(4E) (37)

B « (B -D)/(2E*) . (38)

For the sawtooth wall velocity B=(24u)~ and D= 1/12 ,

as obtained by Izrailev and Zhadanova [16].

IV. FIXED POINTS AND LINEAR STABILITY

As we have discussed previously in Lieberman and Lichtenberg [6]

if we write Eqs. (1) and (2) in matrix form as

(u .1f$ .-) = M(u ,4 ) (39)
n+1 n+1 n n

then the periodic points for a k-iterated mapping occur for

(u ,<j> ) - Mk(u ,* ) A mod 2u . (40)
n n n n n
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In the neighborhood of a given fixed point the motion stability can be

determined from the tangent (i.e., linearized) mapping

(AVr^nnV = L'(4Vi*n) m

where L is the ordered product of theJacobian matrices of M . Most

of the interesting properties of the mappings have been found from exa

mining the fixed points of a single iteration, k=1 .

The simplified Ulam mapping of a particle bouncing between

the fixed and oscillating wall, the simplified Pustylnikov mapping of

a particle returning to a sinusoidally oscillating wall under gravity,

and a class of related mappings, can be expressed in terms of a radial

twist mapping

= I + K sin 9„ (42)
n+1 n n

9n+1 = 9„+G<'„+l) <*3)

where G=ln+1 gives the standard and simplified-Pustylnikov mappings,

and G=l/In+^ gives the simplified Ulam mapping. Generally 8 is

modulo 2tt , but I is not. However, for the standard mapping, (43)

implies that I is also modulo 2ir , which profoundly effects the

fixed points. For k=1 , in the general case, substituting (40) in

(42) and (43) we have

K sin 0 = 0 (44)

G(l ) = 27rm , m integer . (45)



For the standard mapping

K sin 9 = 2tt£
o

G(l ) = I = 2™
o o
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(46)

(47)

The interesting consequence of this difference appears when we examine

the stability in the neighborhood of a fixed point. Expanding about

fixed point I , 0 we obtain the tangent mapping

n+1

A8
n+1

3G
where G' = —

o d 1

1-X

G'
o

l=l

G'
o

Kcose

l+G'Kcose
o o

A9
L n

The eigenvalues are given by

Kcose

1+G'cose -X
o o

= 0

(48)

(49)

The motion is stable for the roots X. , X complex conjugates, satis

fied for the discriminant less than zero, i.e.,

- 4 < G'Kcose < 0 .
o o

(50)

For the general case, satisfying (44) cos e =±1 and K is bounded

for stable solutions. In particular for the simplified Ulam mapping,

K<4l for stability. Since, from the fixed point condition (45), the max-
o '

imum value of I is 1/2it, all first order fixed points are unstable for
o

K>1/tt . In contrast, for the standard mapping, condition (46)

allows for finite sin 9 with finite I , and therefore windows of
o
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successively higher values of K exist as I increases ( cos 6q

decreases). These accelerator modes, so called because the stability

regions surround fixed points for which I is monotonical1y increasing,

have been studied in detail by Chirikov [9]. The existence of acceler

ator modes has also been pointed out by Pustylnikov for his model of

Fermi acceleration which is globally approximated by the standard map

ping. However, it Is clearly inappropriate to discuss accelerator modes

for mappings which only locally approximate the standard mapping.

For k = 2 fixed points the situation changes, and stability

may be possible for K-*-°° at fixed action. For the simplified Ulam

mapping Lieberman and Lichtenberg [6] showed that k = 2 primary fixed

points, that is, fixed points that exist to zero nonlinearity ( K=0 ),

were unstable at all values of the action for which k=1 fixed points

were unstable. They postulated without proof that a value of the action

exists below which all fixed points are unstable. In contrast, for the

standard mapping, Chirikov [9] showed that windows of stability existed

for arbitrary K . We now show that these two contrasting results each

belong to distinct classes of mappings.

Period two fixed points with values. L , 61 , I Q formed

by two iterations of the mapping (42) and (43) can be written in a form

which makes explicit the 2tt periodicity of 6

l2 = \} + Ksin 81 ^ = l2 + K sin 6£ (51)

e2 = ei +G(I2) -2irm 61 = 9 + G(l )- 2irn (52)

with m and n chosen to keep 9. and 6 in the range 0 - 2tt . The

mapping satisfies the conditions

sin 0 + sin 92 = 0 (53)

G(l1) + G(l2) = 2ir(n+m) . (54)
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Equation (53) implies either:

Case (a) 6j + 92 » 0

Case (b) 61 - 9£ = ±ir

(55)

(56)

The stability is investigated from the eigenvalues of the tangent map

ping

1 K cos e( 1 K cos e

G2 1+ G^Kcos e2 1+G^K cos 61

which, for complex conjugate X , requires

—

1 0

= X

0 1

(57)

- 4 < (G^+Gp(Kcose. +Kcose )+ G'G'Kcose cose < 0 . (58)

We first examine Case (b), the algebraically simpler case but with results

typical of both of them. Without loss of generality we choose the posi

tive sign in (56) such that Kcose. + Kcose2 - 0 . Substituting this

in (58) the condition for stable fixed points reduces to

0 < G^G^K2cos2ei < 4.

2 2 2 2
Writing Kcos 8.=K -K sin 0. , then from (44) we have

K2cos2ei = ^-(^-l^2

which substituted in (59) gives

(l2 - l^2 < K2 < (l2 •',2*^r

(59)

(60)

(61)
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Combining (52) with (56) we have

G(l2) = (2m-l)ir (62)

Gd^ = (2n +l)TT . (63)

Solving (62) and (63) for L and L , respectively, and substituting

into (61), we obtain the stability windows for K . In particular,

for the standard mapping wi th G(l) = I and G' = G' = 1 we obtain

Chirikov's result for the stability windows,

(2£tt)2 < K2 < (2iU)2 + 4 (64)

where £ = m-n-1 takes on all integer values. Thus, windows of stab

ility exist for arbitrarily large K .

In contrast, if we choose G(l) = I , we have

(l2- V2 • (tsttt7 - tsttttJ (65)

and

GjG^ = (2m-l)2(2n +l)2 vk . (66)

Using (65) and (66) it is then easily seen that the right hand side of

2 4(6l) has a maximum value of 4/ir + 4/tt for m=0 and n=0 , which

when substituted into the right hand side of (61) gives the stability

condition

(67)
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The simplified problem of the particle bouncing between fixed and oscil

lating wal 1s is described by G(l) = l" ; hence, Equations (65) and (66)

apply. However, exclusion of negative velocities, and hence negative

I's , from the physical problem, precludes the possibility of having m=

n= 0 . Then the right hand side of Eq. (61) takes on its maximum value

of 4/tt at m=1 , n=0 , so that we have the stability condition

K < 2/tt2 . (68)

For this case, 1=1- , which is also the condition that the fixed points

exist and are stable down to K=0 . Although the K in (68) is larger

than that found forthe stability limit of the k=1 fixed point, the re

sult is in agreement with Lieberman and Lichtenberg [6], who stated that

fixed points at normalized velocity u = I /K become unstable at a higher
o o

value of u for k = 2 fixed points than for k=1 fixed points at a
o

fixed value of M = (2ttK) . The stability limits are, in fact, identi

cal but the normalization makes them appear in reverse order.

More generally, if we set G(l) = la , there is an infinite set of

windows, to arbitrarily high K , for a>0 and only one window for a<0

These are the two generically different cases for k=2 type (b) fixed

points. As noted by Chirikov, for the standard mapping, the size of the

stable islands rapidly becomes small for large K . Therefore, the islands

have little influence on the macroscopic diffusion properties of the phase

space.
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We now present the results for Case (a). From (55) we have

Kcose. - Kcose2 - Kcose (69)

and the stability condition (58) becomes

-4 < 2(G| +0l) Kcose +G^(Kcose)2 < 0. (70)

If G'=G'=G', which includes the standard mapping, (70) reduces to

-4 < 4G'K cose + (G'Kcose)2 < 0 . (71)

Adding 4 to each inequality and taking the square root we find that

(71) gives the same stability condition as found for the first order

islands in (50), a result found for the standard mapping by Chirikov [9].

The more general case of G' 5* G' leads to a variety of stability

windows. We restrict our detailed analysis to the simplified Ulam pro

blem with G = I . For this case, evaluating (70) at the two limits, we

obtain the following windows for stability

-2(l2 + I2) < -Kcose < -2I2 (72)
1 2' '— "'2

and

•2I2 < -Kcose < 0 (73)

where '2>,1 * !1 and '2 are found from (52), together with (55),

giving



- 24 -

2m7r-291 (74)

'l 2mir +291 ' (75^

Since (72) and (73) depend on phase as well as K , we use the fixed point

relations to eliminate K , solve for 6 and then K . Substituting

(74) and (75) in (51) we obtain

Ksin91 - 2^2^"2S7T26; • (76)

Dividing the inequalities in (72) and (73) by (76), we eliminate K . As

we shall see, in a particular example given below, 9 increases and K

increases with decreasing magnitude of Kcose , such that we examine Kcose

at the limit of zero to obtain the maximum stable K at cos61 =0 or

e =tt/2 . Substituting this value of 9. into (76) we obtain for K

K = 2(m-1/2)ir " 2(n +1/2)ir (77)

which has a maximum value for m=1 , na-1 of

K = f • (78)

Comparing (78) with (67) we find for type (a) fixed points that the maxi

mum value of K is limited to a slightly lower value than that found for

type (b) fixed points. We shall discuss these interrelations for a parti

cular example. First we summarize the more general results.
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Still restricting ourselves to G(l) = l we find that, for

a>0 , as in Case (b), there is an infinite set of windows of stability

with increasing K , including arbitrarily large values of K . For

most negative values of a there are only stable fixed points at small

values of K . This includes the case a = -1 , as we have just shown.

Exceptional cases arise, however, for rational a's of the form a = odd

integer/even integer with a slightly exceeding 1; for these parti-

cular a's there is a finite range of large K for which stable 2

iteration fixed points exist.

If we consider the simplified version of the Ulam mapping, given

by (1) and (2), with the mapping period given by (3), then we have a phase

advance parameter (as used in Lieberman and Lichtenberg, 1972)

2ttM 2o)2a& ,_,rt.
T" = ~"""~u~~ (79)

which, when compared with the general twist mapping of (42) and (43),

relates M and K by

K • 1ST • (80)

For a physical problem M is a constant and the phase space is examined

for islands (stable KAM curves) as a function of the action. We have

taken this point of view in Sec. II.

However, the evolution of a particular fixed point is continuous

with M (or K ), rather than action. We therefore choose a particular

2irm in (45) at a k=1 fixed point. We then vary the value of K to de

termine the evolution of both k=1 and k= 2 fixed points. Consider
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the particular example of m= 3 . From (45) I = 1/2irm and from (50),
o

the edge of the period 1 stability window occurs at

K = 4l2 = —iL- . (81)
° (2T7m)Z

From (81), with m =* 3 , K= .01125 and from (80) the corresponding M=

14.137 . Also, an expansion around the m=3 fixed point to obtain the

standard mapping, as in (12) and (13) gives the result

R :o k/I2 = 4 . (82)
o

This is the standard form for expressing the loss of stability at the k=1

fixed point.

If we now examine the k= 2 fixed point condition, (76), with

m = n , and combining terms we obtain

Ksine = =-^ =• . (83)
(2™)2 - (2e)z

2
The minimum value of K for which (83) has a solution is K=4/(2irm)

(at 9 = 0 ), which is identical to the maximum stable K found for the

2
k= 1 fixed point. For 9>0 we have K>4/(2irm) , and we find from

(72) and (50) stable k = 2 and unstable k=1 fixed points. Thus, we

have the generic result that the loss of stability of a k'th iterate

fixed point occurs at a bifurcation into a stable 2k iterate.

To find the other edge of the k = 2 stable window we equate

the right hand inequality in (72), to obtain



- 27 -

Kcos9 = =- (85)
(2irm- 29)

which combined with (83) gives

2
tan9 2(irm-8 )

e1 (™)2-92

For m = 3 , 8 =1.05 radian , and, from (85),

(86)

K s 4 2~ > <87>
2cos(1.05)[(irm) - (1.05) ]

giving roughly a 20 percent increase in K to K=0.0137 and corres

ponding M= 11.6 . Beyond this value of K we expect a second bifur

cation to take place producing k= 4 stable fixed points.

With increasing K (decreasing M ) but holding m constant

a second window of stability appears. Using (73) with with (75) we find

the window occurs (in 9 ) between

1-17 < 6 < \ , (88)
2

and (in K ) between

K27 < K < ir/2
Urn)2- (1.17)2 Urn)2- (ir/2)2

For m= 3 this gives K between 0.0145 and 0.0182 , with the corres

ponding M between 10.97 and 8.75 . We now observe a very interesting

phenomenon. As 9=tt/2 ,the type (a) m=mQ fixed points become degenerate with
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two pairs of type (b) fixed points each with m=n= m we have already
o '

found the limit for stability of type (b) fixed points in (61). Consi

dering unequal values of L and I (not primary fixed points) we can

obtain ^ and l2 identical to the values found for the type (a) fixed

points at this limit. In this case for m = n = 3 , l-^VSir and 1=1 /7tt .

The type (b) fixed points then have a narrow window of stability in the

range (from (61))

<-_L\2 < k2 < ± --L-Y +
5ir 7W \ 5ir 7it / 5 *7 'tt

The lower limit in K is K= 0.0182 corresponding to M = 8.75 . The

upper limit in K is K= 0.0191 , corresponding to an M = 8.34 . There

are no other stable k = 2 fixed points associated with the k=1 m = 3

fixed point bifurcation. If we increase K (decrease M ) further we

reach the value where the k=1 m = 2 fixed point becomes unstable at

2
K=1/4ir , M = 2tt , beyond which there is a new set of bifurcations.

The results described above, for the stability windows with m = 3

are summarized in the diagram of Fig. 3. A linear scale of K is shown

together with the corresponding values M on a reciprocal scale. The

positions of a set of illustrative mappings, given in Fig. 4, are also

indicated.

We illustrate the above with a set of computer calculations of the

mapping, the positions of which are shown in Fig. 3« In Fig. 4a the k=1

m = 3 fixed point is shown, together with an associated KAM orbit, for

K=0.01 , slightly under the value at which the fixed point becomes un

stable. Increasing K to K= 0.0116 weobserve in Fig. 4b the stable type
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(a) k=2 fixed points which have bifurcated out of the now unstable

k = 1 fixed point. At the bifurcation a stable KAM curve continues to

surround the set of two stable k = 2 fixed points and one unstable

k=1 fixed point, thus separating the thin stochastic layer in the

neighborhood of the separatrix formed by the unstable k=1 fixed point

from the larger stochastic sea. In Fig. 4c distorted islands, associ

ated with the k = 2 fixed points are seen for K= 0.0135 just below

(in K ) the upper edge of the stable window. The last KAM surface sur

rounding both fixed points has disappeared so that the orbits near the

bifurcated k=1 fixed point merge with the stochastic sea. Increasing

K to 0.0138 , just beyond the stable k= 2 window we observe in Fig.

4d (on a scale blown up around the lower island) the now unstable k= 2

2-point and the bifurcated k= 4 stable islands. In Fig. 4e (still on

an expanded scale), at K=0.155 , the k= 2 fixed point has reappeared

in the second type (a) stability window; and finally, in Fig. 4f, at

K= 0.0184 , the pair of k= 2 type (a) fixed points has been transformed

into two pairs of k= 2 , type (b), n= m = 3 fixed points, each associated

with a different set of initial conditions.
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V. CONCLUSIONS

Although no rigorous theory exists to predict the detailed

behavior of mappings, such as that given by (1) and (2), the heuristic

methods used in treating various forms of the problem by Zaslavskii

and Chirikov [4], Lieberman and Lichtenberg [6], and Chirikov [9] quan

titatively describe the important features. Various results which

appear contradictory can be explained by variations in the forms of the

mappings used, and theoretical results are in agreement with numerical

computations where compared. The heuristic results are also consistent

with all rigorously derived results.

In particular, we have considered the following effects:

(1) If a mapping can be locally approximated by the standard

mapping, then the results from the standard mapping can be used to pre

dict the value of action at which KAM surfaces isolate the main con

nected stochastic region from other parts of the phase space for the map

ping being approximated.

(2) The details of the probability distribution within a

bounded stochastic portion of the phase space depend on the details

of the mapping, but if canonical variables are employed, the ergodic

hypothesis appears to be satisfied, when computed over sufficiently

long times, leading to a uniform density distribution in phase space.

(3) Fine details of the phase space structure can be mark

edly different for different mappings, even if they can be locally

approximated by the standard mapping. Stability persists around two-

iteration fixed points near certain arbitrarily large values of the
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stochasticity parameter K for a class of mappings including the

standard mapping, while the maximum value of K is strictly limited

for another class of mappings including that of a particle confined

between a fixed and oscillating wall. For the latter configuration,

bifurcations at the stability boundaries are shown both analytically and

in a numerical example. The standard mapping does not have these bifur

cations because of its particular symmetry properties. Accelerator modes

are peculiar to the double periodicity of the standard mapping.

These results indicate that some, but not all, properties

of a particular mapping can be deduced from simpler approximations. Locally

approximating a mapping by the standard mapping can be useful for deter

mining the existence of isolating KAM surfaces. The standard mapping

has, however, special symmetries which endow it with properties that

are not generic to wider classes of mappings. Because the mappings

considered here have many of the characteristics of two degree of free

dom nonlinear Hamiltonian systems, their behavior is useful in qualita

tively understanding the more general dynamical problems, but some care

must be exercised in relating the fine-scale properties of the various

systems.
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FIGURES CAPTIONS

FIG. 1 (a) Ulam version of Fermi acceleration, in which a parti

cle bounces back and forth between an oscillating wall

and a fixed wall separated by a distance L .

(b) Pustylnikov version, in which a particle repeatedly

returns to an oscillating wall under the action of a

constant gravitational acceleration g .

FIG. 2 Comparison of velocity distribution f(u) of the exact

equations (dashed line) and the simplified equations (solid

line) for the Ulam model with a sawtooth wall velocity

(M = 2ui2aZ = 1000).

FIG. 3 Summary of stability windows for period 2 fixed points with

g(i) = r1 .

FIG. 4 Mappings in the neighborhood of k=1 and k= 2 fixed points

with increasing perturbation parameter, indicating the behavior

in the various stability windows. Each mapping includes a few

initial conditions, depicting both stable and unstable behavior.
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