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ABSTRACT

The qualitative properties of the power flow equation for a trans

mission network are studied in terms of global and local aspects, as well

as stability. Global aspects include estimates of the number of solutions
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1. Introduction

The load flow or power flow equation is a system of nonlinear simul

taneous equations expressing the equality between power demand and supply

at each node or bus of a transmission network in steady state synchronous

operation. Understanding of the power flow equation is essential since

it is responsible for the most significant nonlinearities encountered in

transient and dynamic stability analysis, economic dispatch studies, and

in security assessment and planning excercises.

Because of its central significance much effort has been devoted to

the development of numerical methods for solving the power flow equation

(see [10] for a review). By comparison scant attention has been given to

the analytical investigation of the power flow equation, the references

[2,4,6,11,12] and some additional work cited there include, we believe,

all reported studies. This low level of effort is unfortunate since, as

Galiana [4] has pointed out, analytical developments have sometimes suggest

ed faster and more efficient algorithms, and can provide qualitative

insights which escape the more numerically oriented approaches.

In tfcfepaper we present the results of our study of the power flow

equation. The study is limited to lossless transmission networks consisting

of PV buses only. Under this assumption, the power flow function fexpresses

the vector p of net real power injections at the various buses in terms of

the vector 9 of bus voltage angles, giving the power flow equation

P = f(6).

The problem is to solve this equation for e when the value for p is specified,

in other words, we wish to "invert" the function f. This inversion is diffi

cult since the nonlinear nature of f is such that for a given peither there

is no solution 6 of the power flow equation, or there exist several solutions.
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If we attempt to understand these difficulties from a mathematical view

point, then we are led to differentiate between the study of f in its

global and local aspects. The former are relevant to questions about the

size and shape of the range of f. The latter deal with the behavior of

f in a small neighborhood. As an example of a local property, suppose

f(9g) = P0» we know from tne Inverse Function Theorem that if the Jacobian

3f(0o)/9e is anonsingular matrix, then as pvaries continuously starting

at pQ, there is a unique solution 0 = 6(p) which varies continuously

starting at 8q. (Indeed the success of numerical methods depends upon this

fact.) Now if 3f(e0)/39 is singular, then the solution 8(p) may not exist,

or may not be unique. If one could tell in advance which of these different

behaviors occurs, then such information could be used to design better numer

ical techniques.

The differentiation between local and global properties of the solutions

of the power flow equation stems from differences in mathematical techniques.

Consideration of generator dynamics show that certain vectors 6 correspond

to stable voltage configurations and so we want to distinguish between stable

and unstable solutions.

The results presented below are concerned with global and local pro

perties of the stable solutions of the power flow equation. In section 2

we obtain a convenient representation of the function f and its derivatives,

define the region of stable solutions, and describe the global properties.

Also examples are given to counter what seem to be plausible conjectures.

Section 3 examines local properties through a study of fold and cusp

bifurcations of the flow equation. Section 4 lists some conjectures. In

a companion paper [15] the complete local and global behavior of a 3-node

network is given.
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2. Global Properties

This section begins with a convenient representation of the power

flow function, then defines the stable region and obtains some global

properties.

2.1 The power flow function

Consider a transmission network consisting of n + 1 buses or nodes,

Taking the (n + l)st bus voltage angle as reference, denote the voltage

phasor at bus i by

Vi expCfe^, i= l,...,n+l,

where, by definition,

en+l = °-

Then the real power injected into the network at bus i is given by (see

[2,3,11])

n+1

Pi = -L ViVjYij sin(ei-6j)' i=1 n+1. (2.1)
j—•

where Y^. =Y^ >0 is the admittance (susceptance) of the lossless

transmission line joining buses i and j. Since the magnitudes V. are

assumed fixed, without losing generality suppose that

V.j = 1, i = l,...,n+l.

Finally, observe that in (2.1) at most nof the p1 can be independently

assigned since Pj +... +pn+1 =0. Using these facts we define the power

flow function f=(^ ,..., fn): Rn -• Rn by
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n+1

Pi =^Ot 6n) := I Y.j sinO.-Sj), i =l,...,n (2.2)
«j '

where 6n+1 =0. Denote the vectors 8 =(0p ..., 8n) and p=(p1§ ..., pn)

The function f is periodic with period 2ir i.e., if 8,<j>are such that

81 - <j>i = 0(mod 2tt) for amy i, then f(8) = f(<j>). Henceforth we restrict

the domain of f to the set

Tn := [-tt.tt]"

with 7r and -tt identified. In particular when we say the f(8) = p has a

certain number of solutions 8 we only consider 8 € Tn.

It will be convenient to derive an alternative expression for f.

The graph of the transmission network consists of n + 1 nodes and there

is a branch joining nodes i and j if and only if Y.. > 0. Suppose there

are b branches indexed l = 1, ..., b. Let A denote the n x b reduced

incidence matrix of the graph taking node n + 1 as reference, and Y denote

the b x b diagonal matrix with the Jlth entry Y.. if branch & joins nodes

i and j. Then, as can be verified directly, an alternative expression

for the power flow function is

f(8) =AYs(AT8), (2.3)

T h h
where for ty := A 8 € R , s(\\t) e R is defined as

s(ij;) := (sin^,.. .,sin^b). (2.4)

It is assumed throughout that the network is connected so that A has

rank n.

Notation For ij> € R let S(\p), respectively C(i|>), denote the b x b

diagonal matrix whose nth entry is siniK, respectively cos \K.
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The usefulnes of this notation and the representation (2.3) comes

from the next result which is obtained by direct calculation.

Lemma 2.1 Fix 8e Tn and d€ Rn. Let et := 8+U(mod 2ir). The
k k kdirectional derivatives f (fi) := 3 f(et)/3t |tssQ, k >1, are given by

f](6) =AY[C(AT8)]AT$,

f2(5) =-AY[S(AT8)](ATff)2

f3(£) =-AY[C(AT8)](AT5)3,

f4(S) =AY[S(AT8)](AT$)4, etc.

Here if y := AT5, then (ATs)k := (if,k, ..., ^).
From the lemma it follows that the Jacobian of f at 8 is the n x n

symmetric matrix

F(6) := |i =AYC(AT8)AT. (2.5)

From this expression we see that F(8) can be interpreted as the node

admittance matrix of a linear resistive network with conductance of branch I

connecting nodes i and j equal to Y.. cos(8. - 8.) (see [1]).
*j i j

2.2 The stable region

We write F(e) > 0 or F(e) > 0, according as it is positive definite

or positive semi-definite. 8e Tn is said to be stable if F(e) > 0, and

let ©s denote the stable region. If e£©s we call it unstable. We
briefly indicate the reason for the term 'stable'. Suppose to each bus

i = 1, ..., n is attached a generator and suppose bus n + 1 is an infinite

bus. Then the motion of the generators is governed by the so-called

"swing" equations [2,9],
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M.8.+D.8. = p.-f.(e), i = l,...,n. (2.6)

Here M.., respectively D^, is the moment of inertia, respectively damping

constant, of the ith generator, and p.. is the mechanical power input to

the generator minus the electrical load at the ith bus. Evidently then,

the state (8,8) is an equilibrium if and only if 8 = 0 and f(8) = p. If

the equation (2.6) is linearized around an equilibrium (8 = 0,0), then

it can be directly verified that the eigenvalues of the linearized system

lie in the open left-half plane (which implies that the equilibrium is

Lyapunov stable) if and only if F(8) > 0. A more delicate argument can

be used to arrive at the same conclusion even when some of the buses are

load buses (see [9]).

2.3 Geometric properties of (R)

The preceding remark implies that in the steady state the transmission

system must operate at a stable equilibrium, and so the shape of the stable

region is of interest. Certain "positive" properties of © are obtained

by comparing it with various polytopes of Tn; the main "negative' and possibly

surprising conclusion is that ® may be disconnected.

Definition ©* is the set of all 8 in Tn such that (i) |8. - 8.| <5(mod 2ir)
I J c

whenever Y.. > 0 and (ii) the set of all branches (i,j) such thatY.. > 0 and

'ei "ei' =f"(mo<^ 2tt) do not form acut set of the network graph.

The next result is known [11]. We give a different proof.

Lemma 2.2 ®* C © .

Proof F(8) =AYC(AT8)AT and if 8e ®* then the diagonal matrix YC(AT8)

has non-negative entries and so F(8) >. 0. Hence F(0) > 0 if and only if

det F(0) > 0. Now F(0) is a node-admittance matrix of a linear network
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and so by the Seshu-Reed result [1],

det F(e) = 7 n Y.. cos(8.-e.)
t (i,j)£r 1J 1 J

where the sum is over all trees t of the graph. Since each conductance

is positive, det F(8) = 0 only if in each tree t there is a branch (i,j)

with cos(8. - 0.) = 0, i.e. there is a cutset of branches with |0. - 0.| =

Tjkmod 2tt). n

Lemma 2.3 Let 8 be stable and let <j> = (<j>,, ..., <j> ) f 0 be such that

for each i,(j>i =0 or <j>i =it. Then (e + <J>) is unstable.

Proof Suppose for some 0 < k < n, <j>. = it for i < k and <j>. = 0 for

k < i <n. Let x = (xp ..., xn) be such that x. =1 for i < k and x. =0

for k < i < n. From (2.5),

n+1

xTF(e)x= l (x.-x.)2 y.. cos(e.-e.)

k n+1

= 2 I 7 Y.. cos(e.-e.) > o,
i=l j=k+l 1J ^ J

since 8 is stable. (Here and below xn+1 =0, 8n+1 =0.) On the other hand,

T k n+1 _
x F(8+(j>)x = 2 I I Y.. cos(8.+7T-e.) = -x'F(e)x <0,

i=l j=k+l ,J 'J

so 8+t is unstable.

Call 8 + <f> a ir-translate of 8 if the two vectors are related as in

the statement of the lemma. Each stable 8 has 2n - 1 distinct it ^translates

so that we can say that © occupies approximately the fraction - of
2

the volume of Tn.

- 7 -

Y



Definition [11] The principal polytope ® is the subset of all 0 in

©* such that |0. - e.| <j whenever Y.. >0.

The power transmitted over a line is |Y.. sin(0. - 0.)| and so its

maximum value is Y... This value usually exceeds the thermal capacity
* j

of the line and so under normal operating conditions |sin(0. - 0.)| < 1.

In turn this usually implies |0.. - 0.| <j i.e. 0 e ©p. ®p is convex

by definition and stable by Lemma 2.2. Another attractive property is

that f is one-to-one on (H)_. This is a corollary of the next result.

Lemma 2.4 [2] For 0k eTn, k=1, 2let ^k =(ij;k, ...,*£) := AT0k.
i ki ir 2 1 1Suppose for each £, |i|£| <_ j and ^^ (-ir - ^, ir - ^). Then

f(0]) t f(02) if 01 t 02.
Proof From (2.3),

(f(01)-f(e2))T(e1-02) =(AYs(i|;1)-AYs(^2))T(01-02)

=(Ys(^-Ys(*2))V-<J>2)
=I Y^sin ^-sin ^2)(^2).

Suppose |^| < j. Then sin ^ <sin ^- if i|j" <iK <ir - if;' and
sin $\ >sin *2 if ^ >*| >-ir - ^J; hence £Y£(sin H>\ - sin <j>2)(i^ - if;2) >0

12 12 12
unless ty = ty . Since A has rank n, ty = ip implies 0=0, and the

assertion follows. «

Corollary 2.1 The power flow function f is one-to-one on ® .

Proof If 0k e® , k=1, 2then by definition \^\ <% and so the
lemma above applies.

For a specified power demand vector p therefore, the power flow

equation f(0) =p has at most one solution in ®p. It might be conjectured
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that there is at most one solution in the entire stable region ©s. An

example due to Korsak [6] shows that to be false. We analyze this example

further to show that the stable region can be disconnected.

Example 2.1 Consider the 5-node loop network of Figure 1 in which all

Yij = 1. Then

sin 0,+sin(0,-02):

f(0) = sinfa^J+sin^-O^

sin(03-02)+sin(03-84)

,sin(04-03)+sin 84

cos e-j+cosfe-j-Og) -cos(0.|-02) 0 0

-cos(01-02); cos^-O^+cos^-©^ -cos(02-03) 0

0 -cos(02-03) cos(02-03)+cos(03-04) -cos(03-04)

0 0 -cos(03-04) cos(03-04)+cos 04

2 12 4 4 2Let 8 := 0 and 0 := (-gn, jw, -fr, -|*r, 0). Direct verification shows
1 2that f(0 ) = f(0 ) = 0 i.e. both solutions give zero net demand. However

0 yields a "circulating" power. Direct verification also shows that
1 2

F(0 ) > 0, F(0 ) > 0 so that both solutions are stable.

Consider now any continuous curve 0(t), 0 <t <1 such that 0(0) =01
2

and 0(1) = e mod(2ir). It will be shown that for some t,8(t) must be

unstable. The proof is based on the observation that if F(e) > 0 then

none of the angle differences |0. - e1+1| can equal Tr(mod 2tt) (here 0g =0),
because otherwise one of the diagonal entries of F(8) will become zero or

negative. Since 0(0) = 8 , the observation implies that 6(t) is stable for

F(8) =
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all t only if

-ir <O^t) <irf (2.7a)

-ir <e2(t)-B}{t) < ir, (2.7b)

* <02(t)-03(t) <3ir, (2.7c)

-ir <03(t)-04(t) <ir, (2.7d)

-ir <e4(t) <ir, (2.7e)

for all t. Since 0(1) = 0(mod 2ir), therefore, (2.7a), (2.7b) imply

e1(l) =02(1) » 0, and (2.7d), (2.7e) imply 03(1) =04(1) =0, and so (2.7c)

cannot be satisfied. It is thus impossible to control the system in such

a way as to eliminate the circulating power (corresponding to 6 ) without

going through the unstable region.

The example shows that in general the stable region is a union of

disjoint connected components. Under normal conditions 0 lies in the

connected component containing the origin which following [11] we call the

principal component and denote it by ® .

Evidently ® c ®c# It has been conjectured [11] that® c is convex.

A partial result in this direction is given next. Define the polytope

® := {0 6 Tn| |0,.-0n.| <ir whenever Y. .>0}.
ir • • i j1 — ij

Lemma 2.5 Let 0 e ® n ® (the closure of ®c). Then for 0 < e < 1,

e0 e ®s.

Proof From (2.5), for any vector x e Rn

T n+1 2
x F(e0)x = y (x,-x.)cY.. cos(e0.-e0.),

1,3=1 1 J 1J 1 J
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where, as usual, x +, = 0 and 6 +, = 0. Suppose x f 0. Since |0. - 6.| £ir,

therefore cos(e(0. - 9.)) > cos(0. -6.) for 0 < e < 1 and so
• j 'j

xTF(e0)x > xTF(0)x >0

where the last inequality holds since 0 e ® implies F(0) >_ 0. «

2.4 Topological properties of ©

In this section the study of ®$ is based on the derivatives of the

flow function. The main result shows the intuitive property that the

farther a stable 0 is from the boundary of © the larger its margin of

stability - the margin of stability being measured by the smallest

eigenvalue of F(0).

The next lemma is preliminary.

Lemma 2.6 For 1<k<_ nlet ek := (0, ..., 1, 0, ...0)T be the kth unit

vector. Let x, y in Rn and 0 in Tn be arbitrary. Consider the function

9k(t) := yTF(0+tek)x.

Suppose g£1}(0) := -J*- t=0 = 0. Then

9k(t) =gk(0)+g£2)(0)cos t, for all t.

Moreover, \ g^(O) =-gk(0)= -yTF(0)x.

Proof Setting xn+1 =yn+1 = ©n+] =0 as usual, and using Lemma 2.1, we

obtain

n+1

M°> =1j./Vj^rV^j cos(erej)-
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9<2r)(0) =I (-l)r(xrx.)(yryj)(e;-e$)% 003(6.-6.).

Since (e* - ej)2r+1 =e* - .}, r>0, and (e{ - e^)2' =(e{ - e})2, r>1,
the preceding expressions simplify as

g£2r)(0) =(-l)rgj2)(0), r>l.

gj2r+1)(0) =(-D^ho) =0, by hypothesis,
and so

sk%-/ »kv-''•»|C u Y»0 2r!

Finally, since

! (.{-5)z
k=l n J

therefore

= 1, for all i»j

842\o).
k=l K i,j

•xj)(yi-yj i^Yio

The next lemma is key to the succeeding results.

Lemma 2.7 Let UCTn be an open set. Let M(0) [m(0)] denote the

maximum [minimum] eigenvalue of F(0). Suppose M(0)[m(0)] achieves a

maximum [minimum] value M [m] in U. Then M> 0 [in < 0].

Proof We only prove M > 0, the proof that m < 0 is similar. Let 0 e U be

such that M(0) = M, and let x ^ 0 be the corresponding eigenvector of

F(0). Then for t so small that (0 +tek) e U,
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0>9k(t)-M|x|2 := xTF(e+tek)x-M|x|2 ,

0=gk(0)-M|x|2,

^-...2 --Tere |x| := x x. Therefore, gk(t) achieves a local maximum at t =0, so

g^o) =0

and

g[2)(o) <0

By Lemma 2.6

°> I 9k2)(0l ".-gkC0l- -M^2,

which gives

M > 0.

Suppose, contrary to the assertion, that M=0. Then gk(0) =0, gk2\o) =Q,
and so by Lemma 2.6 gk(t) =0. Moreover M'(0) <^M =0 implies F(0) is negative

semi-definite and so gk(t) =0 implies

F(0+tek)x =0, for all k and t.

k kNow consider any ©u := (0 + ue ) e u. Applying the same argument as above
k

with-0u replacing 0 leads to the conclusion that

F(0k+teJ)x =0, for all j and t

Proceeding in this way one finds

F((j))x = 0
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for all $ in a neighborhood of 0. Since F(<j>)x is an analytic function of

<f> this implies F(<j>)x = 0 for all <f>. But we know from Lemma 2.2 that

F(0) > 0 and, so F(0)x ? 0. Hence M > 0 as asserted. n

If 0 is stable, it is reasonable to interpret the smallest eigenvalue

m(0) of F(0) as the margin of stability at 0. As a corollary of Lemma 2.7

we have the following intuitive result.

Corollary 2.2 Let Uc ®s be an open stable set, B its boundary and

U" = U U B its closure. Then the minimum of m(0) as 0 varies over 0* is

achieved only on B.

Proof If the minimum is achieved at 0 € U, then by Lemma 2.7 m(0) < 0.

But 0 is stable and so m(0) > 0. n

The preceeding corollary would be more appealing if we know that ©

is a 'solid' open set i.e. there are no lower dimensional unstable sets

'inside' ®s. Mathematically this means that ® equals the interior of

its closure. The proof of this needs an intermediate step. Let ®Q denote

the collection of all 0 such that F(0) is positive semi-definite but not

positive definite.

Corollary 2.3 Every neighborhood of 0€®Q contains 0 and 0 with

M(07) >0 and m(02) < 0.

Proof Immediate from Lemma 2.7. h

Corollary 2.4 © is the interior of ® .

Proof Observe that ®$ c ©s u©Q and then use Corollary 2.3. «

We close this section with a couple of results dealing with the

boundary of ®g. Call B$ the boundary of the stable region. Evidently
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B c®q> and it is reasonable to conjecture equality. The next example

shows this to be false.

Example 2.2 Consider the 4-node loop network of Figure 2 in which all

Y.. = 1. Then

f(e) =

F(0) =

sin 0,+sin(0,-02)

sin(02-0^)+sin(02-03)

.sin(03-02)+sin 0,

"cos 0.|+cos(0.|-02) -cos(0.|-02) 0

-COSC©^) COS(01-02)+COs(02-03) -COS(02-0S)

0 -cos(02-03) cos(02-03)+cos 03

It can be verified directly that F(0) vanishes at 0 =<J> := (£, ir, -5).
Hence <j> e ®Q. Then at 0 =4> +6 one gets

F(4>+6) =

-sin 61+sln(6^-62) -sin^-^) 0

-sin^-^) sin(61-62)+sin(62-63) _sin(62-63)

0 -sin(62-63) sin(62-63)+sin <$3

If F(c|) + 6) > 0 then its diagonal entries must be positive. Suppose 6 is

sufficiently small, and consider two cases.

Case 1 6-j >0. Then -sin 61 + sin (61 -62) >0 requires 62 <0. But

then sin (62 -63) + sin <$3 <0 for all \63\ < |<52|. Hence (<f> + 6) is
unstable.

Case 2 6] <0. Then -sin 6] +sin (61 - 62) >0 also requires <$2 <0,
and so once again (((> + 6) is unstable.
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This proves that <j> f. B .

This example shows that ®Q may be strictly larger than B . This

suggests that it may not be possible to analytically describe the boundary

B$. However, we can get a partial result as an immediate corollary of

Lemma 2.5.

Corollary 2.5 ®Q n ^ =8$ n ©7r.

The next example shows that the boundary B may have "corners".

Example 2.3 Consider the 3-node series network of Figure 3 in which the

Y... =1. It is straightforward to check that ®$ ={e| |81 - 02| <\
and |02| <5-i, and that

bs =®0 ={e| |e1-e2| =f, |02| <|} u {0| |e1-e2| <|, |e2| =f}.

This boundary has four corners at 0, =0, 82 =+5- and 0, =©2 =±7-

Observe that at each of these corner points F(0) vanishes i.e. F(0) has

more than one zero eigenvalue. The last result of this section clarifies

this further.

Lemma 2.8 Let 0e ®Q be such that F(0) has exactly one zero eigenvalue.

Then there is an open set Ucontaining 0 such that Un ®Q is an analytic

set.

Proof Let d(0) := det F(0). We claim that there is an open set U_

containing 0 such that ®Q n u= {e| d(0) = 0} n u. If this is false
k k •^ kthen there is a sequence 0-^0 with e f ®0 and d(e )= °* Tne elQen-

k k k k kvalues of F(0 )can be arranged as U < ... < A* < X^-j =0 <....<. \.
k k 0and r >^ 1 since 0 £ ®Q. As k-»• <» we must have X, -»• 0 and so F(0 )

has at least r + 1 >^ 2 zero eigenvalues, contradicting the hypothesis.

The assertion follows since d(0) is an analytic function. n
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2.5 Solutions of f(0) = p

It is shown first that the number of solutions to the power flow equa

tion is Visually1 even, and that the number of unstable solutions exceeds the

number of stable solutions. Then an example is given in which the equation

has np_ stable solution even when it does have an unstable solution.

For any power demand vector p, let ®(p) be the set of solutions 0

in T of the power flow equation f(0) = p. Say that p is regular if

det F(0) f 0 for all 0 in ®(p). It is easy to see that if p is regular

then ®(p) is finite and so we can define the degree of f

d(f;p) = I sign F(0),
0€®(p)

where sign F(0) equals +1 or -1 according as det F(0) > 0 or<0. It is

known [13] that for Tn the degree is zero independently of f. this gives
the next result.

Lemma 2.9 If p is regular then ®(p) contains an even number of solutions.

Also the number of unstable solutions is at least as large as the number

of stable solutions.

Proof The first assertion is immediate since d(f;p) = 0. The second

assertion follows from this and the fact that sign F(0) = +1 if 0 is stable.

Example 2.4 Consider the 6-node loop network of Figure 4 in which the

Y.j =1. Then f.(0) =sin (e1 - 0.+]) +sin (0. - ©._.,), 1 <i <5, where
0O = ©6 =0. Let

A0 _/ir ir n ir ttxT
0 " lj"» if1 °» ?' 4'

corresponding to which is the power demand vector
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p° =f(0°) =(1+sin j, 0, -14sin-J. 1+sin J, 0)T

Observe that

*\T6(e) := (J-e. J,0.|.e,I)

is in the principal polytope for 0<e<|, hence it is stable. It follows
that 0 is on the boundary of the stable region.

Let pt := p + t(l, 0, 0, 0, 0)T. It is shown in section 3.3 that

there is aneighborhood NQ of 0° such that for t>0sufficiently small,
the only solution in NQ of f(0) = p is unstable. Let t >0 be a sequence

decreasing to zero and let f(0n) = pn. Suppose 0n converges to 0, and

suppose 0 is stable. Then 0f 0° (since 0n £NQ for all n), and f(0) =p°,
F(0) > 0. It can be shown by a direct, but lengthy calculation which is

omitted here that this is impossible. We state this as a lemma.

Lemma 2.10 There exists T >0 such that for 0<t <t, f(0) = p* has no

stable solution.

Thus there exist power demand vectors which can be met by unstable

solutions but by no stable solution.
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3. Local Properties

This section is devoted to a study of the qualitative changes in

the solution of the flow equation f(0) = p as the demand vector p is

varied. It is believed that this study will lead to better understanding

of the behavior of numerical algorithms for solving the flow equation.

These algorithms are often based on continuation methods in which one

seeks to obtain in a sequence of steps a solution 0" of f(0) = "p starting

with aknown solution 01 of f(e) =p1. At the ith step, i=1, 2, ...,
one finds asolution 01+1 of f(e) = p1+1 starting with 01 and using
a locally convergent algorithm such as Newton or Gauss-Seidel. To guar

antee success of such acontinuation method the "step size" |p1+1 - p1|

must be small and, of course, (p1, 01) must converge to p", 0".

Let (0, p) satisfy f(0) - p= 0. Suppose F(0) is nonsingular. By

the Inverse Function Theorem there are neighborhoods Nft of 0 and N of d
0 p r

and a function g: N •* N such that f(0') - p' and (0', p') is in N.xN
r 0 p

if and only if 0' = g(p'). In other words if F(0) is nonsingular, there

is locally a unique continuation starting at (0, p). Suppose however

that F(0) is singular. Then there may still be a unique continuation

so that the local behavior is similar to when F(0) is nonsingular; but

it is also possible that there is no continuation or that it is not

unique. In the latter case the qualitative behavior has changed - one

then says that p is a bifurcation point. It may be worth noting that

computationally, a bifurcation may reveal itself in numerical instability

as the surface det F(0) = 0 is approached.

It is clear that the study of bifurcations of the flow equation

requires a study of the second and higher derivatives of the flow function,

We begin by recalling from Hale [5] (see also [7]) the necessary results

from bifurcation theory, and then apply them to the flow function. The
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6-node network of Figure 4 is then examined as an illustration.

3.1 Some results about bifurcations

Let x, x denote vectors in Rn and let g: Rn + Rn be twice differen

tiate. Let G(x) := |£ (x) denote the Jacobian of g. Consider the
equation

g(x)-X = 0, (3.1)

and suppose (x , X ) satisfies (3.1).

Suppose G(x ) is a singular matrix of rank n - 1. Then one can find

nonsingular nxn matrices [P jw] and [Q jz] with w and z in Rn such that

Q G(x )P is nonsingular,

zTG(x°) = 0,

G(x°)w = 0.

Equation (3.1) can be "decomposed" as

QTg(x)-QTX =0, zTg(x)-zTX =0. (3.2)

Define

y :=QTXGRn-\ y° :- QTX°,

p := zTX € R , p° := zTX°.

We also represent x in Rn by

x := Py+uw

n 1

where y € R " , u e R. With this choice of coordinates (3.2) can be

rewritten as
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QTg(Py+uw)-y = 0, (3.3)

zTg(Py+uw)-p =0. (3.4)

Let y , u (necessarily unique) be such that x = Py + u w. Equation

(3.3) is well behaved, since by the Implicit Function Theorem there is

a neighborhood N of (y , u ,y ) and a function y*(u, y) such that

y° =y*(uV),

QTg(Py+uw)-y =0 in N<> y =y*(u,y) (3.5)

Next, rewrite (3.4) as

T

z g(Py*(u,y)+uw)-p = 0.

Define

h(u,y) := zTg(Py*(u,y)+uw),

x*(u,y) := Py*(u,y)+uw;

x*(u) := x*(u,y°)

Then x*(u , y ) = x . Equation (3.4) is now written as

h(u,y)-p = 0 (3.6)

Note that h(u°, y°) - p° =0. Also

f£(u,y) =zTG(x*(u,y)){p^*(u,y)+wj, (3.7)
and so

•577(u ,y ) = 0,
du

since

zTG(x°) = 0.
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Further differentiation of (3.7) yields

31/.0 Ox _ T3£(uu,yu) =z^[G(x*(u))]
du

[P&°,y°)+w]
0U 3u

Next, from (3.5),

Q g(Py*(u,y)+uw)-y = 0,

so, differentiation with respect to u gives

QTG(x*(u,y)){p^£(u,y)+wJ=0.

Since G(x ) w = 0 and Q G(x ) P is nonsingular, this implies

©W) =o.

Using this in (3.8) gives

%u°,y°) =zT^-[G(x*(u))]
3u^ 3u

Denote

J :=|j[zTG(x*(u))](u0)

>W.

since

Write

=lim -l^2TG(x*(u))-zTG(x*(u0))]
u+u° u"u

=lim -J-g-zTG(x*(u)),
0 u-u

u*u

zTG(x°) = 0.
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x*(u) =x°+(u-u°)x1+o(u-u°).
Then

/ =lim zTG(x°+ux1). (3.11)
u+0

Also, by definition

x*(u) =Py*(u,y°)+uw

=X°+(U-U°){p|^(u0,y0)+W}+O(u-U0).
Hence,

x1 =P^u°>V0y)+vl =w» ^ing (3.9).

Substituting this in (3.11), and the latter in (3.10), gives the desired

formula,

2

^(u°,y°) =lim/l zTG(x°+uw)wl (3J2)
3u u-M)1- J

The preceding manipulation which is known as the Liapunov-Schmidt

procedure has accomplished the following. We start with a system of n

equations (3.1) in the n 'variables' x and n 'parameters' x. These

equations are decomposed into a system of (n - 1) equations (3.3) and a

single equation (3.4); the parameter X is correspondingly split into
n —1

y <= R" and p € R; and the variables x into (n-1) variables y and a

single variable u. The equation (3.4) is well-behaved and we can 'solve'

for y as in (3.5), substitute it into (3.4) giving a single equation (3.6)

in asingle variable u. Since both.h and |£ vanish at (u°, y°),
h is known as the bifurcation function. If we can evaluate -M-,

8u
which is given by (3.12), then considerable information can be ob

tained as Theorem 3.1 indicates.
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Suppose

32h,,,0 Ox ,n ,, 1<3X
—^(u ,y ) f 0. (3.13)
au*

Then in a sufficiently small neighborhood of (u , y ) there is a unique

u*(y), with u° =u*(y°) such that |~(u, y)=0 at u=u*(y); that is h(u,y)
dU

considered as a function of u has a maximum or minimum at u*(y) according

as the sign in (3.13) is negative or positive. Let

n(y) := h(u*(y),y)

and note thatn(y ) - p = 0. (In the statement below it is assumed that

n(y) is the minimum value. If it is a maximum replace n - P by -n + p.)

Theorem 3.1[5] Suppose condition (3.13) is satisfied. Then there is

neighborhood N of (x , X ) ~ (x , y , p ) and a continuously differentiate

function n(y)» n(y ) - P = 0, such that the following conclusions are

satisfied in N:

(i) Equation (3.1) has no solution if n(y) - p > 0,

(ii) Equation (3.1) has exactly one solution if n(y) - p = 0,

(iii) Equation (3.1) has exactly two solutions if n(y) - p < 0.

The parameter vector x or the pair (x , X ) where the equation (3.1)

behaves in the manner described above is called a fold bifurcation point.

The behavior of (3.1) in a neighborhood of a fold is illustrated in

Figure 5. For X < X , (3.1) gives two well-behaved solutions, which

coincide at x = X , and for X > X there is no solution. Theorem 3.1

may be seen as a generalization to the vector case of the behavior of the
2

parabolic equation x - X = 0 near (0, 0).

Suppose now that
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2 3
^4(u0,y0) =0 and Uku°,y°) <0 (3.14)
au* 3uJ

ahThen ^j (u, y) has a unique maximum value, call it y0(u)s in a neighborhood

of (u , y ). If y0(u) >0, then h(u, y) regarded as a function of u has

a unique local maximum, say Y-j(y), and a unique local minimum y2(u) in a

neighborhood of (u°, y°). Let Y(u> p) := (^(y) - p) (y2(u) - p)- [With
obvious changes the result below holds when a3h/3u3(u°, y°) >0.]

Theorem 3.2T51 -.-Suppose condition (3.14) is satisfied. Then there is a

neighborhood Nof (x°, x°) - (x°, y°, p°) and two continuously differen
tiate functions Yo(y), y(u, p), Y0(u°) =y(u°, p°) =0, such that the
following conclusion is satisfied:

(i) If YqCu) 1° tnere is a unique solution of equation (3.1),
(ii) If y0(u) >0 then y{\i9 p) is defined and

(a) y(u» p) > 0 implies one simple solution of equation (3.1),

(b) y(u> p) = 0 implies one simple and one double solution of

equation (3.1),

(c) y(u» p) < 0 implies three simple solutions of (3.1).

If Y0(y) 1 ° for all y near y , then by (i) above there is no

bifurcation. Otherwise X is said to be a cusp bifurcation. The behavior

of (3.1) near a cusp is illustrated in Figure 6.

Observe that if y0(y) <0 for ynear y° then ||j(u, y) <0 for all
(u, y) near (u , y ). This gives the next result which will be used in

Section 3.3.

Corollary 3.1 Suppose condition (3.14) is satisfied and suppose there

are points (u, y) arbitrarily close to (u°, y°) where f^u, y) >0. Then
X is a cusp.
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Theorem 3.2 can be seen as a generalization to the vector case of

the behavior of the equation x + yx + p = 0 near (x, y,p) = (0, 0, 0).

It is known Q4] that the cubic equation has 3 simple real solutions if the
3 2

discriminant 4y + 27p < 0, one simple and one double real solution if

4y + 27p =0, and one simple real solution- if 4y3 + 27p2 > 0.

At the beginning of this discussion it was assumed that G(x°) has

rank n - 1 i.e. it has a single zero eigenvalue. If two or more eigen

values vanish simultaneously, more complex bifurcations may occur. More

complex behavior also occurs even when the rank is n - 1 but where the

first non-vanishing derivative of the function h above is of order four

or larger. We do not pursue this further since we are unable as yet to

evaluate these derivatives for the power flow function.

In conclusion here it may be worth mentioning that since bifurcations

are "local" phenomena one may be tempted to ignore them considering "global"

behavior. This is not the case; as we see in [15], the global behavior

of the power flow equation is essentially structured by the bifurcations

which do occur.

3.2 Fold bifurcation of power flow equation

Let 0 , p satisfy

f(0)-p = 0, (3.15)

and suppose that F(0°) =|| (0°) has rank n-1. Let wf0be such that
F(0 )w = 0. Let P be a matrix such that [ Pjw] is nonsingular and

Pw=0. Since F(0°) is symmetric, therefore wT F(0°) =0 also. Hence,

in terms of the notation of Section 3.1, we can take w = z and P = Q.

To study the behavior of (3.15) near 0°, p° introduce the coordinates

y, p, y and u such that
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y=Pp, p=wp, 0= Py+uw.

Then there is aneighborhood Nof (y°, u°, y°) and y*(u, y) so that

PTf(Py+uw)-y =0 «> y=y*(u,y).

The bifurcation function is

h(u,y) =wTf(Py*(u,y)+uw). (3.16)

Then h(u°,y°)= p°, |JL (u°, y°) =0, and from (3.12)

2

^4(u°,y°) =limlwTF(0°+uw)w
air LH-0 u

=-wTAY[S(AT0°)](ATw)2, by Lemma 2.1,
n+1

3V „,_/J) J)«=-. I (w1-w1)°y11 s1n(e?-e"),
i ,3=1 ^ J 1J 7 J

=: a(0°), say. (3.17)

Here, as usual, wn+1 =0, 0°+1 =0. An application of Theorem 3.1 gives
the next result.

Lemrca 3.1 Suppose o(80) t 0. Then p° is a fold bifurcation i.e. there
is aneighborhood N=NQ xNp of (0°, p°) - (e°, y°, p°) and a function
n(y)» n(y ) = p , such that the following conclusions hold in N: the

power flow equation has

(i) no solution if n(y) > p»

(ii) exactly one solution if n(y) = p,

(iii) exactly two solutions if n(y) < p.

Let SQ, respectively S+, S_, denote the set N n {n(PTp) - wTp =0,
respectively >0, <oj. Then SQ is an (n - l)-dimensional surface
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containing p ,while S+ and S_ are open sets lying on opposite sides of

Sg. Since n(y) is the maximum or minimum value of h(u, y), therefore the

eigenvector wis the normal to SQ at p°.
We apply Lemma 3.1 to the practically significant case when y° is in

the boundary 8$ of the stable region. Choose the neighborhood NQ so small

that for 0 in NQ, F(0) has at most one negative eigenvalue. Now if p€ s+,

then by Lemma 3.1 (i) H(p) n NQ is empty, which implies [13] that the

local degree of f at p,

I sign F(0) = 0
®(p)nNQ

for all pin N sufficiently small. Hence if pe sQ, and so by Lemma 3.1

(ii) there is exactly one 0 in @(p) n NQ, it must be that det F(0) =0

i.e. 0G Bs. Finally, if p€ S_, then by Lemma 3.1 (iii) there are exactly

two solutions, say 01 land 02, in @(p) nn Since det F(0]) + det F(02) =0

we must have the determinant positive for one solution say 01, and negative
1 2

for the other. Since F(0 ) and F(0 ) have at most one negative eigenvalue,

therefore F(0 )must be positive definite i.e. 01 is stable, and 02 must be

unstable. We summarize the conclusion as a corollary.

Corollary 3.2 Suppose 0 e 8S- Then in the neighborhood NQ, the power

flow equation has

(i) no solution, if p G S,
T

(ii) exactly one solution which is in B ,if pe SQ

(iii) exactly two solutions, one of which is stable and the other unstable,

if p e s_.

3.3 Cusp bifurcation of power flow equation

Starting with (3.16), some further manipulations lead to
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•4(u°,y°) =wTj^(0(u))-2^JF(0(u))P[PTF(0O)P]-1PT^rF(0(u))jw

=: B(0U) say, (3.18)

where 0(u) := Py*(u, y )+ uw. Lemma 2.1 gives the following formulas

for the derivatives in (3.18),

au
if(8(u))

wT^-*rF(0(u))w
au^

du

3

3u

(0(u))w

(0(u))w

=-AY[C(AT0°)][ATw]2AT,

n+1
.0 .0-0 =". I <VV Yij cos(0^-0p,

U 1,J=1 J ,J ' J

0=-AY[S(AT0)][ATw]AT,

0=-AY[S(AT0)](ATw)2.

(3.19)

(3.20)

(3.21)

(3.22)

In (3.19) and (3.21), [A w] is the diagonal matrix whose entries are the

components of the vector Aw.

Suppose a(0°) =0 in (3.17) and $(0°) <0 in (3.18). Suppose more
over that there are points (u, y) arbitrarily close to (u°, y°) where

8<u.y) >0. (3.23)

.0 ,Then p is acusp by Corollary 3.1. Let N=NQ x N be the neighborhood in
Theorem 3.2. Let N" respectively N* denote the open set {p e N| y0(u) =
Y0(p P) <°» respectively >0}. N* is non-empty and p° is in its boundary.
Np can be further partitioned into three sets SQ, S+, S defined by

Np n {Y(y, p) =y(PTP. wTp) =0, respectively >0, <o).

Lemma 3.2 Under the conditions above, and in the neighborhood N, the
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power flow equation has

(i) a unique solution if p GN" (in fact if p jE N+),
r r

(ii) (a) one simple solution if p Gs+,

(b) one simple solution and one double solution if p gs

(c) three simple solutions if p gs_.

We examine the remarkable implications of these results when 0° is in

the boundary Bs of the stable region. We assume again that NQ is so small

that F(0) has at most one negative eigenvalue. First observe using (3.16)

that

|j(u,u) =-wTF(0*(u,y))P[PTF(0*(u,y))P]"1PTF(0*(u,y))w+wTF(0*(u,y))w.
(3.24)

where 0*(u, y) := Py*(u, y) + uw. Since 0 gb$, therefore there exist

(u, y) arbitrarily close to (u ,y°) where F(0*(u, y)) >0. By, Lemma 3.4

below, this implies |~ (u, y) > 0. Hence (3.23) holds and so the conditions

of Lemma 3.2 are satisfied. Second, suppose that pG N" and let© G NQ be

the unique solution to f(0) = p. Now since pg n", therefore y0(v) =

YqxK p) <0, and since y0(u) is the maximum value of -^ (u, y), this implies

that tjj (u, y) < 0. Hence 0 must be unstable; and so the local degree of

f at p

d(f,p) := 7 sign F(0) = -1. (3.25)
0QD(p)HNo

0

Lemma 3.3 Suppose 0° gb$, ct(0°) =0, 3(0°) <0. Then p° is acusp
bifurcation, and in the neighborhood N, the power flow equation has

(i) a unique unstable solution if p G N",

(ii) (a) one simple unstable solution if pG S+

(b) one simple unstable solution and one double solution in 8 if
s
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(c) two simple unstable solutions and one simple stable solution

if p G S_.

Proof (i) has already been proved, (ii) now follows from Lemma 3.2 and

(3.25). B

Observe that conclusion (i) implies that if a cusp occurs at p° with

0 in 8$, then there is always a perturbation in the power demand which

can be met by a small change in bus angles only at unstable solutions.

We see this in more detail in the next example.

Lemma 3.4 Let F=FT >0, and let [P jw] be nonsingular with PTw =0.
Then

wTRw := wT{F-FP[PTFP]"1PTF}w > 0.

Proof First observe that R = lim R,,, where
e+0

R := F-FP[PTFP+eI]"1PTF.

By a well-known matrix identity (see e.g. [8]), R can be written as

r = [F^+lpVp1 > o.
e e

Hence R>_ 0 and so w Rw >0. Therefore, wTRw =0 only if

0 = Rw = Fw-FP[PTFP]"]PTFw,

and since F is nonsingular, this implies

w= P[PTFP]"Vfw.

So,
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wTw =wTP[PTFP]_1PTF,

which is a contradiction, since ww >0 and wTP =0. «

Example 2.4 (continued) Consider again the 6-node network of Figure 4

in which Y.. = 1. Take 0 and p as in Section 2.5 where it was shown

that 0° GBs. It can be verified directly that w:= (1, 1, 1, 0, 0)T
satisfies F(0°) w=0. Substituting this win the formulas (3.17) and
(3.18) - (3:22) we get a(0°) =0, 6(0°) <0. By Lemma 3.3,p° is a

0 0
cusp. It can be directly verified that near,(0 ,p)there is a unique

solution 0* of f(0) =p* where pt := p° +t(l, 0, 0, 0, 0)T for t >0
small. By Lemma 3.3,0 must be unstable.
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4. Conclusions

The most interesting global properties of the power flow equation

concern the disconnectedness of the stable region, and the fact that F(0)

becomes "more" positive definite as one moves towards the interior of the

stable region. The interesting local properties are that in the boundary

of the stable region, a fold bifurcation occurs by the coming together of

a stable and an unstable solution, whereas a cusp occurs by the coming

together of two unstable and one stable solution.

The examples given in the paper have dispelled some conjectures which

had appeared in the literature, or which at first seemed plausible to us.

The most surprising discovery is the existence of power demands which

can only be met by unstable solutions.

Finally, our study has led us to formulate these conjectures:

(i) The number of components of the stable region is equal to the number

of stable solutions of f(0) = 0,

(ii) The principal component of the stable region is not generally convex,

(iii) The flow function f(0) is one-one in each component of the stable

region,

(iv) If f(0) = p has a stable solution, then it has a stable solution in

the principal component.
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FIGURE CAPTIONS

Fig. 1. Network for Example 2.1

Fig. 2. Network, for Example 2.2

Fig. 3. Network, for Example 2.3

Fig. 4. Network, for Example 2.4

Fig. 5. A fold bifurcation of g(x]. - X = Q

Fig. 6. A cusp bifurcation of g(x) - X = 0
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