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FOUNDATIONS OF NONLINEAR NETWORK THEORY

PART II: LOSS.LESSNESS

t tf t+t
J. L. Wyatt, Jr. , L. 0. Chua , J. W. Gannett ,

I. C. Goknar1T 'and D. N. Green'

ABSTRACT

This paper is the second in a two part series [1] which aims to pro

vide a rigorous foundation in the nonlinear domain for the two energy-

based concepts which are fundamental to network theory: passivity and

losslessness. We hope to clarify the way they enter into both the state-

space and the input-output viewpoints. Our definition of losslessness

is inspired by that of a "conservative system" in classical mechanics,

and we use .several examples to compare it with other concepts of lossless

ness found in the literature. We show in detail how our definition avoids

the anomalies and contradictions which many current definitions produce.

This concept of losslessness has the desirable property of being preserved

under interconnections, and we extend it to one which is representation

independent as well. Applied to five common classes of n-ports, it allows

us to define explicit criteria for losslessness in terms of the state and
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output equations. In particular we give a rigorous justification for

the various equivalent criteria in the linear case. And we give a

canonical network realization for a large class of lossless systems.
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I. Introduction

This paper completes our two-part series [1] on energy-based con

cepts which are fundamental to nonlinear network theory. Our motivation

for writing this second part is the little recognized fact that lossless

ness, like passivity, has been given a number of conflicting definitions

[2-4,12,18] in the modern network theory literature. And as before, we

believe that the problem arises from the long period in which "network

theory" meant essentially "linear network theory," since the various

concepts nearly coincide in the linear case.

Unlike its counterpart on passivity [1],this paper differs signifi-

cantly from the theory given in reference [4]. When applied to nonlinear

n-ports, the theory in reference [4] defines losslessness only for pas

sive n-ports. Other authors [12], [18] would define a lossless n-port

to be a passive n-port which satisfies certain additional conditions.

In this two-part series, we treat passivity and losslessness as indepen

dent concepts. As a result of this viewpoint, a more complete theory

emerges. The definition of losslessness given in this paper classifies

a negative linear capacitor as lossless—a very sensible classification—

whereas other approaches are either incapable of classifying this active

element as lossy or lossless, or they classify it as lossy.

Our definition of losslessness is similar to, but less restrictive

than, the concept of a "conservative system" in classical mechanics [5].

Roughly speaking, we say that a system is lossless if the energy required

to travel between any two points of the state space is independent of

the path taken. This seems to us the most basic concept possible, and

it is quite different from many definitions found in the literature,
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which are based on equations such as

i(t)> dt - 0 • (l.i)|<v(t),i
'0

as in [2], or

"I

T7X0 " ' 0
lim~ [ <y(t),i(t)> dt -0 (1.2)

as in [3]. We will show by means of examples that expressions of this

sort must be viewed as criteria for losslessness rather than as defini

tions of the concept. The relation between the basic definition and

these and other criteria is the subject of Section II.

Notice that the above expressions are purely input-output in charac

ter since they involve only the admissible pairs {v(•)»!(•)}> whereas

our definition of losslessness relies on a state-space description of the

n-port. This distinction will play a central role in the next two sec

tions. For example, with losslessness defined as path independence of

the energy, it is clear that an element such as an ideal 1-volt d.c.
«

voltage source is lossy, at least so long as we view it as a resistive

element. But we could also choose to view it as a nonlinear capacitor

defined by v(q) = 1, and in that case it would of course be lossless.

This raises the disturbing possibility that our concept of losslessness

relies critically on the equations we choose to describe an n-port rather

than reflecting in a straightforward way the physical behavior of the

n-port itself. In fact, we show in Section III that this is not a trivial

anomoly: given any n-port M with a (not necessarily lossless) state

representation S, we can construct a lossless state representation S v
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which is equivalent to S. Hence, N always has at least one lossless

state representation. If we say, "a lossless n-port is an n-port with

a lossless state representation," then every n-port is lossless and the

definition means nothing at all. In Section III we show that if there

exists a lossless state representation for W which satisfies a certain

observability requirement, then (essentially) all state representations

for W are lossless. This result allows us to formulate a meaningful

definition of losslessness for an n-port, and it completely resolves the

anomoly described above.

In Section IV we show that the internal energy function[1] for a

passive n-port becomes unique in the lossless case. And in Section V

we derive explicit criteria for losslessness in terms of the state and

output equations of several special classes of n-ports. In particular

we show that the criteria (1.1) and (1.2) are equivalent to losslessness

in the linear, time-invariant, finite dimensional case, which explains

why they are often invoked as definitions. And Section VI is devoted

to a canonical network realization of lossless n-ports which becomes

possible under certain assumptions.
*

In this paper, n-ports will be mathematically modeled by state repre

sentations (a complete list of our technical assumptions and definitions

is given in Section II of [1]). Briefly, a state representation is a

set of state, output, voltage, and current equations

x(t) = f(x(t),u(t)) (1.3)

y(t) « g(x(t),u(t)) (1.4)

y(t) = V(x(t),u(t)) (1.5a)
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i(t) - l(x(t),u(t)) (1.5b)

where f(•,*), g(.,»), V(«,.), and I(-,«) are all continuous functions

defined on E * U Cr1 xRn (z = state space, U = set of admissible input
+ A

values). The inputs u(«) belong to a set U of functions mapping P. =

[0,")' to U. For each input u(«) and each initial state x(0), we assume

the existence and uniqueness of the solution to (1.3) over the time

interval & . The power input function is defined by d(x,u) = (v(x,u),

I(x,u)) , we assume that t -*• p(x(t),u(t» is locally L for every input-

trajectory pair. The energy consumed by an input-trajectory pair
fT

{u(«),x(.)}|[0,T] is the quantity p(x(t),u(t))dt—note that this

quantity can be positive, negative., or zero.

We will continue to make the blanket assumption that U. is translation

invariant and closed under concatenation [1, defs. 6 and 7]; but unlike

[1], we will no longer repeat these assumptions explicitly when a theorem

or lemma requires them.

II. Five N-Port Attributes Associated with Losslessness

Five characteristics of an n-port which are* frequently associated

with losslessness are, in rough order from the most obvious to the most

subtle:

1. zero energy- required to drive the state around any closed path,

2. the existence of a scalar function of the state which "tracks"

the energy entering the ports,

3. all the energy which enters the ports can be recovered at the

ports,

4. •the total energy entering the ports over the time interval [0,°°)'
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is always zero, and,

5. the average power entering the ports over the time inverval

[0,T] is always zero in the limit as T -*• ••

Note that properties 1 and 2 involve state-space ideas, while 3-5

are purely input-output in character. Although properties 1, 2, 4, and

5 have all been used by various authors to define losslessness,- only

property 3 means literally "no loss of energy."

We will give a detailed discussion of these properties in subsec-
i

tions 2.1 through 2.5, and we will mention here only the major conclu

sions. It might appear on first reading that these five concepts and

losslessness itself are simply different ways of saying the same thing.

But it is rare in systems theory for input-output and state-space con

cepts to coincide exactly without restrictive assumptions, and this case

is no exception. The major conclusion which emerges from this section

(indeed, our motivation for writing it) is that not one of these five

notions is known to be strictly equivalent to losslessness, defined as

path-independence of the energy. The first two will turn out equivalent

to losslessness under the additional assumption of complete controllability

[1, def. 13], but the last three will not be unless very restrictive

assumptions are imposed.

Relationships weaker than equivalence certainly do exist, though.

It is not hard to see, for example, that losslessness and complete controlla

bility imply property 3. And we will present a more stringent set of

assumptions under which property 5 implies losslessness.

The following definition is a rigorous statement of the concept

of losslessness as path independence.
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Definition 2.1. A state representation S is defined to be lossless if

the following condition1 holds for every pair of states x&, 3^ in Z. For
any two input-trajectory pairs {^(0,^(0}I[0,T1],{u2(-),x2(-)}| [0,T2]
from x to x., the energy consumed [1, def. 8]by {u (•)»x-(-)}| [0,^]

**a ~d •*•

equals the energy consumed by (u2(.),x2(.)}|[0,T2]. Astate representa

tion which is not lossless is defined to be lossy.

Note that Definition 2.1 does not require that there exist two or

more input-trajectory paifs between every pair of states x& and xb:

there may exist only one input-trajectory pair between xfl and xb, or none

at all. Also, a state representation which has no more than one input-

trajectory pair between every pair of states is lossless by default.

As we discussed in the introduction, this notion of losslessness is

'dependent upon the particular state representation we choose for an

n-port. For this reason we will initially consider losslessness to be

an attribute of a state representation S rather than of an n-port W.

We will show later, in subsection 3.1, that we can rid ourselves of this

dependence on Sunder certain reasonable assumptions and define lossless

ness directly as an attribute of M. In the next two subsections we will

discuss the concepts of cyclo-losslessness and conservative potential

energy functions, which suffer from this same dependence on S. In sub

section 3.2 we will give conditions under which they can be made repre

sentation independent as well.

^ince Uis translation invariant [1, Def. 6] and the state ^"^ions are
independent of time, there is no loss of generality in assuming that both
trajectories pass through xa at t= 0. 'And because of our standing
assumption [1, Section Ilfthat t- p(x(t),u(t)) is locally I*. the
energy consumed over any finite time interval is always finite.
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2.1. Cyclo-Losslessness

We will say that a state representation is cyclo-lossless if the

energy required to drive the system around any closed path.in its state-

space is zero. The following definition says this a bit more formally.

Definition 2.2. A state representation S is defined to be cyclo-lossless

if for every input-trajectory pair {u(0>x(«)} and every T _> 0 such that

x(0) = x(T), the energy consumed by {u(.),x(0)|[0,T] is zero.

This is essentially tfte definition of a conservative system in

classical mechanics [5], and it is slightly less restrictive than the

definition of cyclo-losslessness given by Hill and Moylan [18].

Like losslessness itself, cyclo-losslessness is not a pure input-

output concept but depends upon the particular state representation we

.choose. The ideal voltage source, for example, is cyclo-lossless when

considered as a capacitor but not when considered as a resistor. To see

that losslessness and cyclo-losslessness are not entirely equivalent

concepts, consider the following example.

Example 2.1. If the current-controlled 2-port in Fig. 1 is given the

obvious state representation in terms of q and q2, it will be lossy

because of the resistor. But it is cyclo-lossless "by default," because

(q1(0),q2(0)) = (q^T^qjCT)) is possible only if we don't excite port

#1 over the interval [0,T].

Nonetheless, there is a very strong relationship between the two

concepts as the following lemma shows.

Lemma 2.1. Let S denote a state representation. Then the *following

three statements are true:
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a) If S is lossless, then S is cyclo-lossless.

b) If S is completely controllable and if there exists a state

xQ € Z for which every input-trajectory pair {u(«),x(-)}|[0,T] with

x(0) » x(T) = xQ consumes zero energy, then S is lossless.

c) If S is cyclo-lossless and completely controllable, then S is

lossless.

Lemma 2.1 is fairly obvious, but a rigorous formal proof is given in

Appendix A. In essence, the lemma says that losslessness and cyclo-

losslessness are equivalent concepts for completely controllable systems.
»

Statement b) of the lemma will be utilized in our proof of results for

linear systems.

2.2. Conservative Potential Energy Functions

A conservative potential energy function is a scalar function defined

on the state space, which increases along trajectories at the same rate

that energy enters the ports. The following definition just says the

same thing more precisely.

Definition 2.3. A function <J> : £ •*• H is defined to be a conservative

potential energy function for a state representation S if

t.
"2

;1

for all input-trajectory pairs {u(«),x(.)} and all 0 <_ t^ <_ t~ < ao.

♦ fe<t2)) -♦•fe(t1>) =J p(x(t),u(t)}dt (2.1)

It is evident that every state representation with a conservative

potential energy function is lossless, and that any two conservative

potential energy functions for a given state representation can differ

only by an additive constant on any region of E reachable from a given

point x € E. Note that any nonnegative conservative potential energy
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function is also an internal energy function [1, .Def. 23].

Like losslessness and cyclo-losslessness, the concept of a con

servative potential energy function is not purely input-output in

character, but involves the state space in a fundamental way. The ideal

1-volt d.c. voltage source, for example, has the conservative potential

energy function *(q) - q if we view it as a capacitor; but there is no

conservative potential energy function for this system if we view it as

a resistor.

In this section we wijl be content to define conservative potential

energy functions in terms of a given state representation S. In subsection

3.2 we will discuss the conditions under which a conservative potential

energy function can be assigned to an n-pprt W, independent of our choice

for S.

The following simple lemma shows that under a certain reachability

assumption, every lossless state representation has a conservative

potential energy function. We do not know whether this conclusion holds

without such an assumption.

Lemma 2.2. Suppose a state representation S is lossless and that there

exists some state x e z such that all of Z is reachable [1, Def. 12] from
A

x. And let ij>(x) represent the energy required to drive the state from
A

x to any point x€ I. Then $:I -»• m is a conservative potential energy

function for this state representation.

The proof is in Appendix A. Since the reachability assumption in

Lemma 2.2 is always satisfied by completely controllable systems, it

follows that losslessness, cyclo-losslessness, and the existence of a

conservative potential energy function are all equivalent concepts for

completely controllable state representations.
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We haven*t required or assumed that a conservative potential energy

function $ be continuous, much less differentiable. But in those cases

where <j> is continuously differentiable, it is possible to rephrase (2.1)

in differential form as follows.

j

Lemma 2.3. Let S denote a state representation, and suppose that E is an \

open subset of TRm, Suppose further that U satisfies the following mild j

technical assumption: for each uQ £ U, there exists an input u(.) ^U I

such that u(0) = uQ and u(-) is continuous at t = 0. Then a C function »
9 !

$ : E •+ K. is a conservative potential energy function for S ° i

I
<V(j>(x),f(x,u)> = p(x,u) (2.1a) |

for all (x,u) € E x u.

• The proof is in Appendix A. «

Note carefully that a conservative potential function need not be

differentiable at all* It is an open question whether <{> will be dif-

OB

ferentiable even when £(•,•) and p(*,*) are C . (We have discussed a

related question at length in [1, example 7].) Therefore the existence

of a function satisfying (2.1a) is not known to be a necessary condition

for losslessness, even for completely controllable systems where f(«,»)

CO

and p(«,•) are C . •

2.3. Energetically Reversible Systems

A third property associated with losslessness is the property of

being an "ideal energy reservoir," i.e. that all energy pumped into the

system through its ports can be recovered at a later time. This is a

genuine input-output property; therefore, if a state representation for

an n-port W has this property then all state representations for W will

have this property.
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Definition 2.4. A state representation S is defined to be energetically

reversible if the following condition holds for each x ^ E. For every

admissible pair (v(•),!(•)} with initial state x and every T> 0, there

exists an admissible pair (vT (Oji* (»)} with the same initial state x,

and a T1 j> T, such that

i) (v(t),i(t)} = {v'(t),i'(t)}, Vt e [0,T]

fT«
ii) <v,(t),i,(t)>dt = 0. (2.2)

J0

An n-port is defined to be energetically reversible if it has an

energetically reversible state representation.

Condition i) and the requirement that {v(•)»*(•)} and tv1 (O*!1 (*))

have the same initial state imply that {vf(•)»£'(•)>!(T,«) is a develop

ment of the port voltages and currents in time which remains possible

for W at the moment T, after the waveforms {v(.),i(')}|[0,T] have been

observed. In the light of this observation, (2.2) means that all the

energy deposited in W over the interval [0,T] can be recovered over some

interval (T,T']»

An n-port is energetically reversible if, from the viewpoint of the

outside world, no energy can ever disappear or be lost inside it. For

this reason we were once tempted to adopt Def. 2.4 as our definition of

losslessness. But we have decided to define losslessness as path

independence of the energy instead, since the latter concept corresponds

more closely to the standard electrical engineering usage of the term.

While it may seem natural to associate energetic reversibility with

losslessness, the former property is neither a necessary nor a sufficient

condition for the latter. For example, a 2-terminal resistor whose

constitutive relation (v-i curve) contains points in both the first and

second quadrants is a lossy element which is energetically reversible.
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And the 1-port in the following example, is lossless but not energetically

reversible.

Example 2.2. The 1-port in Fig. 2 has the following state representation:

4-|(i+|i|)

Is if i > 0,
v

m, it i> o,

lO, if i < 0.

This 1-port is clearly lossless, but it is not energetically reversible

because of the ideal diode in series with the capacitor. (Note that this

example violates our technical assumptions because the port voltage is

not a continuous function of q and i. This violation does not arise if

one makes the artificial (but permissible) restriction i ^> 0.)

In spite of Example 2.2, there is a strong connection between the

state dependent property of losslessness and the input-output property

of energetic reversibility, as the following*lemma shows.

Lemma 2.4. Suppose that a state representation S is lossless and

completely controllable. Then it is energetically reversible.

The proof is in Appendix A.

2.4. The Zero Total-Energy Property

The zero total energy property is the term we have adopted to

express conditions of the type

] p(x(t),u(t))dt = 0 (2.3)
Jo

where appropriate restrictions may be placed on the input-trajectory

pairs {u(*)»3c(')} for which (2.3) is required to hold. The zero energy
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idea is rather appealing in the usual case that u(#) and y(«) are a

hybrid pair [1, Def. 3]. For then (2.3) becomes

f <u(t),y(t)>dt =0 (2.4)
J0 *

and has the straightforward geometric interpretation that u(') and y(*)

*) + Tl
are orthogonal in the Hilbert space L (IR ->-lR ). In other words, if U

2
and / are contained in L , then (2.4) says that the n-port acts as an

2
operator which maps each input waveform u(*) into the subspace of L

orthogonal to u(»). In this guise the zero total energy property appears

as a generalization to function spaces of the idea of a nonenergic

n-port [6], one for which v(t) and i(t) are orthogonal vectors in IR

at each instant t.

There are many possible versions of the zero total energy property,

depending upon the conditions we place on u(*) and x(-) or u(') and

y(»). Since no single version is really definitive for our purposes,

we will describe some of the most significant variations and their

relation to losslessness.

A version of the zero total energy property was proposed in [2] as

the definition of losslessness in both the linear and the nonlinear case.

In the language of this paper, the definition in [2] can be paraphrased

as follows. "An n-port hi is lossless if

n<*<v(t),i(t)>dt = 0 (2.5)
0

2 + n
holds, for all admissible pairs {v(*)»i(*)} in L (]R •+ 3R ) so long as

there is no energy stored in W at T - 0." This conception of losslessness

is adequate as a criterion in the linear theory, but the following

example shows that it is inappropriate for nonlinear systems.
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Example 2.3. Consider the 1-port capacitor with the constitutive relation

V(q)

shown in Fig. 3a. If we give it the usual state representation for a

capacitor, with q as the state variable, then it is clearly lossless

(Def. 2.1). In fact, it has properties 1), 2), and 3) listed at the beginning

of this section, and property 5 holds also if {v(-)»i(')} is bounded. But to

see that it doesn't satisfy the definition in [2], consider the following signal

pair, shown in Fig. 3b:

^ 0 < t < ir jsin(t), 0 £ t£ u
i(t) «< v(t) ={

6, otherwise 10 , otherwise.

This is an admissible pair if the initial state is q(0) « 0, and it is

clearly in L . The "stored energy" is initially zero in this case, but

the total energy entering the ports is 2 joules. Thus the definition in

[2] would have to classify this capacitor as lossy, which is contrary

to- the intuitive view that a' 1-port charge-controlled capacitor with

a continuous constitutive relation ought to be lossless.

Nonetheless, the following two lemmas show that there is a definite

relation between losslessness, as we define it, and certain versions of

the zero total energy property.

Lemma 2.5. Suppose a state representation S is lossless and completely

controllable. Then S has a conservative potential energy function <J>,

and we suppose further that <{> is continuous. Under these conditions,

lim <v(t),i(t)>dt « 0 (2.6)
T-*» JO
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9

for all (not necessarily L ) admissible pairs (v(») = Y(^(,)>u(*)) >i(0

-lf(x(0»u(')] } such that lim x(t) = x(0). Furthermore, (2.5) holds
2 *+•

for all L admissible pairs such that lim x(t) = x(0).

The proof is in Appendix A. The difference between equations (2.5)

and (2.6) is a technical point based on the definition of the Lebesgue

integral [7]. Because of our standing assumption that t •»• (y(t),i(t))

is locally L , the integral in (2.6) will necessarily exist for each

finite value of T. But the integral in (2.5) exists only if the positive

and negative parts of (v(-)•>£(•) ^ individually yield finite values when

integrated over all of IR , a mathematically stronger assumption which

2 + n
explains our requirement that in that case y(0, i(') ^ L (3R -KIR ).

Lemma 2.6. Suppose that a state representation S is lossless. Then

f p(x(t),u(t))dt =0
J0

for all input-trajectory pairs {u(')»x(«)} such that x(«) is a periodic

function with period T, and for each integer n >^ 0.

Lemma 2.6 follows immediately from statement a) of Lemma 2.1.

Note that the versions of the zero total energy property invoked

in these two particular lemmas are not purely input-output in character

since they include restrictions on the state-space trajectory x(»).

2.5. The Zero Average Power Property

Definition 2.5. A state representation is defined to have the zero

average power property if

♦ r
T-*»

lim~ <v(t),i(t)>dt « 0 (2.7)
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for every admissible pair (v(« )>*(*)} such that v(«) and i(») are

bounded functions. An n-port is defined to have the zero average power

property if it has a state representation with the zero average power

property.

Since Definition 2.5 involves only the admissible pairs of a'system,

it is purely input-output in character. Therefore if an n-port W has the

zero average power property, then all state representations for W have

the zero average power property.

This property and variations on it have been commonly associated with

losslessness in the literature on linear network theory. It has even

been proposed as a definition of losslessness for nonlinear algebraic

n-ports [3]. But we shall present examples, admittedly somewhat contrived,

which show that the zero average power property is neither a necessary

nor a sufficient condition for losslessness in general.

Our stipulation that (2.7) need only hold when v(«) and i(«) are

bounded requires some explanation. In keeping with the traditions of

linear circuit theory, we would certainly want to say that a 1-farad

capacitor, for example, has the zero average power property. But (2.7)

doesn't hold for all admissible pairs of a 1-farad capacitor, as we can

see by considering the admissible pair (i(t) = 1, v(t) = t}. We could

eliminate this particular admissible pair from consideration by requiring

that v(*)> or the state-space trajectory x(«^ - q(*)» or both be bounded.

It turns out that a sensible general theory emerges only if we require

boundedness of v(-) and i(«) but not of x(«). A detailed discussion of

this point is given in Appendix B.

Example 2.4.

To produce a voltage-controlled state representation for the 1-port

in Fig. 4, we define f by

' -18-



v-v , V _> V

*<vv)-' c c
'0 , v < v .

' c

Then f is continuous, and the voltage-controlled state equations are

v =: f(v ,v), i « f(v ,v). Since we are only interested in bounded
c c c •

admissible pairs, we can take u = L (TR ->r]R).. It is easy to see that

this is a lossy state representation.

To show that Example 2.4 has the zero average power property, let

{v(*),i(.)} be any bounded admissible pair. Then there exists a finite

constant M > 0 such that |v(t)| _< M and |i(t) | <_ M for all t. Since

f(v.v) > 0 always, it follows that i(t) > 0 for all t and v (•) is
C — C

monotonically increasing. If v£(t) = vc(0) for all t, then i(t) = 0 for

a.a.t fc IS. and (2.7) is trivially satisfied. Now suppose that v (•) is

not constant. Then it is obvious from the circuit shown in Fig. 4 that

vc(t) j£ M for all t^ 3R . To prove this assertion rigorously, suppose

that vc(tQ) >M for some tQ £ H •. Define a.A sup{t j> tQ :v (t) > M>.

By the continuity of vc(»), a > tQ; and by the definition of a, v (t) > M

for all t£ [tQ,a). But whenever vc(t) > M, it.must be constant (because

f(vfi(t),v(t)) » 0; i.e., no current can flow through the ideal diode).

Thus vc(«) is constant on the interval [tQ,ct). If o < «, then, by

continuity, v (a) = lim v (t) = v (t0) > M, and so there exists an e > 0

•t<o

such that vc(a+e) > M, which contradicts the definition of a. Therefore

vc(») is constant on the interval [t0,«), and a similar argument shows

that vc(.) is constant on the interval [0,tQ]. These facts contradict

the assumption that v,(«) is not constant; hence, v (t) <^ M for all t.

Now
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v(t)i(t)dt| <i [
0 "*T Jo

rT|i(t)|dt =ffT
0 T Jo

<-(M-v (0)) •• 0 as T •*• -. (2.8)

|i v(t)i(t)dt| <if |v(t)||i(t)|dt

<fJ |i(t)|dt =fJ i(t)dt =f(vc(T)-vc(0))

This shows that (2.7) is satisfied; so Example 2.4 has the zero average

power property, as claimed.

The previous example showed that a system with the zero average

power property need not be lossless. The next example exhibits a lossless

system which does not have the zero average power property.

Example 2.5. The capacitive constitutive relation v(q) = q/(l+|q|) is

drawn in Fig. 5. This system is clearly lossless; in fact #(q) - |q|

-,ln(l+|q|) is a conservative potential energy function. But it doesn't

have the zero average power property, as we can see by considering the

bounded admissible pair (i(t) = 1, v(t) = t/(l+t)} for which the

limiting value of the average input power is 1 as T •*- «.

In the previous example the input and output were bounded functions,

but the state q(«) was not. At first glance we might think that the

problem could be resolved by amending Definition 2.5 so that we only

consider bounded admissible pairs {u(0»y(*)} for which the state

trajectory x(«) is also a bounded function. We discuss this topic in

depth in Appendix B, where we show that such an amendment would not

resolve this apparent anomaly. Nonetheless, if we do place restrictions

on the state space trajectory x(»), we can establish certain relationships

between losslessness and a certain sort of zero average power condition.

The following two lemmas are elementary.
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Lemma 2.7. Suppose the state representation S is lossless and completely

controllable, and that its state space E is all of ]Rm. Then S has a

conservative potential energy function <J>, and we suppose further that

* is continuous. Under these conditions, (2.7) holds for all admissible

pairs (y(.),i(-)} « {v(x(.),u(.)) ,l(x(.),u(.))} such that x(.) is bounded.

The proof is given in Appendix A.

Lemma 2.8. If a state representation S is lossless, then (2.7) holds

for all admissible pairs (v(.),i(.)} = (v(x(.),u(.)) ,I(x(. ),u(.))> such

that x(«) is a periodic function.

The proof is given in Appendix A.

These two lemmas do not yet show a relationship between losslessness

and the zero average power property as in Definition 2.5, because they

require additional information about the state trajectory x(-). Can we

find a connection between losslessness and the purely input-output

statement of the zero average power property, one which holds for non

linear n-ports and nonperiodic inputs and trajectories? Examples 2.4

and 2.5 place rather restrictive bounds on possible theorems in this

area, but Lemma 2.8 suggests that we might have some success if we could

find away to reduce the general case to the periodic case. In linear

circuit theory the Fourier transform does exactly that, but we must

find another approach for nonlinear systems. First, we need the following
technical definition, the terms of which are illustrated in Fig. 6.

Definition 2.6. Given u(.) :IR+ -*n, we let u(.)|[0,T) denote the .
restriction of u(.) to the interval [0,T), T > 0. Given u(.) and T >0

we say that w(.) :]R+ -IRn is the periodic extension of u(.)|[0,T) if
for each.t S3R+, w(t) =y(t-nT), where nis that unique nonnegative
integer such that t-nTG [0,T). (See Fig/ 6.) Finally, we say that U
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is closed under periodic extension if for each u(-) 6 11 and each T > 0,

the periodic extension of u(-)|[0,T) is also an element of U.

Although "closure under periodic extension" bears a superficial

resemblance to "closure under concatenation" [l,Def.7], it is actually a

quite different concept. The essential difference is that closure under con

catenation means one can piece together two (and hence any finite number)

of different waveforms, whereas closure under periodic extension means

one can piece together asegment of any single waveform an infinite number

of times with itself. Consider Fig. 6 again. .The waveform u(-) in

Fig. 6a belongs to all the spaces LP(IR+-]R), liPi»» slnce it: is
bounded and vanishes outside some finite interval. On. the other hand

the periodic extension of u(.)|[0,T), shown in Fig. 6c, is in L* but not
in Lr, 1<r<«. Thus while all the Lp spaces are closed under con

catenation, only L* is closed under periodic extension.

The following theorem gives the relation between the input-output

property of zero average power and the state-space property of losslessness.

Theorem 2.1. We are given an n-port Wwith state representation S

satisfying the following assumptions: »

i) S is completely controllable,

ii) U is closed under periodic extension,

iii) each waveform in Uis bounded on every compact interval [0,T],

and

iv) V(-,0 and I(-,0 are bounded on every bounded subset of E*U.

Under these conditions, if S has the zero average power property then S

is lossless.

Remark. Assumptions iii) and iv) are rather technical and not very

restrictive. For example if Ucontains only piecewise-continuous waveforms
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then iii) is satisfied automatically, and if E « 3Rm and U « ]Rn then

iv) is satisfied automatically because we have assumed that V(',«) and

I(.,«) are continuous [1, section II]. Assumptions i) and ii), on«the

other hand, are essential. The theorem fails without assumption i), as

we see from Example 2.4, Fig. 4. It also fails without assumption ii),

for consider the (admittedly artificial) example of a 1 ohm resistor

2 +
with u = i where we make the very special choice U = L (H ->]R ). This is

a lossy system, hut it has the zero average power property as a result

2
of U being L , a space which is not closed under periodic extension.

Proof of Theorem 2.1. The proof proceeds by contradiction. We will

assume the system has the zero average power property and satisfies

assumptions i)-iv) but is lossy. A contradiction will emerge.

If it is lossy, then there exist two states x , x, in E and two

input-trajectory pairs {u1(-),x]L(-)}| [0,^], (u2(.),x2(.)}|[0,T2] from

x to x. such that E, h E«, where E.. is the energy consumed by

{u1(.)Jx1(.)}| [0,^] and E2 is the energy consumed by {u2('),x2(0 }| [0,T2]

[1, Def. 8]. (See Fig. 7.)

Since the system is completely controllable,, there is an input-

trajectory pair {u.(')>x3(.)}| [0,T-] from x. to x ,and we let E- be

the energy consumed by {u3(.),x-(«)}| [0,T-]. And since E- *? E^, either

El+E3 ^ ^' or E2+E3 ^ °' or DOtn# For definiteness, .suppose E +E~ ^ 0.

Let u.(») consist of u-(«) followed by u.(«), i.e.

u^t), 0 <, t< ^

u3(t-Tx), t >Tr

Since U is closed under concatenation, u,(») € U. And since the state

equations are time-invariant, {u,(0»x,(•)) is an input-trajectory pair,

where
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(x,(t), 0<t<T.

1 1
x3(t-T1)3 t>Tr

(Note that Xi(\) =x3(0)). Then x^) =^ and x4(0) =a^C^-H^) =x&,
so x^(«) passes once around a loop. And the energy consumed by

{u4(-),x4(.)}|[0,T1+T3] is E-j+E^ 0.

To complete the construction of a contradiction, we just drive x around

the loop forever. More formally, let u, (•) be the periodic extension of

^(OI[0,Tj+T3). Since Uis closed under periodic extension, £,(•) £ U.

And since the state equations are time invariant, {u4('),x4(«)} is a valid

input-trajectory pair if §40) is the periodic extension of ?4(«)|[0,^+T )
This furnishes our contradiction, since

1 fn(V"T3) r ^ »<W^(T^T J0 PC^^'^^dt «jjjj—2. (2.9)

E +E

Tj^ ^ "

for every positive integer n. In order to prove that (2.9) genuinely

contradicts our assumption that the system has the zero average power
«

property, as in Def. 2.5, we must verify that y(x,(•),u,(•)) and

l(x4(«)»y4(.)J are bounded. Since x4(») is continuous and periodic it

is bounded. And y4(«) is bounded by assumption iii), since it is also

periodic. Therefore v(x4(.),u4(-)) and l(x4(-),u4(-)) are bounded by
assumption iv). n

Corollary. If a system satisfies the assumptions of Theorem 2.1 and

has the zero average power property, then it is energetically reversible.

This follows from Theorem 2.1 and the fact that a lossless, completely

controllable state representation is energetically reversible (Lemma 2.4).
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III. Representation Independence and Closure

In subsection 3.1 we define the term "total observability" for

state representations, aconcept which is essentially the same as the

usual "complete observability" in system theory. Our main result is

to prove that losslessness is a genuine physical property of an n-port,

independent of the particular state representation we choose for it, so

long as we restrict ourselves to totally observable state representations.

In subsection 3.2 we give related results for cyclo-losslessness and

conservative potential energy functions. And in subsection 3.3 we will

make precise the idea that an interconnection of lossless n-ports is

itself lossless.

3.1. Losslessness. Total Observability, and Equivalent State

Representations

The example of a d.c. voltage source, which is lossless when viewed

as a capacitor but lossy when viewed as a resistor, raises a serious

question about the physical significance of our definition of losslessness.

Is losslessness a genuine physical property of an n-port, or is it merely

an artifact of the particular state representation we choose for it? The

following example shows how pervasive an issue this is.

Example 3.1. Given any. n-port W with a state representation S consisting

of the equations x= f(x,u), y = §(x,u) and some specification for U, U

and E, it is possible to create a lossless state representation S' for M

as follows. We augment the state space by one dimension, defining

E» A E x IR, and then we add an artificial state variable e(t) which

measures the total energy which has entered-the ports over the interval

[0,T]. The state of the new system is (x,e), and its equations are
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y " |(x»y)-

The new state representation Sf is obviously lossless because the

energy required to travel between two states is now just the difference

in their last coordinate. But S* is definitely peculiar because the

artificial state variable e is not directly represented in the output

y, which depends on x and jj alone. The state representation of a d.c.

voltage source as a capacitor has this same peculiarity— its "charge"

doesn't affect its output. By weeding out these "unobservable" state

representations, we will be able to attach a definite physical meaning

to losslessness after all.

Definition 3.1. Let S and S be two (not necessarily distinct) state

representations. State x of S and state x of S are defined to be

equivalent if the set of admissible pairs of S with initial state x is

identical to the set of admissible pairs of S with initial state x .

S is defined to be state-observable if the equivalence of any two states

x, and x« of S implies that x- = x«.

In other words, S is state-observable if and only if the following

condition is satisfied: if x, f x2, then x.. and x« are not equivalent.

State-observability as defined above is essentially the standard notion

of (complete) observability from system theory [ll], the only difference

being that it is stated in terms of admissible pairs, rather than input-

output pairs. We.have given it the name "state-observability" in order

to distinguish it from the concept of "input-observability," which will

be defined shortly. First, however, some discussion on equivalent state
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representations is in order.

* •

Definition 3.2. Two state representations, S and S , are defined to be

equivalent if for any state x of S there exists an equivalent state x

* * *
of S , and conversely, for any state x of S there exists an equivalent

state x of S.

This is essentially the definition of equivalence given by Desoer

[11]. Definition 3.2 is less restrictive than the definition of equi

valence .given in Part I of this series [1, Def. 19, p. 29]. The reason

we are changing our definition of equivalence is to clear up a vague

point in Part I. We consider two state representations to be (equally

valid) mathematical models for the same n-port if and only if they are

equivalent according to Def. 3.2: this is implicit from the discussion

throughout this paper and its counterpart on passivity. An illustration

is afforded by our recurrent example of a 1-volt d.c. source, which has

both resistive and capacitive state representations. Definition 3.2

properly classifies these state representations as equivalent, whereas

Definition 19 in [1] does not. The same comment applies to the two state

representations S and S' in Example 3.1.

Another vague point in Part I was that we never explicitly stated

how we view an n-port within the framework of our theory. This situation

is rectified by the following statement: An n-port is identified with an

equivalence class [7] of state representations, where the equivalence

relation is given by Definition 3.2. When we say that an n-port M "has"

a state representation S (or that S is a state representation "for" W),

we mean that S is an element of the equivalence class which is identified

with W. •

When we say that a property is representation independent, we mean

that if a state representation S has that property, then all state
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representations equivalent to S have that property also. It is easy to

see that the theorem for representation independence of passivity

[1, Theorem 8] remains valid with the less restrictive form of equi

valence given in Definition 3.2. In Part I we defined an n-port to be

passive if it has a passive state representation; thus, by representation

independence, all state representations for a passive n-port are passive.

Although a new form of equivalence has been introduced in Definition

3.2, the concept'of equivalence given in Part I [1, Def. 19] will continue

to be of interest to us. In order to avoid confusion, we shall henceforth

refer to it as "bijective equivalence." Formally, ,we have the following

definition.

Definition 3.3. Two state representations, S, and S2> are defined to be

bijectively equivalent if there exists a bijective map b :Z. -»• E- sucn tnat

for each x £ E-, the class of admissible pairs of S, with initial state x

is identical to the class of admissible pairs of S2 with initial state

b(x).

Lemma 3.1. Suppose S1 and S2 are bijectively equivalent state

representations. Then S. is state-observable.** S2 is state-observable.

The proof is given in Appendix A.

Definition 3.4. A state representation S is input-observable if the

following condition holds for any two input-trajectory pairs

{u.(0»x-(')}, {u2(0,x2(0} with a common initial state 3^(0) = 52(0).

If ux(tf) ^ "2^'^ at SOme time t? - °* then *Y(xl(t),ul^)» jfei^'Sift))*

h {Y(x2(t),"2(t)),i(x2(t),u2(t))} for somet ^ f°»t,l-
Input observability means that to any admissible pair {v(•)^i(•)}

with a given initial state xQ, there corresponds exactly one input
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waveform u(«). In conjunction with our assumption that solutions are

unique, it implies that to any admissible pair (y(.),i(.)} with -a given

initial state xQ there corresponds a unique input-trajectory pair

{u(*),x(*)K We have defined this concept only in order to state our

lemmas and theorems in a rigorously correct way; it is always satisfied

in any practical case. For example, all hybrid and transmission

representations are automatically input-observable because the inputs are

a subset of the port voltages and currents. In these qases, the inequality

in Definition 3.4 will be satisfied at t = t1. •

If we make the modest technical assumption that for each uQ ^ U there

exists a u(») £ U such that u(0) = u0, then input observability implies

that the mapping u •* {V(x,u),I(x,u)} from U to 3Rn x Etn is injective for

each fixed x ^ E. We do not know whether this- condition is sufficient

for: input observability.

Definition 3.5. A state representation is defined to be totally

observable if it is both state-observable and input-observable.

Before proceeding to the next lemma, a few technical comments are

in order. Let S, and S2 be two equivalent state -representations, and

suppose that S- is state-observable. Then, by the definition of

equivalence, for each state x. of S. there exists a state x~ of S« which

is equivalent to S-; moreover, because S2 is state-observable, x« is

unique. Thus there exists a unique map a :E1 -»• E« such that for each

state x. of S., cc(xj) is the unique state of S2 which is equivalent to

x.. If, in addition, S^, and S2 are input-observable, then the map a(*)

"matches up" the entire state trajectories of those input-trajectory

pairs which produce identical port voltage and current waveforms in the

two systems. This is stated precisely in the following lemma.
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Lemma 3.2. Let S, and S« be equivalent state representations, with S.

input-observable and S« totally observable. Let a : E •*- E denote the

unique map such that for each state x of S,, a(x) is the (necessarily

unique) state of S2 which is equivalent to x. Let T > 0 be any time and

let (u1(.),x;L(-)}|[0,T] and (u2(.),x2(.)>| [0,T] be any input-trajectory

pairs, of S]L and S2, respectively, such that {yi(x.(t),u1(t)),

Jl(x1(t)»y1(t))> - ^y2(x2(t:)»u2(t)^i2fe2(t:),u2(t:^} for a3L1 t € [0,T]'
where Y1(*,.), I^(',«) are the readout maps for S-, and V2(.,«), J2(',0

are the readout maps for Sj. Under these conditions, if x«(0) = afafl))),

then x2(t) «of(x1(t')) for all t€ [0,T].

The proof is given in Appendix A.

Theorem 3.1. Let S^ and S2 be equivalent state representations, with

S^ input-observable and S2 totally observable; Under these conditions,

if S2 is lossless, then S1 is lossless.

Proof. We will prove the equivalent statement S. lossy =* S- lossy.

Assume S^^ is lossy. Then there exist two states x , x. in Z , two times

T», T" ^> 0, and two admissible pairs {v1 (O.i* (•)> = ^Yifo ('),u|(-))\

ll(?!(•),u[(.))}. and (y"(-),iM(-)} -<Yi(^<0,u£(0).J^x^),^-))}
of S± such that x^(O) =x£(0) = xa, x^(T') = x£(T") = xb and Ef * E",

where E1 is the energy consumed [1, Def. 8] by (u|(')»xi(•)>I[0,Tf] and

E" is the energy consumed by {u£(.)fx£(- )}| [O.f] (see Fig. 8).

Now let a:E^ -• E2 be the unique map which is defined in Lemma 3.2.

Then {v1(.),if(•)} and {y"(-),i"(-)} are admissible pairs of S with

initial state a(xa). So there exist input-trajectory pairs

^2('),x^(.)> and {u^(-),x!J(.)} of S2 such that {v' (•),!' (•)}

e^2fe2(")'u2(*)^52k2(-)»y2(0)} and (v"(.) ,i"(.)}=(V^xIJO) ,u!J(-)),
I2(x^'(-),u^(.))}. By Lemma 3.2, ^(T1) =a(x£(T')) =a(xb) and
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x"(T") =a(x"(T")) =a(xb). Thus {u^(-),x2(-))|[0,T'] and {uJJCO.xJO)}|
[0,T"] are input-trajectory pairs of S2 from a(xa) to a^). Since the

energy consumed by the former is Ef and the energy consumed by the latter

is E" *? Ef, S2 is lossy. n

Corollary. Let S and S2 be equivalent, totally observable state

representations. Under these conditions, S- is lossless ** S2 is lossless.

If we restrict ourselves to totally observable state representations,

the corollary tells us that losslessness is representation independent.

If an n-port M has a lossy state representation which satisfies

the trivial requirement of input-observability, then W cannot have a

lossless, totally observable state representation. This follows immediately

from Theorem 3.1, and it allows us to formulate a meaningful definition

of losslessness for an n-port.

Definition 3.6. An n-port W is lossless if there exists for W a totally

observable state representation S which is lossless by Definition 2.1.

An n-port which is not lossless is lossy.

Note that according to Definition 3.6, a nonzero ideal d.c. voltage

source is a lossy 1-port. (To prove that this conclusion follows rigorously

from Definition 3.6, suppose there existed a lossless totally observable

state representation for such an ideal voltage source. Since an ideal

voltage source is a -resistor, the state space can contain at most a

single point if the state representation is to be state-observable. Such

a system is lossless only if power never enters or leaves the port. For

a voltage source, this implies v = 0.)

Lemma 3.3. If an n-port M is lossless, then every input-observable state

representation for N is lossless.

(Note, however, that if N is lossy, it does not follow that every input-

observable state representation for N is lossy. The ideal 1 volt source is a

good example.) -ai



Proof. This follows immediately from Definition 3.6 and Theorem 3.1.
n

3.2. Representation Independence for Cyclo-Losslessness and Conservative

Potential Energy Functions

In Example 3.1, we showed that any n-port N with a state representation

S.bas.another state representation S1 which is lossless (and non-observable).

From its definition, it is easy to see that S' is cyclo-lossless as well and has

a conservative potential energy function. Consequently, if we said "a
«

cyclo-lossless n-port is an n-port with a cyclo-lossless state

representation," then all n-ports would be cyclo-lossless and the definition

would be meaningless. Analogous comments apply regarding the existence

of a state representation for W which has a conservative potential energy

function. In this subsection we exploit Lemma 3.2 to determine a way

in which these properties can be viewed as being characteristic of the

n-port itself. The results of this subsection show that cyclo-losslessness

and the existence of conservative potential energy functions are

representation independent properties when we restrict ourselves to

totally observable state representations.

Lemma 3.4. Let S^ and S2 be equivalent state representations, with S-

input-observable and S2 totally observable. Under these conditions, if

S2 is cyclo-lossless, then S, is cyclo-lossless.

The proof is given in Appendix A.

According to Lemma 3.4, if W has a totally observable cyclo-lossless

state representation, then all state representations for W are cyclo-

lossless, provided they satisfy the trivial requirement of input-

observability. This justifies the following definition.
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Definition 3.7. An n-port W is defined to be cyclo-lossless if there

exists for Ma totally observable state representation Swhich is cyclo-

lossless by Definition 2.2.

Lemma 3.5. Let Sx and S2 be equivalent state representations, with S1
input-observable and S2 totally observable. Let a:Z± ->• E2 denote the
unique map defined in Lemma 3.2. Under these conditions, if *,,(•) is a

conservative potential energy function for S2> then ^(O A (4»2°«)(0 is

a conservative potential energy function for S^

The proof is given in Appendix A.

Lemma 3.5 says that if an n-port M has a totally observable state

representation with aconservative potential energy function, then all
input-observable state representations for M^will have aconservative

'potential energy function. This justifies the following definition.

Definition 3.8. An n-port W is defined to be a conservative potential

energy n-port if there exists for W a totally observable state represen

tation with a conservative potential energy function (Def. 2.3).

As for the other properties which were given formal definitions

in Section II, we have already defined what it means for an n-port to be

energetically reversible (Def. 2.4) or to have the zero average power

property (Def. 2.5).

3.3. The Interconnection of Lossless N-Ports

Suppose W1,...,Nk are lossless n-ports and Mis created by inter
connecting W1,...,\.- Will Nnecessarily be lossless? If so, we would
say that losslessness possesses the attribute of closure, a concept we

have discussed in [1, subsection 5.3].

-33-



«

We would certainly expect an interconnection of lossless n-ports

to be lossless, but adifficulty arises when we attempt acompletely
0

general proof. The problem is that Nmay not have atotally observable
state representation (or any state representation at all, for that

matter), even though \,...,\ do. We will not address that problem
here, but in its absence the closure property is almost immediate.

Eemma 3.6. Suppose M^.. .,Nk are n-ports with lossless state represen
tations Sr...,Sk as in Definition 2.1. Suppose N, created by inter
connecting M1.....Mk, has astate representation Swith astate space

I which is any subset of E.^...*^. Then Sis lossless.

Moreover, if S is totally observable, then M is lossless. The

proof of Lemma 3.6 is given in Appendix A. %

'3.4. Distinct N-Ports Made from a Multiterminal Element

Distinct n-ports made from the same multiterminal element by the

use of Excitation-Observation-Mode-Transformation of Type 1 (EOKT 1) and

of Type 2 (EOMT 2), the concept of EOMT equivalence were introduced and

discussed in [1, Section 5.2]; it was also shown there that passivity is

preserved under EOMT equivalence. In the following we will show that

similar results hold for losslessness as well, i.e. assuming (u(-).y(-)}

is an hybrid pair we will show that losslessness is also preserved when

the roles of the inputs and outputs are reversed. But first we will need

two technical lemmas which are very much similar in spirit to Lemmas 3.1

and 3.2.
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Lemma 3.7. Let W with state representation S be EOMT equivalent to N

with state representation S. Then S is state observable °Sis State

observable.

Proof.

(<=) Let Sbe state observable, xa and 3^ two distinct states in E, Cfl

and C, the classes of input-output pairs with initial states x& and xb

respectively and, C and ^ the classes of input-output pairs with

initial states x and ^ respectively where x& =£(?a) and ?b " ~^b'*

As b is the bijection in the definition of EOMT equivalence xa i 2^

•* x f 2I •* C f C, . The last implication being true since S is state
-a ^b a b

observable. C f t implies, one or both of the following two statements,
a b

<*> 3^a(,),^a(0} 6Sa SUch that {5a(,),?a(')} *£b
(ii) q^C-),^-)} e ^ such that {ub(0,yb(-)} £ca .

Suppose (i) holds and let {^(O.y^')} be the input-output pair

with initial state x which is EOMT related to {u_(-),2 (')} as required

by (iii) of EOMT equivalence. Clearly i^')^'^ G ca- Moreover

{u (.)>£ (•)> £ C, because otherwise, {ua(0,ya(-)} would be in ^ by

(iii) of EOMT equivalence and since both EOMT are nonsingular

transformations. So, if (i) holds then S is state-observable. The proof

in case (ii) holds is similar.

(=>) Same proof as for (*=). n

Lemma 3.8. Let W with state representation S be totally state-observable

and EOMT equivalent to Nwith S. Then the input-output pair {u(')»2(#))

of ft is from x € E to x, G E *> the EOMT related input-output pair
-a. -O
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(n(,)»y(*)} of W is from x 6 I to i 6 I where x » b(x ) x, «= b(x,)

and b is the bijection in the definition of EOMT equivalence.

A

Proof. S is totally state-observable implies S is totally state observable

by Lemma 3.7. Hence the lemma becomes symmetric in both directions.

Therefore the proof will be done only in one direction.

C*3) Let Cu(« )>¥(•)} be from x to x, and let C , C, , C be respectively

the sets of input-output pairs with initial states x *, x, , x and C , C, ,
-a "D ~c a d

C with x , x, , x . Then {»(•)»$(•)} e C by'(iii) of EOMT equivalence.
c "*a "D **c *• a

All there remains to show is that the final state of {u(«)»y(*)} is

b(x.) » x, . Suppose not, i.e. let the final state of {$(•),£(*)} be

x f x, . Then, since S is state-observable, there exists an input-output

pair (uc(.),yc(.)} € Cc such that {uc(-),yc(-)> f C^. If {*,(•),vc(.)>

is the EOMT related input-output pair of W to {u (•),? (•))> then by (iii)
-c -c

of EOMT equivalence {u (•)>£.,(•)} £ C, - Therefore the concatenation of

{«(•),y(')J with (u («)>y (•)) Is not in C whereas the concatenation of
- ~c -c a >.

{y(*)>y(*)} with (u_(')»y (•)} is In C ; this contradicts the fact that
*• "*c "*c a

A

W and M are EOMT equivalent. **

Theorem 3.2. Let M with state representation S be totally state-

observable and EOMT equivalent to ft with state representation S. Then

N is lossless °n is lossless.

A

Proof. As S is state-observable °S is state-observable by Lemma 3.7

the proof is symmetric for both directions.

C") Let x and x, be any pair of states in Zof S, (£.(•),£.(•)} for

i € {1,2} two input-output pairs from x to x. and E. the energy consumed
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by the pair {u.(-),Ji(-)} for iG {1,2}. By Lemma 3.8 and by EOMT

equivalence there exists two states x and x, in E of S such that

x - b(x ), x, = b(x.) and two input-output pairs {u. (*),y. (•)) for;

i€ {1,2} which are EOMT related to {§.(•)t2i(')>- If Ei is the energy

consumed by {u.(•)>^i(*)} for i€ {1,2} then ^ = E2 since W is lossless.

It was shown in [1, Theorem 9] that for EOMT related input-output pairs

<u.(t),?.(t)> = <u,(t),y.(t)> for all t > 0

which implies

El = El = E2 = E2
A

proving that M is lossless. n

The following corollaries can be proved in exactly the same manner

• #

as Corollaries A, B, C to Theorem 9 in [1].

A

Corollary A. Suppose that the n-port W is a new orientation (partial or

%-tx£)mplete) of the n-port W which is totally state-observable and that W

**!•*••' *•* i^EOMT equivalent to M. Then, W is lossless °W is lossless.

A

Corollary B. Suppose that the n-port W is obtained from W through a

generalized datum-node transformation and that W is totally state-observable.
A

Then, W is lossless °W is lossless.

Corollary C. Let the n-port W be totally state-observable and suppose

that M, is obtained from M by successive applications of EOMT producing

each time equivalent n-ports. Then, W is lossless ** N, is lossless.

IV. Passive Lossless N-Ports

We showed by example in [1, Section VI] that the internal energy

function [1, Def. 23] for a passive state representation is not uniquely
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determined in general, not even to within an additive constant. But

lossless passive state representations do not have this indeterminacy

.at least provided we impose a controllability requirement. The following

lemma was originally due to Willems [4].

Lemma 4.1. Let W denote an n-port which is lossless and passive, and let

S denote an input-observable, completely controllable state representation

for W. Then any internal energy function E-(*) for S is also a con

servative potential energy,function for S.

In other words, the inequality in (6.1) of [1] becomes an equality

for passive lossless systems. Since the conservative potential energy

function is unique up to an additive constant, the internal energy is

also unique to within an additive constant for these systems. Since

tyillems doesn't really prove this lemma, we have provided a rigorous

proof in Appendix A.

''Corollary. In addition to the assumptions of Lemma 4.1, suppose that

N is strongly passive and x ^ E is a relaxed state of S. Let E_v*(x)

*
represent the energy required to reach any state x from x , as in

[1, Def. 24]. Then E (x) « ^-Rv*^ for a11 5 € S» and s has exactly one

internal energy function E_(*) such that EI(x*) - 0, namely E-(-) = Ea(*)

The corollary results from Lemma 4.1, the fact that E.(») and ERx*(0

are themselves internal energy functions, the uniqueness of conservative

potential energy functions to within an additive constant, and the fact

that EA(x*) = E^^x*) a 0. The equality E_(*) = EA(#) has the natural

interpretation that for these lossless passive systems, all the internal

energy is available at the ports.
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It may be tempting to suppose the converse, i.e. that if the state

representation for a strongly passive n-port satisfies E (•) = ET(0
A J.

~ Egx*(') so that a11 its internal energy is available at the ports, then

it must be lossless. But the 1-port in Fig. 10 of [1] is a counterexample

when G = 0. It is still lossy in that case, but all the energy stored in

the capacitor is available at the ports in the limit of infinitely small

input currents and infinitely long times. Lossy n-ports of this sort

are of independent interest. They include as a special case the systems

studied in classical thermodynamics [9].

V. Necessary and Sufficient Conditions for Losslessness of Several

Classes of N-Ports

For the same classes of n-ports we studied in [1, Section IV], it

is possible to find necessary and sufficient conditions for losslessness

in terms of the state and output equations alone. With the exception

of the first-order n-ports discussed in subsection 5.5, the basic

assumption will be that u and y are a hybrid pair [1, Def. 3] so that

the instantaneous input power is (u,v>, i.e. p(x,u) = <u,g(x,u)>. State

representations of this sort are automatically input-observable, so

total observability reduces to state-observability in this case.

5'.'1. Resistive N-Ports

We define a resistive state representation to be a state represen

tation of the form.

*°9 (5.1)
v = g(u)

where u and v form a hybrid pair, U is a nonempty subset of Hn, U is

the class of all functions u(«) :m -*• U such that t + (u(t),g(u(t)) >

is locally L , and E is any nonempty subset of 3Rm. By definition, a
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resistive n-port is an n-port with a resistive state representation.

Thus, a resistive n-port is completely characterized by the instantaneous

relation y(t) =|(u(t)) between the input u(0 and the output v(-)-
Since the class of admissible pairs of a resistive state representation

is independent of the initial state, the following lemma is obvious.

Lemma 5.1. Let S denote a resistive state representation. Then S is

state-observable ~ the state space E of S consists of exactly one point.

The next lemma gives losslessness criteria for resistive state

representations and n-ports. Note'that the criterion for the losslessness

of an n-port applies regardless of whether the given state representation

is state-observable.

Lemma 5.2. Let hi denote a resistive n-port, and let S denote any_ resistive

state representation for hi. Then the following statements are true.

a) S is lossless ^(u.gOi)) » 0 for all u € u. • .

b) hi is lossless ° S is lossless.

The proof is given in Appendix A. Note that a lossless resistive

n-port is passive; in fact, ,it is nonenergic [6].

5.2. Generalized Capacitive/Inductive N-Ports

By definition, a generalized capacitive/inductive (GCI) state

representation is one of the form

x • u . ^v
- " (5.2)

y » g(x)

where uand yform ahybrid pair, E«U=]Rn, U=Lloc0& "»-^n)» and
g:]Rn + lRn is continuous. We define aGCI n-port to be an n-port with

2
a GCI state representation.

2
Note that our recurrent example of a 1-volt d.c. source is both a
resistive 1-port and a GCI 1-port.
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Lemma 5.3. Let S denote a GCI state representation. Then S is state-

observable o for any two distinct states ^^ 6E =Kn, there exists a
vector w€m11 such that gO^+w) £gO^-fw).

In particular, a state representation of this form will not be state-

observable if g(.) is a constant (this includes the case of a capacitive

state representation for a 1-volt d.c. source). The proof is given in

Appendix A.

Lemma 5.4. Let hi denote an,n-port with a GCI state representation S.

Then the following statements are true.

a) S is lossless **

*■!♦• (5.3)'

where *:E-• m is a C1 scalar function.

b> If N is lossless, then S is lossless.

c) If S is lossless and state-observable,.then hi is lossless.

The proof is given in Appendix A. Unlike Lemma 5.2, state-

observability plays a genuine role in this case. The example of a

capacitive state representation q = i, v =1 for a 1-volt d.c. source

satisfies (5.3) with *(q) = q, but such a 1-port is not lossless.

The difference between statement a) of Lemma 5.4 and Theorem 4 of

[1] is simply that <j> need not be bounded from below in the present case.
Therefore the following two corollaries are immediate.

Corollary. A passive GCI state representation is lossless.

Corollary. Let S denote a capacitive or inductive state representation,

in which |(.) is C1. If Sis lossless, then Sis reciprocal.
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5.3. Generalized N-Port Mcmristors

We define a generalized Imemristive "state representation to be one of

the form

5 " ~ (5.4)
y « R(x)u

where u and y form a hybrid pair, E = u = ]R , R : IR -»• IR is

continuous, and U = L, (H -»-]R ). An n-port with such a state represent-
loc

tation is, by definition, a generalized n-port memristor.

Lemma 5%5. Let S denote a generalized memristive state representation.

Then S is state-observable ** for any two distinct states x-,x« ^ E,

there exists a vector w € ]R such that R(x-+w) ^ R(x2+w) •

In particular, R(#) cannot be constant in a state-observable state

representation.of this kind. The proof is given in Appendix A.

Lemma 5.6. Let N denote an n-port with a generalized memristive

state representation S. Then the following statements are true.

a) S is lossless <* R(x) is antisymmetric at each point x £ 3Rn.

b) If hi is lossless, then S is lossless.

c) If S is lossless and state-observable, then hi is lossless.

It follows that a lossless generalized n-port memristor is nonenergic

[6]. The proof of Lemma 5.6 is given in Appendix A.'

If we enlarge the class of mathematical representations for n-portsto include

dynamical systems [11], then the converse of statement b) is true. The proof

proceeds by partitioning the state space E of S into equivalence classes,

where the equivalence relation is given by Definition 3.1. Each equivalence

class in E becomes the state for a new, totally observable dynamical system

representation S for N [19, Lemma 5.1.6]. (The states of S are not points

in ]R , but rather subsets of 3Rm; thus, S is not a state representation

in the sense of [1, Def. 1], but it is_ a dynamical system.) Since
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all input-trajectory pairs of S consume zero energy over .every time

interval, SQ is lossless; thus, hi is lossless.

5.4. Linear N-Ports

By definition, a linear (time-invariant, finite dimensional, hybrid)

state representation is one of the form

x = Ax + Bu (5.5a)

y = Cx + Du (5.5b)

where u and y form a hybrid pair; U = IR and E = 3R ; A, B, C, and D are

2 + n
real constant matrices of appropriate dimension; and U =» L. (]R ~*"1R ).

An n-port is defined to be linear if it has a linear state representation.

In the following theorem, the superscript "T" denotes the transpose

Tof a matrix, i.e., M is the transpose of the matrix M. The symbol A(A)

will denote the set of eigenvalues of the m*m matrix A, i.e.,

A(A) A {s € c :det(sI-A) =0}.

Theorem 5.1. Let S denote a linear state representation as in (5.5).

Let i) through vii) denote the following statements:

i) S is lossless. /

ii) The hybrid matrix transfer function of S,

H(s) A C(sI-A)"1B + D,

satisfies HCjw) = -HT(-jw) for all w€ ]R such that ju> £ X(A).
T

iii) The hybrid matrix transfer function of S satisfies H(s) = -H (-s)

for all s S c \ X(A).

iv) f <v(t),i(t) >dt =0for all L admissible pairs of Swith zero
Jo "
initial state.

1 fT
v) lim— <v(t),i(t)>dt = 0 for all bounded admissible pairs of S.

T-^o x Jo "
T

vi) D - -D (i.e., D is antisymmetric) and there exists a symmetric

T
matrix K such that KA * -A K (i.e., KA is antisymmetric) and

KB « CT.
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vii) S has a quadratic conservative potential energy function $ : E •*• ]R.

Then the following conclusions are valid:

a) vi) o vii) ** i) =* ii) <> iii) <> iv)

b) If S is completely controllable, then statements i) through vii) are

equivalent.

The proof is given in Appendix C. Statement ii) is less restrictive

than the traditional losslessness criterion for the hybrid matrix transfer

function [4,12]. The traditional criterion is derived under the assumption

that the state representation is passive, as well as lossless, and it

includes the following additional conditions: *) all poles of H(') lie on

the imaginary axis, and **) the poles of H(#) are simple and the residue

matrix at those poles is Hermitian and positive semidefinite. The hybrid

4 2 5 3 •"''"*'*"'
scalar transfer function H(s) = (s +s -l)/(s -s ) does not satisfy *) or

**), but it does satisfy statement iii). therefore it is the transfer

function of a completely controllable state representation of the form

(5.5) which is lossless, but not passive.

The simple example x = x, y = x satisfies statement ii) but is not

lossless; therefore, ii) does'not imply i) in the absence of complete

controllability. This example also satisfies statement v); therefore,

v) does not imply i) in the absence of complete controllability. We

simply do not know whether i) implies v) in the absence of complete

controllability. Likewise, we do not know whether i) implies vii) in the

absence of complete controllability.

Lemma 5.7. Suppose that an n-port W has a completely controllable linear

state representation S of the form (5.5). Then N is lossless **> S is

lossless.*

The proof is given in Appendix C.
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5.5. First-Order N-Ports

A first-order state representation is one for which Z C jr ,

An n-port which has a first-order state representation is called a first-

order n-port.

For any state representation S, a state xQ is called a singular

state if f(xrt,u) =? 0 for all u £ U. A state which is not singular is

called a nonsingular state. If S is completely, controllable, then all

states of S are nonsingular.

•

Lemma 5.8. Suppose that an n-port hi has a first-order state representation

S. Under these conditions, the following statements are true.

a) S is lossless *> there exists a function h :E -* H (which is necessarily

continuous at each nonsingular state) such- that p(x,u) = h(x) f(x,u)

for all (x,u) e E x u.

b) If hi is lossless and S is input-observable, then S is lossless.

c) If S is lossless and totally observable, then W is lossless.

The proof is given in Appendix A. ,

Let S be a lossless, completely controllable first-order state

representation, and let h : E •*- IR denote the function in statement a) of

Lemma 5.8. Define <J> :E •* IR by <J>(x) 4 h(x,)dxf, where xQ is any fixed
x

point in E. Then $(•) is a C function which satisfies p(x,u)

• t ^ f(x,u) for all (x,u) S £ x U. Hence, the existence of a C

conservative potential energy function is a necessary and sufficient

losslessness condition for completely controllable'first-order systems

(cf. Lemma 2.3 and the remarks following it).
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VI. The Realization of Lossless N-Ports and a Canonical Algebraic Form

6.1. Lossless Realizations

Our treatment will be based on the use of a C conservative potential

energy function, and will parallel quite closely the passive realization

theory given in [1, section VII].

Consider the n-portN in Fig.9 formed by connecting the capacitive m-port C to

the resistive (n+m) -port R. It is assumed that C is charge-controlled and lossless;

thus, by lemma 5.4, there exists a C function <J/ :TRm + IR such that

e « ViJ>(q). The constitutive, relation of R is assumed to be defined by the

continuous functions 1 :]Rm x ]Rn -• ]Rm and g:]Rmx]Rn-»-]Rnas follows:

J-|Ce,v) (6.1)

i e §(?>y)«

Substituting the equation q = j and the constitutive relation of C into

(6.-1), we obtain a state representation S for hi with the following state

and output equations:

3-|(Y<Kq),v) " * (6.2)

i - g(V<Kq),v).

Technical Assumptions

We assume throughout the remainder of this subsection that U « Hn,

E « H , and that U satisfies the mild technical assumptions given in

lemma 2.3. Also the phrase "R is lossless" will mean that R is lossless

when its inputs are restricted to ViJ;[]Rm] x lRn C jRm x ]Rn.

Lemma 6.1. The function ty(') is a conservative potential energy function

for the state representation S defined above °R is lossless.

To see this, recall from Definition 2.3 and lemma 2.3 that tf»0) is a

conservative potential energy function for this system if and only if

<VtKg),f(V<Kq),y)> s <Y»§W(3).»Y)> (6.3)

for all q,y£]R x m . Since ViJ> « e, we can rewrite (6.3) as
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<v,g(e,v)> + <e,-f(e,v)> = <y,i> - <e,j> « 0,

which is equivalent to the losslessness of R once the reference direction

for j is taken into account.

Definition 6.1. The n-port hi in Fig. 9 is a realization of the state

representation

x » f(x,v) . •
- (6.4)

i « g(x,v)

with the technical assumptions listed above if

f(x,v) - f(ViKx),y) (6.5)

|(X'Y> = §(Y*<*>»l)» ¥<X'Y> e 3Rm x2Rn-
It is a lossless realization if R and C are both lossless.

We view the multiports R and C as given quantities — we are not

concerned with the difficult and unsolved problem of synthesizing these

nonlinear multiports. It is clear that any voltage-controlled state

representation S has a realization in which C is lossless and linear: if

each port of C is a 1-farad capacitor, then V^(c.) = q and we obtain a

realization by choosing f(*,0 = f(#>') and §('»•) - %(*>')'> in general,

however, the resistive (m+n)-port R will not be lossless for such a •:

realization.

The following theorem is an immediate consequence of the preceding

lemma and definition.

Theorem 6.1. Suppose the state representation S, given in (6.4) along with

the technical assumptions, is lossless and further that we have found a C

conservative potential energy function i|i :IR •*• TR such that (6.5) holds.

Then the n-port in Fig. 9 is a lossless realization of S.

Since C is clearly lossless under these conditions, the point of

theorem 6-.1 is that R is lossless as well, precisely because t(>(.) is a

conservative potential energy function. The problem with theorem 6.1 is
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of course that we do not generally know how to find f(*,*) and g(,,#)

satisfying (6.5); we do not even know in general when they exist. The

following corollary gives us one special case- in which these problems do

not arise.

Corollary. Suppose the state representation S, given in (6.4) along with

the technical assumptions, is lossless and that there exists a C conservative

potential energy function ty :TR •* 3R such that ViJ/ :TRm •*• 3Rm is 1-1. Then

S has a lossless realization as in Fig. 9.

In this case we can simply construct f(«,0 and g(#,0 as follows:

f(viKx),y) = f[(Vi|;)~1o(yi(,(x)),y]

g(v<Kx),y) - g[(V*)"lo(V4i(x)),y].
For simplicity, we have discussed only voltage-controlled state represen

tations in this subsection. Actually, analogous results hold for any state

representation in which u and y form a hybrid pair.

Theorem 6.1 and its corollary, show that the recovery of a C con

servative potential energy function from a given lossless state represen

tation S is an important first step toward obtaining a lossless realization

of S.

6.2. A General Algebraic Form for the State Equations of Lossless Systems

The lossless realization of Theorem 6.1 and Fig. 9 suggests a more

explicit general algebraic form for. the state and output equations of

a lossless n-port. Our attention will focus on the resistive (n+m)-port

R. In lemma 5.2 it was shown that every lossless resistive k-port is nonenergic.I

And two of the authors have shown in [6] that there is a certain canonical

form for the constitutive relation of nonenergic resistive elements:

if u,y € ]R are a hybrid pair and we let IR * denote the class of all

real kxk antisymmetric matrices, then the constitutive relation y « g(u)
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of a nonenergic k-port resistor can be written [6] in the form

y = [A(u)]u,

where A(«) :IR •* IR * .

(6.6)

Since y 4 (-j,i) and u 4 (e,y) are a hybrid pair for R, the cqn-

stitutive relation (6.1) can be" written in the form of (6.6). Partitioning

the antisymmetric matrix A into blocks corresponding to the partitioning

of u and y, we have

-A(e,y) |-B(e,y)

BT(e,v) !C(e,v)

or, upon eliminating the minus sign from j,

A(e,y)

BT(e,v)

B(e,y)

C(e,v)

(6.7)

. * _ m+n ^ mxm „ e N _ m+n _. nxn _ f ^ . TO m+n mxnwhere A(«) :3R -• HA , C(-) : TR -»• 3RA , B(«) :IR + 3R . .

Equation (6.7) is an explicit form in which (6.1) can i

always be expanded, so long as R is nonenergic. Substituting this

expansion into (6.4) and (6.5), we have the following form of state and

output equations for a voltage-controlled lossless n-port:

x= [A(Vi|;(x),y)](v^(x)) + [B(v*(x),y} (y)

ie [?TfeMx),y)'](ViKx)) + [c(jKx),y)](y)

where A, B, and C are matrix-valued functions whose dimensions are given

beneath (6.7), and A and C are antisymmetric. In order to have a compact

statement of this result which repeats all the necessary assumptions

involved, we summarize this development as a theorem.

Theorem 6.2. Suppose the voltage-controlled state representation S,

given in (6.4) along with the technical assumptions, is lossless and
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furtherthatwehavefoundaC1conservativepotentialenergyfunction *

*:mm-•»forSsuchthat(6.5)holds.Thentheequations(6.4)can
alwaysbewrittenintheformgivenin(6.8).

Thereisanobviousextensionoftheorem6.2tothecaseinwhich

Sisnotnecessarilyvoltage-controlledbutuandyareanyhybridpair-

Thefollowingexampleillustratestherecoveryandtheuseofthe

conservativepotentialenergyfunctioninrealizingann-port.

Example6.1.

Considera1-portwithstateequations

x2--x^-2v3(6.9)

h-~2*2

Notethatthis1-portisuncontrollablesince.x^-)>0.Foranyinput-
outputpairfromxotoxtheenergyconsumedcanbeobtainedasfollows

Jovl(t)il(T)dx=£[x2(T)+x^T)x2(T)]x^0dT=^x2-2+x2.i)dt
vx

xp3-x^/3+x^/3-x^/3

whereSo4I*io^O]Tmdx(#)A^i(0,x2(.)]Tisthestatetrajectory
correspondingtotheinputv^.).Thus,theconservativepotentialenergy

functioncanbetakenas^(x)-x*/3+x*/3withV^(x)-[x^x*]and
now,rewritingthestateeqs.(6.9)intheformof(6.8)yields:

*1*

s

0

?

2"
X2

"2"
Xl

?
+

0

*2~x2
0

X?
-2

*—J_i—_

(6.10)

±x*[0-2]
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In accordance with equations (6.1) and (6.2), the constitutive relation

of the capacitive 2-port is characterized by ViJ; and the constitutive

relation of the algebraic 3-port can be obtained from (6.10) as

-e.

ix - [0 -2)
&,

a +

e2J H

Allowing a hybrid formulation for the resistive 3-port, another realization

can be given as shown in Fig. 10. Two comments are in order; although

Vi|> is not bijective it is still possible to recover the constitutive

relation of the algebraic (n-hn)-port, which shows why the assumption

that ViJj is bijective has not been made in Theorem 6.1 and, as t|> is not

bounded from below, any realization of this n-port has to be active

[1, Theorem 4].
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APPENDICES

Appendix A - Proofs of Lemmas

Proof of Lemma 2.1.

Proof of a). To prove statement a), we assume that S is lossless. To

show cyclo-losslessness, let x* be any state in Z, T>0any time and

{u(-),x(-))|[0,T] any input-trajectory pair from x* to x*, i.e. such that

x(0) = x(T) = x*. Then {u(-),x(-)}|[0,0] is also [1, Def. 8] an input-

trajectory pair from x* to x*, and the energy consumed by (u(-),x(-))|[0,0]
is zero. Therefore the en'ergy consumed by (u(-) ,x(-)>| [0,T] must also

be zeroj since the system is lossless.

Proof of b) and c). First it will be shown that the hypotheses of

statement b) imply that S is cyclo-lossless.. The proof will then be

completed by showing that statement c) is true.

Hence, assume the hypotheses of b). Let {u(0 ,x(0>| [0,T] be any

input-trajectory pair with x(0) = x(T), and let E denote the energy

consumed by {u(0 ,x(0>| [0,T]. Define x'Ax(O) = x(T). By complete con

trollability, there exist input-trajectory pairs {^(0 •?1(')}| [°»Ti3 and

{u2(.),x2(O}|[0,T2] from xQ to x' and from x' to xQ, respectively, where
x is the state mentioned in statement b). Let Ex and E2 denote the energy

consumed by {u^O ,5l(-)}| [0,^] and {u2(0 .^COll [O,^]'. respectively.
Define u.(*) by

{u.(t), O^ti^

u2(t-T;L), t>Tr

Then u (•) € U, since U is closed under concatenation. Define x3(-) by

Xjtt), 0 < t <Tx

x^t-T^, t > T1#
x3(t) &<
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Since the state equations are time-invariant and X-0T-) = x2(0), (u3(-)»

x3(«)} is a valid input-trajectory pair. Note that the energy consumed

by {u3(.),x3(.)}|[0,T1+T2] is E^ E2; moreover, x3(0) =x^T^+T^ =xQ.

Thus, E- + E2 = 0. Now define

^(t), 0.< t <, Tx

u4(t> AI u(t-Tx), T <t<T +T
^(t-^-T), t>Tx + T.

Then u., (•) £ ti, since U is closed under concatenation. Define x,(«) by

\S

x-^t), 0 < t ± T

x4(t) A/xft-T^, Tx- <t<Tx +T

x2(t-T.-T), t > T- + T.

Then {u4(OjX4(»)} is a-valid input-trajectory pair. The energy consumed

*by ^4('),x4(.)}| [O.^+T^T] is Ex +E2 + E;. moreover, x4(0) =x^T^^+T)
= xQ. Thus E1 + E2 + E= 0. But it has already been shown that EL + E2

« 0; hence, E = 0. This shows that S is cyclo-lossless.

It only remains to prove statement c). Assume that S is cyclo-loss

less and completely controllable. We will show that a contradiction

•emerges if S is not lossless. If it isn*t lossless, then there exist two

states xa, 3^, two admissible pairs (u5(«) ,x5(.)>, {u6(0,x6(-)}, and

two times T5> T$ >_ 0such that {u5(0 ,x5(.)}| [0,T5] and {u6(0,

x6(«))|[0,T6] are input-trajectory pairs from xa to x, but E. f Eg, where

E5 is the energy consumed by {u5(«),x5(0>|[0,T5] and Efi is the energy

consumed by {«6(,)»Xg(.)}|[0,T-]. Since the system is completely con

trollable, there exists an input-trajectory pair {u_(*),x7(0}|[0,T_]

from xfe to xfl. We let E_ be the energy consumed by {u-(0,x7(«)}[[0,T_].
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Since E5 ^ Efi, either E5 + E? h 0or Efi + E? k 0,' or both. For definite-

ness, suppose E5 + E? ^ 0. We define uR(«) by

(u5(t), 0 < t < T5

u?(t-T5), t> T5.

Then u_(») £ U since U is closed under concatenation. We define

x5(t), 0<t<T5

x?(t-T5), t >T5.

Since the state equations are time-invariant, (ugO^XgO)} is a valid

input-trajectory pair. And the energy consumed by {ug(*)»Xg(»)}|[0,Te+T7]

is E,. + E_ k 0: Since xo(0) = x0(T_+T_) = x*, the system is not cyclo-
j / ~o ~o 5 7 *-a

lossless, contradicting our assumption. n

Proof, of Lemma 2.2i Since J is reachable from x, i|>(*) is defined on all

of £. And since t —> p(t) is assumed to be locally L [1, Def. 5 and

standing asspt. #4], ij/(x) is finite at each x £ £.

Given any two points x-, x« of £, the energy consumed by an input-

trajectory pair from x- to x2 is a function of x^ and $2 only, since S

is lossless, and can be written E(x1,x2). To show that i|>(") is a conser

vative potential energy function, we must show thatECx,,^) = ^(xO - *Kx-) for

any two points x.., x2 such that x« is reachable from x. (see Fig. A. 1).

Let {u (•)»x-(*)}| [0,T-] be an input-trajectory pair from x. to 2^,

{u2(»)fX2(«)}|[0,T2] an input-trajectory pair from x to x2, and {u3(»)»

x3(*)}|[0,T3] an input-trajectory pair from x. to x2« Let E-, E2 and

E3 be the energy consumed by these input-trajectory pairs, respectively.

xg(t) 4

-A.3-



Then E- » 'Kx.), E2 = tyOO* and E3 » E(x-,x2). Let u,(«) and x,(«) be

defined by

fu^t), 0<t<T± Txl(t)» °-t-Tl
u4(t) "\ X4(t) ={^(t-^), t>Tx H (j^-V* '>V

Then Ua(#) e ^ since U is closed under concatenation, and {u, (0»x, (•))

is an input-trajectory pair of S because the state equations are time-

invariant. The energy consumed by {u4(0,x, (»)}| [0,T.,+T3] is E- + E3

« *(x1) + EQj^,^). Sinc'e {u4(0,x, (•)>| [0,T-+T3] is an input-trajectory

pair from x to x2, this must equal «|»(x2), i.e. .i|;(x1) + E(x-,x2)- <Kx2).

Rearranging this equation yields E(x.,,x2) = tj»(x2) - tKx,), as

claimed. n

* •

Proof of Lemma 2.3 "%

(<=) If we integrate (2.1a) along any input-trajectory pair {u(»),x(«)}>

the result is (2.1).

C*) Let (x0,u0) be an arbitrary point of J* U, and {u(«)»x(»)} be an

input-trajectory pair such that x(0) = x , u(0) - uQ, and u(.) is con

tinuous at t = 0. Then since $(•) is C , u(«) is continuous at t « 0,

and x(-) is C at t = 0, we have

d<Kx(t))

<?*(?o)^f(xo'V>s-iF-
t=0

<Kx(t))-Kx(0)) ft
lim _ = lim p(x(t),u(t))dt « p(xn,uft).

Since xQ and uQ were arbitrary, this concludes the proof. n

Proof of Lemma 2.4. Suppose we are given an arbitrary admissible pair
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fv(.),!(•)) with some initial state x and an arbitrary time T ^> Q. Then

there exists an input-trajectory pair (u(«) ,x(0>|[0,T] such that x(0) = x

and (y(.),i(.)}|[0,T] = {V(x(-),u(.)), I(x(. ),u(.))>|[0,T]. Since S is com

pletely controllable, there exists a return path from x(T) to x(0) = x,

i.e., a time T^ and an input-trajectory pair {u,(«),x..(0}| [0,T_] from

x(T) to x(0). Since U is closed under concatenation, the input u*(»)

given by

(u(t), 0 <_ t < T

u-^t-T), t > T

is in U. Let {uT (OjX1(•)) be the input-trajectory pair such that

x1 (0) = x(0) « x. Then x* (T) - x(T) and, since the state equation is time

invariant, x1 (T+T^ = x(0) = x. Define T' AT + T. and {vf (Ofi* (')>| [0,T' ]

A Wx^O."^^^^'^^^.)^^^]. Then, since xf(T') = x1 (0) and

every lossless state representation is cyclo-lossless,

(vMO.i'Ct)) dt = 0.

Since {vf (0»i' (•)} = {v(.)»i(0> on [0,T] by construction, this con-

eludes the proof. n

Proof of Lemma 2.5. By Definition 2.3,

f<v(t),i(t)> dt =*(x(T)) -<|>(x(0)).
Jo

Since $(•) is continuous and lim x(t) = x(0) by assumption,

lim{<Kx(T))-$(x(0))} = *(lim x(T))-<f>(x(0)) = *(x(0)) - <Kx(0)) = 0,
T-*» T-*»
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which proves the first assertion.

2
In the second part we.assume v(*)»i(0 ^ I* » which implies that

(v(«)»i(-)> G L1 and hence that the integral in (2.5) exists. For each
+

integer n j> 1, define h :H ^E by
n

hn(t) A
<y(t),i(t)> , 0 < t < n,

0, t > n.

Since <v(t),i(t)> = lim h (t) for all t, the Lebesgue Dominated Conver-
n-*» n

gence theorem [7, p.88] can be applied to obtain

<v(t),i(t)> dt = lim h (t)dt = lim <v(t),i(t)> dt = 0.
J0 " n-*°' 0 n n-x»' 0 „

Proof of Lemma 2.7. Since $ is continuous, it is bounded on every

bounded subset of J. Since x(v) is bounded on B. , it follows that

t -*• $(x(t)) is bounded on R . If M is an upper bound on <Kx(t)), then

iK^t^-cKx^))! £2M, Vtx, "t2 £E+. Therefore

♦I P(x(t),u(t))dt <|>(x(t))-<Kx(0))
2M

< ~ •*• 0 as T -> «.
— T

Proof of Lemma 2.8. Let TQ > 0 denote the period of x(«)i i.e., for

any nonnegative integer k, x(t+kTQ) = x(t) for all t £ 3R . Consider the
+

continuous function E :"R •*• P. defined by

E(t) A [ <v(x),i(x)> dt.
Jn

Since S is lossless, it is cyclo-lossless (Lemma 2.1); therefore,

ft+kT0
E(t-HcTQ)-E(t) =I <y(x),i(x)>

-A.6-
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•f.
for all t en . This shows that E(«) is periodic with period T ; since

E(-) is also continuous, there must exist a finite number E > 0 such
m

that |E(t)| <E for all t € R+. Thus
— m

T 1
<v(t),i(t)> dt i

TJo ^E(T) < T + 0 as T +

Proof of Lemma 3.1.

(*=) Suppose S2 4-s state-observable, and let b:£ ->• Y2 be the bijection

which appears in-the definition of bijective equivalence. Let x and x,

be any two distinct states in J . Let C- be the class of admissible

pairs of S. with initial state x , C-, the admissible pairs of S- with

initial state x, , C« the pairs of S« with initial state b(x ), and C«,

the pairs of S2 with initial state b(x,).

Since x %x, and b is a bijection, b(x ) k b(x,). And since S2 is

state observable, this implies C2 k C2, . But by the definition of

bijective equivalence, C. = C2a and C-. s C2,. Therefore C1 k C.,,

and since x and x, were arbitrary, this implies that S. is state

observable.

(=*) The assumptions are completely symmetric in S. and S«. n

Proof of Lemma 3.2. The proof proceeds by contradiction. We will assume

that there exist input-trajectory pairs {u-(•),x. (•)} of S- and {u2(«)>

x2(-)) of S2 such that {yi(x1(t),u1(t)),I1(x1(t),,u1(t))} =(y2(x2(t),
u2(t)),I2(x2(t),u2(t))} for all te [0,T], and x2(0) = 0(^(0)), but

x2(t*) h ^(^(t1)) for some t* G (0,T] (see Fig. A.2). Then we will show

that a contradiction emerges.

Suppose x2(t') k o(x-(t,))> as shown in the figure. Since S2 is

-A. 7-



state-observable, the class of admissible pairs of S2 with initial state

x2(t') is not identical to the class of admissible pairs of S2 with

initial state a(x1(t')). There are two ways this can happen. We

discuss them separately below and show that a contradiction emerges in

either case. For later use we define {y(•)»£(• )}| [0, t? ]= ^0^(0,

u1(.)),i1(x1(O,u1(.))}|[0, t'] ={y2(x2(O,u2(.)),i2(x2(-),u2(.))}|[0,tt].
Then {v(«)»i(*)>|[0, t1 ] is an admissible pair of S with initial state

x. (0) and an admissible pair of S2 with initial state £2(0) = 0(^(0)).

* *Case 1. There exists an admissible pair {y (0>i (•)/ of S2 with initial

state x2(tf) which is not an admissible pair of S2 with initial state

Define {v (•),! (•)> by

* .* f{v(t),i(t)}, 0<t<t'
Cv (t),l (t)}- { ** " * (A-1)(Jyft-t1),! (t-t')>, t >f.

We claim that {y (•),! (•)) is an admissible pair of S2 with initial

state a(x.,(0)). To see this, first note that there exists an input-

trajectory pair (u2(.),x2(.)) of S2 with initial state x2(0) = x2(tf)

such that (y*(-),!*(•)} -{y2(x2(.),u2(.)),I2(x2(-),u2(.))>. Define
u2(0 by

(u2(t), 0 < t < t'
* (A. 2)
u2(t-tf),t >t\

(we defined u2(«) in the statement of Lemma 3.2). Let x2(») be the state-

space trajectory of S2.such that {u2(0,x2(«)} is an input-trajectory

pair of S2 with initial state x2(0) = ?2(0) = o(x.(0)). Then {y (•),

i (•)) "= {Y2(x2(,),u2(0)»J2(x2(*)»u2(*))}> which proves our claim that

-A.8-



^

JL JL

^y (*),i (•)} defined in (A.l) is an admissible pair of S2 with initial
state a(x.(0)).

A JL JL

By the definition of a(-), {y (•)>£ (•)} is also an admissible pair

of S^ with initial state X-(0), so there exists an input-trajectory pair
£ JL .

{u1(.)»x1(«)} of Sx with initial state x (0) =x (0) such that

•{?*<•>•!*<•)> -'^^(O.^O),!!^-),^.))}. (A.3)

Since {y (t),i (t)> - {y(t),i(t)> for all t € [0,tf) and since S is

input-observable, it follows that u (t) = u (t) for all t € [0,tT). And

by our assumption [1, Section II] of unique solutions, x.(t) = x-(t) for all

t € [0,t»). Finally, since £,(•) and xy(0 are continuous on [0,t»] and

are equal on [0,t')> they must be equal at tf as well, i.e.

«*

Xl(t,) " 2Fl<t*>- (A.4)

We have already shown that {y («)>i (0) is an admissible pair of

S^ with initial state x-(0), and from (A.3) and (A.4) we can conclude

that its state at time t1 is x-^t1). Referring, to (A.l) and remembering

that the class of admissible pairs is translation invariant by our
* JL

assumptions, we see that {y («)»i (•)} must be an admissible pair of S
* it

with initial state x-(t'). So by the definition of a(«), {y (•)»! (•)>

must also be an admissible pair of S2 with initial state a(x (t1)), con

trary to the assumption with which we began Case 1.

Case 2. The other alternative is that there exists an admissible pair

&& isit

(v («)»i (•)> of S~ with initial state a(x-(t1)) which is not an

admissible pair of S2 with initial state x2(t').
His •**

By the definition of a(.)f (v («)»i (•)} is also an admissible
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pair of S- with initial state x-^t1). Define {v («.),i (•)) by

** -** a fWt),i(t)}, 0<t<t»
|Jy (t-t'),i*(t-t')}, t >f.

JLJL Vfc&

We claim that {v («)>i (•)) is an admissible pair of S- with initial

state x_(0). In case 1 we made a similar claim, about (A.l), but concern

ing S2, and provided a proof in the subsequent paragraph. The proof is

entirely analogous here, so we will omit it.

By the definition of'a(»)» (y (#)>i (•)} is also an admissible

pair of S2 with initial state a(x-(0)). So there is an input-trajectory
Hie His- ^de

pair {u2 (O.,^ (•)} of S2 with initial state 5L (0) = £2(0) =a(x-(0))

such that {y (.),i (•)} = {y2(x2 (.),u2 (0),I2(x2 (0,u2 <-))}. And

since S2 is input-observable, u2 (t) = u2(t), Vt € [0,t'). As in Case 1,

we can conclude from the uniqueness of solutions and the continuity of

trajectories that x2 (tf) =x2(tt). Therefore {y2 (0,i2 (•)) is an

admissible pair of S2 with initial state x2(tr), contrary to

assumption. n

Proof of Lemma 3.4. Suppose S„ is cyclo-lossless. Let T >_ 0 be any time,

x € J any state, and {u.(«)>x-(')}|[0,T] any input-trajectory pair of

Sx from x* to x*. Define {y(- ),i(0)| [0,T] »^(^(O.^O)) ,J1(x^-),
Hjl(*)) }| [0,T], where V (•,•) and I.(«,-) are the readout maps of S. Let

S:1^ "*" 5-2 ^e t*ie maPPinS which is defined in Lemma 3.2; hence,there

exists an input-trajectory pair (u2(»)>x2(«)}|[0,T] of S2 with initial

state x2(0) ="(^(0)} »ot(x*) such that (y(-) ,i(-)}| [0,T] =(y2(x2(0,
u2(.)),I2(x2(.),u2(.))}|[0,T]. By Lemma 3.2 x£(T) =0(3^(T)), so

i it is{x2(*)>u2(')}| fO>T] is an input-trajectory*pair from ct(x ) to a(x ).
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Since S2 is cyclo-lossless, the energy consumed by {x2(«).u2(')}| [0,T ] is

zero. And since {x1(0,u1(«)}|[0,T] produces the same port voltages and

currents, it must also consume zero energy. n

Proof of Lemma 3.5. Let T > 0 be any time and {u (OfX.. (•)> any input- .

trajectory pair of Sr Define {y(.),i(0>| [0,T] -(y1(x1(-).H1(-))»

J1(x1(«)>u1(»))}|[0,T]. By the definition of a(*)$ there exists an input-

trajectory pair {u2(«),x2(-)} of S2 with initial state x2(0) = a(x (0))

such that {y(.),i(')}|[0,TJ - y2(x2(O,u2(.)),I2(x2(O,u2(.))>l[0,T],

And by lemma 3.2, x2<T) =9(3^(T)) . Since 4>2(«) is aconservative poten

tial energy function for S2» the energy consumed by {u2(«),x2(»)}I [0,T] is

*2(X2(T)) ~*2(x2(0)) =*2^K(T)^ "hk(xim>'' Since {Hl(*)'
•Jf^(0}| [0,T] produces the same port voltages and currents as {u2(»)>

x2(-)}| [0,T], the energy it consumes must also equal <l>2(a(x1(T)])

-♦2(a^(0))). n •

Proof of Lemma 3.6. Let xa = (x.,.. ^.x^) and x, » (x-, ,.. •»x, ) be

any two states in £, {u1(0,x*(•)}|[0,T*] and {uM(.),x"(.)}|[0,T"] any

two input-trajectory pairs of S from x to x,, and E1 and E" the energy

consumed by {u»(.),xT(•)>![0,T*] and {u"(-),x"(.)}|[0,T"], respectively.

Let E' be the energy which enters the ports of hi while S. traverses

the path x!(«) in L, and E" be the energy which enters its ports while it
W mS J

traverses x7(«).
"3

k k

Then E1 • I E\ and E" = £ E" by Tellegen's theorem. And
j«l J j«i 3

E' * E", 1 £ j <. k, because S. is a lossless state representation for

Wfc and {x!(.))|[0, T'] and {x"(.))| [0,T"] have the same endpoints. There

fore E* » E". . n
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9

Proof of Lemma 4.1. Since hi is passive, S is passive. Since hi is loss

less and S is input-observable, S is lossless as well (Lemma 3.3). Let

x and x, be any two states in J. By complete controllability, there

exists an input-trajectory pair of S from x to x, . Since S is lossless,

the energy consumed by an input-trajectory pair from x to x, is a

function of x and x, only: we write it as E (x ,x,). By Def.23 of

[1], an internal energy function E_.(«) must satisfy ET(x, ) - E_(x ) <^
i l ""D J. ~a

E (x ,x,). Since U is closed under concatenation and every lossless

n-port is cyclo-lossless, E (x ,x, ) = - E (x,,x ). Interchanging the

roles of x and x, in the definition of an internal energy function, we

must have E].(xa) - E^x^ < E^x^^) «- Ec(xa,xfe), or EjO^) - E^x^)

>, Ec(xa,x, ). These two inequalities imply that E (x.) - E (x ) « E (x »x,)

for all x .x, ^ J, which is. just the definition of a conservative poten

tial energy function. n

Proof of Lemma 5.2. •

Proof of a).

(=*) Suppose S is lossless. For every (Xq,uq) £ Jx U, {uq,x0> is an

input-trajectory pair of S. Since the state trajectory is constant,

{uq,Xq}| [0,T] must consume zero energy for all T^> 0. But this energy is

just J <u0»g(u0) >df =<u0,g(uQ) >T. Thus <uQ,f(uQ) >»0.

(*0 If (u,g(u)> = 0 for all u S U, then the energy consumed by all input-

trajectory pairs is the same over every time interval; namely, zero. Thus

S is lossless.

Proof of b).

(=*) This follows from Lemma 3.3.
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(<=) Suppose S is lossless. Then S is equivalent (Def. 3.2) to a resis

tive state representation S whose state space consists of a single point;

thus, S is state-observable (Lemma 5.1). The function g(.) is the same

for both S and S; it follows from statement a) that S is lossless.. We

have constructed a lossless, state-observable(and hence totally observable)

state representation S for N; by Def. 3.6, N is lossless. n

Proof of Lemma 5.3.

(«=) Given any two distinct, states x, k x2, and given w such that

g^+w) k |(x2+w), consider the input-trajectory pairs (u(t) =w, x| (t)

~*i + wt}, {u(t) =w, x2(t) = x2 +wt} and the corresponding input-output

pairs [1, def. 9] {u(t) = w,^(t) = gO^+wt)}, {u(t) =w,y2(t)

• S^+wt)}. Then ^(1) %y2(D» and since fox hybrid representations

the map :(u,y) —• (y,i) is i- 1, we conclude that the class of admissible

pairs of S with initial state x_ is distinct from the class of admissible.

pairs of S with initial state x2." So x- and *x2 are not. equivalent (Def.

3.1); and since they were arbitrary, S is state-observable as claimed.

(=*) If S is state-observable, then for any two distinct states x- * x0
/ -1-2

the class of admissible pairs of S with initial state x-is distinct from

the class of admissible pairs of S with initial state x2. And since for

hybrid representations the map :(u,y) + (y,i) is a bijection, the class

of input-output pairs of S with initial state x. must be distinct from

the class of input-output pairs with initial" state x2- Therefore there

exists some u*(«) € U such that {u*(«)»y1(0} is an input-output pair of

S with initial state 2^, {u*(»)»y2(0} is an input-output pair of S with

initial state x2, but y^t') s? y2(t') for some tf >. 0. Define w*€ ]Rn by
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J0

Then g(Xj+w*)'« ^(t1) *? ^(t1) » g(x2+w*)

w* A | u*(t)dt.
0

Proof of Lemma 5.4.

Proof of a).

("*=) In this case $ is a conservative potential energy function for S.

C*) If g were the gradient of some scalar function, then that function

must be C because g is continuous. The alternative is that g is not

the gradient of any scalar function. It follows [10, Theorem 7, p. 82]

that there exists a point xn £ K. and a piecewise C curve y:[0,1] + 3R

such that y(0) - y(1) - xQ and

f<Y(t),g(Y(t))> dt* 0.
. J0 "

Then {y(0»Y(-)}| [0,1] is an input-trajectory pair from xQ to xQ, and.

the energy consumed by {y(0»y(#)'}|[0,1] is nonzero. We have shown that

S is not cyclo-lossless; hence, S is not lossless (Lemma 2.1).

Proof of b).

IThis follows from lemma 3.3_and the fact that S is input-observableby assumption,

Proof of c).

This is just Def. 3.6. . n

•

Proof of Lemma 5.5.

(*=) Given any two distinct states x., x2, then for some integers 1 <. if j^_n

and some w£jR we have R.. (x.+w) k R..(x2+w). Let e. S]Rn be

the j-th element in the standard ordered basis for Rn. We define the

input waveform u*(«) G 11 by
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f w, 0 5 t <. 1
u*(t) - / -

\jy z >lm
Let x'(.) and xl(«) be the state space trajectories which result from

applying the input u*(») with initial states x^ and x2 respectively, and

y (•) and y(0 the corresponding outputs. Then for all t > 1, v^(t) is

just the j-th column of [R^Ct))] and y£(t) is the j-th column of

[R(x£(t))]. Since R(-), xj(-), and x£(0 are all continuous,lim x[(t)
-3^ +w, lim xj(t) -x2 +w, and R±j (Xj+w) k R±j(x2+w), it follows that

(y (t)). * (y2(t))i for a11 t in some interva* (l»l+e)- Therefore xx and
x0 are not equivalent. And since they were arbitrary, S is state-

observable.

(=*) If S is state-observable, then, as we argued in the proof of Lemma

5.3, for any two distinct states x,, x2 in Jthere exists an input

u*(0 such that {u*(0,y1(-)> is an input-trajectory pair with initial

state xv {u*(0,y2(-)} is an input-trajectory pair with initial state

x2, but y-(t') *y2(t») for some tf >. 0. Let xjO) and x£(-) be the
corresponding state-space trajectories. Since [R(xj, (t,))]u*(tl) «^(t1)

Hy2(tf) »[R(x^(t'))]u*(tf), it follows that R(x[(t')) *R^t'))- If
we define w*6E by

w* A u*(t)dt,

0 •

then R(x^) =R(^(tf)) * R(?2(tf)) aK<*2fh?*>- H

Proof of Lemma 5.6.

Proof of a).

(<=) If R(x) is always antisymmetric,. then uT(t)R(x(t))u(t) is always
zero. Therefore the energy consumed along any trajectory depends only
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on the endpoints because it is always zero.

T

(=*) Suppose S is lossless but for some x* £ £, (R(x*)+R (x*)) H 0.
n TThen there is a vector uQ €r such that uQ[R(x*)]u0 = ch 0, and since

T 1R(0 is continuous there is an e >0 such that Bx - x*H <. e =* |uQ[R(x)|uQ

- cj < |c|/2. Define u'(-) by u» (t) =ip^j cps t and x'(-) by xf(t)
?0

euo
c x* + I7TT sin t# Then ^uf (O.x1 (.)}| [0,2tt] is an input-trajectory pair

from x* to x*, and ilx1 (t)-x*B < e. So the energy consumed by {uf(0»

x1 (O}|[0,2tt] is

.2 ,2*2J\£|(x'(t))]u^cos2t dt *0,
-0 •

so the system is not cyclo-lossless and hence not lossless.

Proof of b).

This is just Lemma 3.3.

Proof of c).
i ~*

This is just Def. 3.6. h

Proof of Lemma 5.8.

Proof of a). «

First we shall prove that a function h :£ -*- & which satisfies

|p(x,u,) =h(x) f(x,u) everywhere is continuous"ateach nonsingular state., If a

state xQ is nonsingular, then there exists an input value uQ and a

neighborhood N(xQ) of xQ such that f(x,u)*? 0 for all x£ N(xQ). Thus

h(x) = p(x,uQ)/f(x,uQ) for all x€ N(xQ), which shows that h(-) is

continuous at x^, since p and f are continuous by assumption.

(=*) Suppose that S is lossless. Let D 4 {(x',u) e[ xU: f(x,u) $ 0}
• A

and define h :D •*• jR by
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p(x,u)

h(x'^f7x7fr • '
We begin by proving that h(x,u) depends only on the first variable x.

To obtain a contradiction, suppose that there exist (Xq,^), (xq,u2) ^D

such that Mxq,^) i h(xQ,u2). Then two cases arise.

Case 1. sgn(f(xQ,u1)) -sgn(f(xQ,u2)).3 Assume that f(xQ,u1) >0
and f(xQ,u2) >0 (similar arguments apply in the other case). By con

tinuity, there exists a 6 > 0 such that

f(x,^) >0 Vx S [x0>xQ+6]

f(x,u2) >0 VxS [x0,xQ+6]

Mx,^) t h(x,u2) Vxe [x0,xQ+6].

Let {u1,x1(.)>|[0,T1] be an input-trajectory pair from xQ to xQ + 5, then

T^pfx^t),^) .
p(x.(t),u )dt = —±

Jo 1 -1 J0 f(x (t),u)
xx(t)dt

T, x0+6 .(I f 0' .
h(x1(t)fu1)x1(t)dt «J h(x,u1)dx. (A.6)

0 'x0

The use of the Change of Variables theorem [17] is justified because

x- : [0,T, ] ^EisC1 and the mapping x -»• hte,^) is defined and continu

ous on x-([0,T1]). Similarly, let {u2,x2(.)}|[0,T2] denote an input-
trajectory pair from xQ to x^ + 6, then

T xrt+5 (A.7)
J 2 r 0

p(x2(t),u2)dt =I h(x,u2)dx.
0 'xQ

3The function sgn :H •»• IR is defined by sgn(x) A 1 if x > 0, A - 1 if x < 0,

£ 0 if x = 0.
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Since x H- h(x,uj and x H* h(x,u ) are continuous and unequal everywhere in

[xn,x +6], either h(x,u )>h(x,u ) or else h(x,u.)<h(x,u9) everywhere in
U U 1 fc i • *

[x ,xQ+6]. In either case the integrals on the right hand side of (A.6) and

(A«7) are unequal, violating the assumption of losslessness.

Case 2. sgn(f(x0,u-)J » - sgn(f(xn,u«)). For definiteness, assume

that f(xQ,u-) > 0 and f(xQ,u2) < 0. By continuity, there exists a 6 > 0

such that

f(x,U;L) >0 Vx 6 [x0,xQ+5]

f(x,u2) <0 Vx S [xQ,x0+6]

hfot^) f h(x,u2) Vx 6 [xQ,x0+6].

Let {u(«)»x(')}| [0,T2] be an input-trajectory pair from xQ to xQ with the

following property: J ^ € (0,1*2) such that u(t) « u. for t€ [0,T-],

u(t) = u2 for t€ (TlST23, and x(^) = xQ + <5. Thus

rT2 , ' . rTi rT2j p(x(t),u(t))dt =I p(x(t),u1)dt +I p(x(t),u2)dt
Tl

r*0+6 - rx°h(x,u1)dx + h(x,u«)dx
'x- ~x Jx.+5 ~zxo Jxo+5

•I
V5

*o

[h(x,u1)-h(x,u2)]dx. (A.8)

Since the integrand on the right-hand side of (A.8) is continuous and

nonzero at every point of the interval [xQ,xQ+5], it follows that the

integral is nonzero. This violates the assumption of losslessness.

Thus h(x,u) depends only on x. Let pr-(D) denote the projection of,

D onto Z, i.e. pr„(D) = (xfl|f(x,u) =^f 0 for some ucU}. And let u:prj,(D)-»-U

assign to each x in pr„(D) any value u(x) such that f(x,u(x)) =^= 0. Then

define h(x) = n(x,u(x)) , and note that
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P(x,u)
h(x) *= h(x,u) =f(x>u) for all (x,u) €: D.

Note that prr(D) is precisely the set of all nonsingular states. We shall

define h(.) arbitrarily at the singular states. In order to show that

p(x,u) » h(x)f(x,u) at all (x,u) € J x u, it only remains to show that

f(x,u) =0=>p(x,u) = 0. Thus, let (x0,u0) €JxUbe such that f(xQ,u0)

= 0. Then {uQ,xQ}|[0,T] is avalid input-trajectory pair for all T >. 0.

By losslessness,'

sI0 p(xo'2 )dt - p(x0,uQ)T

for all T _> 0. Thus p(xQ,u0) « 0.

(«=) Suppose that there exists a function h:£-»-jR such that p(x,u)

-h(x)f(x,u) for all (x,u) ^JxU. Let {^(O.x^CO)! [0,^] and {u2(0

x2(«)}|[0,T2] be any input-trajectory pairs for which x^0) «x2(0) Aa

and x, Cr,)* xo^) ^ b* We wil1 show that S is lossless by showing that
the energy consumed by {u1(-),x1(-)}| [0,^] equals the energy consumed

by Cu2(O,x2(.)}|[0,T2]. There are three cases which arise.

Case 1. a is singular. Then a = b and both state trajectories are

constant. We have

T

f1 t1 •pfo(t),u (t))dt - h(a)x^(t)dt = 0
Jq ;o

T2 fT2f p(x2(t),u2(t))dt =J h(a)x2(t)dt -0

since x.(t) = x2(t) =0.

Case 2. a and b are nonsingular. It follows that x1(t) is nonsingu

lar for all t€[0,^] (otherwise,, the condition x^T^ =bwould be
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impossible). Thus

Tl Tl b
J p(x1(t),u1(t))dt =J h(x1(t))x1(t)dt =jh(x)dx.

The use of the Change of Variables formula is justified because

x, : [0,T. ] ->-]R is absolutely continuous and h(») is continuous on x, ([0,T-])

[20, pp. 95-96, Theorem 1.4.42]. Likewise,

Tf 2 . rb
J p(x2(t),u2(t))dt »I h(x)dx.

Case 3. a is nonsingular but b is singular. Assume b > a (similar

arguments apply when b < a). Suppose without loss of generality that

xx(t) ? b for tS [0,^). Then
r

rl rT

p(x.(t),u (t))dt = lim p(x1(t),u1(t))dt
'0 T->TX h L "L

T<T-

' x,(T)

I« lim h(x)dx
T->T- •'a

T<T.

•lim [ h(x)dx.
z»b 'a

z<b

The first step follows since the integral is continuous on [0,T.]. The

second step follows from Case 2. The last step follows since x,(T) -*- b

as T -*• T-. Similarly,

T
A2

p(x9(t),u7(t)ldt =lim f h(x)dx.
Jo 2 Z z+b Lz*b 'a

z<b
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Hence, in all three cases,

rTl fT2
J p(x1(t),u1(t))dt «J p(x2(t),u2(t))dt,

Proof of b).

This is just Lemma 3.3.

Proof of c).

This is just Def. 3.6.
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Appendix B - Defining the "Zero Average Power Property": What Should
be Bounded?

In Def. 2.5 we have chosen to require that v(») and i(-) be bounded

before applying the criterion in (2.7), but we placed no such require

ment of boundedness on the state space trajectory x(0» The purpose of

this Appendix is to explain and defend this choice by considering the

alternatives.

B.l). Two Alternative Definitions of the Zero Average Power Property

The two most obvious modifications of Def. (2.5) would be to require

that (2.7) hold only when x(») is bounded, or else only when x(«), y(-)

and i(») are all bounded. These modifications are formalized in the

following alternative definitions.

Definition 2.5A. A state representation S is said to have version A of

the zero average power property if (2.7) holds for all admissible pairs .

(y(.) « V(x(.),u(0),i(-) = j(x(-),u(.))} such that x(-) is bounded.

Definition 2.5B. A state representation S is said to have version B of

the zero average power property if (2.7) holds for all admissible.pairs

{y(0 = V(x(.), u(-))fj(0 - l(x(-),u(-))} such that y(-),i(-) and x(0 are

bounded.

Note that the requirements of Def. 2.5B are weaker than those of

Defs. 2.5 and 2.5A, since the class of admissible pairs to which we apply

the limit test of (2.7) is smaller in Def. 2.5B than in the other two. In

other words, if a system has the zero average power property as defined in

either Def. 2.5 or 2.5A, then it automatically has that property as defined

in Def. 2.5B.
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B.2). Three Objections to These Two Alternatives

Both alternative definitions produce anomalies which do not arise

with Def. 2.5 itself, and there are three separate reasons we have rejected

Defs. 2.5A and 2.5B in favor of Def. 2.5.

Objection #1. Our first reason for choosing Def. 2.5 over the others is

that only Def. 2.5 makes the zero average power property representation

independent. It ds clear that Def. 2.5 does have this, property, since it is

stated solely in terms of admissible pairs. To see that Defs. 2.5A and 2.5B

do not, consider the following example.

Example B.l. Reconsider the capacitor in Fig. 5, which we discussed in

Example 2.5. The natural state representation would be S-, shown below;

but the other state representation shown below, S2, is an equally valid

mathematical model for Fig. 5. In fact, we shall show later that S^ and

S2 are bijectively equivalent (Def. 3.3).

ft £i
q = i w = (l-|w|) i

*

The main point here is that £« *s bounded but £- is not. This

Appendix concludes with a formal proof that S^ and S2 are bijectively

equivalent, but the basic argument is quite simple. We obtained S2 from

S. by the following change of coordinates on.'the state space: q •> w

• q/(l+|q|). This explains the line v= w, and the line w = (l-|w|) i
. 3w • 3w . j>follows from the chain rule application w » -g- q with -g- written in terms
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of w rather than q. And for technical completeness we suppose that

li = L* (LR+ -»• LR) for both S- and S„.
loc 12

Although they are equivalent, S_ has versions A and B of the zero

average power property while S« has neither.

For S-, the reader can easily verify that <J>(q) = |q| " *n(l+|q|)

is a conservative potential energy function. And since

rT

V(t)i(t)dt = *(q(T)) - ♦(q(O))f
J0

and <KO is bounded on any bounded subset of IR, it follows that

T

limi f v(t)i(t)dt =lim 4(i(q(T))-*(q(0))) =0
T->» JO T-»« >• '

so long as q(») is bounded. Therefore S. satisfies both versions A and

B of the zero average power property, as claimed.

For S2, consider the input-trajectory pair (i(t) s l,w(t) » t/(l+t)}

with output v(t) = t/(l+t). The reader can quickly verify ttiat w(t)

83 t/(l+t) is in fact a solution of the state equation of S2 when i(t) = 1,

as we claim. Since i(«)» v(0 and w(-) are all bounded, the criteria

of versions A and B are met. And since i(t)»v(t) -»• 1 as t + », the

limiting value of the average power is 1 as T •*- ». Therefore S„ has

neither version A nor version B of the zero average power property.

But S. and S2 are equivalent; hence, versions A and B are not repre

sentation independent.

Objection #2. Our second objection to Defs. 2.5A and 2.5B is that under

these definitions, those systems for which every trajectory is unbounded

would gain tfhe zero average power property by default." The following example

shows how this can occur.
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Example B.2. Consider the following state representation* for a current-

controlled 1-port:

i « i2 + 1

v = arctan(x)

I-s.

2 +where we can let U= L1 (R -»-3R), although other choices for Uwouldn't

alter our conclusions. The point of this example is that x >_ 1 for all

time, so every trajectory is unbounded. Therefore the system has versions

A and B of the zero average power property by default, since the class of

admissible pairs for which we get to apply the test in (2.7) is empty. To

see that this would be a bizarre classification for this system, consider

the admissible pair {i(t) = l,v(t) = arctan(2t)}, for which i(t)'v(t) -»» it/2

as t + », in contrast, this system does not have the zero average power

property of Def. 2.5, as a result of the admissible pair mentioned above.

Objection $3. Our final reason for rejecting Defs. 2.5A and B is that

they bring us the two problems mentioned above without offering a resolu

tion of the major anomaly whigh arises from Def. 2.5: the fact that loss

lessness *f> the zero average power property. We show below that this

anomaly persists in all three definitions.

Example B.3. Corsider again the state representation S2 in example B.l.

It is easy to verify that it is lossless, since <Kw)= ^T I+ *n(l-|w|)

is a conservative potential energy function for this system. But we

showed in Example B.l that it doesn't satisfy Def. 2.5A or 2.5B. Since

Def. 2.5B is strictly weaker than Def. 2.5, S2 doesn't satisfy Def. 2.5

either.
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Therefore losslessness does not imply the zero average power property

as represented in any of these three definitions. It has become unmis

takably clear that this "anomaly" is fundamental to nonlinear circuit

theory and doesn't arise from any defect in our definitions.

B.3). Proof that S.. and So in Example B.l are Bijectively Equivalent

In order to prove that S.. and S2 are bijectively equivalent (Def.

3.3), we must exhibit the bijection b:J. -»• J2 and show that for any

q € Y the class of admissible pairs of S. with initial state q is identi

cal to the class of admissible pairs of S2 with initial state w = b(q).

The function we propose is of course b:q •*• w = q/(l+|q|). The

reader can easily verify the following facts about b(0» and we will use

them without comment in the subsequent argument. First of all, b :H

-•"(-1,1) bijectively, and its inverse is given by q - b (w) •» w/(l-|w|).

Furthermore, despite the fact that x —*• |x| is not differentiable at- the

—1 "1 2origin, b(») and b (•) are both C (although not C ) everywhere, b'(q)

= l/(l+|q|)2, and OTVCv) = l/(l-|w|)2.

Let q1(0) be any state i,n L and {i-^OtV-C-)} be any admissible pair

of S- with initial state q1(0). In order to prove that {!-(•)»v-(0) is

also an admissible pair of S2 with initial state w^O) «b(q1(0)), we must

exhibit a state space' trajectory w-(«) of S2 such that

i) w (0) = b(q1(0)), i.e. the initial state is correct,

ii) v (t) = w.(t), Vt >^ 0, i.e. the output of S2 is correct,

iii) W;L(t) =(l-lwj,^)!)2! (t), i.e. w^O satisfies the state equation of
S2 with input !.,(•)•

Requirement ii) uniquely determines our choice: w-(») - v-(«)« And

then requirement ii) is satisfied trivially. Since the output equation
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of S1 happens to be of the form v = b(q), it is immediate that this choice

of w.(«) satisfies requirement i) as well.
. 3v1

To check requirement iii), we first calculate that w, = v„ = -—=• Q
x . . x x 9qi x

= ,• , 2 iT Upon substituting q = w./(l-|w. I) into this last expres-
(l+k|) 1 1 '1«

sion, we have w^ - (1-lw^J) i,as desired. The proof that every admis

sible pair of S0 with initial state w(0) is also an admissible pair of S,
c 1

with initial state q.^0) »b" (w^O)) is similar and will be omitted. »
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Appendix C - Proofs of the Results for Linear Systems

Even when it is applied to linear systems, the definition of loss

lessness given in this paper is less restrictive than the usual definition

given in the linear systems theory literature [4,12]. For this reason we

are providing complete, rigorous proofs for the results in subsection 5.4.

First, however, it is necessary to define some terms and prove some pre

liminary lemmas.

C.l. Definitions. If w£ C ^ and if w = u+ jy, where u,y £]RP , then,

by definition, Rewiu and Im w 4 v, The complex conjugate of w is

— H —T
denoted by w A u - jv, and w. A. w .

Let S denote a linear state representation (5.5), where u and y are

a hybrid pair, U = LR , £ =]R , and 11 = L. (IR •*- Hn). The complexification
A

of S, denoted S, is the state representation with the same state and output

* a *» JL a

equations as S, but with U=Cn, J-<Em, and U: «L^ (JR -HEn). Thus Sis
obtained from S simply by allowing the components of the input, output,

and state to be complex-valued. If {v(*)»i(#)} is an admissible pair

A

of S with initial state xQ, then, clearly, {Re y(*)>fLe i(*)) (resp.,

{Im y(«)»Im i(*)}) is an admissible pair of S witfh initial state Re xQ
A

(resp., Im x_). The use of S instead of S; i.e., the use of complex-

4
valued inputs, outputs, and states; will greatly simplify the mathemati

cal notation in the following proofs.

The energy consumed by an input-trajectory pair {u(»),x(*)}[[0,T] of
A

S is defined to be the quantity

4
A phrase such as "complex-valued input" is intended to mean "an input

with complex-valued components." Such phrases will be used for brevity:
their meaning should be clear.
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Re J v"(t)i(t)dt, (C.l)
>0

where {y(0>i(0) is the admissible pair corresponding to {u(-)»x(.)}«
A

The state representation S is defined to be lossless if it satisfies

Def. 2.1, with the energy consumed by an input-trajectory pair given by

(C.l).

A

C.2 Lemma. S is lossless *=* S is lossless.
• .

Proof.

A

(*=) Obvious, since the behavior of S when the input and initial state

are real is the same as the behavior of S.

A

(=*) Let {y1(#)>i1(*)}| [OjT-] be an admissible pair of S from x to x,

(i.e., the corresponding state trajectory x.(«) satisfies x.(0) « x and

x-^) - x.) and let {y2(,)»i9(,)}| [0,T2] be another admissible pair of

S from xa to x^. Then for k = 1,2, {Re y,(OiRe i. (• )}|[0,T ] is an

admissible pair of S from Re x to Re x, ,and {Im yk(*)» Im *>(•)} ItO>T,]
H

is an admissible pair of S from Im x to Im x, . Note that Re y i

T T* Re y Re i + Im v Im i. The losslessness of S implies that

T T
1 ., flf yj(t)i1(t)dt =| Re yJ(t)Re jx(t)dt

Tl-
I Im y*(t)Im ix(t)dt+

T2
T

Re v*(t)Re i-(t)dt
0 ~Z

T2
Im y2(t)Im i2(t)dt

1
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T2
Re J y2(t)i2(t)dt; (C.2)

0

A

therefore S is lossless.

C.3. Lemma. S satisfies Statement iv) of Theorem 5.1
.00

J U 2 A
*=* Re v (t)i(t)dt = 0 for all L admissible pairs of S with zero

Jn " "0

initial state.

Proof.

C*5) Obvious.

(=*) Let {y(*),!(•)} be an L admissible pair of S with zero initial state.

Then {Re y(«), Re i(-)> and {Ira y(-)»Im i(.)> are L2 admissible pairs of

S with zero initial state; thus

Re J vH(t)i(t)dt
J0 "

Re vT(t)Re i(tjdt + Im vT(t)Im v(t)dt «0 . n
J0 " '0. "

C.4 Lemma. A completely controllable linear state representation S = {A,

B,C,D} is equivalent to a minimal linear state representation S = {A ,
m -m

Jm»9m>?^ (which has the same input and output variables as S); moreover,

there exists a matrix P such that if x is any state of S, then x A Px
-m — --

is the (necessarily unique) state of S which is equivalent to the state
m

x of S. (Equivalent states were defined in Def. 3.1; equivalent state

representations were defined in Def. 3.2.)

Proof. The lemma follows from standard results in linear system

Recall that a linear state representation S is defined to be minimal if
no linear state representation with the same transfer function as S
has a state space of lower dimension than that of S. Equivalently, S is
minimal if it is both completely controllable and completely observable
[11, p. 181],
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theory [11, Chap. 7,'Theorem 7].

Proof of Assertion a) of Theorem 5.1.- vi) =*vii). Define <f> : R^+Rby

$00 A-2<x,Kx> , where Kis the matrix in statement vi). Then, for any

input-trajectory pair {u(-)>x(-)} and any T > 0, we have

fT d«Kx(t))*fe(T)) - *(x(0)) =J - dt

xT(t)Kx(t)dt =f xT(t)K(Ax(t)+Bu(t))dt
. JO JO " ""

i

fT fT

xT(t)CTu(t)dt = uT(t)[Cx(t)+Du(t)]dt
Jo Jo

•I.
T

uT(t)y(t)dt
0

where y(«) is the output corresponding to {u(y),x(0). Therefore $(•) is

a conservative potential energy function for S (Def. 2.3).

vii) =*vi). By assumption, there exists a matrix Q such that

<{>(x) AJ (*'9& is a conservative potential energy function for S. Define
IT 1 •

? 4 2(9*9 ); then £ is symmetric and <f>(x) s f <x,Kx> . Let {u(-),x(-)>

jbe any input-trajectory pair for S; then, for all t >_ 0,

*fe(t)) - 4>(x(0)j « f uT(x)[Cx(T)+Du(T)]dT. (C.3)
J0

Differentiating both sides of (C.3) and rearranging, one obtains for almost all t> 0,

xT(t)KAx(t) +xT(t)(KB-CT)u(t) -uT(t)Du(t) =0.
(C.4)

It is not hard to see that (C.4) will be satisfied for all

input-trajectory pairs if and only if D is antisymmetric, KA is anti-

T
symmetric, and KB = C .

-A.31-



vii) "*i). This follows because every state representation with a

conservative potential energy function is lossless (subsection 2.2).

1) "* ii). Let S be lossless. By Lemma C.2, S is lossless. Let

«0 €jR be such that ju>Q ^ A(A), let w€ <cn, let the input to Sbe#

u(t) -we for t j> 0, and .let the state of S at time zero be x(0)

•» (jWqI-A) Bw. It is easy to verify [13] that the corresponding state

trajectory x(») is

.-L jVx(t)=-(ja)0I-A) Bw e , t >. 0; (C.5)

3*0*moreover, the output is y(t) = H(ja)Q)w e u for t >0. Eq. (C.5)

shows that the state trajectory is periodic with period T, where

T=2tt/|oj0| if o)Q ^0, or T is any positive number if wQ =0. Note that

Refw^fJw^wjT =Re J wSujo^w dt
fT

uH(t)y(t)dt =0, (C.6)
0 " i •

where the last step follows from assertion a) of Lemma 2.1. Since T > 0,

(C.6) shows, that 0=RefwVjcu^w] »-| wH[H(j(u0) +HH(jo>0)]w; from which
it follows that H(ja)Q) +H (ju)0) = 0, because w€ <Gn is arbitrary. Note

that H(-jw0) « H(ju)q) because A, B, C, and D are real matrices. Thus

H(jo)0) =-HT(-jw0).
T

ii) •* iii). The mapping s -»• H(s) + H (-s) is a matrix-valued function

whose elements are holomorphic in C \ A(A); moreover, it vanishes on the

set {s € c:Re[s] = 0 and s $ A(A)}. From a standard result in complex

analysis [14, Theorem 10.18], it follows that H(s) + HT(-s) - 0 for all

s S <D \ X(A).

iii) **iv). Let {y(.),i(0> be an L admissible pair of S with zero
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initial state, and let {u(«)>y(«)) be the corresponding input-output

pair of S. From standard results in the theory of Fourier integrals in

the complex domain [15], it follows that u(») and y(») are Laplace trans

formable in the open right-half complex plane; moreover, their Laplace

transforms, denoted U(«) and Y(») respectively, are holomorphic there.

For real a and w, define U(jco) A lim U(a+ju>): this limit exists for
o-0+ " 2

almost all 106R, and the function co -*• y(jcj) is the L -Fourier transform

of u(-). [15]. Likewise, w -»• Y(jco) 4 lim Y(a+jw) is the L -Fourier trans-

form of y(-). If all poles of H(«) are in the open left-half plane, set

aQ «= 0; otherwise, let aQ be the maximum real part of the poles of H(')«

It follows from the time-domain relation'between u(«.) and y(«) that

Y(s) « H(s)U(s) for Re[s] > aQ. Since s -»• H(s)U(s) is meromorphic in the

open right-half plane and equal to the holomorphic function s •* Y(s) for

Re[s] > aQ, it follows that Y(s) = H(s)U(s) for all s where H(s) is

defined in the open right-half plane [14]. Thus Y(ja>) = H(jGi)U(ju)) for

almost all real 0). Parseval's theorem [15] gives

fCO fCO

<v(t),i(t)> dt « <u(t),y(t)> dt
J0 J0 *"

f °°

" 2¥ UH(jw)H(jo>)U(ja))da)

UH(j«)H(ja))U(ju))dw
•00 **

J —00

ja))[H(ja))+HH(ja))]U(jaj)da> - 0.

6 2
Hence, the assumption that u(») and y(«) belong to L implies that the
poles of H(0 in the open right-half plane'(if any) are cancelled when
the product H(«)y(0 is formed.
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The last step follows since H(jw) + HH(jw) = H(jw).+ HT(-jw) » 0.

iv) =*ii). Assume ii) is not satisfied. We shall show that iv) is

not satisfied. If ii) is not satisfied, then there exists an to £ IR such
' o

that jw £ A(A) and H(jw )+ HH(jw ) f 0. Choose w € <nn such that
o~ -o~o-

H Hw [H(jo> ) + H (jw )] w $ 0. The elements of H(«) are continuous at jwQ

(because jw £ A(A)); hence, there exists a Aw £ (0,1) such that jw f- A(A)

and wH[H(jw) + HH(jw)]w $ 0 for all w€ [w -Aw, w+Aw]. Define a A *4-(Aw) .
--.--. o o o

Let p-,p2,...,p, denote the poles of H(») which lie in the closed right-

half plane (if there are any), let m. denote the multiplicity of p., and
K

let M be any integer such that M^ \ m. (if H(0 has no poles in the
i=l

closed right-half plane, set m. = 0 for all i). Let the input to S be

d *>• d m2 d '^tMu(t) 4 (j£ - ?]) (j7 - P2) ...(^ - Pk) (jy) exp[-(<Jo-j<Uo)t]w for

' t j> 0. Note that u(.) £ L (3R -HCn), and its Laplace transform is

"l m2 ™k(s-p^ (s-p2) ...(s-pk) ^ .
U(s) = rjrrr w. If y(«) denotes the output of S

when the initial state is zero, then the Laplace transform of y(-) is seen

to be

"l m2 "k(s-p ) i(s-p ) Z...(s-p.) k
?(s) « * ~ fix H(s)w. (C.7)

(s+ao-jwo)

The numerator on the right-hand side of (C.7) cancels any poles of H(*) in

the closed right-half plane ;thus, y(«) G L2(lR+-*-Cn). If {y(*)»|(')>
A

denotes the admissible pair of S corresponding to the input-output pair

A A

{u("),y(*))» then an application of Parseval's theorem [15] yields

(OB • .09

v(t) i(t)dt = Re GH(t) y(t)dt
0 *" JO "

f°°

•li Re yH(Jw) ?(ja0 U(jw)dw

And, by construction, H(«) has no poles at infinity.
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^ .00

w)[H(jw) + HH(jw)]G(jw)dw

2m, 2ra,

- dw.
1 f Hf ," H lja)~Pl' IJW-P2I •••|Jw-Pkl
* L~[-(j0,) +?(Jtt)I*—• —m—"

Define r : 3R -* jR by

[a2+(w-w )2]
o o J

(C.8)

u u 2m. 2m. 2m.
r(w) Aw [H(jw) +HH(jw)]w |jw-Pl| *|jw-p2'| 2...|jw-pk| \ (C.9)

By the choice ofwq, w, and Aw, r(«) is continuous on the interval

J A [wq-Aw,wo+Aw] and r(w) i 0 for all w € J; thus, r(.) is sign-definite

on J. Substituting (C.9) and a2 =1- (Aw)2 into (C.8), one obtains
w -Aw

Re f vH(t)i(t)dt --i f° £*^
J0 * •• 4ir J-co . 99 9 M+l •

[l-(Aw)z+(w-w y]

.,oo w +Aw

+.i ^^2! +-L f° ! r(«)d» (c 10s

Note that the denominator of the integrand.in the first two integrals in

(CIO) is greater than 1, thus the Lebesgue Dominated Convergence Theorem

[14] shows that the first two integrals approach zero as M •*• ». The

denominator of the integrand in the last integral is less than 1 (but

positive), and the numerator is sign-definite; hence, the magnitude of

the last integral increases without bound as M -• «. Evidently, if M is

chosen large enough, then {y(«),!(•)> is an L2 admissible pair of Swith

zero initial state such that Re vH(t)i(t)dt t 0. It follows from
J0 "

Lemma C.3 that iv) is not satisfied.

Proof of assertion b) of theorem 5.1

First, assume that S is completely controllable and statement ii) is

true. Under these conditions, S is lossless. To see this, let T > 0,
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let{u*(«)iX*(')}|[0,T]beanyinput-trajectorypairofSwithx*(0)

=x*(T)=0,andlety*(*)denotethecorrespondingoutput.Definean

inputu(-)asfollows:

u*(t),te[0,T] /-uK^t;,t«=LC

y(t)A^
Lo,t>T.

2+n
Notethatu(-)€L(IR-KIR).Lety(0denotetheoutputgeneratedbyu(-)

whentheinitialstateofSiszero.Thus

y*(t),t6[0,T]

,t>T

(notethaty(t)=0fort>Tbecauseboththeinputandthestatearezero

fort>T).Sinceu(.),y(0eL2+(ltin),Parseval'stheorem[15]can

beappliedwiththefollowingresult:

|<u*(t),y*(t)>dt=[<u(t),y(t)>dt
J0h"

.00

szHyH^w)5CJ«)y(jw)dw J—00

="^fRe5H0«)SO)U(jw)dw Jmm00

f00

=-hUH(jw)[H(jw)+HT(-jw)]U(jw)dw
J—00

-0.

Thusanyinput-trajectorypair{u*(-),x*(.)}|[0,T]withx*(0)=x*(T)=0

consumeszeroenergy:byassertionb)oflemma2.1,Sislossless.What

hasbeenshownisthatii)=*i)whenSiscompletelycontrollable.This

fact,combinedwithassertiona)oftheorem5.1,showsthatstatements

i)throughiv)areequivalentwhenSiscompletelycontrollable.

NowsupposethatSiscompletelycontrollableandlossless;under
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these conditions, statement vii) is true. To prove this assertion, let

Sm "* ^m,?m,-ra,~* denote a minimal state representation which is equivalent

to S = {A,B,C,p} (lemma C.4). Since S and S are linear and equivalent,

they are zero-state equivalent. Thus S satisfies statementiii), because
m

S does. This implies that S is lossless, because it has already been

shown that statements i) through iv) are equivalent under the assumption

of complete controllability. The next step of the proof is to show that

statement vi) is true when applied to S . To see this, note that S
m m

satisfies statement iii) because it is lossless; therefore

Cm(sI-Am)"1Bm +D=BT(sI+AT)"1CT -DT (C.ll)
-m. - -m -m - -m - -m -m -

for all s € (E \A(A). Letting s -*• « in (C.ll), we obtain D = -D ; and so

Cm(sI-Am)"1Bm =B^sI+aVV" ' (C.12)
~m - -m -m -m - -m -m

for all s € <C \ A(A). It follows from (C.12) that {A ,B ,C } and
~ -m -m ~m

T T T
{-A ,C ,B } are both minimal realizations of the transfer function

**m -m -m

C (sI-A ) B . From a result in linear system theory [11, theorem 9,

T —1
p. 184], there exists a unique invertible matrix Q such that -A = OA Q ,

•«• ~"ul *»~m-*

T T -1
C = QB , and B = C Q . The reader can easily verify that the equations

in vi) will be satisfied for S by choosing K = Q. To complete the proof

that statement vi) is true when applied to S , it must be shown that Q

is symmetric. The reader can easily verify that Q satisfies these three

T ....
eqs. if and only if Q does. Since the solution Q is also unique, it

follows that Q = Q^. Since statement vi) is true when applied to
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S . it follows from assertion a) and its proof that 6 (x) A — (x ,Kx >
m * Tm -m — 2 -m --m

is a conservative potential energy function for S . Let {u(«)»x(«)}

be an input-trajectory pair of S; from lemma 3.2, the corresponding (unique)

input-trajectory pair of S is {u(.)»?x(.)}, where P is the matrix in

lemma C.4. Thus, for any T> 0, the energy consumed by {u(*)»x(»)}|[0,T]

is $m(Px(t))-$m(Px(0)); this implies that <Kx) 4j<x,PTKPx> is acon
servative potential energy function for S. What has been shown is that

i) •* vii) when S is completely controllable. This fact, combined with

assertion a), shows that statements i), vi), and vii) are equivalent

when S is completely controllable.

It remains to show the equivalence of statements i) and v) when S

is completely controllable, so assume the latter. Theorem 2.1 will be

utilized to prove v) =* i), but note that theorem 2.1 cannot be applied

directly to S because not every u(-) £ U= L, (H -*]Rn) is bounded on
loc

+ *
every compact subset of IR . Let S denote a.state representation which

*
is identical to S except that the set of admissible input functions of S ,

.*
denoted u , is the set of piecewise continuous functions mapping IR to

IR . Theorem 2.1 shows that for S , v) =* i). The propf that i) ** ii)

from assertion a).applies equally well to S . Thds we have the following

relations: S satisfies v) =* S satisfies v) =* S satisfies i) =* S

satisfies ii) <> S satisfies ii) '<» S satisfies i). This shows that if S

is completely controllable and satisfies statement v), then S is lossless.

Now suppose that S is lossless and completely controllable. Let

Sm e ^m*-m'-m'-^ denote a miminal linear state representation which is

equivalent to S = {A,B,C,D} (lemma C.4). Let {u(.)»y(«)) be a bounded input-

output pair of S; then, by equivalence, {u(-)iy(0} is also an input-output

pair of Sm, and xm(*) will denote the corresponding (unique) state

trajectory of S . Choose At > 0, and. define
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fA
T

At A s A s

e~m C C e"m ds. (C.14)
-m~m x '

Since S is completely observable, N (At) is nonsingular [11, p. 176,

theorem 5]; thus

x (t) «= [N (At)]-1N (At)x (t)
-m ~mN /J -mN '~ra

fAt As A s

= [NjAt)]""1 e"m C^C e"m xm(t)ds. (C.15)
-m j_ ~m*-m ~m

Note that • .

A s ft+s A (t+s-t)
C e"m x (t) = y(t+s) - C <Tm B u(x)dx-pu(t+s). (C.16)
~m -m - J ~m -nr* •* ~

Define

K. A sup flu(t)B < « (C.17a)
t>0

Ma A sup fly(t)B < « (C.17b)
t>0

A s

M,(At) A sup DC e~m B D < « (C.17c)
3 =0<s<At "m "m

ATs
M.(At) A sup Be"111 CTii < ». (C.17d)
4 "0<s<At

*

From (C.16) and (C.17), it follows that

A s

lc e~m xffi(t)i! < M2 + M1M3(At)At +mJ|d|| <«. (C.18)

for all (t,s) such that t j> 0 and 0 < s < At. Combining (C.15), (C.17d),

and (C.18), one obtains

lxm(t)l <3[Nm(At)r1B [M2-Wl1M3(At)At+M1f|D||]MH(At)At (C19)

for all t > 0. Thus x (•) is bounded. Now, since SM is minimal and
. — -m ' m

lossless, it has a continuous (in fact, quadratic) conservative potential

energy function. If {v(')fi(*)} denotes the admissible pair corresponding
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to {u(»)>y(')}> then it follows from lemma 2.7 that

i rT i rT • • •' --•••'
lim± <v(t),i(t)>dt - lim± <u(t),y(t)>dt = 0. «
X^oo x Jo " x-x" '0*

Proof of Lemma 5.7

(=*) This follows immediately from lemma 3.3.

(<=) Suppose S is lossless. Then, since S is controllable, it is

equivalent to a minimal linear state representation S (lemma C.4). By

theorem 5.1, Sm is lossless. The minimal state representation S is

completely observable [11];'therefore, it is state-observable (Def. 3.1).

In summary, S^ is a lossless, state-observable hybrid state representation

for hi; therefore, hi is lossless (Def. 3.6). °
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FIGURE CAPTIONS

Fig. 1. A current-controlled 2-port which is cyclo-lossless but not

lossless.

Fig. 2. A lossless 1-port which is not energetically reversible. Because

of the diode in series with the capacitor, it "traps" all the

energy which enters it.

Fig. 3. a. The constitutive relation of a nonlinear capacitor which is

lossless and has properties 1, 2, 3 and 5 listed at the beginning

of section II. /

• 2. b. An L admissible pair for this system for which the total

energy is nonzero.

Fig. 4. A 1-port which has the zero average power property but is never

theless lossy.

•Fig. 5. This nonlinear capacitor is a lossless system which does not have

the zero average power property.

Fig. 6. An illustration of def. 2.6 in the case that U is 1-dimensional.

a. A typical waveform u(«)«

b. The restriction u(.)|[0,T).

c. The periodic extension of u(.)|[0,T).

Fig. 7. Figure for the proof of theorm 2.1. The trajectories x (•) and

x^(') require different amounts of energy, i.e. E.. f E2. The

existence of a return path xA') is guaranteed by our assumption

of complete controllability.

Fig. 8. Figure for the proof of theorem 3.1.

Fig. 9. Every voltage-controlled state representation has a realization of

this form in which C is lossless. IfHkand C are both lossless we

call it a lossless realization.

Fig. 10. A realization of the 1-port in example 6.1.



Appendices

Fig. A.l. Figure for the proof of lemma 2.2. The trajectory £,(•)

consists of xA-) followed by xA-).

Fig. A.2. Figure for the proof of lemma 3.2. We initially assume that

S(x1(t')) £ x2(t'). The other trajectories are then used to

show that this assumption results in a contradiction.
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