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ABSTRACT

This paper is the second in a two part series [1] which aims to pro-
vide a rigorous foundation in the nonlinear domain for the two energy-
based concepts wﬁich are‘fuhdamental to network theory: passivity and
losslessness. We hope to clarify the way they enter into both the state-
.spacé'and the input-output viewpoints. Our definiﬁion of losslessness
is inspired by-that of a "comservative system"‘in classical mechanips,
and we use .several examples to compare it wit§ other'concepts of iossless-
ness found in the literature. We show in detail how our definition avoids
ihe anomalies an& contradictions.which many cuféent definitions produce.
This concept of losslessness has the desirabie property:of being preserved
under interconnections, and we extend it to one which is representation

independent as well. Applied to five common classes of n-ports, it allows

us to define explicit criteria for losslessness in terms of the state and
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output'equations. In ﬁarticular we give a rigorous justification for

the various equivalent criteria in the linear case. And we give' a

canonical network realization for a large class of lossless systems.-
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I. Introduction

This paper completes our two-part series [l] on energy-based con-
cepts which are fundamental to nonlinear network theory. Our motivation
for writing this secoﬂd part is the little recognized fact that lossless-
ness, like passivity, has been given a number of conflicting definitions
[2—4,&2,18] in the modern network theory literature. And as before, we
believe th;t the problem arises from the long period in which "network
theory" meant es;entially "linear network theory," since the various
concepts nearly coincide in the linear case.

Unlike its countérpart on passivity [1], this paper differs signifi-
cantly from the theory given in reference [4]. When a;plied to nonlinear
n-ports, the theory in reference [4] defines losslessness only for 2257
sive n-ports. Other aﬁthors [12], [18] would define a lossless n-port
to be a passive n-port which satisfies certain additional conditions.

In this two-part series, we treat passivity and losslessness as indepen-
dent concepts. As a result of this viewpoint, a more complete theory
emerges. The definition of iosslessne§§ given in this paper classifies

a negative linear capacitor as lossless--a very sensible classification—-
whereas other approaches are either incapable of classifying this active
element as lossy or lossless, or they classify it as lossy.

Our definition of losslessness is similar to, but less restrictive
than, the concept of a "conservative system" in élassicai mechanics [5].
Roughly speaking,'we say that a system is lossless if the energy required
to travel between any two points of the state space is independent of
the path taken. This seems to us the most basic concept péssible, and

it is quite different from many definitions found in the literature,
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which are based on eﬁuations such as
r(y(t);g(t)) dt = 0 - ’ (1.1)
0

as in [2], or

SR _
11m-i— I {v(t),i(t)? dt =0 (1.2)
™ © 70 : '

as in [3]. We will show by means of examples that expressions of this
sort must be viewe4 as criteria for losslessness rather than as defini-
‘tions of the'conceﬁt. The relation between the basic definition and
these .and other criteria is the subject of Section II. .

Notice that the above expressions are purely input-output in charac-
ter since they involve only the admissible pairs'{y(°),§(~)}, wheféas
our definition of losslessness relies on a state-space description of the
n~port. This distinction will play a central role in tﬁe next two sec-
tions. For example, with losslessness defined as path independence of
the enhergy, it is clear that an element such as an ideal l-volt d.c.
voltage source is lossy, at least so long as we ;iew it as a resistive
element. But we could also choose.to view it as a nonlinear capacitor
defined by v(q) = 1, and in that case it would of course be lossless.
This raises the disthrbing possibility that our céncept of losslessness
‘relies critically on the equations we choose to describe an n-port rather
than refiecting in a straightforward way the physical behavior of the
n~port itself. In fact, we sho; in Section IIL t@at this is not a érivial

anomoly: given any n—ﬁort N with a (not necessarily lossless) state

representation S, we can construct a lossless state representation S'
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which is equivalent to S. Hence, N always has at least one lossless
state representation. If we say, "a lossless n-port is an n-port with

a lossless state representation,"” then every n-port is lossless and the
definition means nothing at all. In Section III we show that if there
exists a lossless state represenéation for N which satisfies a certain
qbserbability requirement, then (essentially) all state representations
for N are lossless. This result allows us to formulate a meaningful
definitiog of losslessness for an n-port, and it completely resolves the
anomoly described above. -

In Section IV we show that the internal energy function[l] for a
‘passive n-poft becomes uﬁiqhe in the lossless case. Aﬁd in Section V
we derive explicit criteria for losslessness in terms oé the state and
output equations of several special classes of n-ports. In particular
we show that the criteria (1.1) and (1.2) are equivalent to losslegsness
in the linear, time—invarianf, finite dimensional case, which explains
why they are often invoked as definitioms. And Section VI is devoted
to a canonical network realization of lossless n-ports which becomes
possiﬁle under certain assumptions.

. ‘

In this papér, n-ports will be mathematically modeled by state repre-
sentations (a complete list of our technical assumptions and definitions
is given in Sectiomn ;I of {1]). Briefly, a state’representation is a

set of state, output, voltage, and current equations

£(6) = £(x(),u(t)) (1.3)
y(t) = g(x(t),u(t)) . (1.4)
v(t) = V(x(t),u(t)) ' ’ (1.53)



1(8) = 1(x(e),u(tj) | | (1.5b)

vhere g(o,-), g(-,-), Y("‘)’ and }(-,o) are all continuous functions
defined on £ x U CR" xR (z 4 state space, U 4 set of admissible input
values). The inputs g(-) belong to a set U of functions mapping?R* é‘
[0,”)’to U. For each input g(-) and each initial state x(0), we assume
the existence and uniqueness of the solution to (1.3) over the time

interval ﬁf: The power input function is defined by g(g,g) 4 (Y(g,g),

;(§,g)) , we assume that t - p(g(t),g(t)) is locally L1 for every input-

trajectory pair. The energy consumed by an input-trajectory pair

{u(),x(+)}[[0,T] is ;he.qu'antity IT p(x(t),u(t))dt--note that this
quantity can be positive, negﬁtive, gr zero. .

We will continue to make the blanket asspmption that U is translation
invariant and closed under‘concatenation [1, defs. 6 and 7]; but unlike
[1], we will no loﬁger repeat these assumptions explicitly when a theorem

or lemma requires them.

II. Five N-Port Attributes Associated-Qith Losslessness

Five charaqteristics of an n-port which are. frequently associated
with losslessness ére, in rough order from the moét obvious to the most
subtle: .

1. zero energy-required to drive the state around any closed path,

2. the existence of a scalar function of tﬁe state.which "tracks"
the energy enteriﬁg the ports,

3. all the energy which enters the ports can be recovered at the
ports,

4. - the total energy entering the ports over the time interval [0,x)



is always zero, aund,
. 5. the average power entering the psrts over the time invervsl
[0,T] is alwsys zero in the limit as T -+ =,

Note that properties 1 and 2 involve state-space ideas, while 3-5
are purely input-output in character. Alfhough properties 1, 2, 4, and
5 have all been used by various authors to define losslessness, only
property 3 means literally "no loss of energy.”

We will give a detailed discussion of these properties in subsec-
tions 2.1 through 2.5, ana we will mention here only the major conclu-
sions.. It might appear on first reading that these five concepts and
losslessness itself are simply different ways of saying the same thing.
But it is rare in systems theory for input-output and state-space con-
cepts to coincide exactly without restrictive aSSsmptions, and this case
is no exception. The major conclusion which emerges from this section
(indeed, our motivation for writing it) is shat not one of these five
notions is known to be strictly equivalent to losslessness, defined as
path-independence of the energy. The first two will turn out equivalent
to losslessness under the additional assumptionof complete controllability
[1, def. 13], but the last three will not be unlsss very restrictive
assumptions are imposed.

.Relationships weaker than equivalence certainly do exist, though.
It is not hard to see, for example, that losslessness and complete controlla-
bility imply property 3. And we will present a more séringent set of
assumptions under which property 5 implies losslessness.

The following deéinition is a rigorous statement of the concept

of losslessness as path independence.



pDefinition 2.1. A state representation S is defined to be losslesé if
the following condition1 holds for every pair of states X0 X in Z. 'For
any two input-trajectory pairs'{gl(.),§1(.)}[[O,TI],{EZ(-),gz(-)}l[O,TZ]
from x, to ¥, the gneréy consumed [1, def.8 ] by'{gl(-),gl(-)}I[O,Tll
equals the energy consumed by {92(°),§2(-)}[[Q,T2]. A state representa-
tion which is not lossless is defined to be lossy.

Note that Definition 2.1 does not require that therevexist two or )
more i;put-trajectory paits between every pair of states ga and Xt
there may exisf only one input-trajecfory pair between x and Xy OF none
. at all. Also, a state representation thch has no more than one input-
trajectory pair between every pair of states is 1oésleés by default.

As we di;cussed:hlthe introduction, this notion of losslessness is
* dependent upon the particular state representation we choose for an
n-port. For this réason we will initially consider losslessness to be -
an attribute of a state representation S rather than of an n-port N.
We will show later, in subsection 3.1, that we can rid ourselves of this
dependence on S under certain reasonable assumptions and define lossless-
ness directly as an attribute of N. In the next two subsections we will
discuss the concepts of cyclo-losslessness and conservat;vepotential
energy functions, which suffer from this same dependence on S. In sub-

section 3.2 we will give conditions under which they can be made repre-

sentation independent as well.

o

1Since U is translation invariant [1, Def. 6] and the state equations are
independent of time, there is no loss of generality in assuming that both
trajectories pass through x5 at t.= 0. °‘And because of our standing
assumption [1, Section I11] that t — p(g(t),g(t)) is locally 11, the
energy consumed over any finite time interval is always finite.
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2.1. Cyclo-Losslessness

We will say that a state fcpresenCation is cyclo-lossless if the

energy required to drive the system around any closed path.in its state-

space is zero. Tﬁe following definition says this a bit more formally.

Definition 2.2. A state representation S is defined to be cyclo-lossless

i1f for every input-trajectory pair {g(-);g(-)} and every T > O such that
x(0) = x(T), the energy consumed by'{g(-),§(-)}|[0,T] is zero.

This is essentially the definition of a conservative system in
classical mechanics [5], and it is sliéhtly less restrictive than the
definition of cyclo-losslessness given by Hill and Moylan [18].

Like lcs§1essness itself, cyclo-losslessness is not a pure input-
output concept but depends upon the patticulé; state representation we
;cho;se. The ideal voltage source, for example, is cyclo-lossless when
considered as a capacitor but not when considered as a resistor. To see’

that losslessness and cyclo-losslessness are not entirely equivalent

concepts, consider the following example.

Example 2.1. 1If the current¥controlled 2-port in Fig. 1 is given the
obvious state representation in terms of 9y and 95» it will be lossy
because of the resistor. But it is cyclo-lossless "by default," because
(ql(Oi,qZ(O)) = (ql(T),qz(T)] is possible only if we don't excite port
#1 over the interval [0,T].

Nonetheless, fhere is a very strong relationship between the two

concepts as the following lemma shows.

Lemma 2.1. Let S denote a state representation. Then the'following

three statements are true:



a) If S is lossless, then S is cyclo-lossless.

b) If S is completely controllable and if there exists a state
X € I for which every input-trajectoiy pair {u(+),x(+)}[[0,T] with
x(0) = 3(?) = ¥, consumes zero energy, then S is lossless.

c) If S is cyclo-lossless and completely controllabie, then S is
lossless.

Lemma 2.1 is fairly obvious, but a rigorous formal proof is given in
Appendix A. In essence, the lemma says that losslessness and cyclo-
lbssle;sness are equivalent concepts fgr completely controllable systems.
Statement b) of‘the lemma will be utilized in our proof of results %or

linear systems.

2.2. Conservative Potential Energy Functions

A conservative potential energy fuﬁctioﬁ is a scalar function defined
on the state space, which increases along trajectories at the same rate .
that energy enters the ports. The following definition just says the

same thing more precisely.

Definition 2.3. A function ¢ : L + R is defined to be a conservative

potential energy function for a state representation .S if

t

2 :

¢ s(ty)) - o feep) = j p(x(t),u(t)) de (2.1)
t
1

for all input-trajectory pairs {u(+),x()} an& all o St Sty <, | -
It is evidént that every state representation with a comservative . i
potential energy funct?on is lossless, and that any two conservative
potential energy functions for a given state representation can differ
only by aﬂ additive constant on any regiod of L reachable from a giVen

point x € I. Note that any nonnegative conservative potential energy

-
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function is also an internal energy function [1, .Def. 23].

Like.losslessness and cyﬁlo-losslessness, the concept of a con-~
servative potential energy function is not purely input-output in
character, but involves the state space in a fundamental way. fhe ideal
l-volt d.c. voltage source, for example, has the conservative potential
energy function ¢(q).= q if we view it as a capacitor; but there is no
conservative potential enérgy function for this system if we view it as
a resistor.

In' this section we wi}ll be content to define conservative potential
eﬁergy functions in terms of a given séate representation S. In subsection
3.2 we will discuss the conditions under which a conservative potential
energy function can be assigned to an n-port N, indebendent of our choice

for s.

. L]

.The following simple 1emma shows that under a certain reachability
assumption, every lossless state representatlon has a conservative

potential energy function. We do not know whether this conclu31on holds

without such an assumption.

Lemma 2.2. Suppose a state representation S is lossless and that there
exists some state é € I such that all of I is reachable [1, Def. 12] from
%. And let y(x) represent the energy required to drive the state from

3 to aﬁy point x € I, Then ¢ : L + R is a conservative potential energy
function for this state representation.

The proof is in Appendix A. Since the reachability assumption in
Lemma 2.2 is always satisfied by completely controllable systems, it
follows that ;osslessnes;, cyclo-losslessness, and the exisgence of a
conservative potential energy function are all equivalent concepts for

completely controllable state representations.
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We haven't required or assumed that a consegvative potential energy
function ¢ be continuous, much less differentiable. But in those cases

where ¢ is continuously differentiable, it is possible to rephrase (2.1)

in differential form as follows.

Lemma‘2.3. Let S denote a state represenfation, and suppose that I is an
open subset of ]Ruﬂ Suppose further that U satisfies the following mild
technical assumption: for each u, € U, there exists an input u(.) €U

such that u(0) = 4, and u(-) is continuous at t = 0. Then a C1 function

l .
¢$:Z > R is a conservative potential energy function for S ®
(¥ (x), £(x,u)? = p(x,u) (2.1a)

for all (’.5".1.) E T x U, .
The proof is in Appendix A. ’ .

Note careful;y that a conservative potential function need not be
" differentiable at all. It is an open questibn whether ¢ will be dif-
ferentiable even when £(+,+) and p(*,*) are c . (We have discussed a
related question at length in [1, example 7].) - Therefore the existence
of a fuqction satisfying (2.1a) is not known to be anecessary condition

for losslessness, even for completely controllable systems where £(,°)

and p(+,+) are Cé.'

2.3. Energetically Reversible Systems

A third property associated with losslessness is the property of
being an "ideal energy reservoir," i.e. that all energy pumped into the
system through its ports can be recovered at a later time. This is a
genuine input—outﬁut property; therefore, if}a state representation for
an n-port N has this property then all st;te reéresentations for N will

have this property.
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Definition 2.4. A state representation S is definéd to be energctically
reversible if the following condition holds for each x € L. For every
admissible pair {v(-),1(-)} with initial state x and every T > O, there
exists an admissible pair {v'(:),i'(+)} with the same initial state x,

and a T' > T, such that -

1) {y(0),1(0)) = {y' (©),1'®)}, ¥t € [0,T]

Tl
11) J {y'(t),1"(t) Mt = 0. (2.2)
0

An n-port is defined to be'energetically reversible if it has an

energetically reversible state representation.

Condition i) and the requirement that {y(-),i(-)} and'{y'(')gg'(°)}
have the same initial state imply that {v'(:),i'(-)}|(T,=) is a devel;p-
ment of the port voltages qnd currents in time which remains possible
for N at the moment T, after the waveforms {Y(-),i(')}l[O,T] have been
observed. In thé light of this observatien, (2;2) means that all the
energy deposited in N over the interval [O,Ti can be recovered over some
interval (T,T'].

An n-port is energetically réversible if, from the viewpoint of the
outside world, no energy can ever disappear or be lost inside it. For
this reason we were once tempted to adopt Def. 2.4 as our definition of
'losslessness. But we have decided to define losslessness as path
independence of the.energy insteaé, since the latter concept corresponds
more ciosely to ghe standard electrical éngineering usage of the term.

While it may seem naturai to associate energetic reversibility with
losslessness, the former property is neither a necessary nor a sufficient
condition for the latter. For example, a 2-terminal resistor whose. |

constitutive relation (v-i curve) contains points in both the first and-

second quadrants is a lossy element which is energetically reversible.
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And the l-port in the folloﬁing example is lossless but not energetically

reversible. .

Example 2.2. The l-port in Fig. 2 has the following state ;epresentation:

g=7aflih -
{?, ifi>0,
v =
0, if 1 < 0.
This l-port is clearly lossless, but it is not energetically reversible
because of the ideal dio&e in series with the.capacitor. (Note that this
example violates our technical assumptions because the port voltage is
not a continuous function of q and i. This violation does not arisé if
one makes ghe artificial (but permissible) restriction i > 0.)
. In sfite of Example 2.5, there is a stroﬁg connection between the

state dependent property of losslessness gnd the input-output property

of energetic reversiﬁility, as tﬁe following lemma shows.

Lemma 2.4. Suppose that a state representation S is lossless and
completely controllable. Then it is energetically reversible.

The proof is in Appendix A.

2.4. The Zero Total-Energy Property

The zero total.energy property is the term we have adopted to

express conditions of the type

E p(x(t),u(t)dt = 0 (2.3)

where appropriate restrictions may be placed on the input-trajectory

pairs {u(*),x(*)} for which (2.3) is required to hold. The zero energy
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idea is rather appealing in the usual case that u(*) and‘z(~)'are a

hybrid pair [1, Def. 3]. For then (2.3) becémes

r (E(t),z(t) ¥t = 0 _ (2.4)
0

and has the straightforward ge?metric interpretation that u(-) and z(-)
- are orthogonal in the Hilbert space Lz(]1+giRn). In other words, if U
and Y are contained in L2, then (2.4) says that the n-port acts as an
operator which maps each input waveform g(-) into the subspace of L
orthogonal to g('). In this guise the zero total energy property appears
as a generalization to fﬁnction spaces of the_idea of a nonenergic
n-port [6], one for which v(t) and i(t) are orthogonal vectors in Rr®
at each instant t.

There_are many possible versions of the zero total energy property, -
depeuding‘upon the conditio;s we place on g('j and x(-) or u(*) and
Z(')‘ Since no single version is really Qefinitive for our purposes,
we will describe somé of the mosé significan& variations and their
relation to losslessness.

A version of the zero tptal energy property was proposed in [2] as
the definition of 1ossle§sness in both the linear and the nonlinear case.
In the language of this paper, the definition in [2] can be paraphrased

as follows. "An n-port N is lossless if

r(g(t),g(t) Xt = 0 | - (2.5)
6 .

holds. for all admissible pairs {v(:),i(-)} in Lz(IRt ]Rn) so long as
there is no energy stored in N at T = 0." This conception of losslessness
is adequate as a criterion in the linear theory, but the following

example shows that it is inappropriate for nonlinear systems.

-15-
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Example 2.3. Consider the l-port capacitor with the constitutive rélation

q ’Qio .
v(q) ={ singqg, 0<q< ™

0 s Q2

~shown in Fig. 3a. If we give it the usual state representation for a

capacitor, with q as the state variable, then it is clearly lossless

(Def. 2.1). 1In fact, it has properties 1), 2), and 3) listed at the beginning
of this section, and property 5 holds also if {v(*),i(*)} is bounded. But to
see that it doesn't satisfy the definition in [2], consider the following signal

pair, shown in Fig. 3b:

1, 0<t<mw | sin(t), 0 <t <™

i(t) =¢ v(t) =
0, otherwise 0 , otherwise.

-

This is an admissiblé pair if the initial state.ié q(0) = 0, and it is
clearly in L2. The "stored energy" is initiglly zero in this case,.but
the total enefgy entering the ports is 2 joules. Thus.the definition in
[2] would have to classify this cgpacitor as 1o§sy; which is contrary
to- the intuitive view that a'l—port charge-controlled capacitor wiﬁh

a continuous constitutive relation ought to be lossless.

Nonetheless, the following two lemmas show that there is a definite

relation between losslessness, as we define it, and certain versiomns of

the ze;o'total energy property.

lLemma 2.5. Suppose a state representation S is lossless and completely
controllable. Then S has a conservative potential energy function ¢, '

and we suppose further that ¢ is continuous. Under these conditiomns,

T
lim I (Y(t),g(t))dt =0 ) (2.6)
T /0 .

~16=
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for all (not necessarily Lz) admissible pairs {y(') = Y(?E(‘)".’(’)) »1(e)
=}((:5(°),g(')) } such that 1im x(t) = x(0). Furthermore, (2.5) polds

2 b :
for all L” admissible pairs such that lim x(t) = x(0).

The proof is in Appéndix' A. The g—i).afaference between equations (2.5)
and (2.6) is a technical point based on the definition of the Lebe'sgue
. integral [7]. Because of our 'standing assumption that t > (y(t:),;’_.(t))
is locally Ll, the integral in (2.6) will necessarily exist for each
finite value of T. But the integral in (2.5) exists only if the positive
and negative parts of (Y(o)-,§(~)) individually yield finite values when

integrated over all of ]R+, a mathematically stronger assumption which

explains our requirement that in that case v(-), i(-) € L2(1R+->1Rn).
Lemma 2.6. Suppose that a state representation S is lossless. Then

-

T
r p(x(t),u(t))de = 0
0 .

for all input-traject;ory pairs {x:;(-),:_c(-)} sv:tch that x(+) is a periodic
function with period T, and for each integer n > O.

Lemma 2.6 follows immediatel}; from statement a) of Lemma 2.1,

Note that the versions of the zero total energy property invoked'
in these two particular lemmas are not purely input-output in character

since they include réstrictions on the state-space trajectory x(-).

2.5. The Zero Average Power Property

Definition 2.5. A state representation is defined to have the zero

average power property if

. T ' :
lim.% J (v(t),i(t) Mt = 0 ' o (2.7)
T 0 '
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for every admissible pair {y(-),i(-)} such that v(-) and i() are

bounded functions. An n-port is defined to have the zero average power
property if it has a state representation with the zero averaée‘power
property.

Since Definition 2.5 involves only the édmissible pairs of a‘systenm,
it is purely input-output in character. Tﬁerefore if an n-port N has the
2er; average power property, then all state representatioms for N have
the zero average power property.

This property and variations on it have been commonly assoéiateq with
losslessness in the literature on linear network theory. It‘has’even
been}proposed.as a definition of 1osslessness.for nonlinear algebraic
n-ports [3]. But we shall present examples, admittedly somewhat contrived,
which show that tﬁe zero average power property is.neither a necessary
nor a sufficieqt condition for losslessness in general.

Our stipulation that (2.7) need only hold when y(*) and i(-) are
bounded requires some explanation. In keéping with the traditions of
linear circuit theory, we would certainly want to say that a l-farad
capacitor, for example, has the zero average power property. But (2.7)
doesn't hold for all admissiéle pairs of a l-farad capacitor, as we can
see by considering the admissible pair {i(t) = 1, v(t) = t}. We could
eliminate this particular admissible pair from consideration by requiring
that v(<), or the state-space trajectory x(-) = 4('), or both be bounded.
It turms out that a sensible general theory emerges only if we require

boundedness of v(-) and i(-) but not of x(-). A detailed discussion of

this point is given in Appendix B.

Example 2.4.

To produce a voltage-controlled state representation for the l-port

in Fig. 4, we define f by
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- v>v
A'A Vc, Z Ve . .
f(Vé,v) = _
0 s V < Vg

Then f is continuous, and the voltage-controlled state equations are
ic = f(vc,v), i= f(vc,v). Since we are only interested in bounded
admissible pairs, we can take U= LQ(IR+§JR).. It is easy to see that
this is a lossy state representation.
To show that ﬁxample.Z.é has the zero average power property, let
'{v(‘),i(o)} be any bounded admissible pair. Then there exists a finite
constant M > 0 such that lv(t)] <M and Ii(t)l < M for all t. Since
f(vc,v)_z"o always, it follows that i(t) > 0 for all t and vc(°) is
monotonically increasing. If vc(t) = vc(O) for all t, then i(t) = 0 for
a.a.t € Il+ and (2.7) is trivially satisfied. Now.suppose that vc(-) is
n?t constant. Then it is obvious from the circuit shown in Fig. 4 that
vh(t) <M for all t € ]R+. To prove this assertiﬁn rigorously, suppose

that vc(to) > M for some to € }R'!'. Define a.A sup{t >t :vc(t) > M}.

0
By the continuity of vc(-), o > tgs and by the definition of a, vc(t) > M
for all t € [to,a). But whenever Vc(t) > M, it must be constant (because
[ .
f(vc(t),v(t)) = 0; i.e., no current can flow through the ideal diode).
Thus vc(') is constant on the interval [to,a). If o < =, then, by
continuity, v_(a) = lim v _(t) = v_(t,) > M, and so there exists an & > 0
c . c c* 0 )

ta

. t<a )
such that vc(a+e) > M, which contradicts the definition of a. Therefore
vc(°) is constant on the interval [tO,w), and a similar argument shows
that vc(-) is constant on the interval [O,to]. These facts contradict -
the assumption that‘vc(-) is not constant; hence, vc(t).g M for all t.

Now

-19-

[P RS

[POROR




1 T .
IT‘I v(t)i(t)dt| <
0

=3

T :
[0 lveey[1¢e) ae :

T . T
M . M M
=7 Jo [i(e)]de = T fo i(t)dt = -T-(vc(r)-vc(m)

§¥(M-vc(0)] >0as T+, (2.8)

' This shows that (2.7) is satisfied; so Example 2.4 has the zero average
power property, as claimed.

The previous example showed that a system with the zero average
power property néed not be iossless. The next example exhibits a lossless

system which does not have the zero average power property.

Example 2.5. The capacitive constitutive relation v(q) = q/(1+[q[) is
drawn in Fig. 5. This system is clearly lossless;.in f;ct $(q) = lql
-,1n(1+|ql)‘is a conservatiﬁe potential energy function. But it doesn't
have the zero average power property, as we can see by considering the
bounded admissible pair {i(t) =1, v(t) = t/€l+t)} for which the
limiting value of the average input power is 1 as T+ =,

In the previous example the input and output were bounded functions,

'

but the state q(+) was not. At first glance we might think that the
problem could be resolved by amending Definition 2.5 so that we only
consider bounded admissible pairs {g('),z(')} for.which the state
trajectory x(+) is also a bounded function. We discuss this topic in
deptﬁ in Appendix B, where we show that such an amendment would not
resolve this apparent anomaly. Nonetheless, if we do place restrictions
on thé state spﬁce trajectory x(-), we can establish certain relationships

between losslessness and a certain sort of zero average power conditionm.

The following two lemmas are elementary.
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Lemma 2.7. Suppose the state representation § is lossless and completely
controllable, and that its state space & is all of R™®, -Then S has a
conservative potential energy function ¢, and we suppose further that

¢ 1s continuous. Under these conditions, (2.7) holds for all admissible
pairs {g(~),§(-)} = {Y[g('),g(o)),I(g(-),g(-))} such that x(.) is bounded.

The proof is given in Aﬁbendix A.

Lemma 2.8. If a state representation § is lossless, then (2.7) holds
for all admissible pairs {(v(),i(:)} = {Y(§(~),9(-3),§(§(°),g('»} such
that x(-) is a beriodicAfuhction. |

The proof is given in Appendix A.

These two lemmas do not yet show a relationship between losslessness
and the zero average power property as in Definition 2.5, because they
require gdditional informagion about the state trajectory §(-). Can we
find a connection between losslessness and the purely input-output
statement of the zero average power property, dne which holds for non-
linear n-ports and nonperiodic inputs and tégjectories? Examples 2.4
and 2.5 place rather restrictive bounds on possible theorems in this
area, but Lemma 2.8 suggests that.we might have.some success if we could
find a way to reduce the general case to the periodic case. In linear
circuit theory the Fourier transform does exactly that, but we must
find another approach for nonlinear systems. First, we néed the following

technical definition, the terms of which are illustrated in Fig. 6.

Definition 2.6. Given u(.) :IR+'+ I{n, ve let g(-)[[O,T) denote the

restriction of u(+) to the interval [(0,T), T > 0. Given g(-) and T > 0

we say that w(-) : ]R+ > ]R.n is the periodic extension of g(°)[[O,T) if

for each .t € IR+, w(t) = y(t-nT), where n is that unique né)nnegative

integer such that t-nT € [0,T). (See Fig. 6.) Finally, we say that U

-21-




y———

is closed under periodic extension if for each u(*) € U and each T > o,
the periodic extension of g(—)|[0,T) is also an element of U.
Although "closure under periodic extension” bears a superficial

resemblance to "closure under concatenation” {1,0ef.7], it is actually a

quite different concept. The essential difference is that closure under con-

céténatiop means one can piece together two (and hence any finig;uﬂﬁméérjw
of different waveforms, whereas closure under periodic extension means
one can piece together a segment of any single wavefoim an infinite number
of times with itself. Consider Fig. 6 again. . The waveform u(+) in
Fig. 6a belongs to all the spaces LP(IR++IR), 1 <p <=, since it is
bounded and vanishes outside some finite interval. On. the other hand
the periodic extension of g(~)|[0,T), shown in Fig. 6c,'is in L~ but not
in LT, 1 <r <=, Thus vwhile all the LP spaces are closed under con-
catenation, only 1% is closed under periodic extension.

The following theorem gives the relation between the input-output

property of zero average power and the state-space property of losslessness.

Theorem 2.1. We are given an n-port N with state representation S

satisfying the ?ollowing assumptions: ‘
i) S is completely controllable,
i1) U is closed under periodic extension,
iii) each waveform in U is bounded on every compact interval [0,T],
and
iv) V() and ;(',') are bounded on every bounded subset of T x U.
Under these conditions, if S has the zero average power property then S

is lossless.

Remark. Assumptions iii) and iv) are rather technical and not very

restrictive. For example if U contains only piecewise~continuous waveforms
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then iii) is satisfied automatically, and if ¥ = ﬂ{m and U= R then

iv) is satisfied automatically because we have.assumed that Y(~,-) and
I(+,+) are continuous [1, section II]. Assumptions i) and ii), onm: the
other hand, are essential. The theorem fails without assumption i), as
we see from Example 2.4, Fig. 4. It also fails without assumptiom ii),
for consider the (admittedly artificial) exaﬁple of a 1 ohm resistor
with u = i where we make the very special choice U = L2(I{+QJR). This is
a lossy s&stem, hut it has the zero average power property as a result

of U being Lz, a space which is not closed under periodic extension.

Proof of Theorem 2.1. The proof proceeds by contradiction. We will

assume the system has the zero average power property and satisfies

assumptions i) -iv) but is lossy. A contradiction will emerge.

If it is lossy, then there exist two states X0 X in I and two
input-trajectory pairs {gl(;),gl(')}l[O,Tll, {92(‘),§2(-)}l[0,T2] from
X, to X, such that El % EZ’ where El is the energy consumed by
{91(°)’§1(°)}][0’T1] and E, is the energy consumed by {92(°),§2(°)}|[0,T2]
[1, Def. 8]. (See Fig. 7.)

Since the system is completely controllable, there is an input-
trajectory pair {g3(-),§3(‘)}|[0,T3] from % to X_» and we let E3 be
the energy consumed by {93(-),33(-)}|[0,T3]. And since E; % E,, either
E +E3 % 0, or E

1 2

+i§ % 0, or both. For definiteness, suppose E1+E3 X 0.
Let~g4(-) consist -of gl(-) followed by 93(-), i.é. .

y,(t) =

Since U is closed under concatenation, 94(') € lU. And since the state
equations are time-invariant, {94(-),§A(°)} is an input-trajectory pair,

where
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x, (t), 0<t=<T
x, (6) = 1 1

33(t-Tl?, t>T.

(Note that x, (1) = %3(0)). Then x,(T;) = x, and x,(0) = x, (T,+T3) = x_,
s0 x, (*) passes once around a loop. And the energy consumed by
{y, ()%, C <)} [0, T)+T5] is Ej+E; % 0.

To complete the construction of a contradiction, we just drive x around
the loop forever. More formally, let §4(-) be the periodic extension of
94(-)![0 T +T3) Since U is closed under periodic extension, §4(~) € u.
And since the state equations are time invariant, {64(‘):i ()} is a valid
input-trajectory pair if x4( ) is the periodic extension of xa( )|{0 T 3).

This furnishes our contradiction, since

1 n(h*y n(E +E,)
E.+E
1 "3
= 5{ 0
T1+T3

for every positive integer n. In order to prove that (2.9) genuinelyA
contradicts our assumption that the system has the zero average power
property, as in Def. 2.5, we must verify that_Y(§4('):§4(°)) and

l(%4(-),§4(-)) are bounded. Since 24(-) is continuous and periodic it
is bounded. And §4(-) is bounded by assumption iii), since it is also
periodic. Therefore.y(éa(?),§4(-)) and 2(34('),§4(-)) are bounded by

assumption iv). ]

Corollary. 1If a system satisfies the assumptions of Theorem 2.1 and
has the zero average power property, then it is energetically reversible.
This follows from Theorem 2.1 and the fact that a lossless, completely

controllable state representation is energetically reversible (Lemma 2.4).
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I1I. Representation Independence and Closure

~ In subsection 3.1 we define the term "total observability" for
state representations, a concept which is essentially the same as thg
usual "complete observability“ in system theory. Our main result is
to prove that losslessness is a genuine physical property of an n-port,
.;ndependent of the particular state representation we choose for it, so
long as we restrict ourselves to totally observable state representations.
In subseétion 3.2 we give related results for cyclo-losslessness and
conservative potential energy functions. And in subsection 3.3 we will

make precise the idea that an interconnection of lossless n-ports is

itself lossless.

3.1. Losslessness, Total Observability, and Equivalent State

Representations

The example of a d.c. voltage source, which is lossless when.viewed
as a capacitor but lossy when viewed as a resistor, raises a serious
question about the physical significance of our definition of losslessness.
Is lgsslessness a genuine physical prdpérty of an n-port, or is it merely
an artifactAof.the particular state representation’ we choose for it? The

following example shows how pervasive an issue this is.

Example 3.1. Given any n-port N wiﬁh a state representation S consisting
of the equations g.= f(x,u), y= g(g,g) and some specification for U, u
and I, it is possible to create a lossless state representation S' for N
as follows. We augment the state space by one dimension, defining ‘
' AL x R, and then we add an artificial state variable e(t) which

measures the total energy which has entered.the ports over the interval

[0,T]. The state of the new system is (x,e), and its equations are
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= £(x,u)

Me

= P(f,g) ‘ .
y = glxu).

The new state representation S§' is obviously lossless because the
energy required to tfavel between two states is now just_the difference
in their last coordinate. But S' is definitely peculiar because the
artificial state variable e is not directly represented in the output
¥ which depends on x and j alone. The state repreéentation of a d.c.
voltage source as a capacitor has this same peculiarity-- its "charge"
doesn't affect its output. By weeding out these "unobservable" state
representations, we will be able to atta;h a definite physical meaning

to losslessness after all.

. *
Definition 3.1. Let S and S be two (not necessarily distinct) state

* *
representations. State x of S and state x  of S are defined to be
equivalent if the set of admissible pairs of S with initial state x is
* *
identical to the set of admissible pairs of S with initial state x .

S is defined to be state-observable if the equivalence of any two states

¥; and x, of S implies that X2 T %
In other words, S is state-observable if and omnly if the following
condifion is satisfied: if ¥ # Xys then >3] and 32 are not equivalent.

State-observability as defined above is essentially the standard notion

of (complete) obsérvability from system theory [11], the only difference -

being that it is stated in terms of admissible pairs, rather than input-
output pairs. We.have’given it the name "state-observability' in order
to distinguish it from the concept of "input-observability," which will

be defined shortly. First, however, some discussion on equivalent state
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representations is in order.

: : .
Definition 3.2. Two state representations, S and S , are defined to be

equivalent if for any state x of S there exists an‘equivalent state §*
of S*, and conversely, for any state g* of S* there exists an equivalent
state x of S.

This is essentially the definition of equi&alence given by Desoer
[11]. Definition 3.2 is less restrictive than the definition of equi-
valence .given in Part I of this series [1, Def. 19, p. 29]. The reason

[
we are changing our definition of equivalence is to clear up a vague
point in.Part I. We consider two state representations to be (equally
valid) mathematical models for the same n-port if and only if they are
equivalent accordiﬁg to Def. 3.2: this is implicit from the discussion
throughout this paper and its counterparf on ﬁ;ssivity. An illustration
is afforded by our recurrent example of a 1-voit d.c. sourde, which has
both resistive and capacitive state representatioms. Definition 3.2
properly classifies these state representations as equivalent, whereas
Definition 19 in [1] does not. The same comment'applies to the two state
representations S and S' in Example 3.1.

Another vague point in Part I was that we never explicitly stated
how we view an n-port within the framework of our theory. This situation
is rectified by the following statement: An n-port is identified with an
equivalence class.[7] of state representations; where the equivalence
relation is given by Definition 3.2. When we say that an n-port N "has"
a state representati?n S (or that S is a state representation "for" N),
we mean that S is an element of the equivalénce class which is identified
with N.

When we say that a property is representation independent, we mean

that if a state representation S has that property, then all state
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representations equivalent to S have that property also. It is easy to
see that the theorem for representation independence of passivity
(1, Theorem 8] remains.valid with the less restrictive form of equi-
valence given in Definition 3.2. 1In Part I we defineq an n-port to be
passive if it has a passive state representation; thus, by representation
indepéndence,—all state representations for a passive n-port are passive.
Although a new form of equivalence has been introduced in Definition
3.2, the concept'of equivalence given in Part I [1, Def. 19] will continue
to be of intergst to us. In order to avoid confusion, we shall henceforth
refer to it as "bijective equivalence." Formally, we have the following

definition.

Definition 3.3. Two state representations,.S.l and 52’ are defined to be

Bijectively equivalent if there exists a Bijégfivé map b :21 -+ 22~such that

for each x € El, the class of adumissible pairé of S1 with initial state x

is identical to the class of admissible pairs of S2 with initial state

b(x). ‘

Lemma 3.1. Suppose Sl and 32 are bijectively equivalent state
¢
representations; Then Sl is state—observable“”'s2 is state-observable.

The proof is given in Appendix A.

Definition 3.4. A state representation S is input-observable if the .

following condition holds for any two input-trajectory pairs
{v; )%, ()} {uy(+)5%,(¢)} with a common initial state x,(0) = 32(0).
1f gl(t') % u,(t') at some time t' >0, then'{y(gl(t),gl(t)), ;(gl(t),gl(t)]}
% {Y(J_cz(t),t_xz(t)),Z.[[:_cz(t),gz(t)]} for somet € [0,t'].
Input observability means that to any admissible pair {Y('),z(j)}

with a given initial state Xq» there corresponds exactly one input
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waveform u(-). In conjunction with our assumption that solutions are
unique, it implies that to any admissible pair {v(-),i(:)} with a given
initial state X0 there corresponds a unique input-trajectory pair
{u(+),x(-)}. We have defined this concept only in order to state our
lemmas and theorems in a rigorously correct way; it is always satisfied
in any practical case. For exaﬁple, all hybrid and transmission
representations are automatically input-observable because the inputs are
a subset of the port voltages and currents. In these cases, the inequality
in Definition 3.4 will be satisfied at t = t'. -

If we make the modest technical éssumption that for each éO € U there

exists a u(:) € U such that Q(O) = u., then input obsertvability implies

0
that the mapping u > {Y(;g,g),;(g,g)} from U to R™® x R® is injective for

"each fixed X € I. We do not know whether this.condition is sufficient

for:input observability.

Definition 3.5. A state representation is defined to be totally

observable if it is both state—observable and input-observable.

Before proceeding to the next lemma, a few technical comments are
in order. Let Sl and S2 be two equivalent state representatiomns, and

suppose that S2 is state-observable. Then, by the definition of

equivalence, for each state 31 of S1

is equivalent to Sl; moreover, because S2 is state-observable, X, is

.

there exists a state §2-of S2 which

1 - 22 such that for each

state X of Sl’ g(§l) is the unique state of S2 which is equivalent to

unique. Thus there exists a unique map ¢ : I

Xy If, in addition, S1 and §, are input-observable, then the map g(-)
"matches up" the entire state trajectories of those input-trajectory
pairs which produce identical port voltage and current waveforms in the

two systemé. This is stated precisely in the following lemma.
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Lemma 3.2. Let S1 and S2 be equivalent state representations, with Sl

input-observable and 52 totally observable. Let o :El > 22 denoFe the
unique map such that for each state x of Sl, a(x) is the (necessarily
unique) state of 52 which is equivalent to x. 'Let T > 0 be any time and
let {gl(-),§l(°)}l[0,T] and {92(-),32(-)}|[0,T] be any input-trajectory
pairs_of Sl and 52’ respectively, such that {Y1(§l(t),gl(t)),

I (5 (0,0, (0))} = 19, (2, ()2, (), L, (%, (£),u, ()} for all t € [0,T],
where 21(6,-), ;l(-,v) are the readout maps for Sl, and YZ("')’ lz(°,')
are the readout map§ for SZ' Under these cond%tions,.if 32(0) = g(gl(O)),
then x,(t) = §(§1(t)) for all t € [0,T].

The proof is given in Appendix A.

Theorem 3.1. Let Sl and 32 be equivalent state representations, with

' S1 input-observable and 82 totally observable. Under these conditions,

if 82 is lossless, then Sl is lossless.

Proof. We will prove the equivalent statement S1 lossy =='82 lossy.
Assume Sl is lossy. Then there exist gwo states X, gb in Zl, two times
T', IT" > 0, and two admissibie pairs {Y'(-),i'(-)} = {Yl(§i(°).9i(')ls
QR HONE L ECHORUOVERI ACIORUG) B A OIS
of S1 such that §i(0) = gI(O) = X,» 3i(T') = g{(T") = % and E' § E",
where E' is the energy consumed [1, Def. 8] by {gi('),gi(°)}|[O,T'] and
E" is the energy consumed by {g{(-),g{(-)}|[0~T"! (see Fig. 8). .
Now let a: Zl -+ 22 be the unique map which is defined in Lemma 3.2.
Then {g'(-),g'(')i and {yv"(-),1"(-)} are admissible pairs of 82 with
initial state g(§a). So there exist input-trajectory pairs
{gé(-),gi(~)} and {u5(:),x5(+)} of S, such that {é'('),i'(°)}
= 10, (585 ()a Iy (), u()} amd (3"(,47()} = 10, (g (Do),

;2(§;(f),g;(-))}. By Lemma 3.2, gé(T') = %(gi(T')) = a(x,) and
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K@ = o(e ™) = atg). Thus {g()xy 0T and (g5 CD,x5 ()}
[0,T"] are input-trajectory pairs of S2 from g(ga) to g(gb). Since the .
energy consumed by the former is E' and the energy consumed by the latter
’ H

is E" % E', S, is lossy.

2
Corollary. Let S1 and 32 be equivalent? totally observable state
representations. Under these conditions, Sl is losslessf"s2 is lossless.
If we restrict ourselves to totally observable state representations,
the coroliary tells us that losslessness is representétion independent.
If an n-port N has a lossy state representation which satisfies
the trivial requirement of input-observability, then N cannot have a
lossiess, totally observable state representation. This follows immediately

from Theorem 3.1, and it allows us to formulate a meauiﬁgful definition

of losslessness for an n-port.

Definition 3.6. An n-port N is lossless if there exists for N a totally
observable state representation S which is lossless by Definition 2.1.

An n-port which is not lossless is lossy.

Note that according to befinition‘3.6, a nonzero ideal d.c. voltage

source is a lossy l-port. (To prove that this conclusion follows rigorously

from Definition 3.6, suppose there eiisted a lossless totally observable
state representation for such an ideal voltage source. Since an ideal
voltage source is a .resistor, the state space can contain at.most a
single point if the state representation is to ge state~-observable. Such
a system is lossless only if power never enters or leaves the port. For

a voltage source, this implies v = 0.)

Lemma 3.3. If an n-port N is lossless, then every input-observablestate

representation for N is lossless.

(Note, however, that if N is lossy, it does not follow that every input-
observable state representation for N is lossy. The ideal 1 volt source is a

ood example.
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Proof. This follows immediately from Definition 3.6 and Theorem 3.1.

n

3.2. Representation Independence for Cyclo-Losslessness and Conservative

Potential Energy Functions

In Example 3.1, we showed that any n-port N with a state representation
S.has_another state representation S' which is lossless (and non-observable).

From its definition, it is easy to see that S' is cyclo-lossless as well and has

a conservative potential energy function. Consequently, if we said "a
cyclo-laossless n-port is an n-port with a cyclo-lossl;ss state
representation,” then all n-ports would be cycio—lossless and the definition
would be meaningless. Analogous comments apply regard}ng the existence

of a state representation for N which has a conservative potential energy
function. In this subsection we exploit Lemma 3.2 to determine a way

in which these properties can be viewed as being characteristic of the
n-port itself. The results of this subsection show that cyclo-losslessness
and the existence of conservative potential energy functions are

representation independent properties when we restrict ourselves to

totally observable state representations.
[

Lemma 3.4. Let'sl and 32 be equivalent state representations, with S1
input-observable and S2 totally observable. Under these coqditions, if
82 is cyclo—losslesq, then Sl is eyclo-lossless.
The proof is given in Appendix A. '
According td Lemma 3.4, if N has a totally observable cyclo-lossless
state repreéentation, then all state representations for N are cyclq—

lossless, provided they satisfy the trivial requirement of input-

observability. This justifies the following definition.
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Definition 3.7. An n-port N is defined to be cyclo—lossless if there

exists for N a totally observable state representation S which is cyclo—

.

lossless by Definition 2.2.

Lemma 3.5. Let Sl and S2 be equivalent state representations, with S1

input-observable and S, totally observable. Let o : L. - L, denote the

1 2
unique map defined in Lemma 3.2. Under these conditions, if ¢2(°) is a
conserjetive potential energy function for 82’ then ¢1(-) é=(¢2°g)(~) is
a conservative potential éhergy function for Sl'
The proof is given in Appendix A.
Lemma 3.5 says that if an n-port N has a totally observable state
representation with a conservative potential energy function, then all

. input-observable state representations for N will have a conservative

'potential energy function. This justifies the follow1ng definition.

Definition 3.8. An n-port N is defined to Se a conservative potential

energy n-port if there exists for N a totally observable state represen-

tation with a conservative potential energy function (Def. 2.3).

As for the other properties which were given formal definitions'
in Section II, we have already defined what it.means for an n-port to be
eneggetically reversible (Def. 2.4) or to have the zero average power

property (Def. 2.5).

3.3. The Interconnection of lossless N-Pofts

Suppose Nl""’Nk are lossless n-ports and N is created by inter-
connecting Nl,...,Nk.- Will N necessarily be lossless? If so, we would
say that losslessness possesses the attribute of closure, a concept we

have discussed in [1, subsection 5.3].

) -33-



We would ceétainly expect an‘interconnection of lossless n-ports
to be lossless, but a difficulty arises when we attempt a completely
general proof. The problem is that N may not have a totally observ;ble
state representation (or any state representation at all, for that
matter), even though’Nl,...,Nk do. We will not address that problem

here, but in its absence the closure proberty is almost immediate.

Lemma 3.6. Suppose Nl""’Nk are n-ports with lossless state represen=
tations Sl”"’sk as in Definition 2.;, Suppose N, created by inter-
connecting Nl""’”k’ has a state ;epresentation S with a state space
T which is any subset of le...xzk. Then S is lossless.

Moreover, if S is totally observable,.then N i; lossless. The

proof of Lemma 3.6 is given in Appendix A.

.3.4. Distinct N-Ports ﬁadé from a Multiterminal'Element

bistinct n—éorts made from the same multiterminal element by the
use of Excitatiou-Observation-Mode-Transfo;mation of Type 1 (EOMT 1) and
of Type 2 (EOMT 2), the concept of EOMT.eqﬁivaience were introducgd and
discussed in [1l, Sectiom 5.2]; it was also shown there that passivity is
preserved under EOMT equivalence. 1In the following we will show that
similar results hold for losslessness as well, i.e. assuming {g(-),z(-)}
is an hybrid pair we will show that losslessness is also preserved when
the roles of the inputs and outputs are revegsed. But first we will need

two technical lemmas which are very much similar in spirit to Lemmas 3.1

and 3.2.
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Lemma 3.7. Let N with state répresentation's be EOMT equivalent to k
with state representation 8. Then § is state observable 5 {s state

observable.

Proof.

(¥ Let § be state observable; ga and % tws distinet states imn I, Ca
and Cb the classes of input-output pairs with initial states X, and Xy
respectively and, &a and éb the classes of input-output pairs with
initial states ga and gb respectively where %a = b(x,) and %b = b(x,)-
As b is the bijection in the definition of EOMT equivalence x # %

ﬁ“ A=>6 -~ ’ B A
X, # % = C, # C,- The last implication being true since S is state

observable. éa # Cb implies one or both of the following two stateménts.

. (ijvj{ga(.),ga(.)} € ¢_ such that {4_(*),§,()} & ¢,

(1) (8, ()»8y()} € & such that (§,(),5,()} €€,

Suppose (i) holds and let {ga(°),ga(~j} be the input-output pair
with initial state Xx, which is EOMT related t°~{§é(')’?a(')} as requiréd

by (iii) of EOMT equivalence. Clearly {ga(');za(-)} € C_ . Moreover

.{ga(-),za(°)} & C,_ because otherwise, {§3(~),ia(')} would be in eb by

(iii) of EOMT equivalence and since both EOMT are nonsingular
transformations. .So, if (i) holds then S is state—obsefvable. The proof
in case (ii) holds is similar.

() Same proof as for (). . K

Lemma 3.8. Let N with state representation S be totally state-observable

and EOMT equivalent to N with §. Then the input-output pair {u(-),y(*)}

of N is from %a €% to %b € T © the EOMT related input-output pair
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{u-),y(-)} of N is from x_ € L to %b € where‘%a = b(x) ib = b(x,)

and b is the bijection in the definition of EOMT equivalence.

Proof. S is totally state-observable implies S is totally state observable
by Lemma 3.7. Hence the lemma becomes. symmetric in both directions.

Therefore the proof will be done only in one direction.

o) Let.{g('),y(-)} be from X, to %, and let Ca’ Cb, Cc be respectively
the sets of input-output pairs with initial states §£’ ¥ X, and Ea, éb,
&c with %a’ gb’ gc' Then {ﬁ(-),ﬁ(-)} € Ga by (iii) of EOMT equivalence.
All there remains to show is that the final state of {Q('),f(-)} is

y(gb) = gb' Suppose not, i.e. let the final state of.{ﬁ(-);f(-)} be

%c # %b' Then, since § is state-observable, there exists én input-oﬁtput
pair'{ﬁc(.),ic(°)} € éc such that {ﬁc(~),ic(-)} & Cy- If'{gc(-),gc(-)}
is the EOMT related input-output pair of N to {§c(-),§c(~)}, then by (iii)
of EOMT equivalence {gc(-),zc(')} & Cb. Therefore the concatenation of
{u(-),y()} with'{gc(-),gc(°)} is not in C_ whereas the concgtenation of
A(ﬁ(‘),i(')} with {gc('),fc(‘)} is in Ea§ this contradicts the fact that

4

N and N are EOMT equivalent. H

Theorem 3.2. Let N with state representation S be totally state-
observable and EOMT equivalent to N with state representation §., Then

N is lossless ¢ N is lossless.

Proof. As S is state-observable °'§ is state-observable by Lemma 3.7

the proof i; symmetric for both directions.

) Let %a and %b be any pair of states in T of S, {éi('),ii(')} for

i € {1,2} two input-output pairs from %a to‘gb.and ﬁi the energy consumed
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by the pair {4,(+),3;(-)} for 1 € {1,2}. By Lemma 3.8 and by EOMT
equivalence there exists two states X, and X in £ of S such that

%a = Q(Ea)’ %b = Q(Eb) and two input-butput paifs.{gi(f),zi(-)} ﬁprz -

i € {1,2} which are EOMT related to'{éi(-),fi(-)}. If E; is the energy
consumed by {gi(-),zi(-)} for i € {1,2} then E, = E2 since N is lossless.

It was shown in [1, Theorem 9] that for EOMT related input-output paifs

{u, (t),y.(t)) = (u, (t),y.(t)) for all t > O
~1 ~i ~i <i -
which implies
EE=E=E=E
proving that N is lossless.

The following corollaries can be proved in exactly the same manner

as Corollarieé A, B, C to Theorem 9 in [1]. ’

A )

Corollary A. Suppose that the n-port N is a new orientation (partial or

~adomplete) of the n-port N which is totally state-observable and that N

=

F57EOMT equivalent to N. Then, N is lossless ® N is lossless.

Corollary B. Suppose that the n-port N is obtained from N through a

generalized datum-node transformation and that N is totally state-observable.

Then, N is lossless « §l 1s lossless.

Cd%ollarx C. Let the n-port N be totally state-observable and suppose

that Nk is obtained from N by successive applications of EOMT producing

each time equivalent n~ports. Then, N is lossless q‘Nk is lossless.

IV. Passive Lossless N-Ports

We showed by example in [1, Section VI] that the inte¥nal energy

function [1, Def. 23] for a passive state representation is not uniquely

-37-



determined in general, not even to within an additive constant. But
lossless passive state representations do not have this indeterminacy
.at least provided we impose a controllability requirement. The following

lemma was originally due to Willems [4].

~Lemma 4.1. Let N denote an n;port which is lossless and passive, and let
S denote an input-observable, completely controllable state representation
for N. Then any internal energy function El(') for S is also a con~
servative potential energy function for S.

In other words, the inequality in (6.1) of [1] becomes an equality
for passive lossless systems. Since the conéervative potential energy
function is unique up to an additive constant, the internal emergy is
also unique to within an additive constant for thege systems. Since
Willems doésn’t really prove this lemma, we have provided a rigorous

proof in Appendix A.

'ﬁgéorollagx. In addition to the assumptions of Lemma 4.1, suppose that
N is strongly passive and g* € I is a relaxed state of S. Let ERx*(g)
represent the energy required to ;each any staﬁe x from g*, as in
{1, Def. 24-]. Then EA(g) = ERx*(:_c) for all x € I, gnd S has exactly one
internal energy function EI(~)~such that EI(g*) = 0, namely EI(-) = EA(')
= ERx*(°)‘ . |

.The corollary results from L;mma 4.1, the fact that EA(-) and ERX*(-)
are tﬂemselves internal energy functions, the uniqueness of conservative
poteqtial energy functions to within an additive constant, and the fact
that EA(x*) = ER§*(X*) = 0. The equality EI(-) = EA(-) has the natural

interpretation that for these lossless passive systems, all the internal

energy is available at the ports.

-
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"It may be tempting to suppose the converse, i.e. that if tﬁe state
representation for a strongly passive n-port satisf;es EA(-) = EI(o)
= ERX*(-) so that all its internal energy is available at the ports, then
it m;st be lossless. But the l-port in Fig.10 of [1] is a counterexample
when G = 0. It is still lossy in that case, but all the eﬁergy stored in
tbe capac;tor is available at the ports in the limit of infinitely small
input currents and infinitely long times. Lossy n-ports of this sort

are of independent interest. They include as a special case the systems

studied in classical thermodynamics [9].

V. Necessary and Sufficient Conditions for Losslessness of Several

.

Classes of N-Ports

For the same classes of n-ports we studied in [1l, Sectiom IV], it
is possible to find necessary and sufficient conditions for losslessness
in terms of the state and output equations alone. With the exception
of the first-order n-ports discussed in subsection 5.5, the basic
assumption will be that u and y are a hybrid pair [1, Def. 3] so that
the instantaneous input power‘is (g,z),-i.e. p(x,u) = (9,§(§,19). State
representations qf this sort are automatically input-observable, so

total observability reduces to state-observability in this case.

5.1. Resistive N-Ports

We define a resistive state representation to be a state represen-

tation of the form

(5.1)

where u and y form a hybrid pair, U is a nonempty subset of IRn, Uis
the class of all functions u(-) : R” + U such that t -+ (u(e),gule))?

is loéally Ll, and T is any nonempty subset of RE. By definition, a
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resistive n-port is an n-port with a resistive state representation.

Thus, a resistive n-port is completely characterized by the instantaneous
relation y(t) = g(g(t)) between the input u(*) and the output Z(')'
Since the class of admissible pairs of a resistive state representatioém

is independent of the initial state, the following lemma is obvious.

Lemma 5.1. Let S denote a resistive state represent:atiori. Then S is
state-observable " the state space I of S consists of exactly omne point.
The next lemma gives losslessness criteria for resistive state
representations and n-ports. Notethat the criterion for the losslessness
of an n-port applies regardless of whether the given state representation

is state-observable.

Lemma 5.2. Let N denote a resistive n-port, and let S denote any resistive
state representation for N: Then the following statements are true.

a) S is lossless “(g,s(g)) = 0 for all u € U.

b) N is lossless ‘*’é is lossles.s. )

The proof is given in Appendix A. Note that a lossless resistive

n-port is passive; in fact, it is nonenergic [6].

5.2. Generalized Capacitive/Inductive N-Ports

By definition, a generalized capacitive/inductive (GCI) state

representation is one of the form

194
-

(5.2)

=

(x)

(]
e

where u and y form a hybrid pair, I = v=R" U= Lioc(]R+-*IRn), and

g: ]Rn - IR“ i3 continuous. We define a GCI n-port to be an n-port with

Py

a GCI state tepresentation.z

Note that our recurrent example of a l-volt d.c. source is both a
resistive l-port and a GCI 1-port.
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Lemma 5.3. Let S denote a GCI state representation. Then S is state-

observable * for any two distinct states x €z = n{“, there exists a

X12%y
vector w € R" such that §(§l+g) # §k§2+g).

In particular, a state representation of this form will not be state-
observable if g(*) is a constant (this includ?s the case of a capacitive

‘state representation for a l-volt d.c. source). The proof is given in

Appendix A.

Lemma 5.4. Let N denote an.n-port with a GCI state representation S.
Then the following statements are true.
a) S is lossless «
g = V%, | | (5.3)°
where ¢ 3 I+ 1R is a C1 scalar function.
b)- If N 15 lossless, then é is lossless.
c) If S is lossless and state—observable,.then’N is lossless,

The proof is givén in Appendix A, Unliké Lemma 5.2, state-
observability plays a genuine role in this case. The éxample of a
capacitive state representatign q = i, v=1 for a 1-volt d.c. source
satisfies (5.3) with ¢(q) = q, but such a l~port is not lossless.

The difference between statement a) of Lemma 5.4 and Theorem 4 of
[1] is simply that ¢ need not be bounded from below in the present case.

Therefore the following two corollaries are immediate.

Corollary. A passive GCI state representation is lossless.

Corollary. Let S denote a capacitive or inductive state representation.

1

in which g(‘) is C°. If s is.lossless, then S is reciprocal.

41~
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5.3. Generalized N-Port Memristors

" We define a generalized[pemristive state representation to be one of

.

the form
=y (5.4)
y = R(x)u

BLR:R > RYT is

where u and y form a hybrid pair, Z = U = R
continuous, and U = Lioc(]R"'-*IRn). An n-port with such a state represent-

tation is, by definition, a generalized n-port memristor.

Lemma 5.5. Let S denote a generalized memristive state representation.
‘ ‘

Then S is state-observable ¢ for any two distinct states X0%, €z,

there exists a vector v € R® such that g(gl-*y).# R(x,4w).

In particular, 13(-) cannot be constant in a state-observable state

representation.of this kind. The proof is given in Appendix A.

L}

Lemma 5.6.| Let N denote an n-port with a generalized memristive

state representation S. Then the following statements are true.
a) S is lossless ® R(x) is antisymmetric at each point x € RO,
b) If N is lossless, then S .is lossless.

c) If S is lossless and state-observable, then N is lossless.

It follows that a lossless generalized n-port memristor is nonenergic
[6]. The proof of Lemma 5.6 is given in Appendix a.'

If we enlarge the class of mathematical representations for n-ports to im':lude
dynamical systems [11], then the converse of statement b) is true. The proof
proceeds by partitioning the state space I of S into equivalence classes,
where the equivalence relation is given by Definition 3.1. Each equivalence
class in I becomes the state for a new, totally observable dynamical system
representation So for N [19, Lemma 5.1.6]. (The states of'so are not points
in R" » but rather subsets of ]Rm; thus, So is not .a state representation

- in the sense of [1, Def. 1], but it is a dynamical system.) Since
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all input-trajectory pairs of S consume zero energy over .overy time

interval, S, is lossless; thus, N is lossless.

Id

5.4. Linear N-Ports o .

By definition, a linear (time-invariant, finite dimensional, hybrid)

state representation is one of -the form

% = Ax + Bu (5.5a)
where u and y form a hybrid pair; U = R™ and I = IRm; A, B, C, and D are
real constant matrices of appropriate dimension; and U = Lioc(Rt*IRn).

An n-port is defined to be linear if it has a .linear staterrepresentation.
In the following theorem, the superscript "T" denotes tl;e transpose

" of a matrix, i.e., lj_IT is the transpose of the matri'x M. The symbol A(A)

w:i:ll denot'e.the set of eigenvalues of the m*m matrix A, i.e.,

A@Q) A{s€c: det (sI-4) = 0}.

Theorem 5.1. Let S dt;:note a line.ar state representation as in (5.5).
Let i) through vii) denote the following statements:
1) S is lossless. - '
ii) ‘I.'he hybrid matrix transfer function of S,
H(s) A C(sI-) "B + D,
satisfies H(jw) = ~§T(-jm) for all w € R such that juw & A(A).
iii) The hybrid ‘mat:rix transfer function of S satisfies H(s) = -I;IT(-S) A
foralls€c\ A(A).
iv) IQ (Y(t),:.{..(t)) dt = O'for all I..2 admissible pairs of S with zero
| igitial state.
v) g:% I': (v(t),i(t) )t = 0 for all bounded admissible pairs of S.
vi) D= -QT (i.e., D is antisymmetric) and there exists a symmetric
matrix K such that KA = -4?5 (i.e., KA is antisymmetric) and
KB = ¢, |

~ -
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vii) S has a quadratic conservative potential energy function ¢ : Z »+ R.

Then the following conclusions are valid:

a) vi) @ vii) = 1) = 1i) © idi) © iv)

b) If S is completely controllable, then statements i) throﬁgh vi?) are
equivalent.

The proof is given in Appendix C. Statement ii) is less restrictive
than the traditional losslessness criterion for the hybrid matrix transfer
function [4,12]. The traditional criterion is derived under the assumption
that the state répresentatién is passive, as well as lossless, and it
includes the following additional conditioms: #*) all poles of H(-) lie on
the imaginary axis, and #**) the poles of H(*) are simple and the residue
. matrix at thoselpoles is Hermitian and positive semidefinitg: _Tbe hybrid
scalar transfer function H(s) = (s4+sz-1)/(sség3) does nogf:;:;;fy %) or
*£), but it does satisfy statement iii). therefore it is the transfer
function of a combletgly controll;ble state rep?esentation of the form
(5.5) which is lossless, but not passive.

The simple example X = X, y = x satisfies statement ii) but is not
lossless; therefore, i1i) does’ not imply i) in thé'absence of complete
controllability. This example also satisfies statement v); therefore,

v) does not imply i) in the absence of complete éontrollabi;ity. We
simply do not know whéther i) implies v) in the absence of complete

controllability. Likewise, we do not know whether i) implies vii) in the

absence of complete controllability.

«

Lemma 5.7. Suppose that an n-port N has a completely controllable linear
state representation S of the form (5.5). Then N is lossless ¢ S is
lossless."

The proof is given in Appendix C.
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5.5. First-Order N-Ports

A first-order state representation is one for which I C R.

An n-port which has a first-order state representation is called a first-

order n-port.

For any state representation S, a state % is called a singular
state if £(x,,u) 5 0 for all y € U, A state which is not singular is

called a nonsingular state. If S is completely. controllable, then all

states of S are nonsingular.

lemma 5.8. Suppose that an n-port N has a first-order state representation
S. Under these conditions, the following statements are true.
a) S is lossless ¢ there exists a function h:I -+ R (which is necessarily
continuous at each nonsingular state) such that p(x,u) = h(x) f£(x,u)
for all (x,u) €I x U.
b) If N is lossless and S is input-observable, themn S is lossless.
c) If.S is lossless and totaily observable, then N is lossless.
The proof ig given in Appendix A. ‘
Let S be a lossless, completely controllable first-order state
representation, and let h: I -+ R denote the function in statement a) of

X

Lemma 5.8. Define ¢:Z + R by ¢(x) Q’J h(x')dx', where Xy is any fixed

X .
point in I. Then ¢(°) is a C1 function wgich satisfies p(x,u)

= Q%ﬁ&l £(x,u) for all (x,u) € £ x U. Hence, the existence of a C1
conservative potential energy function is a necessary and sufficient

losslessness condition for completely controllable’ first-order systems

(cf. Lemma 2.3 and the remarks following it).
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VI. The Realization of lossless N-Ports and a.Canonical ngebraic Form

6.1. Lossless Realizations

[

Our treatment will be based on the use of a Cl conservative potential

energy function, and will parallel quite closely the passive realization

.

theory given in [1, section VII].

Consider the n-port N in Fig.é formed by connemcti-x'ié the ca}écitive m—por%:”&hto

the resistive (n+m) -port R. It is assumed that C is charge-controlled and lossless;

thus, by lemma 5.4, there exists a Cl function ¥ : R™® > R such that
e = VY(q). The constitutive relation of R is assumed to be defined by the

continuous functions f :R™ x R™ + R™ and g :R™ x R® + R® as follows:

(6.1)

thate
fn

109> M
~ o~
to 0
A ] L J
tg 14

~

1‘2

St
L]

. Substituting_ the equation g = ;.1 and the constitutive relation of C into
(6:1), we o.btain a state repx.:esentation S for N with the following state
and output equations:

(Y (q),v) | ' - (6.2)

g

= £
=

¢

Technical Assumptions

We assume throughout the remainder of this subsection that U = IRn,

I= Rm, and that U satisfies the mild technical assumptions given in
lemma 2.3. Also the phrase "R is lossless” will mean that R is lossless
when its inputs are restricted to Ytp[]Rm] x R® C R™ x RD,

Lemma 6.1. The function ¥(+) is a conservative potent;ial energy function
for the state representation S defined above ¢ R is lossless.

Td see this, recall from Definition 2.3 and lemma 2.3 that $(°*) is a

conservative potential energy function for this system if and only if

(W(2), E(T9(9),¥)) = (v, 8(W¥(2),v)) (6.3)

for all q,v € R™ x R™., Since VY = e, we can rewrite (6.3) as
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(Bien) +feriten) = (yt) - Lepd = 0,

which is equivalent to the losslessness'of R once the reference difection

for j is taken into account.

Definition 6.1. The n-port N in Fig. 9 is a realization of the state

representation

%= £GY) i
(6.4)

1=gxv)

with the technical assumptions listed above if
£ny) = E(TG.y) (6.5)
gy = (W@, ¥@xy ER" x R

It is a lossless realization if R and C are both lossless.
We view the multiports R and C as given quantities —- we are not

" concerned with the difficult and unsolved problem of synthesizing these
nonlinear ﬁﬁltiports. It is clear that any voltage-controlled state
representation S has a realizatiom in which C is lossless and linear: if
each port of C is a 1l-farad capacitor, the; Y¢(3) = q and we obtain ;
realization by choosing f(-,-) = £(+,+) and %(?,-) = g(-,-); in general,
however, the resistive (min)-port R will not be lossless fo: such a =
realization. ’

The following theorem is an immediate consequence of the preceding
lemma and definition.
Theorem 6.1. Suppose the state representation S, given in (6.4) aléng with
the technical assumptions; is lossless and further that we have’found a C1
conservative potential energy function ¢ : R™ > R such that (6.5) holds.
Then the n-port in Fig. 9 is a lossless realization of S.

Since C is clearly lossless under theseAconditions, the point of
theorem 6.1 is that R is lossless as well, precisely because $(-) is a

conservative potential energy function. The problem with theorem 6.1 is
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of course that we do not generally know how to find %( ) and g( s*)
satisfying (6.5); we do not even know in general when they exist. The
following corollary gives us oune special case. in which these problems do

‘mot arise.

Corollary. Suppose the state representation S, given in (6.4) along with

the technical assumptions, is lossless and that there exists a C1 conservative
ootential energy function ¢ : R™ + R such that b4/ R™ > R™ is 1-1. Then

S has a lossless reaiization as in Fig. 9.

. In this case we can simply construct £(-,-) and é(-,-) as follows:

Fow),v) = £ Lo 1y ), v]
g(W60,v) = gl e (W ),vl.

For simplicity, we have discussed only voltage-controlled state represen-
-tations in this subsection. Actually, analogous results hold for any state

representation in which u and y form a hybrid pair,

Theorem 6.1 and its corollary. show that the recovery of a C1 con-
servative potential energy function from a given lossless state represen-
tation S is an important first step toward obtaining a lossless realization

]

of S.

6.2. A General Algebraic Form for the State Equations of Lossless Systems

The lossless realization of Theorem 6.1 and Fig. 9 suggests a more
explicit general algebraic form for. the state and output equations of

a lossless n-port. Our attention will focuson the resistive (n+m)-port

R. Inlemma 5.2 it was shown that every lossless resistive k-port is nonenergizl

And two of the authors have shown in [6] that there is a certain canonical
form for the constitutive relation of nonenergic resistive elements:
if y,y € R are a hybrid pair and we let IRk X denote the class of all

real kxk antisymmetric matrices, then the conmstitutive relation y = g(u)

-48-

amA tearamts i comm—a o poaie



of a nonenergic k-port resistor can be written [6] in the form

y = [AW ]y, | . o  (6.6)
where A(-) :IRk > ]REXk. '

Since y A (-j,1i) and u A (e,v) are a hybrid pair for R, the can-
stitutive relation (6.1) can be written in the form of (6.6). Partitioning
'the antisymmetric matrix A into blocks corresponding to the partitioning
of u and y, we have

-i) -A(e,v) | -B(e,0)|[ e
1 | §T(e:z>i9<e>‘:) v

-

or, upon eliminating the minus sign from j,

i Ate,v) 1B(e,v) | [e . '
1/ [BEmitEn [\
where A(:) : R™™ RrEYT, ¢() s RTT R}, B(+) s RE L, g,

~ Equation (6.7) is an explicit form in which (6.1) can. '
always be expanded, so long as R is nonenergic. Substituting this
expansion into (6.4) and (6.5), we.have the followihg form of state and

[
output equations for a voltage-controlled lossless n-port:

% = (A7 @, ) 1 (W) + [B(wE@.v) )

. . (6.8)
1= [B (7,71 ([Tvm) + (W&,

where A, B, and C are matrix-valued functions whose dimensions are given
beneath (6.7), and A and C are antisymmetric. In order to have a compact
statement of this result which repeats all the necessary assumptions

involved, we summarize this development as a theorem.

Theorem 6.2. Suppose the voltage-controlled state representation S,

given in (6.4) along with the technical assumptions, is lossless and
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In accordance with equations (6.1) and (6.2), the cbnstitutive relation

of the capacitive 2-port is characterized by V¢ and the constitutive

relation of the algebraic 3-port can be obtained from (6.10) as

kY _ 0 e,
i e I 1
-
1
i, = [0 -2]
1 eZJ

Allowing a hybrid formulation for the resistive 3-port, another realization

can be given as shown in Fig. 10. Two comments are in order; although

V) is not bijective it is still possible to recover the comnstitutive

relation of the algebraic (n+m)-port, which shows why the assumption

. that V) is bijective has not been made in Theorem 6.1 and, as § is not

bounded from below, any realization of this n-port has to be active

-

[1, Theorem 4].
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APPENDICES .

Appendix A - Proofs of Lemmas

Proof of Lemma 2.1.

Proof of a). To prove statement a), we assume that S is 1o;sless. To

show cyclo-losslessness, let x* be any state in £, T > 0 ény time and
{g('),g(-)}[[O,T] any input-trajectory pair from x* to x*, i.e. such ;hét
x(0) = x(T) = x*. Then {g(-),§(')}][0,0] is also [1, Def. 8] an input-
trajecgory pair from x* to x*, and the energy consumed by {g(-),g(-)}II0,0]
is zero. Therefore the erfergy consumed by {g(-),§(~)}|[0,T] must also

be zero, since the system is lossless.

Proof of b) and ¢). First it will be shown that the hypotheses of

statement b) imply that S is cyclo-lossless.- The proof will then be
_coﬁpleted by showing that statement c).is true.

Hence, assume the ﬁypétheses of b). Leé {g(-),g(')}l[O,T] be any
input-trajectory pair with x(0) = §(T), and let E denote the energy
consumed by {g(-),;g(o)}] [0,T]. Define x'Ax(0) = x(T). By complete con-
trollability, there exist input-trajectory paifs {gl(-),gl(-)}l[O,Tl] and.
{gz(~),§2(-)}|[O,T2] from Xg to §' and from §' to X4» respectively, where
§0 is the state mentioned in statement b). Let El and Ez denote the energy
consumed by {gl(~),§l(~)}l[0,T1] and {92('),§2(-)}|[0,T21,'respectively.

Define 93(-) by

gl(t), 0<t<Ty

u,(t) A
gz(t-Tl), t>T,.

Then 33(-) € U, since U {s closed under concatenation. Define §3(') by

;gl(t), 0<t<T
x3(t) A
352(:'1‘1): t> Tlo

1l
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Since the state equations are time-invariant and %, (T;) = §2(0), {53('),
§3(-)} is a valid input-trajectory pair. Note that the energy consumed

by {33(°),§3(-)}|[0,T1+T2] is E,+ E,; moreover, §3(0) = §3(T1+T2) = X,

Thus, E, + E2 = 0. Now define

1
gl(t), 0<t<T)
94(':_) A g(t—-Tl), T, <t<T +T
Ez(t”Tl"T)’ t>T, +T.

Then un(-) € U, since U is closed under concatenation. Define §4(-) by
- !

(), 0 <t < T,

?,‘4(‘:) A §(t‘T1), T, <tx T, + T

’.‘z(t'Tl“T)’ t > Tl + T.

Then {94(-),§4(-)} is a-valid input-trajectory pair. The energy consumed

'by'{94(-),§4(-)}|[0,T1+T2+T] is E1 + E, + E; moreover, 34(0) = 34(T1+T2+T)

Xoe Thus El +E, +E=0. But it.has already been shown that El + E2

= 0; hence, E = 0. This shows that S is cyclo-lossless.

It only remains to prove statement c). Assume that S is cyclo-loss-
less and completely controllable. We will show that a contradiction
- emerges if S is not lossless. If it isn't lossless, then there exist two
states x_, x, two admissible pairs {ug(-),x5(-)}, {96(°),§6(')}, and
two times Tg» T6'Z 0 such that {95(-),§5(-)}|[0,TS] and {96(-),
36(-)}|[0,T6] are input-trajectory pairs from x, to X but ES # E6’ where
E; 1s the energy consumed by {95(')’55(')}I[0’T5] and Eg is the energy
consumed by {96(-),56(-)}|[0,T6]. Since the system is completely con-
trollable, there_exists an input-trajectory pair {97(-),57(')}[[0,T7]

from X, to x_. We let E7 be the energy cgns?med by {97(-),§7(-)}[[0,T7].

"Ao 2-



Since E. ¥ E

5 6 6
ness, suppose Eg + E, X 0. We define 98(-) by

» elther Eg + E, % O or E, + E, & 0, or both. For definite-

us(t), 0 <t < T,

Bg(t) A
1_17(t-T5), t > '1‘5.

Then gs(c) € U since U is closed under concatenation. We define

%g(+) by

:_gs(t), 0<tx Tg

'
%, (t-T5), t > Ts.

Since the state equations are time-invariant, {98(-),§8(-)} is a valid
input-trajectory pair. And the energy consumed by {98(-),§8(~)}I[O,T5+T7]
is E5 + E7 ¥ 0. Since 58(0) = 58(T5+T7) = % the system is not cyclo-

.

lossless, contradicting our assumption. n

Proof. of Lemma 2.2. Since ) is reachable from X, $(+) is defined on all

of Z. And since t — p(t) is assumed to be locally L1 [1, Def. 5 and
standing asspt. #4], ¥(x) is finite at each x € Z.

Given any two points §1, X, of E, the energy consumed by an input-
trajectory pair from X to x, is a f;nction of Xy and %, only, since S
is lossless, and can be written E(§1’§2)‘ To show that ¢(-) is a conser-
vative potential energy function, we must show that E(;_:l,:_gz) = 1{)(:.(2) - w(gl) for
any two points X120 Xy such that Xy is reachable from % (see Fig. A.1).

Let {gl(-),gl(')}l[O,Tll be an input-trajectory pair from.% to 31’
{92('),§2(-)}[[0,T2] an input-trajectory pair from x to X,» and {93('),
§3(')}|[0,T3] an input-trajectory pair from x, to X,. Let E,, E, and

E3 be tbe energy consumed by these input-trajectory pairs, respectively.

-A03-




Then El = w(gl), E2 = ¢(§2), and E3 = E(§1,§2).' Let 94(') and §4(') be
defined by S ' ‘

uw(e), 02t < T

u, (t) = x,(t) =
=4 ~4
1:.13(t-T1), t > Tl

£ (), 05T

;53(t-'1‘1), £>T.

Then 94(-) € U since U is closed under concatenation, and {94(~),§4(')}
is an input-trajectory pair of S because the state equations are time-
invariant. The energy consumed by {94(-),§é(°)}[[0,T1+T3] is E1 + E3

= w(gls + E(§If§2)' Sincé'{94(-),54(-)}|[0,T1+T3] is an input-trajectory
pair from % to x,, this must equal ¢(§2), i-e~-¢(§1) + E(§1,§2)= ¢(§2);
Rearranging this equation yields E(§1’§2) = ¢(§2) - w(gl), as

claimed.

.

. S ..
K DR S

Proof of Lemma 2.3

() If we integrate (2;13) along any input-trajectory pair‘{g(-),§(-)},
the result is (2.1).
) Let (50’90) be an arbitrary point of X x U, and {u(-),x(-)} be an

input-trajectory pair such that x(0) = X 9(05 = 4y and u(.) is con-

tinuous at t = 0. Then since ¢(.) is C1

and x(-) is C1 at t = 0, we have

» u(+) is continuous at t = 0,

| d¢ (x(t))
(Vo)) £ Gxpoug) ) = —¢

t=0

= 1im = lim

P (x(t))-9(x(0)) 1 (t .
>0t t 20 'EJ p(x(t),u(t))dt = P(xgps44)-

0
Since X and u, were arbitrary, this concludes the proof. ' =

Proof of Lemma 2.4. Suppose we are given an arbitrary admissible pair

.
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'{Y(.),z(-)} with some initial state % and an arbitrary time T > Q. Then

there exists an input-trajectory pair {g(-),f(-)}l[O,T] such that x(0) = %
and {y(-),1C:)}[0,T] = {¥V(x(),uC-NI(x(-),u(-))}|[0,T]. Since S is com-
pletely controllable, there exists a return path from x(T) to x(0) = %,

i.e., a time Tl and an input-trajectory pair {gl(-),gl(-)}l[O,Tl] from

" %(T) to x(0). Since U is closed under concatenation, the input u'(-)

given by

u(t), 0 <t <T
u'(t) =

-

is in U. Let {u'(-),x"(-)} be the input-trajéctory pair such that

3'(0) = x(0) = %. Then x'(T) = x(T) and, since the state equation is time
invariant, g'(T+T1) = x(0) = g. Define T; AT+ Ti and {Y'(')’é'(’)}lto’T']
A (YG' ()58 (D), ICx" (-),4' (-))}[[0,T']. Then, since x'(T') = x'(0) and

every lossless state representation is cyclo-lossless,

T! . .
I {v'(t),i"(t)? dt = 0.
0 e -~ .

Since'{y'(-),é'(-)} =.{Y(-),3(-)}'on [0,T] by construction, this con-

cludes the proof. H

Proof of Lemma 2.5. By Definition 2.3,

T
jb (y(e),i(t)? de = ¢(x(T)) - $(x(0)).

Since ¢(-) is continuous and lim x(t) = x(0) by assumption,
to

%im{¢(§(T))-¢(§(0))} = ¢(lim x(T))-¢(x(0)) = ¢(x(0)) - ¢(x(0)) = O,
>0

T->»
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which proves the first assertion.

2

In the second part we assume }_’('):;",-(‘) € L, which implies that

1

{v(-),1(¢)) € 1l and hence that the integral in (2.5) exists. For each

integer n > 1, define hn :R+ + R by .
{v(t),i(t)) , 0 <t <,

h (t) A

n 0, t>n.

Since (v(t),i(t)? = lim hn(t) for all t, the Lebesgue Dominated Conver-
n-re
gence theorem [7, p.88] can be applied to obtain

[ @ n
I' {v(t),i(t)) de = lim[ h_(t)dt = limI {v(t),i(t)? dt = 0.
0 - m=’0 e’ 0 | o

Proof of Lemma 2.7. Since ¢ is continuous, it is bounded on every

bounded subset of f Since x(-) is bounded on }R+, it follows that
t -+ ¢(x(t)) is bounded on R+. If M is an upper bound on é(x(t)), then

|6 Cx(e))-0(x(t,)) | < 2M, ¥ ¢, t, €X', Therefore

52?_1..,0351._,,. "

¢ (x(£))-¢(x(0)) | <

T
%Io p(x(t),u(t))de =.%

!

Proof of Lemma 2.8. Let TO > 0 denote the period of g(-), i.e., for

any nonnegative integer k, gc(t+kT0) = x(t) for all t €R+. Consider the

continuous function E :]R+ -+ R defined by

t

E(t) A I {v(1),i(1)) dr.
0 .

<

Since S is lossless, it 1is eyclo-lossless (Lemma 2.1); therefore,

t+kTy
E(t+kT,)-E(t) = I (v(1),i(1)? dr = 0
: t

'_'A. 6"



for all t GEB#. This shows that E(+) is periodic with period To; since
E(-) is also continuous, there must exist a finite number Em > 0 such
that |E(t) | ZE for all t €R+. Thus

j,%? +0as T > ®, H

1 (T 1
, T Io (v(e),i(t)) dt[ = l TE(D)

Proof of Lemma 3.1.

o) Suppbse 82 is state-observable, and let b :21 > 22 be the bijection
which appears inithe definition of bijective equivalence. Let X, and %
be any two distinct states in Xl' Let C, be the class of admissible

pairs of S, with initial state x , C;, the admissible pairs of S, with

1 1b
initial state X Coy the pairs of S, with initial state p(ga), and C,,
the pairs of Sz»with initial state P(fb)"

. . . L.

Since x_ % % and b is a bijection, b(ga) % Q(gb). And since S, is
state observable, this implies C2a % c2b' But by the definition of
bijective equivalence, C2 = Coa and Cip = Cope Therefore Cia % Cip
and since X, and X, were arbitrary, this implies that S1 is state

observable.

(®) The assumptions are completely symmetric in Sl and Sz.

Proof of Lemma 3.2. The proof proceeds by contradiction. We will assume

that there exist input-trajectory pairs {gl(°),§1(-)} of S and.{gz('),
,352(‘)} of SZ such that {Yl(icl(t)’gl(t))’zl(ﬁ(t),El(t))} = {Y2(§2(t)’

4y ()51, (%, (£),u,(£))} for all t € [0,T], and %,(0) = 2(x,(0)), but
xz(t') % g(gl(t')) for some t' € (0,T] (see Fig. A.2). Then we will show
that a contradictionemerges.

Suppose 32(t') % g(gl(t')), as ‘shown in the figure. Since S, 1s

"Ao 7"’



state-observable, the class of admissible pairs of 82 with initial state
fi(t') is not identical to the class of admissible pairs of S, with
initial state g(gl(t')). There are t&o ways this can happen. We

discuss them separately below and show that a contradiction emerges in
either case. For later use we define {v(-),i(-)}[[0,t'] = {¥;(x,(-),
91(~)),§l(§l(°),91(-))}| (0,t'] ={ y2(§2(°),92(-')),}2(352('),92(-))}] [0, t'].
Then‘{y(-),;(-)}llo,t'] is an admissible pair of Sl with initial state

51(0) and an admissible pair of S, with initial state 52(0) = 9(31(0)).
|

, : % *
Case 1. There exists an admissible pair {v (-),i (+)} of S2 with initial
state §2(t?) which is not an admissible pair of S, with initial state
a(x ().
. a%k
Define {y (+),i (-)} by
{v(t),i(t)}, 0 <t < ¢t

{y (0),1 (£)} = * * ' (A.1)
{Y(t-t')’i. (t"t’)}, t _>_ t'o .
N ak
We claim that {y (°),g ()} is an admissible pair of S2 with initial
state g(gl(O)). To see this, first note that there exists an input-
* * . .
trajectory pair {92(-),§2(-)} of 82 with initial state §;(0) = gz(t')
* * * * % %
such that {v (-),i ()} = {Yz(gz(-),92(~)),Iz(gz('):gz('))}~ Define
ak
u, () by
' u(t), 02t < ¢
(A.2)

K

uz(t)lc %

-~ \ ]

(-t e 2 ¢

(we defined 92(°) in the statement of Lemma 3.2). Let %:(-) be the state-
. Ak ak

space trajectory of S,.such that {92(-),§2(-)} is an input-trajectory

: ak ‘ A
pair of Sy with initial state 52(0) = 32(0) = g(§1(0)). Then {Y*(‘)’

h* . A* A* »\* A* :
i¢)= tyz(gz(-),92(-)),}2(52(-),92(-))}, which proves our claim that

: —Aos" .
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(-)} defined in (A.1) is an admissible pair of S, with initial
state 9(31(0)). ‘ | A . ' ‘

By the definition of a(-), {§*('),i*(~)} is also an admissible pair
of Sl with initial state gl(O), so there exists an input-trajectory pair

‘{@I(-),g;(.>} of S, with initial state g;tO) = x,(0) such that
LT T GO 0L L G ET e 4.3)

Since’{ﬁ*(t),i*(t)} = {y(t)si(t)} for all t € [0,t') and since S; is
input-observable, it folléws that §;(t) = gl(t) for all ¢ E’[O,t')f And

by our éssumption [1, Section II] of unique solutioms, %I(t) = §i(t) for all
t € [0,t'). Finally, since g:;(-) and :51'(-) are continuous on [0,t'] and

are equal on [0,t'), they must be equal at t'as well, i.e.

::c;(t') = 1:1(:')- (A.4)

We have already shown that {§*(f),§*(')} is an admissible pair of
S1 with initial state 51(0), and from (A.3) and (A.4) we can conclude
that its state at time t' is gl(t'). Referring to (A.l) and remembering
that the class of admissible pairs is translation iﬁvariant by our
assumptions, we see thatf{g*(.),é*(.)} must be an admissible pair of Sl
with initial state gl(t'). So by the definition of a(-), {g*(-),g*(-)}
must also be an admissible pair of 82 with initial state g(§l(t')), con-

trary to the assumption with which we began Case 1.

Case 2. The other alternative is that there exists an admissible pair
*% %%

{v ()1 ()} of S, with initial state g(gl(t')) which is not an

admissible pair of S, with initial state gé(t').

: * Sk
By the definition of a(-), {y* (-),g* (*)} is also an admissible

'-Ao 9“' .



ak k%
pair of S, with initial state §l(t'). Define fy *(i),g (-)} by

1l

{v(t),i(t)}, 0 <t < ¢!

k% a%kk - . =

NANOTF U ) (A.5)
) ) {Y**(t-t')’i-**(t-t')}’ t 2_ t'o

>

We claim that {§**(-),§*#(-)} is an admissible pair of Sl with initial
state 51(0). In case 1 we made a Similar_claim_about (A.1), but concern-
ing 52’ and provided a proof in the subsequgnt paragraph. The proof is
entirely analogous here, so we will omit it.

B; the definition of'g(-), {§**(-),§**(')} is also an admissible
pair of 82 with initial sta;e 9(31(0)); So there is an input-trajectory
pair {Q;*('),%;*(°)} of S, with initial state %:*(0) = §2(0) =-§(§i(0)) ,
such that {3 (-),1" ()} = (¥, (&5 (-), 8y ()0, L, &5 ()5 (-))}. And
since S2 is inﬁut~observab1e, g;*(t) =‘92(t),:vt € [0,t'). As in Case 1,
we can conclude from the uniqueness of solutions and the continuity of |
trajectories that %;*(t')A= gz(t'). Therefore {g;*(-),g;*(-)} is an

admissible pair of 82 with initial state §2(t')’ contrary to

assumption. B

Proof of Lemma 3.4. Suppose S2 is cyclo~lossless. Let le 0 be any time,

§f € Zl any state, andlfgl(-),gl(')}IIO,T] any input-trajectory pair of
s, from 3* to g*. Define {v(+),i(-)}|[0,T] = {Yl[§1(°),91(')),Il[§l(‘),

El(‘))}l[O,T}, where yl(~,-) and }1(-,-) are the readout maps of S Let

1'

a :Zl > ZZ be the mapping which is defined in Lemma 3.2; hence,there

exists an input-trajectory pair {92(-),§z(~)}|[O,T] of 52 with initial
) *

state x,(0) = 9[51(0)] = a(x ) such that {v(*),1()}[0,T] = {Y2(§2(')’

Uy ()}, 1, (%5 (), u,(-)) 1[0, T]. By Lemma 3.2 x%,(T) = ax, (M), so

: * *
{32(°),92(.)}][0,T] is an input-trajectory'pair from a(x ) to a(x ).

-Ao 10"



. Since S2 is cyclo-lossless, the energy consumed by.{§2(o),92(-)}|[0;rl is
zero. And since {51(~),gl(-)}l[0,T] produces the same port voltages and

currents, it must also consume zero energy. b

Proof of Lemma 3.5. Let T > 0 be any time and {gl(o),xl(i)} any input-

trajectory pair of §). Define {y(-),i()} 10, = (¥, (x, ¢-)ou, (),
L (% ()5, ())1]10,T). By the definition of a(-), there exists an input-
trajectory pair {u,(-),x2(-)} of S, with initial state x,(0) = a(x, (0))
such that {y(:),1(-)HI0,T} = V,(x,(-),u,(-)), 1, (x,(+),u,(-))}H [0,T].
And by lemma 3.2, x,(T) = a(x; (T)). Since ¢,(-) is a conservative poten-
tial energy function for S,» the energy consumed by {92(~),§2(-)}l [0,T] is
8 (x(D) - 6,(x,(0) = ¢,(a(x, (D)) - $(2(x;(®)) . since {u, (),

x, (- )}][0 T] produces the same port voltages and currents as {u,(-),

%, (¢ )}I[O T], the emergy it consumes must also equal ¢2(a[x1(T)))
- ¢2(‘3(?_‘1(0)))- . -

Proof of Lemma 3.6. Let X, = (§la""’¥ka) and x, = (§1b"°°’§kb) be
any two states in 1 {u'(-),x" (-)}[[0,T'] and {u"(-),x"(-)}|[0,T"] any
two input-trajectory pairs of S from x, to x, and E' and E" the energy
consumed by {g'(-),§'(')}|[0,T'] and {g"(-),g"(o)}l[O,T"], respectively.
Let 23 be the energy which enters the ports of Nj while Sj traverses
the péth g}(-) in Zj’ and Eg be the energy which enters its ports while it .

traverses xg(-).

k-
Then E' = | Ej and E" = z E" by Tellegen's theorem. And
=1
Ej = Eg, 1 <3j <k, because Sj is a lossless state representation for
N and {xj( -)H 1o, T'] and {xg( )} 10,T"] have the same endpoints. There-
fore E' = E", - ' - B
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Proof of Lemma 4.1. Since N is passive, S is passive. Since N is loss-
. less and S is ihpu:-observable, S is lossless as well (Lemma 3.3). Let '
X, and X be any two states in Z. By complete controllability, there
exists an input—trajectory pair of S from x, to x.. Since S is lossless,
the energy consumed by an input-trajectory pair from X to X is a
function of X, and X only: we write it as Ec(§a’§b)' By Def.23 of
[1], an internal energy function EI(-) must satisfy EI(§b) - El(fa)'i
Ec(§a’§b)' Since U is closed under concatenation and every lossless
n-port is cyclo-lossless, Ec(ga,gb) = - Ec(gb,ga). Interchanging the
roles of X, and %, in the definition of an internal energy function, we
must have E;(x) - B (%) 2 E (%,%x,) =~ E (x,,x), or E(x) - E;(x))
. 2-Ec(§a’§b)' These two inequalities imply that El(fb) - EI(ga) é Ec<§a’§b)
for all X0 %y € Z, which is just the definitién of a conservative poten-

tial emergy function. - _ n

Proof of Lemma 5.2. . ‘ .

Proof of a).

(®) Suppose S is lossless. For every (go,go) €] xu, {go,go} is an
‘

input-trajectory pair of S. Since the state trajectory is constant,

{90,50}][0,T] must consume zero energy for all T > 0. But this energy is

T

just. | a8(s)) de = Cu8(sg)) T Thus Cugug(ag)? = 0.

0
(%) 1f {u,g(u)) = 0 for all u € U, then the energy consumed by all input-

trajectory pairs is the same over every time interval; namely, zero. Thus
S 1s lossless.

Proof of b).

() This follows from Lemma 3.3.
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() Suppose S is lossless. Then S is equivalent (Def. 3.2) to a resis-
tive.state représéntation § whose state space consists of a single point;
thus, S 1s sta£e~observable (Lemma 5.1). The function g(-) is the same
for both S and §; it follows from statement a) that S is lossless, We
have constructed a lossless, state-observable(and hence totally observable)

state representation § for N; by Def. 3.6, N is lossless. n

Proof of Lemma S5.3.

© " Given any two distinct. states X % Xys and given w such that

§(§1+y) % §(§2+y)3 consider the input-trajectory pairs {u(t) = w, gi(;)'
=x + gt},'{g(t) = w, gé(t) =%, + wt} and the corresponding input-output
pairs tl, def. 9] {u(t) = Y’Zi(t) = §(§1+Yt)}’ {9(;) E Y’Zz(t)

= g(xytwt)}. Then zl(l) ¥ ¥,(1), and since for hybrid representations

the map :(g;z) - (Y,g) is 1 - 1, we conclu&e'that the class of admissible
pairs of S with initial state X is distigct from the class of admissible.
pairs of S with initial state ng So x, and x, are not equivalent (Def.
3.1); and since’they were arbitrary, S is state-observable as claimed.

) 1f s is state-observabl%, then for any two <distinct states X5 X%

the class of admissible pairs of S with initial state glis distinct from
the class of admissible pairs of S with initial state Xye And since for
hybrid representations the map :(g,z) -+ (g,g) is a pijection; the class

of input-output pairs of S with initial state X must be distinct from -
the class of input-output pairs with initial state ¥,. Therefore there
exists some u*(+) € U such that {g*(-),zl(-)} is an input-output pair of

S with initial state X9 {g*(-);zz(‘)} is an input-output pair of S with | :
initial state x,, but zl(t:') % Zz(t') for some t' > 0. Define Y*E r® by ;

-A. 13-



O e rr—— . = - m———y = 0

tl
W*AJ u*(t)de.
v 0" |
Then g(x;,+w¥) = y,(t') % Qz(t') = g(g;z*y*)- =

Proof of Lemma 5.4.

Proof of a).
(¥) In this case ¢ is a conservative potential energy function for S.
() 1If g were the gradient of some scalar function, then that function

must be Cl because g is continuous. The alternative is that g is not

the gradient of any scalar function. It follows [10, Theorem 7, p. 82]

that there exists a point x ER" and a piecewise Cl curve v : [0,1] > ®"

0
such that I(O) = I(l) = X and

/

1
J (3(t),g(y(r))? at ¥ o.
0

Then {i(-),'x(.)}} {0,1] is an input-trajectory pair from X, £O X4 an.d:
the energy consumed by {i(-),I(-)'}I [0,1] i; nonzero. We have shown that
S is not‘cyclo-lossless; hence, S is not lossless (Lemma 2.1).

Proof of b).

{
i This follows from lemma 3.3 and the fact that S is input-observable by assumption. |

Proof of c¢).
This is just Def. 3.6. ) . m

Proof of Lemma 5.5.

() Given any two distinct states X %95 then for some integers 1 < i,j<n
; exr" . er® .
.and some w ER" we have Rij (3:1-!13) k Rij (§2+y) Let € i R~ be
‘the j-th element in the standard ordered basis for R®. We define the

input waveform u*(-) € U by




w, 0<t<1l
g*(t) = =
Ej’ t > 1.
Let x'(-) and x!(-) be the state space trajectories which result -from
~1 =2
applying the input u*(.) with initial states X3 and X, respectively, and
Zl(-) and z}-) the corresponding outputs. Then for all t > 1, Zl(t) is
just the j-th column of [R(x](t))] and y,(t) is the j-th colum of
[g(gi(t)}]. Since R(*), §i(.), and gé(.) are all continuous,liT gi(t)
. . . t>
= + w, lim x}(t) = + d R +w R, .(x,H7), it follows that
X tw t.:; xy(t) = %, +w, and 1357 *e. 13 %2495 ws tt
[yl(t))i ¥ (Zz(t))i for all t in some interval (1,1+e). Therefore X and
%2

observable.

are not equivalent. And since they were arbitrary, S is state-

(®) 1If S is state-observable, then, as we argued in the proof of Lemma

5.3, for any two distinct states in Z there exists an input

¥ %2
u*(.) such that {9*(o),¥l(-)} is an input-tréjecfory pair with initial
state X;, {g*(o),gz(o)} is an input-trajectory pair with initial state
%55 but Zl(t’) X zz(t') for some t' > 0. Let §i(;) and §é(~) be the

corresponding state-space trajectories. Since [5(§i(t'))]g*(t') = zl(t')
¥ y,(t") = [§(§é(t'))]§*(t'), it follows that g(gi(t')) X 13[:55(1:')). If

we define w¥ exr® by

t'
wE A J ux(t)dt,
0 .

then R(x,+w¥) = g[:_g]'-(t')] % g(z_cé(t’)) = R(xy+uw*). '. H

Proof of Lemma 5.6.
Proof of a).
(® If R(x) is always antisymmetric, then uT(t)f(g(t))u(t) is always

zero. Therefore the energy consumed along any trajectory depends only
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on the endpoints because it is always zero. A

(=) Suppose S is lossless but for some :f* €y, [l} (5*)+§T (35*)) % Q
Then there is a vector Y
R(+) is continuous there is an € > 0 such that Bx - x*ﬂ <e= luolR(x)] Yo

€ R" such that u%[R(x*)]u = ¢ % 0, and since -

- CI < |c|/2. Define u'(+) by u'(e) = 'ﬂ—-ﬂ'cos t and x'(- ) by x'(t)

) €Y,
= x* + -ﬂ;—u- sin t. Then {u'(-),gg' (+)}|10,27] is an input-trajectory pair

from x* to x*, and ng_c' (t)—g':*ﬂ < €. So the energy consumed by {u'(-),
x' ()} [0,27] is
2

€
ﬂgoﬂz Io ~0E{(x (t))] cos t dt % 0,

so the system is not cyclo-lossless and hence not lossless.

© Proof of b).

This is just Lemma 3.3.
Proof of ¢).
i)

This is just Def. 3.6. u

Proof of Lemma 5.8.

Proof of a). ' ‘

First we shall prove that a function h:) + R which satisfies
p(x,u) =h(x)f(x,u) everywhere is continuous at each nonsn.ngular state., Ifa
state X is nonsingular, then there exists an input value uo and a -
neighborhood 1 \I(xo) of X, such that f(x,u)* 0 for all x G N(xo). Thus
h(x) = p(x,_o)/f(x,~o) for all x € N(xo), which shows that h(-) is
continuous at Xo+ Since p and f are continuous by assumption.

() Suppose that S is lossless. Let D A {(x',g) € Z x U: £f(x,u) # 0}

and define h:D + R by

"A. 16"




- p(x,g) v | .
h(x,!_.l) ém , .

We begin by proving that ﬁ(x,g) depends only on the first variable x.
To obtain a contradiction, suppose that there exist (xo,gl), (xo,gz) €D

such that ﬁ(xo,gl) # ﬁ(xo,gz). Then two cases arise.

y 3
Case 1. sgn(f(xo,gl)) = sgn(f(xo,gz)). Assume that f(xo,gl) >0

and f(x uz) > 0 (similar arguments apply in the other case). By con-

0’

tinuity, there exists a § > 0 such that

f(x,gl) >0 ¥x € [xo,x0+6]
f(x,gz) >0 ¥x€ [xo,xo-H‘S]

h(x,gl) # fx(x,gz) ¥x € [xo,x0+6].

Let {gl,xl(-)}l [0,Tl] be an input-trajectory pair from x, to X, + §, then

oo SR ICHOR R
I p(x,(t),y,)dt = I —_— xl(t)dt
0 0 f[xl(t),ul)
Tl : : xd+é e
= j B (% (8),9)%, ()dt = J h(x,u, )dx. (A.6)
0 X .

0

The use of the Change of Variables theorem [17] is justified because
x ¢ [O,Tl] + R is Cl and the mapping x - ﬁ(x,’gl) is defined and continu-
ous on x.l([O,Tl]). Similarly, let {gz,xz(-)}IIO,TZ] denote an input-'-

trajectory pair from X, to X, + 8, then

T, xo+s (A.7)
I P(xz(t),gz)dt = J ﬁ(x,gz)dx.
0 X,

-

3The function sgn :R + R is defined by sgn(x) A1 if x>0, A -1 if x <0,

Ao if x=0.
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Since x & ﬁ(x,qﬁ and x b ﬁ(x,uz) are continuous and unequal everywhere in
[xo,xo+6], either ﬁ(x,ul)>h(x,u2) or else h(x,ul)<ﬁ(x,u2) everywhere in
[xo,xo+6}. In either case the integrals on the right hand side of (A.6) andy'

(A.7) are unequal, violating the assumption of losslessness. !

Case 2. sgn(f(xo,gl)) = - sgn(f(xo,gz)). For definiteness, assume
that f(xo,g_xl) > 0 and f(xo"-'.'z) < 0. By continuity, there exists a § > 0

such that )

f(x,gl) >0 ¥x € [x 0+6]

0**
f(x,gz) <0 yx € [xo,xo-l-G]

h(x,y,) # h'(x,gz) Vx € [x,,x,+5].
Let {g('),x(-)}] [0,'1‘2] be an input-trajectory pair from .XO to xg with the

- following property: -_--[ '1‘1 € (0,'1'2) such that u(t) = u, for t € [O,Tl],

1
u(t) = u, for t € (Tl,Tz], and x(Tl) = x + 6. Thus
T, B S
I p(x(t),u(t))dt = I p(X(t),tgl)dt + f p(x(t),u,)de
.0 0 T
1
xo+6 A X )
= J h(x,gl)dx + I h(x,gz)dx
X . | x0+6 .
| x0+6 X i |
= Jx (h(x,y;)-h(x,14,) Jdx. '(A.8)
0

Since the integrand on the right-hand side of (A..8) is continuous and
nonzero at every point of the interval [xo,x0+6], it follows that the
integral is nonzero. This violates the assumption of losslessness.

Thus h(x,u) depends only on x. Let prz(D) denote the projection of .

D onto I, i.e. prz(D.)‘ =.{ktZI-f(.x,g.)' X 0 for some 9,‘0}. And let g:prz(D);U—
assign to each x in Pry(D) any value U(x) such that f£(x,4(x)) * 0. Then

‘| define h(x) 2 fi(x,3(x)), and note that
- A.18-




R p(x,u)
h(x) = h(x,u) = TR for all (x,u) € D.

Note that prz(D) is precisely the set of all nonsingular states. We shall ’
define h(.) arbitrarily at the singular states. In order to show that "
p(x,u) = h(x)£(x,u) at all (x,u) Ez x U, it only remains to show that

f(x,u) = 0 =>p(x,\;\) = Q. Thus, let (xo,go) € Z X U be such that f(xo,go)
= 0. Then {go,xo}l [0,T] is a valid input-trajectory pair for all T > 0.

By losslessness,:

T
0= Io Pxy5u,)dt = plxg,u,)T

for all T > 0. Thus p(xo,go) = 0. .
(<) Suppose that there exists a function h: X + R such that p(x,u) ’
= h(x)f(x,u) for all (x,u) €] x U. Let {glg"),x]:("')]:![o,"lfl] and {y,(+),
xz(-)}llo,'rz] be any input-trajectory pairs for which xl(O) = xz(O) Aa
and xl('Ii") = xz(Tz) A b. We will show that S is lossless by showing that
the energy consumed -by. {gl(-),xl(-)}l [O,Tl] equals the‘energy consumed
by {92(-),::2-(-)}][0,'1.‘2}. There are three cases which arise.

Case-1. a is singular. Then a = b and both state trajectories are

€

constant. We have

rTl PTl
p(x (t),4)()de = | h(a)k (e)dt =0
‘0 0
T T .
p(xz(t)_',gz(t)) dt = Jo h(a)x,(t)de = 0

since xl(t) = xz(t) = 0.
Case 2. a and b are nonsingular. It follows that xl(t) is nonsingu-

lar for all t € [0,T,] (otherwise,. the condition x,(T;) = b would be
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impossible). Thus
Tl Tl o .
IO P[xl(t),gl(t))dt = I h(xl(t))xl(c)dg = J h(x)dx.
0 .

a

The use of the Change of Variables formula is justified because
X ¢ [0,T1] + R is absolutely continuous and h(+) is continuous on xl([O,Tl])

[20, pp. 95-96, Theorem I.4.42]. Likewise,

2 . b
JO .P(xz(t),gz(t))dt =J h(x)dx. .

a
Case 3. a is nonsingular but b is singular. Assume b > a (similar

arguments apply when b < a). Suppose without loss of generality that

xl(t) #b for t € [0,'1‘1). Then
T
Io p[xl(t),gl(t)]dt

T
lim j Pix, (t),u, (t))dt
T+T; ‘0 (xl -1 )

'1‘<'1‘1

X (T)

= 1im J h(x)dx
T-*Tl a .

T<T1

z
1im I h(x)dx.
2>b a

z<b
The first step fo2llows since the integral is continuous on [0,'1'1] . The
second step follows from Case 2. The last step follows since xl(’l‘) +b

as T+ T,. Similarly,

1
Tz .
J P(xz(f:),gz(t))dt = lim J h(x)dx.
0 z»b ‘a
z<b
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Hence, in all three cases,
. T T

I 1 ( . ) 2
P{X (t):u (t) dt = I
o -7t 0

p (x, (1) ,gz(t)]dt.
Proof of b).

This is just Lemma 3.3.

Proof'of c).

This is just Def. 3.6.
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Appendix B - Defining the "Zero Average Power Property": What Should

be. Bounded?

In Def. 2.5 we have chosen td require that Y(-) and é(‘) be bounded
before applying the criterion in (2.7), but we placed no such require-
ment of boundedness on the state space trajectory x(-). The purpose of
this Appendix is to éxplain and defend this choice by considering the
alternatives. |

B.l). Two Alternative Definitions of the Zero Average Power Property

'
The two most obvious modifications of Def. (2.5) would be to require

that (2.7) hold only when x(-) is bounded, or else only when §(-), v(-)
and i(-) are all bounded. These modifications are formalized in the

following alternative definitionms.

Definition 2.5A. A state representation S is said to have version A of

the zero average power property if (2.7) holds for all admissible pairs

{v() = V(x(),u()),1¢) = I(x(-),u(-))} such that x(-) is bounded.

Definition 2.5B. A state representation S is said to have version B of

the zero average power property if (2.7) holds for all admissible pairs

{v() = v{x(), EQ)),;(o) = 1{x(-),u(-))} such that v(-),1(-) and x(-) are
bounded.

Note that the requirements of Def. 2.5B are weaker than those of
Defs. 2.5 and 2.54A, since the class of admissible-pairs to which we apply
the liﬁit test ofi(2.7) is smaller in Def. 2.5B than in the other two. 1In
other words; if a system has the zero average power property as defined in
either Def. 2.5 or 2.5A, then it automatically has that property as defined

in Def. 2.5B.
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B.2). Three Objections to These Two Alternatives

Both alternative definitions produce anomalies which do not arise
with Def. 2.5 itself, and there are three sepafate reasons‘we have rejected

Defs. 2.5A and 2.5B in favor of'Def. 2.5.

Objection #1. Our first reason for choosing Def. 2.5 over the others is

that only Def. 2.5 makes the zero average power property representation

independent. It ds clear that Def. 2.5 does have this property, since it is
-
stated solely in terms of admissible pairs. To see that Defs. 2.5A and 2.5B

do not, consider the following example.

Examgle B.1. Reconsider the capacitor in Fig. 5, which we discussed in
. Example 2.5. The natural state representation would be Sl’ shown belows;-
but the other state representation shown below, 82, is an equally valid
mathematical model for Fig. 5. In fact, we shali show laFer that Sl and

S2 are bijectively equivalent (Def. 3.3).

51 | S,
. . 2,
q=1 v= (-|w]i
v = 1Fq v=Ew
I, =R . I, = (1,1) CR

The main point here is that 22 is bounded b;t Zl is #ot. This
Appendix concludeé with a formal proof that S1 and S2 are bijectively
equivalent, but the basic argument is quite simple. We obtained 82 from
Sl by the following change of coordinates on:Fhe state space: q * W
= q/(1+|q|). This explains the line v = w, and the line w = (1-|w|)21
follows from the chain rule applicagion w = Bw i with kics written in ‘terms

aq aq
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of w rather than q. And for technical completenéés we suppose that
.1 + ) ‘
U= Lloc( R -+ R) for both Sl and 82'.

Although they are equivalent, Sl has versions A and B of the zero
average power property while 82 has neither.
For Sl’ the reader can easily verify.that $(q) = lq[ - 2n(1+|q|)

is a conservative potential emergy function. And since

T
[0 v(©)i(t)dt = ¢(a(D) - ¢{a(0)

’ : '
and ¢(-) is bounded on any bounded subset of R, it follows that

T
1 . N A _ =
%:un T I . v(t)i(t)dt %m T G(Q(T)).&#(q(O))) 'o

so long as q(-) is bounded. Therefore Sl satisfies both versions A and
B of the zero average power property, aé claf;éd.

For §,s consider the input-trajectory pgir'{i(t) = 1,w(t) = t/(1+t)}
with ouéput v(t) = t/(1+t). The reader can quickly verify that w(t)
= t/(1+t) is in fact a solution of the state equation of S, when i(t) =1,
as we claim. Since i(+), v(+) and w(:) are all'bounded, the criteria
of versions A and B are met. And since i(t).v(t) + 1 as t + », the
limiting value of the average power is 1 as T + «, Therefore 82 has
.neithgr version A nor version B of the zero average power property.

But S1 and 82 are equivalent; hence, versions A and B are not repre-

sentation independent.

Objection #2. Our second objection to Defs. 2.5A and 2.5B is that under

these definitions, thosé systems for which every trajectory is unbounded

would gain the zero average power property by default. .The'following example

shows how this can occur.

’A. 24- .
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Example B.2. Consider the following state representatiod for a current-
controlled l-port:

x=4% +1
v = arctan(x)

e

where we can let U = Lioc(ZR+ + R), although other choices for U wouldn't
alter our conclusions. The point of this example is that x > 1 for all
time, so evefy trajectory ig unbounded. Therefore the system has versions
A and B of the zero average power property by default, since the class of
admissible pairs for which we get to apply the test in (2.7) is empty. To
see that this would be a bizarre classification for this system, consider
* the admissible pair {i(t) = 1,v(t) = arctan(2t)}, fbr which 1(t)-v(t) > /2
a§ t+w, In contrast, this system does not have the zero average poﬁer .

property of Def. 2.5, as a result of the admissible pair mentioned above.

Objection #3. Our final reason for rejecting Defs. 2.5A and B is that

they bring us the two problems mentioned above without offering a resolu-

tion of the major anomaly which arises from Def.'2.5: the fact that loss-

lessness # the zero average power property. We show below that this

anomaly persists in all three definitionms.

Example B.3. Corsider again the state representation 82 iﬁ example B.1l.
It is easy to verify that it is lossless, sincev¢(w)= I£¥%T + ln(l-lwl)
is a conservative potential energy function for this system. But we

showed in Example B.1l that it doesn't satisfy Def. 2.5A or 2.5B. Since
Def. 2.5B is strictly weaker than Def. 2.5, 82 doesn't satisfy Def. 2.5

either.
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Therefore losslessness does not imply the zero average power property
as represented in any of these three definitions. It has become unmis-
takably clear that this "anomaly" is fundamental to nonlinear circuit

theory and doesn't arise from any defect in our definitions. - -

‘B.3). Proof that S1 and S2 in Example B.1l are Bijectively Equivalént

In order to prove that S, and 82 are bijectively equivalent (Def.

1
3.3), we must exhibit the bijection b :zl > Zz and show that for any

q € Zl the class of admissible pairs of S, with initial state q is identi-

1
cal to the class of admissible pairs of S2 with initial state w = b(q).
The function we pfopose is of course b:q > w = q/(1+|q|). The
reader can easily verify the following facts about b(-), and we will use
them withop; comment in the subsequeﬁt argument. First of all, b:R
+°(-1,1) bijectively, and its inverse is giveﬁ by q = b-l(w) = w/(l-lwl).
Furthermore, despite the fact that x — |x| is not differentiable at. the
origin, b(:) and b-l(;) are both bl (althougﬂ not CZ) everywhere, b'(q)
= 1/a+a))?, and "Y' w) = 1/a-|wD2. |
Let ql(O) be any state in 21 and {il(-),vl(3)} be any admissible pair
of §, with initial state ql(O). In order to prove that (il(-),vl(»)} is
also an admissible pair of S2 with initial state wl(O) = b[ql(O)), we must

exhibit a state space trajectory Gl(-) of S2 such that

i) Gl(O) b[ql(O)), i.e. the initial state is correct,

i) vl(t) = Ql(t), ¥t > 0, i.e. the output of S2 is correct,

1ii) Ql(t) [l-lﬁl(t)l]zil(t), i.e. Ql(-) satisfies the state equation of

S2 with input il(-).
Requirement ii) uniquely determines our choice: 61(4) = vi(o). And.

then réquirement i1) 1s satisfied trivially; Since the output equation
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of S1 happens to be of the form v = b(q), it is immediate that this choice

of Gl(-) satisfies requirement i) as well.
: ov

To check requirement iii), we first calculate that 61 =V = 35—-q1
' 1
=1 i.. Upon substituting q, = w /(l-lw l) into this last expres-
: 2 71 1 1 1
(g D7 *

sion, we have &l = (l—IGll)zil, as desired. The proof that every admis-

sible pair of 82 with initial state w(0) is also an admissible pair of S1

with initial state q,(0) = b'l(wl(O)) is similar and will be omitted. M
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Appendix C - Proofs of the Results for Linear Systems

Even when it is applied to linear systems, the definition of loss-
lessness given in this paper is less restrictive than the usual definition
given in the linear systems theory literature [4,12]. For this reason we
are providing complete, rigorous proofs for the results in'subsection 5.4,
First,'however, it is necessary to define some terms and prove some pre-

liminary lemmas.

C.1. Definitions. If w€ ¢4 and if w = u + jy, where u,v ER”'Y, then,

by definition, Re w A u and Im w A v. The complex conjugate of w is

denoted by § Avu - jv, and y_H A E:T.

Let S denote a linear state representation (5.5), where u and y are

_a hybrid pair, U=R", ] =R", and U = Lioc( R'>R"). The complexification

of S, denoted §, is the state representation with the same state and output

2
loc

~

equations as S, but with U = tn, z = ¢m, and U = L (KFBQ“). Thus S is
obtained from é simply by éllowing the components of the input, output,
and state to be complex-valued. If {y('),g(;)} is an admissible pair
of § with initial state Xy then, clearly, {Re v(-),Re i(-)} (resp.,

{Im v(-),Im §(°)}) is an admissible pair of S with initial state Re X,
(resp., Im 50). The use of S instead of S3 i.é., the use of complex-
valued inputs,4 outputs, and states; will greatly simplify the mathemati-

cal notation in the following proofs.

The energy consumed by an input-trajectory pair {u(-),x(-)}|[0,T] of

§ is defined to be the quantity

4A phrase such as "complex-valued input" is intended to mean "an input
with complex-valued components." Such phrases will be used for brevity:
their meaning should be clear. ’
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T o - .
Re I v (t)i(t)de, (c.1l)
0

where {v(+),1(:)} is the admissible pair corresponding to {u(-),x(-) 1.
The state representation S is defined to be lossless if it satisfies
Def. 2.1, with the energy consumed by an input-trajectory pair given by

(C' l) .
C.2 Lemma; S is lossless ¢='§ is lossless.

Proof.

() Obvious, since the beﬁavior of S when the input and initial state
are real is the same as the behavior of S.

. (g Fet {yl('),il(°)}|[0,T1] be an admissible pair of S from X, tox
(i.e., the corresponding state trajectory gl(~) satisfies 31(0) = X, and
§l(T1) = gb) and let {Y2(°)’§2(°)}l[0’T2] be another admissible pair of
S from x_ to x, . Then for k = 1,2, {Re yk(-),Re gk(')}l[O,Tk] is an
admissible pair of S from Re x_ to Re x,, and {Im v () Im gk(-)}l[O,Tk]

is an admissible pair of S from Im x, to Im x,. Note that Re yHg

= Re yT Re i + Im yT Im i. The losslessness of § implies that
T Tl

) .
Re vil(e)i, (£)dt = Re vi(t)Re i, (t)dt
o utPh 0 V1 L

T
1. T
+ J Im v, (t)Im i, (t)dt
0 ~1 ~1

T2
T
= I Re v, (t)Re i,(t)dt
0

T
2 T
+ I Im gz(t)Im gz(:)dt
0 ¢
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T
2 y

= Re I yz(t)iz(t)dt; (Cc.2)
o -~

therefore § is lossless.

C.3. Lemma. S satisfies Statement iv) of Theorem 5.1

—_— -

“ Re I vH(t)g(t)dt = 0 for a1l L2 admissible.pairs of S with zero
0"

initial state.

Proof. -
(¥) Obvious.

@) Leg {y('),g(-)} be an Lz admissible pair of S with zero initial state.
Then {Re y}-), Re 1(+)} and {Im v(:),Im é(-)} are Lg admissible pairs of

S with zero initial state; thus .

t

Re r yH(t)_J:.(t)dt
0

= jw Re yT(t)Re g(tjdt + J‘ Im yT(t)Im v(t)dt = 0 . K
0 0.

C.4 Lemma. A completely controllable linear stéte representation S ='{§,
B,C,D} is equivalent to a minimal® linear state representation § = {ém’
§m,§m,9} (which has the same input and output variables as S); moreover,
there exists a matrix P such that if x is any state of S, then X A Px

is the (necessarily unique) state of Sm which is equivalent to the state

x of S. (Equivalent states were defined in Def. 3.1; equivalent state
representations were defined in Def. 3.2.)

Proof. The iemma follows from standard results in linear system

’Recall that a linear state representation S is defined to be minimal if
no linear state representation with the same transfer function as S

has a state space of lower dimension than that of S. Equivalently, S is
minimal if it is both completely controllable and completely observable

[11, p. 181].
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theory [11, Chap. 7, Theorem 7].

Proof of Assertion a) of Theorem 5.1. vi) = vii). Define qS.: R® + R by -
$ (x) A% <3.".I.<§) » where K is the matrix in statement vi). Then, for any
input-trajectory pair {u(:),x(:)} and any T > 0, we have

S T d¢ (x(t))
¢(z(m) - ¢(x(0) =I ——
0

it

T T . T T
= f x* (£)Kx(t)dt J x (£)K(Ax(t)+Bu(t))de
. 0 .

0 [
T T, AT T T

= J x ()¢ u(e)de = [ u’ (£) [Cx(£)+Du(e) Jde
0 0

T ¢
=I u (t)y(t)at
0 . -

where y(-) is the output corresponding to {L: (u),;_c(-)}. Therefore ¢(+) is
a conservative potential’ energy function for S (Def. 2.3).

vii) = vi). By.assumpt:.ion, there existé a matrix Q such that
' $(x) _Q__% <§,g§> is a conservative potential energy function for S. Define

K g%(gﬂf); ‘then K is symmetric and ¢(x) = 12‘- (x,Kx) . Let {é(-),g:(-)}

. |
¢ (x(t)) - ¢(x(0)) =J uT (e) [Cx()+Du (1) Jdr. (c.3)
0

' Diffex:;ﬂtiating both sides of (C.3) and rearranging, one obtains fo&? almo';i'; aﬁi t>0,

x (OKAx(e) + x7(e) (kB-cT)u(t) - uT(e)DuCe) = 0.
(C.4)

It is not hard to see that (C.4) will be satisfied for all
input-trajectory -pairs if and only if D is antisymmetric, KA is anti-

symmetric, and KB = gT.




vii) = 1). This follows Because even'z state rei:re.sentation with- a:
conservative potential energy functi§n is lossless (subsection 2.2).

1) = 1i). Let S be lossless. .By Lemma C.2, § is lossless. Let
9 €R be such that jwo ¢ AA), let w € ¢®, let the input to § be,
u(t) = w ejwot for t > 0, and .let the'state of § at time. zero be :5(0)

= (ju I-A)-]'Bw. It is easy to verify [13] that the corresponding state

trajectory x(+) is

: . -1 jmo_t |
x(t) ='(jugl-4) "Bwe ", t2>0; (c.5)

ju, .t
moreover, the output is y(t) = H(jmo)y e 0 for £ > 0. Eq. (C.5)

shows that the state trajectory is periodic with period T, where

= 0., Note that

T = Zw/Imol if mb # 0, or T is any positive number if Wy

T
Re[gﬂg(jwo)g]T = Re J yﬁl-l(jwo)y dt

T " '
= Re I u (t)y(t)dt = 0, (c.6) .
0 .

where the last step follows from assertion a) of Lemma .2.1. Since T > O,
(C.6) shows that 0 = Re[yH'lj(jwo)y]. = % YH[lj(jm02 + .gn(jwo)]tj; from which
it.follows that g(jmd) +.I;lH(;fm0) = 0, because w € c® is arbitrary. Note
that g(-jmo) = ﬁ(jwo) because 4, B, C, and D are real matrices. Thus
Blug) = = £ (-Jug).

ii) = 14i). The mapping s - .I;I(s) + BT(—s) is a matrix-valued function
whose elements are holomorphic in € \ A(é); moreover, it vanishes on the
set {s €EC:Rels] = 0 and s & J\(;_X)}. From a standard result in complex
analysis {14, Theorem 10.18], it follows that g(s) +’§T(-s) = 0 for all
s€¢\ A(A). |

iii) = iv). Let {g(-),_i_.(‘)} be an L2 admissible pair ‘of S with zero
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initial state, and let {g(-),z(-j} be the corresPQnding input-output

p#ir of S. From standard results in the theory of Fourier integrals in
the complex domain [15], it follows that u(+) and y(+) are Laplace trans-
formable in the open right-half complex plane; moreover, their Laplace
transforms, denoted U(-) and Y(-) respectively, are holomorphic there.
For real ¢ and w, define U(jw) A liq+ U(G+jm) . this limit exists for
almost all w €R, and the functxog g + U(jw) is the L2-Fourier transform
of g(-).[lS]. Likewise, w‘+ Y(jw) A 11m+ Y(G+jw) is the Lz—Fourler trans- -
form of Z(-). If all poles of H(*) agzgxxthe open left-half plane, set
GO = 03 ;therwise, let % be the maximum real part of the poles of H(-).
It follows from the time-domain relation between u(-) and Z(°) that

¥(s) = g(s)y(s) for Re[s] > ¢ Since s -+ g(s)y(s) is meromorphic in the
open right-half plane and equal tB the Holomd?ﬁhic function s + Y(s) for
ke[s] > g, it follows that Y(s) = H(s)U(s) fst‘éli s where H(s) is
defined in the open right-half plane [14].° Thus Y(ju) = H(ju)U(ju) for

almost all real w. Parseval's theorem [15] gives

r(g(t),;(t)) dt = I {u(e),y(t)? dt
(0] 0

= -;;I (TG, ¥(w)) dw

=1 J v (5) B0 T(w)dw

= %—“ Re J y"(jw)g(jmg(jw)dw

- }Tnf U (u) f§<iw>+§u<jm>ly<jw)dm = 0.

6Hence, the assumption that u(+) and y( ) belong to L2 implies that the
poles of H(+) in ‘the open right-half plane’ (if any) are cancelled when
the product H(+)U(-) is formed.
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The last step follows since H(jw) + }}H(jm) = H(jw).+ IjT(—jw) = 0.

iv) = 11). Assume ii) is not satisfied. We shall show that iv) is
not satisfied. If 1i) is not satisfied, then there exists an w, € R such
that jmo & A(A) and Ij(jwo) + I_-.IH(jwo) # 0. Choose w € ¢ such that
yH[Li(jmo) + IjH(jmo)] w # 0. The elements of H(+) are éontihuous at jwo
(because jug 3 A({_&)); hence, there exists a b € (.0,1) such that ju & )\'(é)
and yu[g(jw) + }_IH(jw) Jw # 0 for all w € [wo-Am, mo+Aw]. Define 9, A »’1—-(Aw)2.
Let P1sPgses Py denote the poles of I;I(-) which lie in the closed right-
half pla;ae (if there are any), let m, denote the multiplicity of P> and
let M be any intéger such that M > ) n, (if H(+) has no poles in the

. i=1 -
closed right-half plane, set m, = 0 for all i]. Let the input to S be

- d g 2 e M '

u(t) & G- p) GE-pp) (G- p) Gyp) expl-(o,-Ju)tly for
' t > 0. Note that ﬁ(-) € L2(1R++¢n), and .its Laplace transform is

" ™

“ (s-p,) “(s-p,) “...(s-p,)
fi(s) = 1 2 k

VL w. If ;r(e) denotes the output of 8
(sto,-ju )

when the initial state is zero, then the Laplace transform of y(-) is seen

to be
m
. G Mepy) Len(ep)
Y(s) = T H(s)w. (c.7)
(sto -ju,)

The numerator on the right-hand side of (C.7) cancels any polés of H(*) in
7 ~ -~ ~

the closed right-half plane ; thus, y(*) € L2(1R+->Cn). If {v(*),i(-)}

denotes the admissible pair of § corresponding to the input-output pair

{g('),i(')}, then an application of Parseval's theorem [15] yields

Re J () i(t)de = Re J ) y(oar
o~ 0 -

“ 3 v [ 0w 50w SGwd

7
And, by constructien, H(*) has no poles at infinity.
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.

- Z;; r 7 Jw) (8 G0) + 1 Gw) 13 (Jw)do

4w

2m 2m 2mk
r l3o-p, | Hiump,| 2. [5u-p, ] )
We

_wy“_[g(jw) + 1 (jw) Jw — i
' (o +(w-w )]
(C.8)

Define r: R + R by

2 2m 2
r) A ¥ Q) + G0y |du-p, | mlljw-pz‘l 2.0 dwmp, | &, .9

By the duﬁCeofwo, w, and dw, r(+) is continuous on the interval
J é:[wo-éw,mo+Am] and r(w) 4 0 for all w € J; thus, r(.) is sign-definite

on J. Substitutihg (C.9) and 0: =1 - (Am)2 into (C.8), one obtains

w_-Aw
° r(w)dw

- 4 M1
[1- (8) *+ (wa_)?]

Re ri}n(t)i(t)dt = 4%
0 : .

w +w |
o

1 r(w)dw
e

r(w)dw

1
M+1 + 4w

[l-(Am)2+(m-wo)2] wo-Am[l-(Aw)2+(m-m°)

w +Aw 2
o

]

Note that the denominator of the integrénd,in the first two integrals in
(C.10) is greater than 1, thus the Lebesgue Domingted Convergence Theorem
[14] shows that the first two integrals approach zero as M + . The
denominator of the integrand in the last integral is less than 1 (but
positive), and the numerator is sign-definite; hence, the magnitude of‘
the last integral increases without bound as M + =. Evidently, if M is
chosen large enough, then {§(-),i(-)} is an L2 admissible pair of S with
zero initial state such that Re [: §H(t)i(t)dt # 0. It follows from

Lemma C.3 that iv) is not satisfied.

Proof of assertion b) of theorem 5.1

First, assume that S is completely controllaﬁlg and statement ii) is

)
true. Under these conditions, S is lossless. To see this, let T > 0,
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these conditions, statement vii) is true. To prove this assertion, let

s, = {gm,gm,gm,p} denote a minimal state represenéation which is equivalent
to S = {4,B,C,D} (lemma C.4). Since S and S_are linear and equivalent,
they are zero-state equivalent. Thus Sﬁ satisfies statement iii), because

S does. This implies that Sln is lossless, because it has already been
shown that statements i) through iv) are eéuivalent under the assumption

of complete controllability. The next step of the proof is to show that
statement vi) is true when applied to Sm’ To see this, note that Sm

satisfies statement iii) because it is lossless; therefore
‘

T T

-1, T T,~1
Cp(sI-4,) By + D = B (sI# ¢ = D | (€.11)

m_~
for all s € ¢ \A(é). Letting s -+ «» in (C.1ll), we obtain D = -QT; and so

T

-1, _ _T T,-1
CplsI-4) "B, =B (sI+A ) "C_ (c.12)

for all s é§¢ \ A(A). It follows from (C.12) that {ém’§m’§m} and
{-éi,gz,gi} are both minimal realizations of the transfer function
gm(s;-ém)-lgm. From a result in linear system theory [ll, theorem 9,

p. 184], there exists a unique invertible matrix Q such that -4§ = Qémg.l,
_: = ggm, and §£ = gmg-l. The reader can easily verify that the equatioas
in vi) will be satisfied for Sm by choosing K = Q. To complete the proof A

that statement vi) is true when applied to Sm’ it must be shown that Q

is symmetric. The reader can easiiQwvéiify that Q satisfies these three

~

egs. if and only if QT does. Since the solution Q is also unique, it

follows that Q = QT. Since statement vi) is true when applied to
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S, it follows from assertion a) and its proof that ¢_(x ) g% (gcm,l_(:fm)

is a conservative potential energy function for Spe Let {g(~),§(~).}

be an input-trajectory pair of S; from lemma 3.2, the corresponding (unique) -
input-trajectory pair of §_is {g(-),ljg(‘-)}, whére P is the maj:rix in

lemma C.4. Thus, for any T > 0, the energy consumed by {g('),_{c(')}l [0,T]

Tl__(gg) is a con~-

1s ¢, (Bx())-¢_(Bx(0)); this implies that ¢(x) A 7 (x,P
servative potential energy function for S. What has been shown is that
i) ® vii) when S is completely controllable. This fact, combined with
assertion a), shows that statements i),»vi), and vii) *a.re equivalent
when S is completely controllable.

It remains to show the equivalence of statements i). and v) when S
is completely controllable, so assume the latter. Theorem 2.1 will be
utilized to prove v) = i), but note that theorem 2.1 cannot be applied
directly to S because not every u(.) €E U = Lioc(IR-'-r]Rn) is bounded:on
every compact subset of 1R+. Let S* denote a.state representation which
is identical to S except that the set of admissible input functions of S*,
denoted U*, is the set of piecewise continuous functions mapping IR+ .to
R". Theorem 2.1 shows that for S*, v) ® 1i). The proof that i) = ii)
from assertion a) applies equally well to S*. Thds we have the following
relations: S satisfies v) = S* satisfies v) = S* satisfies i) = S*
satisfies ii) ® S satisfies ii) ¥ S satisfies i1). This shows that if S
is completely controllable and satisfies statement v), then S is lossless.

Now suppose that S is lossless and completely controllable. Let
Sm = {ém’ §m,§m,§} denote a mimina‘l linear state representation which is
equivalent to S = {A,B,C,D} (lemma C.4). Let {g(-),z(-)} be a bounded input-
output pair of S; then,' by equivalence, {g(-),).t(-)}.is also an input-output
pair of Sx;x’ and §m('_) will denote the'corresponding (unique) state

trajectory of Sm’ Choose At > 0, and define
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At é:s T As , ~ :
gm(At) A IO e gmgme T gs. : (Cc.14)

Since S is completely observable, glm(At) is nonsingular [11, p. 176,

theorem 5]; thus

2 (5 = D0 T, e (6)

At ATs As

'_, -1 “m T, *“m
= [gm(At)] Jo e ngme :_:m(t)ds. (Cc.15)
Note that ¢ .
éms t+s A (t+s-1) .
gme x (t) = y(tts) - J Ce n B u(t)dTt -Du(t+s). (c.1l6)
m 2 ¢ m “m~ =%
Define | ' ' _ .
M, A sup fu(e)? < = (C.17a)
>0 .
M, Asup ly(e)l <o , " (C.17b)
t>0 '
o o g I
M, (At) A sup ICe "Bl <= (C.17¢)
3 0<s<At ° -
ATS 1
M4(At) A sup e c | < =, : (c.174)
0<s<At n '

From (C.16) and (C.l?), iﬁ follows that
A,s |
B e™ x (0) < M, + MM (AE)AE +M ||| <. (c.18)

for all (t,s) such that t > 0 and 0 < s < At. Combining (c.15), (c.174),

and (C.18), one obtains
Bx (o)1 < B[glm(ac)]'lu (M4, M (ar)at+ M [ || | 1m, (At) At (c.19)

for all t > 0. Thus x (-) is bounded. Now, since S is minimal and
lossless, it has a continuous (in fact, quadraltic) conservative potential
energy function. If {y’(-),:.'_.(-)}‘ denotes the admissible pair corresponding
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to {9(.),2(.)}, then it follows f;om lemma 2.7 ;ﬁiﬁ

1 (T N AP '
lim—I <y(t),;(c))dr.=11m;r-f Cu(t),y(t) ¥t = 0. . ®

T T 0 T 0

Proof of Lemma 5.7

) This follows immediately from lemma 3.3.

() Suppose S is lossless. Then, since S is controllable, it is
equivalent to a miniﬁal linear state representation Sm (lemma C.4). By
theorem 5.1, Stn is lossless. The minimal state representation Sm is
completely observable [ll];'therefore, it is state-observable (Def. 3.1).
| In summary, Sm is a lossless, state-dbservable hybrid state representation

for N; therefore, N is lossless (Def. 3.6). )
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Fig. 1.

fig. 2.

Fig. 3.

Fig. 4.
Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

Fig. 9.

Fig. 10.

FIGURE CAPTIONS

A current-controlled 2-port which is cyclo-lossless but not
lossless.

A lossless l-port which is nof energetically reversible. Because
of the diode in series with the capacitor, it "traps" all the
energy whicﬂ enters it.

a. The constitutive relation ofia nonlinear capacitor which is
lossless and has properties 1, 2, 3 and 5 listed at the beginning

of section II. '
=2

.b. An L” admissible pair for't'his system for which the total

energy is nonzero.

A l-port which has the zero average power property but is never-
theless lossy. ’

This nonlinear capacitor is a 10;sl;§s system which does not have
the zero average power property.

An illustration of def. 2.6 in the case that U is l-dimensional.
a. A typical waveform u(-.).

b. The restriction u(-)I[O,T).

¢. The periodic extension of u{.)|[0,T).

Figure for -the proof of theorm 2.1. The trajectories x.(-) and

=1
x,(-) require different amounts of emergy, i.e. E # E,. The
existence of a ;eturn path 33(-) is 5uaranteed by our assumption
of complete controllability.

Figure for the proof of theorem 3.1.

Every voltage-controlled state representation has a realization of
this form in which C is lossless. Ifcp and C are both lossless we

call it a lossless realization.

A realization of the l-port in example 6.1l.



Appendices

Figo A. 1.

Fig. AIZ‘

Figure for the proof of lemma 2.2. The trajectory §4(~)
consists of 31(-) followed by 53(.).
Figure for the proof of lemma 3.2. We initially assume that

g(xl(t')) # %,(¢t'). The other trajectories are then used to

show that this assumption results in a contradiction.
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